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Recursive State Estimation for Stochastic Complex
Networks under Round-Robin Communication

Protocol: Handling Packet Disorders
Dan Liu, Zidong Wang, Yurong Liu, Fawaz E. Alsaadi, and Fuad E. Alsaadi

Abstract—This paper investigates the recursive state estimation
problem for a class of discrete-time stochastic complex networks
with packet disorders under Round-Robin (RR) communication
protocols. The phenomenon of packet disorders results from
the random transmission delays during the signal propagation
process due to the unpredictable fluctuations of the networkload,
and such random delays are modeled by a set of random variables
satisfying certain known probability distributions. For t he sake
of lessening the communication burden and abating the data
collisions, the RR protocol is introduced to govern the order of
the nodes for data transmission. Under the scheduling of the
RR protocol, only one node is allowed to gain the access to
the network at each time instant. Then, a recursive estimator
is devised to guarantee an upper bound for the estimation
error covariance, and then the obtained upper bound is locally
minimized by adequately choosing the estimator parameters.
Furthermore, the boundedness of estimation error is analyzed
in the sense of mean square with the help of stochastic analysis
techniques. At last, a simulation example is presented to show
the applicability of the proposed estimator design scheme.

Index Terms—Recursive state estimation, complex networks,
packet disorders, Round-Robin protocol, mean-square bounded-
ness.

I. I NTRODUCTION

A complex network (CN) is comprised of a mass of nodes
that are distributed and connected according to certain topolo-
gies, where each node represents an individual with dynamical
behavior. CNs are well known to be an abstraction of many
practical networks including social networks, biologicalnet-
works and electrical power grids, and have therefore attracted
an ever-increasing research interest in the past few decades
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simply because of their engineering significance, see e.g. [1]–
[4], [8], [9], [43] for some representative results. In engineer-
ing practice, an inevitable phenomenon that the CNs would
suffer from is the so-called stochastic disturbance which,in
turn, would have direct influence on the dynamical behaviors
of the CNs themselves. As such, it is of great importance
to take the stochastic disturbance into consideration when
analyzing the dynamics of the CN and, along this direction,
much research has been done in [20], [29], [35], [40]. For
instance, the global synchronization problem has been studied
in [35] for the CNs in the presence of randomly occurred
nonlinearities, mixed time-delays and stochastic noises.Fur-
thermore, in [29], a newH∞ synchronization problem has
been discussed for a class of discrete time-varying stochastic
complex networks (SCNs) over a finite horizon.

In the practical applications, the network states of CNs
are vitally important as they represent physical quantities
that need to be closely monitored and accurately measured.
Unfortunately, exact knowledge of the network states is often
unavailable because of inherent resource limits in the context
of large scales of the nodes and complicated topology of
the networks. Therefore, it becomes an imperative task to
estimate the network states of the CNs through attainable
network measurements that might be incomplete, sparse and
noisy. To date, considerable effort has been dedicated to the
state estimation (SE) problem and numerous results have been
reported in the literature, see e.g. [10], [11], [16], [47].In
particular, the recursive SE issue has been investigated in
[13] for the SCNs with missing measurements, where the
estimator gain can be obtained recursively at each time instant
for each node by solving certain recursive matrix equations.
Subsequently, a recursive estimator has been presented in
[12] for a class of time-varying SCNs with uncertain inner
coupling and quantized measurements. In addition, a partial-
nodes-based approach has been developed in [25] to design
the estimator for discrete-time delayed SCNs.

In a typical communication network with limited bandwidth,
it is not uncommon that the signal transmission undergoes the
so-called packet disorder, which means that the data packet
sent earlier (later) might reach its destination later (earlier),
and this violates the “first send first arrive” principle. Obvi-
ously, the phenomenon of packet disorders (PPD) results from
the random transmission delays during the signal propagation
process due to the unpredictable fluctuation of the network
load. In this case, the latest arrival packet might contain
outdatedsystem information which, if not properly dealt with,
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would lead to the performance degradation of the designed
estimator. Unfortunately, comparing to other network-induced
phenomena (e.g. packet dropout and signal quantization), the
PPD has received far less research attention due probably to
the difficulty in characterizing the random nature of the packet
arrivals.

So far, in the literature of networked control systems (NC-
Ss), there have been a few initial research results concerning
the phenomenon of packet disorders, see e.g. [6], [14], [18],
[19], [33], [41], [42], [48], where the PPD has been assumed
to take place in the communication channel from the sensor
to controller/filter. Nevertheless, the PPD could also occur
during the sensing process where the measurement outputs
experience random transmission delays before their arrivals at
the ultimate receivers, see [34] and the references therein. To
our knowledge, the PPD issue with respect to random sensor
delays (RSDs) has not gained much research interest yet, and
the first motivation of this paper is therefore to address the
recursive SE problem for SCNs with RSD-induced packet
disorders.

Despite the steady revolution of the wireless communication
technology, the limited bandwidth remains as a main concern
that would lead to data collisions when multiple data packets
are transmitted simultaneously through a shared network [5],
[22], [27], [39], [44]. A popular way of better utilizing
the limited network resource is to adopt the communication
protocols as so to administer the transmission order of network
nodes, and some frequently deployed protocols include the
Round-Robin (RR) protocol [17], [23], [24], [26], [37], [38],
[46], the stochastic communication protocol [7], [15], [31],
[45] and the Try-Once-Discard (TOD) protocol [30], [32].
Among others, the RR protocol stands out for its simple
periodicity and easy implementation, under which only one
node has privilege to enter the network at each time instant
according to a fixed circle order. Over the past few years,
although some preliminary results have appeared under RR
protocols, the design of RR-regulated recursive estimatorhas
not aroused adequate research attention yet, let alone the case
where the PPD is also involved. To this end, the second
motivation of this paper is to examine the impact from the
RR protocol on the corresponding estimation performance.

In this article, we endeavor to address the recursive SE
problem for a class of SCNs with packet disorders. A RR
protocol is utilized to equally allocate the network resources
to the nodes by only allowing one node to gain the access to
the network at each time instant in a circular order, thereby
mitigating the data congestion. In the presence of both packet
disorders and RR protocols, an upper bound of estimation
error covariance is derived and subsequently minimized via
appropriate design of estimator gain. By resorting to the s-
tochastic analysis techniques, we also analyze the mean-square
boundedness of the error dynamics of the state estimation. In
doing so, we are facing the following substantial difficulties:
1) how to describe the RSDs properly; 2) how to characterize
the updating rule of the RR protocols; 3) how to design an
appropriate estimator that mitigates the effect of the RSDsand
also reflects the influence of the RR protocols; and 4) how to
guarantee the boundedness of estimation errors.

To deal with the above difficulties, the primary contributions
of this article are highlighted as follows: 1) the recursiveSE
issue is, for the first time, investigated for SCNs subject to
packet disorders and RR protocol; 2) the considered RSDs
resulting in PPD are described by a sequence of random
variables following a known probability distribution; 3) anew
measurement model is proposed to account for the RSDs
and RR protocols and then a novel recursive estimator is
developed by using an integer-valued function; and 4) a
sufficient condition is derived to guarantee that the estimation
error is exponentially bounded in the mean-square sense.

Notation: The notation used here is fairly standard. For a
matrix Z, ZT , Z−1 and tr{Z} represent, respectively, the
transpose, the inverse and the trace of matrixZ. col{. . .}
denotes a column vector composed of elements and diag{. . .}
represents a block-diagonal matrix. The notation‖ · ‖ denotes
the Euclidean (spectral) norm of real vectors (matrices).E{·}
stands for the expectation operator. The Kronecker productof
a r×s matrixM and at×h matrixN is defined by art×sh

matrix M ⊗N as follows:

M ⊗N =






m11N · · · m1sN
...

...
mr1N · · · mrsN




 .

The Kronecker delta functionδ(a) is defined byδ(a) = 1
if a = 0 and δ(a) = 0 otherwise.mod(p, q) denotes the
remainder of the integerp divided by the positive integerq.
The floor function⌊b⌋ equals the largest integer no larger than
b with b being an arbitrary real number.

II. PROBLEM FORMULATION

Consider a class of discrete-time SCNs consisting ofM

coupled nodes:

xi(r + 1) = Ai(r)xi(r) + f(xi(r)) +

M∑

j=1

ωijΓxj(r)

+Bi(r)w(r), (1a)

~yi(r) = Ci(r)xi

(
r − τi(r)

)
+Di(r)v(r), (1b)

where xi(r) ∈ R
m and ~yi(r) ∈ R

n are the system state
and the measurement output of thei-th (i = 1, 2, . . . ,M)
node, respectively;f(·) is a known nonlinear function which
is continuously differentiable;w(r) ∈ R

w and v(r) ∈ R
v

are, respectively, zero-mean white sequences distributedin
bounded domains with covariancesQ(r) > 0 andR(r) > 0;
Ai(r), Bi(r), Ci(r) and Di(r) are known matrices;Γ =
diag{γ1, γ2, . . . , γm} ≥ 0 is an inner-coupling matrix, where
γj 6= 0 stands for the linking withj-th state variable;
W = [ωij ]M×M is the coupled configuration matrix with
ωij > 0 if node i can receive the information from nodej,
otherwiseωij = 0, which satisfiesW = WT and

M∑

j=1

ωij =

M∑

j=1

ωji = 0;

τi(r) denotes the RSD at the time instantr that obeys the
following statistical distribution law:

Prob
{
τi(r) = s

}
= ps, s = 0, 1, . . . , q,
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whereq is a known positive integer,ps (s = 0, 1, . . . , q) are
known constants satisfying0 ≤ ps ≤ 1 and

∑q

s=0 ps = 1. We
assume thatxi(r) = ϕi(r) (r = −q,−q + 1, . . . , 0) where
ϕi(r) is the initial condition.

Remark 1:As shown in (1b), the model of measurement
output ~yi(r) contains the termxi

(
r − τi(r)

)
that is related

to RSDs occurring in the sensing process, and such RSDs
would result in packet dropouts. In most existing literature,
it has been assumed that the random delays follow a Markov
chain satisfying a precisely known transition probabilitymatrix
[18]. Recognizing the difficulty of identifying such a transition
probability matrix, in this paper, we use a set of random
variables (with known probability distribution) to characterize
the random delays [21]. On the other hand, as opposed to those
occurring in the sensor-to-filter channel in the literature, the
random delays in this paper take place in the sensing process
and appear in the measurement outputs, which are more likely
to induce the packet disorders and bring in more difficulties
in the subsequent analysis.
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Fig. 1. Diagrammatic sketch of estimation system with a RR protocol.

For notation simplicity, we let

x(r) , col
{
x1(r), x2(r), . . . , xM (r)

}
,

~y(r) , col
{
~y1(r), ~y2(r), . . . , ~yM (r)

}
,

A(r) , diag
{
A1(r), A2(r), . . . , AM (r)

}
,

B(r) , col
{
B1(r), B2(r), . . . , BM (r)

}
,

f(x(r)) , col
{
f(x1(r)), f(x2(r)), . . . , f(xM (r))

}
,

C̄i(r) , diag
{
0n×m, . . . , 0n×m
︸ ︷︷ ︸

i−1

, Ci(r), 0n×m, . . . , 0n×m
︸ ︷︷ ︸

M−i

}
,

D(r) , col
{
D1(r), D2(r), . . . , DM (r)

}
.

By utilizing the Kronecker product, we rewrite the SCNs
(1a)-(1b) as:

x(r + 1) =
[
A(r) + (W ⊗ Γ)

]
x(r) + f(x(r)) +B(r)w(r),

(2a)

~y(r) =

M∑

i=1

C̄i(r)x
(
r − τi(r)

)
+D(r)v(r) (2b)

with the mean and covariance matrix of the initial condition
x(0) being x̄(0) andP (0), respectively.

In this paper, the measurement outputs sent by the sensors
are transmitted to a remote estimator through a constrained
communication network, and this might give rise to data col-
lisions when multiple nodes transmit signals simultaneously.

To avert excessive data collisions and improve the utilization
efficiency of the communication resource, the RR protocol is
used to regulate the transmission order of the measurement
signal, where the corresponding schematic sketch is shown
in Fig. 1. Under the scheduling of the RR protocol, only one
node is permitted to send its data at each time instant according
to a circular order. Lety(r) , col

{
y1(r), y2(r), . . . , yM (r)

}

denote the actual measurement received by the estimator.
According to the RR protocol, it follows that

yi(r) =

{

~yi(r), if mod (r − 1,M) = 0,

yi(r − 1), otherwise.
(3)

For the sake of convenience, we assume thaty(r) = 0 for
r < 0 and defineΦi , diag

{
δ(i − 1)I, δ(i − 2)I, . . . , δ(i −

M)I
}
(i = 1, 2, . . . ,M). Then, it can be inferred that

y(r) =

M−1∑

l=0

Φσ(r−l)~y(r − l), (4)

where

σ(r) =

{

M, r = 0,

mod(r − 1,M) + 1, otherwise

represents the selected node having the privilege to transmit its
measurement signal at time instantr. Moreover, we setσ(r) =
r+M and~y(r) = ~y(0) for r = −M +1,−M+2, . . . , 0 with
~y(0) being the initial measurement.

Remark 2:The RR protocol is utilized in this paper to sched-
ule the data transmission so as to mitigate the communication
burden. Traditionally, the updating rule of the RR protocolis
given by (3) as in [46]. In this paper, such a rule has been
equivalently presented as (4), with which the system state
and estimator input do not need to be augmented, thereby
facilitating the subsequent mathematical derivation.

Based on the scheduled measurement (4), a recursive esti-
mator is constructed as follows:

x̂(r + 1|r) =
[
A(r) + (W ⊗ Γ)

]
x̂(r|r) + f(x̂(r|r)),

(5a)

x̂(r + 1|r + 1) = x̂(r + 1|r) +G(r + 1)
[

y(r + 1)

−
M−1∑

l=0

M∑

i=1

Φσ(r−l+1)C̄i(r − l + 1)

× x̂(r − l + 1− d|r − l − d)
]

, (5b)

where x̂(r|r) ∈ R
m represents the estimate ofx(r) with

x̂(0|0) = x̄(0); x̂(r + 1|r) ∈ R
m stands for the one-step

prediction ofx(r+1) at time instantr; G(r+1) is the estimator
parameter;d is an integer which satisfies

d =

{

⌊τ̄⌋, if τ̄ − ⌊τ̄⌋ < 1
2 ,

⌊τ̄⌋+ 1, otherwise
(6)

with τ̄ , E
{
τi(r − l + 1)

}
=

q∑

s=0
sps (i = 1, 2, . . . ,M) and

⌊τ̄⌋ representing the biggest integer no bigger thanτ̄ .
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The main purpose of this paper is to find an upper bound
matrix Θ(r + 1|r + 1) for the estimation error covariance

E

{[
x(r+1)− x̂(r+1|r+1)

][
x(r+1)− x̂(r+1|r+1)

]T
}

on the basis of the proposed estimator (5a)-(5b). Furthermore,
the upper boundΘ(r + 1|r+ 1) would be minimized at each
time instant by properly choosing the estimator parameter.

Remark 3:In the proposed estimator (5a)-(5b), there are
tight couplings between the nodes, the RR protocols, as well
as the packet disorders. To be specific, the innovation structure

y(r+1)−

M−1∑

l=0

M∑

i=1

Φσ(r−l+1)C̄i(r−l+1)x̂(r−l+1−d|r−l−d)

reflects, to some extent, the influence from the RR protocols
and the packet disorders. The integerd, which appears in the
innovation structure, is closely related to the random delay
τi(r). Generally speaking, a reasonable estimator should not
involve any random variables (e.g.τi(r)) for its implementabil-
ity. For this reason, the mathematical expectationτ̄ of τi(r)
is taken here. It should be mentioned that,τ̄ might not be an
integer, which means that̄τ is unsuitable for representing the
time instant in the discrete-time setting, and thusτ̄ is rounded
to d. As such, the estimator proposed in this paper is capable
of resisting the impacts from the packet disorders.

III. M AIN RESULTS

In this section, an upper bound is first derived for the
estimation error covariance, and is then locally minimizedby
properly selecting the estimator parameter.

First of all, the one-step prediction error denoted by

e(r + 1|r) , x(r + 1)− x̂(r + 1|r),

is calculated from (2a) and (5a) as

e(r + 1|r) =
[
A(r) + (W ⊗ Γ)

]
e(r|r) + f(x(r))

− f(x̂(r|r)) +B(r)w(r). (7)

Expandingf(x(r)) in a Taylor series around̂x(r|r), we
obtain that

f(x(r)) = f(x̂(r|r)) + F (r)e(r|r) + U(r)S(r)T (r)e(r|r),

where

F (r) ,
∂f(x)

∂x
|x=x̂(r|r),

and the termU(r)S(r)T (r)e(r|r) stands for the linearization
error with U(r) and T (r) being the known matrices, and
S(r) being an unknown matrix that satisfiesS(r)ST (r) ≤ I.
Furthermore, the prediction error can be further rewrittenas

e(r + 1|r) =
[
A(r) + (W ⊗ Γ) + F (r) + U(r)S(r)T (r)

]

× e(r|r) +B(r)w(r). (8)

Denoting the estimation error as

e(r + 1|r + 1) , x(r + 1)− x̂(r + 1|r + 1),

we subtract (5b) from (2a) to have

e(r + 1|r + 1)

= e(r + 1|r)−G(r + 1)

[
M−1∑

l=0

M∑

i=1

Φσ(r−l+1)

× C̄i(r − l + 1)x
(
r − l+ 1− τi(r − l + 1)

)

+
M∑

l=0

Φσ(r−l+1)D(r − l + 1)v(r − l + 1)

−

M−1∑

l=0

M∑

i=1

Φσ(r−l+1)C̄i(r − l + 1)

× x̂(r − l+ 1− d|r − l − d)

]

. (9)

Adding the zero termG(r + 1)
M∑

i=1

C̄i(r + 1)e(r + 1|r) −

G(r+1)
M∑

i=1

C̄i(r+1)e(r+1|r) to the right-hand side of (9),

we have

e(r + 1|r + 1)

=

(

I −G(r + 1)
M∑

i=1

C̄i(r + 1)

)

e(r + 1|r)

+G(r + 1)
M∑

i=1

C̄i(r + 1)e(r + 1|r)

−G(r + 1)

M−1∑

l=0

M∑

i=1

Φσ(r−l+1)C̄i(r − l + 1)

× x
(
r − l + 1− τi(r − l+ 1)

)

−G(r + 1)
M∑

l=0

Φσ(r−l+1)D(r − l + 1)v(r − l + 1)

+G(r + 1)
M−1∑

l=0

M∑

i=1

Φσ(r−l+1)C̄i(r − l + 1)

× x̂(r − l + 1− d|r − l − d). (10)

Before proceeding, we introduce the following lemma.
Lemma 1:[36] Let F,U, S andT be matrices withSST ≤

I. For any symmetric matrixP > 0 and scalarα > 0, if
α−1I − TPT T > 0 is satisfied, then we have

(F + UST )P (F + UST )T

≤F (P−1 − αT TT )−1FT + α−1UUT . (11)

Lemma 2:The one-step prediction error covariance

P (r + 1|r) , E
{
e(r + 1|r)eT (r + 1|r)

}

and the estimator error covariance

P (r + 1|r + 1) , E
{
e(r + 1|r + 1)eT (r + 1|r + 1)

}

are, respectively, computed as

P (r + 1|r) =
[
Ã(r) + F̃ (r)

]
P (r|r)

[
Ã(r) + F̃ (r)

]T

+B(r)Q(r)BT (r) (12)

and

P (r + 1|r + 1)
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=

(

I −G(r + 1)

M∑

i=1

C̄i(r + 1)

)

P (r + 1|r)

×

(

I −G(r + 1)

M∑

i=1

C̄i(r + 1)

)T

+G(r + 1)

M∑

i=1

M∑

j=1

E
{
C̄i(r + 1)e(r + 1|r)

× eT (r + 1|r)C̄T
j (r + 1)

}
GT (r + 1)

+G(r + 1)

M−1∑

l=0

M∑

i=1

M−1∑

h=0

M∑

j=1

E

{

Φσ(r−l+1)

× C̄i(r − l + 1)x
(
r − l + 1− τi(r − l + 1)

)

× xT
(
r − h+ 1− τj(r − h+ 1)

)
C̄T

j (r − h+ 1)

× ΦT
σ(r−h+1)

}

GT (r + 1) +G(r + 1)

×

M−1∑

l=0

M−1∑

h=0

E
{
Φσ(r−l+1)D(r − l + 1)v(r − l + 1)

× vT (r − h+ 1)DT (r − h+ 1)ΦT
σ(r−h+1)

}
GT (r + 1)

+G(r + 1)

M−1∑

l=0

M∑

i=1

M−1∑

h=0

M∑

j=1

Φσ(r−l+1)

× C̄i(r − l + 1)x̂(r − l + 1− d|r − l − d)

× x̂T (r − h+ 1− d|r − h− d)C̄T
j (r − h+ 1)

× ΦT
σ(r−h+1)G

T (r + 1)

+ E
{
T1T

T
2 + T2T

T
1 − T1T

T
3 − T3T

T
1 − T1T

T
4

− T4T
T
1 + T1T

T
5 + T5T

T
1 − T2T

T
3 − T3T

T
2

− T2T
T
4 − T4T

T
2 + T2T

T
5 + T5T

T
2 − T3T

T
5

− T5T
T
3 − T4T

T
5 − T5T

T
4

}
, (13)

where

Ã(r) , A(r) + (W ⊗ Γ),

F̃ (r) , F (r) + U(r)S(r)T (r),

T1 ,

(

I −G(r + 1)
M∑

i=1

C̄i(r + 1)

)

e(r + 1|r),

T2 , G(r + 1)

M∑

i=1

C̄i(r + 1)e(r + 1|r),

T3 , G(r + 1)

M−1∑

l=0

M∑

i=1

Φσ(r−l+1)C̄i(r − l + 1)

× x
(
r − l + 1− τi(r − l + 1)

)
,

T4 , G(r + 1)
M∑

l=0

Φσ(r−l+1)D(r − l + 1)v(r − l+ 1),

T5 , G(r + 1)
M−1∑

l=0

M∑

i=1

Φσ(r−l+1)C̄i(r − l + 1)

× x̂(r − l + 1− d|r − l − d).

Proof: According to (8) and (10), the equalities (12) and
(13) can be readily obtained, and the proof of this lemma is
thus omitted.

On the basis of the above preliminaries, we are now ready
to present our main results in the following theorem.

Theorem 1:Let εi (i = 0, 1, . . . , 10) andα(r) be positive
scalars. Under the initial conditionΘ(0|0) = P (0|0) > 0,
assume that the following two recursive matrix equations

Θ(r + 1|r) = (1 + ε0)Ã(r)Θ(r|r)Ã(r)T + (1 + ε−1
0 )

×

(

F (r)
[
Θ−1(r|r) − α(r)T T (r)T (r)

]−1

× FT (r) + α−1(r)U(r)UT (r)

)

+B(r)Q(r)BT (r) (14)

and

Θ(r + 1|r + 1)

= ǫ1

(

I −G(r + 1)
M∑

i=1

C̄i(r + 1)

)

Θ(r + 1|r)

×

(

I −G(r + 1)
M∑

i=1

C̄i(r + 1)

)T

+ ǫ2MG(r + 1)
M∑

i=1

C̄i(r + 1)Θ(r + 1|r)

× C̄T
i (r + 1)GT (r + 1)

+ ǫ3M
2G(r + 1)

M−1∑

l=0

M∑

i=1

q
∑

s=0

psΦσ(r−l+1)

× C̄i(r − l + 1)X̃(r − l + 1− s)C̄T
i (r − l + 1)

× ΦT
σ(r−l+1)G

T (r + 1)

+ ǫ4MG(r + 1)

M∑

l=0

Φσ(r−l+1)D(r − l + 1)

×R(r − l + 1)DT (r − l + 1)ΦT
σ(r−l+1)G

T (r + 1)

+ ǫ5M
2G(r + 1)

M−1∑

l=0

M∑

i=1

Φσ(r−l+1)C̄i(r − l + 1)

× x̂(r − l + 1− d|r − l− d)

× x̂T (r − l + 1− d|r − l − d)C̄T
i (r − l + 1)

× ΦT
σ(r−l+1)G

T (r + 1), (15)

where

ǫ1 , 1 + ε1 + ε2 + ε3 + ε4,

ǫ2 , 1 + ε−1
1 + ε5 + ε6 + ε7,

ǫ3 , 1 + ε−1
2 + ε−1

5 + ε8,

ǫ4 , 1 + ε−1
3 + ε−1

6 + ε9,

ǫ5 , 1 + ε−1
4 + ε−1

7 + ε−1
8 + ε−1

9 ,

X̃(r − l + 1− s) , (1 + ε10)Θ(r − l + 1− s|r − l − s)

+ (1 + ε−1
10 )x̂(r − l + 1− s|r − l − s)

× x̂T (r − l + 1− s|r − l − s),

have solutionsΘ(r + 1|r) > 0 andΘ(r|r) > 0 subject to the
constraint

α−1(r)I − T (r)Θ(r|r)T T (r) > 0.
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Then,Θ(r + 1|r + 1) is an upper bound ofP (r + 1|r + 1),
i.e.,

P (r + 1|r + 1) ≤ Θ(r + 1|r + 1).

Proof: This theorem is proved by mathematical induction.
First, it follows from the initial condition thatP (0|0) ≤
Θ(0|0). Assuming P (r|r) ≤ Θ(r|r), we need to prove
P (r + 1|r + 1) ≤ Θ(r + 1|r + 1).

To begin with, we rewritten (12) as follows:

P (r + 1|r) = Ã(r)P (r|r)ÃT (r) + F̃ (r)P (r|r)F̃T (r)

+ Ã(r)P (r|r)F̃T (r) + F̃ (r)P (r|r)ÃT (r)

+B(r)Q(r)BT (r).

Applying Lemma 1 to the second term on the right-hand
side of above equality, one has

F̃ (r)P (r|r)F̃T (r) ≤ F (r)
[
P−1(r|r) − α(r)T T (r)T (r)

]−1

× FT (r) + α−1(r)U(r)UT (r).

Utilizing the elementary inequalityabT + baT ≤ εaaT +
ε−1bbT (wherea, b are arbitrary vectors, andε is an arbitrary
positive scalar) and the assumption ofP (r|r) ≤ Θ(r|r), we
derive that

P (r + 1|r) ≤ (1 + ε0)Ã(r)Θ(r|r)Ã(r)T + (1 + ε−1
0 )

×

(

F (r)
[
Θ−1(r|r) − α(r)T T (r)T (r)

]−1

× FT (r) + α−1(r)U(r)UT (r)

)

+B(r)Q(r)BT (r). (16)

Next, applying the elementary inequality to the last term of
the right-hand side of (13), we have

E{T2T
T
2 } = G(r + 1)

M∑

i=1

M∑

j=1

E
{
C̄i(r + 1)e(r + 1|r)

× eT (r + 1|r)C̄T
j (r + 1)

}
GT (r + 1)

≤ MG(r + 1)
M∑

i=1

C̄i(r + 1)P (r + 1|r)

× C̄T
i (r + 1)GT (r + 1), (17)

E{T3T
T
3 } = G(r + 1)

M−1∑

l=0

M∑

i=1

M−1∑

h=0

M∑

j=1

E

{

Φσ(r−l+1)

× C̄i(r − l + 1)x
(
r − l + 1− τi(r − l + 1)

)

× xT
(
r − h+ 1− τj(r − h+ 1)

)

× C̄T
j (r − h+ 1)ΦT

σ(r−h+1)

}

GT (r + 1)

≤ M2G(r + 1)

M−1∑

l=0

M∑

i=1

q
∑

s=0

psΦσ(r−l+1)

× C̄i(r − l + 1)E
{

x
(
r − l + 1− τi(r − l + 1)

)

× xT
(
r − l + 1− τi(r − l+ 1)

)}

× C̄T
i (r − l + 1)ΦT

σ(r−l+1)G
T (r + 1), (18)

E{T4T
T
4 } = G(r + 1)

M−1∑

l=0

M−1∑

h=0

E
{
Φσ(r−l+1)D(r − l + 1)

× v(r − l + 1)vT (r − h+ 1)DT (r − h+ 1)

× ΦT
σ(r−h+1)

}
GT (r + 1)

≤ MG(r + 1)

M−1∑

l=0

Φσ(r−l+1)D(r − l+ 1)

×R(r − l + 1)DT (r − l + 1)

× ΦT
σ(r−l+1)G

T (r + 1), (19)

E{T5T
T
5 } = G(r + 1)

M−1∑

l=0

M∑

i=1

M−1∑

h=0

M∑

j=1

Φσ(r−l+1)

× C̄i(r − l+ 1)x̂(r − l + 1− d|r − l− d)

× x̂T (r − h+ 1− d|r − h− d)

× C̄T
j (r − h+ 1)ΦT

σ(r−h+1)G
T (r + 1)

≤ M2G(r + 1)

M−1∑

l=0

M∑

i=1

Φσ(r−l+1)

× C̄i(r − l+ 1)x̂(r − l + 1− d|r − l− d)

× x̂T (r − l + 1− d|r − l − d)

× C̄T
i (r − l + 1)ΦT

σ(r−l+1)G
T (r + 1). (20)

Combiningx(r) = e(r+1|r)+x̂(r+1|r) and the elementary
inequality yields

E

{

x
(
r−l+1−τi(r−l+1)

)
xT

(
r−l+1−τi(r−l+1)

)}

≤ (1 + ε10)

q
∑

s=0

psP (r − l + 1− s|r − l − s)

+ (1 + ε−1
10 )

q
∑

s=0

psx̂(r − l+ 1− s|r − l− s)

× x̂T (r − l+ 1− s|r − l− s).

Consequently, (18) can be handled by

E{T3T
T
3 }

≤ M2G(r + 1)

M−1∑

l=0

M∑

i=1

q
∑

s=0

psΦσ(r−l+1)C̄i(r − l + 1)

×
(

(1 + ε10)

q
∑

s=0

psP (r − l + 1− s|r − l − s)

+ (1 + ε−1
10 )

q
∑

s=0

psx̂(r − l + 1− s|r − l − s)

× x̂T (r − l + 1− s|r − l − s)
)

× C̄T
i (r − l+ 1)ΦT

σ(r−l+1)G
T (r + 1).

From (16)-(20), one has

P (r + 1|r + 1)

≤ ǫ1

(

I −G(r + 1)
M∑

i=1

C̄i(r + 1)

)

P (r + 1|r)

×

(

I −G(r + 1)

M∑

i=1

C̄i(r + 1)

)T
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+ ǫ2MG(r + 1)

M∑

i=1

C̄i(r + 1)P (r + 1|r)

× C̄T
i (r + 1)GT (r + 1)

+ ǫ3M
2G(r + 1)

M−1∑

l=0

M∑

i=1

q
∑

s=0

psΦσ(r−l+1)

× C̄i(r − l + 1)X̃(r − l + 1− s)

× C̄T
i (r − l + 1)ΦT

σ(r−l+1)G
T (r + 1)

+ ǫ4MG(r + 1)

M−1∑

l=0

Φσ(r−l+1)D(r − l + 1)

×R(r − l + 1)DT (r − l + 1)ΦT
σ(r−l+1)G

T (r + 1)

+ ǫ5M
2G(r + 1)

M−1∑

l=0

M∑

i=1

Φσ(r−l+1)

× C̄i(r − l + 1)x̂(r − l + 1− d|r − l − d)

× x̂T (r − l + 1− d|r − l− d)

× C̄T
i (r − l + 1)ΦT

σ(r−l+1)G
T (r + 1). (21)

According to (14)-(16) and (21), we conclude

P (r + 1|r + 1) ≤ Θ(r + 1|r + 1)

which ends the proof.
In Theorem 1, an upper bound of estimation error co-

variance is presented. Now, we are going to determine the
estimator gain by locally minimize the obtained upper bound.

Theorem 2:Design the estimator parameter as follows:

G(r + 1) = ǫ1Θ(r + 1|r)
M∑

i=1

C̄T
i (r + 1)Ψ−1(r + 1), (22)

where

Ψ(r + 1)

, ǫ1

( M∑

i=1

C̄i(r + 1)

)

Θ(r + 1|r)

( M∑

i=1

C̄i(r + 1)

)T

+ ǫ2M

M∑

i=1

C̄i(r + 1)Θ(r + 1|r)C̄T
i (r + 1)

+ ǫ3M
2
M−1∑

l=0

M∑

i=1

q
∑

s=0

psΦσ(r−l+1)C̄i(r − l+ 1)

× X̃(r − l + 1− s)C̄T
i (r − l + 1)ΦT

σ(r−l+1)

+ ǫ4M

M−1∑

l=0

Φσ(r−l+1)D(r − l+ 1)

×R(r − l + 1)DT (r − l+ 1)ΦT
σ(r−l+1)

+ ǫ5M
2
M−1∑

l=0

M∑

i=1

Φσ(r−l+1)C̄i(r − l+ 1)

× x̂(r − l + 1− d|r − l − d)

× x̂T (r − l + 1− d|r − l − d)

× C̄T
i (r − l + 1)ΦT

σ(r−l+1).

Then, the upper bound matrixP (r+1|r+1) is minimized by

Θ(r + 1|r + 1)

= ǫ1Θ(r + 1|r)− ǫ21Θ(r + 1|r)

( M∑

i=1

C̄i(r + 1)

)T

×Ψ−1(r + 1)

( M∑

i=1

C̄i(r + 1)

)

Θ(r + 1|r).

Proof: The upper bound derived in Theorem 1 can be
rewritten as the following form:

Θ(r + 1|r + 1)

=

[

G(r + 1)− ǫ1Θ(r + 1|r)

M∑

i=1

C̄T
i (r + 1)Ψ−1(r + 1)

]

×Ψ(r + 1)

[

G(r + 1)− ǫ1Θ(r + 1|r)

M∑

i=1

C̄T
i (r + 1)

×Ψ−1(r + 1)

]T

+ ǫ1Θ(r + 1|r)

− ǫ21Θ(r + 1|r)

( M∑

i=1

C̄i(r + 1)

)T

Ψ−1(r + 1)

×

( M∑

i=1

C̄i(r + 1)

)

Θ(r + 1|r).

It is easy to see that the minimization of the upper bound
(15) can be obtained when the estimator parameter is selected
as (22), and the proof is complete.

IV. B OUNDEDNESSANALYSIS

To further analyze the boundedness of the estimation error,a
definition concerning the boundedness of a stochastic process
and some reasonable assumptions are introduced.

Definition 1: [28] The stochastic processζ(r) is said
to be exponentially mean-square bounded, if there exist real
numbersα > 0, β > 0 and0 < κ < 1 such that

E
{
‖ζ(r)‖

}
≤ α‖ζ(0)‖2κr + β

holds for allr ≥ 0.
Assumption 1: There exist some positive real scalars

a, b, b, c, c, d, f, u, t, γ, ι, χ, θ, θ, q, q and π such that the fol-
lowing conditions

‖A(r)‖ ≤ a, b ≤ ‖B(r)‖ ≤ b, ‖D(r)‖ ≤ d,

‖F (r)‖ ≤ f, ‖U(r)‖ ≤ u, ‖T (r)‖ ≤ t,

‖W ⊗ Γ‖ ≤ γ, ‖x̂(r + 1|r)‖ ≤ ι, X̃(r) ≤ χI,

c2I ≤ C̄i(r)C̄
T
i (r) ≤ c2I, R(r) ≤ πI,

θI ≤ Θ(r + 1|r) ≤ θI, qI ≤ Q(r) ≤ qI,

(a+ γ)2 < 1

hold for i = 1, 2, . . . ,M .
For simplicity, some notations are presented as follows:

g ,
θc

θ c2
,

ϕ , b
2
q + ̺,

φ , a+ γ + f + ut,

χ , (1 + ε10)θ + (1 + ε−1
10 )ι

2,
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z , (1 + ξ1)χ c2g2mM5 + (1 + ξ2)vπd
2
g2M2

+ (1 + ξ−1
1 + ξ−1

2 )ι2c2g2M4,

µ , (1 + η)

[

1−

(

1 +
φ2ω

b2q

)−1]

,

ν ,
wqb

2

̺
+ (1 + η−1)

z

̺
,

where̺, ξ1, ξ2, η, ω are positive scalars.
Theorem 3:Consider the discrete-time complex network

described in (2a)-(2b) with the designed estimator (5a)-(5b).
Then, under Assumption 1, the estimation error is exponen-
tially mean-square bounded.

Proof: Substituting (8) to (9) yields

e(r + 1|r + 1) = [Ã(r) + F̃ (r)]e(r|r) + w̃(r) + z̃(r), (23)

where

w̃(r) , B(r)w(r),

z̃(r) , −G(r + 1)
M−1∑

l=0

M∑

i=1

Φσ(r−l+1)C̄i(r − l + 1)

× x
(
r − l + 1− τi(r − l + 1)

)

−G(r + 1)

M∑

l=0

Φσ(r−l+1)D(r − l + 1)v(r − l + 1)

+G(r + 1)

M−1∑

l=0

M∑

i=1

Φσ(r−l+1)C̄i(r − l + 1)

× x̂(r − l + 1− d|r − l − d).

From (21), it follows immediately that

‖G(r + 1)‖

=

∥
∥
∥
∥
ǫ1Θ(r + 1|r)

M∑

i=1

C̄T
i (r + 1)Ψ−1(r + 1)

∥
∥
∥
∥

≤

∥
∥
∥
∥
ǫ1Θ(r + 1|r)

M∑

i=1

C̄T
i (r + 1)

[

ǫ1

( M∑

i=1

C̄i(r + 1)

)

× Θ(r + 1|r)

( M∑

i=1

C̄i(r + 1)

)T]−1∥
∥
∥
∥

≤
θc

θ c2
= g. (24)

By resorting to Assumption 1 and the properties of the trace,
one has

E{w̃T (r)w̃(r)} = E
{
wT (r)BT (r)B(r)w(r)

}

= tr
{
E{w(r)wT (r)}BT (r)B(r)

}

≤ wqb
2

(25)

and

E{z̃T (r)z̃(r)}

≤ (1 + ξ1)

M−1∑

l=0

M∑

i=1

M−1∑

h=0

M∑

j=1

E

{

xT
(
r−l+1−τi(r−l+1)

)

× C̄T
i (r − l + 1)ΦT

σ(r−l+1)G
T (r + 1)G(r + 1)

× Φσ(r−h+1)C̄j(r − h+ 1)x
(
r − h+ 1−τj(r−h+1)

)}

+ (1 + ξ2)

M−1∑

l=0

M−1∑

h=0

E
{
vT (r − l+ 1)DT (r − l + 1)

× ΦT
σ(r−l+1)G

T (r + 1)G(r + 1)Φσ(r−h+1)

×D(r − h+ 1)v(r − h+ 1)
}

+ (1 + ξ−1
1 + ξ−1

2 )

×

M−1∑

l=0

M∑

i=1

M−1∑

h=0

M∑

j=1

x̂T (r − l+ 1− d|r − l − d)

× C̄T
i (r − l + 1)ΦT

σ(r−l+1)G
T (r + 1)G(r + 1)

× Φσ(r−h+1)C̄j(r − h+ 1)x̂T (r−h+1−d|r−h−d)

≤ (1 + ξ1)M
2
M−1∑

l=0

M∑

i=1

q
∑

s=0

pstr
{
X̃(r − l + 1− s)

× C̄T
i (r − l + 1)ΦT

σ(r−l+1)G
T (r + 1)G(r + 1)

× Φσ(r−l+1)C̄i(r − l + 1)
}
+ (1 + ξ2)M

×

M−1∑

l=0

tr
{
R(r − l + 1)DT (r − l + 1)ΦT

σ(r−l+1)

×GT (r + 1)G(r + 1)Φσ(r−l+1)D(r − l+ 1)
}

+ (1 + ξ−1
1 + ξ−1

2 )M2

×
M−1∑

l=0

M∑

i=1

tr
{
x̂T (r − l+ 1− d|r − l − d)

× C̄T
i (r − l + 1)ΦT

σ(r−l+1)G
T (r + 1)G(r + 1)

× Φσ(r−l+1)C̄i(r − l + 1)x̂(r − l+ 1− d|r − l − d)
}

≤ (1 + ξ1)χ c2g2mM5 + (1 + ξ2)vπd
2
g2M2

+ (1 + ξ−1
1 + ξ−1

2 )ι2c2g2M4

= z. (26)

Now, let us consider the following iterative matrix equation
with respect toΩ(r):

Ω(r + 1) = [Ã(r) + F̃ (r)]Ω(r)ÃT (r) +B(r)Q(r)BT (r)

+ ̺I, (27)

where the initial value isΩ(0) = B(0)Q(0)BT (0) + ̺I.
It follows from (27) that

‖Ω(r + 1)‖

≤ ‖Ã(r) + F̃ (r)‖2‖Ω(r)‖ + ‖B(r)‖2‖Q(r)‖+ ‖̺I‖

≤
(
‖A(r)‖ + ‖W ⊗ Γ‖+ ‖F (r)‖ + ‖U(r)S(r)T (r)‖

)2

× ‖Ω(r)‖ + ‖B(r)‖2‖Q(r)‖+ ‖̺I‖

≤ (a+ γ + f + u t)2‖Ω(r)‖ + b
2
q + ̺

= φ2‖Ω(r)‖ + ϕ

and therefore

‖Ω(r)‖ ≤ φ2r‖Ω(0)‖+ ϕ

r−1∑

i=0

φ2i.

It can be seen fromφ2 < 1 that

‖Ω(r)‖ ≤ ‖Ω(0)‖+ ϕ

∞∑

i=0

φ2i
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= ‖Ω(0)‖+
ϕ

1− φ2
. (28)

On the other hand, it is easy to see that

Ω(r) ≥ ̺I. (29)

According to (28)-(29), there exists a scalarω > 0 such
that ̺I ≤ Ω(r) ≤ ωI.

Let Vr

(
e(r|r)

)
, eT (r|r)Ω−1(r)e(r|r). From (23), it can

be deduced that

E

{

Vr+1

(
e(r + 1|r + 1)

)∣
∣e(r|r)

}

− (1 + η)Vr

(
e(r|r)

)

= E

{[
(Ã(r) + F̃ (r))e(r|r) + w̃(r) + z̃(r)

]T
Ω−1(r + 1)

×
[
(Ã(r) + F̃ (r))e(r|r) + w̃(r) + z̃(r)

]}

− (1 + η)eT (r|r)Ω−1(r)e(r|r)

≤ (1 + η)E
{

eT (r|r)
[
(Ã(r) + F̃ (r))TΩ−1(r + 1)

× (Ã(r) + F̃ (r)) − Ω−1(r)
]
e(r|r)

}

+ (1 + η−1)E
{
z̃T (r)Ω−1(r + 1)z̃(r)

}

+ E
{
w̃T (r)Ω−1(r + 1)w̃(r)

}
. (30)

From the definition ofΩ(r + 1) and utilizing the matrix
inversion lemma, we obtain that

(Ã(r) + F̃ (r))TΩ−1(r + 1)(Ã(r) + F̃ (r)) − Ω−1(r)

= (Ã(r) + F̃ (r))T
[
(Ã(r) + F̃ (r))Ω(r)(Ã(r) + F̃ (r))T

+B(r)Q(r)BT (r) + ̺I
]−1

(Ã(r) + F̃ (r)) − Ω−1(r)

= −
[
Ω(r) + Ω(r)(Ã(r) + F̃ (r))T (B(r)Q(r)BT (r)

+ ̺I)−1(Ã(r) + F̃ (r))Ω(r)
]−1

= −
[
I + (Ã(r) + F̃ (r))T

(
B(r)Q(r)BT (r) + ̺I

)−1

× (Ã(r) + F̃ (r))Ω(r)
]−1

Ω−1(r)

≤ −

(

1 +
φ2ω

b2q

)−1

Ω−1(r). (31)

Substituting (31) into (30) leads to

E

{

Vr+1

(
e(r + 1|r + 1)

)∣
∣e(r|r)

}

− (1 + η)Vr

(
e(r|r)

)

≤ −(1 + η)

(

1 +
φ2ω

b2q

)−1

Vr

(
e(r|r)

)

+
wqb

2

̺
+ (1 + η−1)

z

̺

= µVr

(
e(r|r)

)
+ ν

and it is easy to verify thatµ ∈ (0, 1) for someη > 0.
Based on the above derivation, we have

E

{∥
∥e(r + 1|r + 1)

∥
∥
2
}

≤
ω

̺
E

{∥
∥e(0|0)

∥
∥
2
}

µr+1 + νω

r∑

i=0

µi

≤
ω

̺
E

{∥
∥e(0|0)

∥
∥
2
}

µr+1 + νω

∞∑

i=0

µi

=
ω

̺
E

{∥
∥e(0|0)

∥
∥
2
}

µr+1 +
νω

1− µ
,

and our proof is complete according the definition 1.
Remark 4:In this paper, a recursive SE problem is addressed

for a class of SCNs subject to packet disorders. The RR
protocol is introduced to alleviate the communication burden.
Based on the measurement model suffering from both random
delays and RR protocols, a recursive estimator is devised under
which an upper bound is first obtained on the estimation error
covariance in Theorem 1 and then minimized in Theorem 2. In
addition, a sufficient condition is given in Theorem 3 to ensure
the exponential mean-square boundedness of the estimation
error.

Remark 5:Compared to the existing literature concerning
SE issue, the main results acquired in this paper exhibit
the following distinctive features: 1) a comprehensive mea-
surement model is put forward by taking into account the
random delays and RR protocols; 2) a sequence of random
variables is used to characterize the time delays occurringin
the sensing process; 3) the influences of the coupling structure
between nodes, the packet disorders and the RR protocols
on the estimator performance are thoroughly investigated in
a quantitative way; and 4) matrix analysis techniques are
employed to derive the sufficient condition for mean-square
boundedness of estimation error.

V. NUMERICAL EXAMPLE

In this section, the validity of developed estimator for the
system (2a)-(2b) subject to RR protocols and packet disorders
is verified by a numerical example.

Consider a stochastic discrete-time four-node network (1a)-
(1b) with parameters:

A1(r) =

[
0.31 −0.31 cos(r)
0.58 0.19

]

,

A2(r) =

[
0.39 −0.39 sin(r)
0.55 0.16

]

,

A3(r) =

[
0.38 −0.51 sin(r)
0.55 0.15

]

,

A4(r) =

[
0.39 −0.71 cos(r)
0.56 0.15

]

,

B1(r) =

[
0.91

−0.21 + 0.1 sin(r)

]

, B2(r) =

[
0.91 cos(r)
−0.12

]

,

B3(r) =

[
0.92

−0.21 + 0.1 cos(r)

]

, B4(r) =

[
0.91 sin(r)

−0.2

]

,

C1(r) =
[
0.3 −0.15 + 0.1 sin(r)

]
,

C2(r) =
[
0.1 + 0.1 cos(r) 0.6

]
,

C3(r) =
[
−0.2 0.6 + 0.1 cos(r)

]
,

C4(r) =
[
−0.2 + 0.1 sin(r) 0.5

]
,

D1(r) = 0.3, D2(r) = 0.2, D3(r) = 0.4, D4(r) = 0.1.

The nonlinear functionf(xi(r)) is described by

f(xi(r)) =

[
0.1 sin(x1

i (r)x
2
i (r))

0.385 cos(x1
i (r)x

2
i (r))

]

,
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wherexi(r) =
[
x1
i (r) x2

i (r)
]T

(i = 1, 2, 3, 4) is the system
state of theith node. The coupling configuration matrix is
assumed to beW = [ωij ]4×4 (i, j = 1, 2, 3, 4) with

ωij =

{

−0.3, i = j,

0.1, i 6= j

and the inner-coupling matrix is given byΓ = 0.2I2. The
covariances of zero-mean white noises areQ(r) = 0.005 and
R(r) = 0.005.

In this simulation, the upper bound of the random time delay
τi(r) is set asq = 3. The initial mean and covariance of the
estimate are given as

x̄1(0) =
[
−0.34 0.45

]T
, x̄2(0) =

[
−0.24 0.55

]T
,

x̄3(0) =
[
−0.44 0.45

]T
, x̄4(0) =

[
−0.34 0.35

]T
,

P1(0) = P2(0) = P3(0) = P4(0) = 2I2.

The other parameters are chosen asα = 0.5, ε0 = 0.5, ε1 =
0.25, ε2 = 0.05, ε3 = 0.25, ε4 = 0.05, ε5 = ε6 = ε7 = ε8 =
ε9 = ε10 = 5, and the initial conditions are given by

X(−2) = X(−1) = X(0)

= (1 + ε10)P (0) + (1 + ε−1
10 )x̄(0)x̄

T (0),

x̂(−2| − 3) = x̂(−1| − 2) = x̂(0| − 1) = x̄(0),

x(−2) = x(−1) =
[
0 0 0 0 0 0 0 0

]T
,

y(0) =
[
−0.35 0.34 0.59 −0.27

]T
.

For i = 1, 2, 3, 4, the root mean square error
(RMSE) of each node is defined byRMSEi(r) =√

1
N

∑N

j=1

(
x
1,j
i (r) − x̂

1,j
i (r|r)

)2
+
(
x
2,j
i (r)− x̂

2,j
i (r|r)

)2

with N being the times of independent experiments. In this
simulation, we setN = 100.

In terms of the above parameters and Theorems 1-2, an
upper bound of the estimation error covariance and the es-
timator gain can be derived recursively. Simulation result-
s are shown in Figs. 2-9. Specifically, Figs. 2-5 plot the
trajectories of actual statesxj

i (r) and their estimateŝxj
i (r)

(i = 1, 2, 3, 4; j = 1, 2), which illustrate that the estimator can
estimate the actual state well. In other words, the designed
estimator has a satisfactory tracking performance under the
RR protocols and packet disorders. To quantify the accuracy
of estimation, Figs. 6-9 depict the RMSE and the minimal
upper bound for four nodes respectively, it is easy to see
that the RMSE of each node always stays below its minimal
upper bound. Overall, the above simulation results verify the
feasibility and effectiveness of the developed estimator in this
paper.

VI. CONCLUSION

In this paper, the recursive state estimation problem has
been tackled for a class of discrete-time stochastic complex
networks with packet disorders under Round-Robin (RR)
communication protocols. We have considered the packet
disorder issue caused by the random transmission delays that
have been modelled by a set of random variables satisfying
certain known probability distributions. In order to save the
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Fig. 2. The actual statesx1
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(r) of

node1.
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2
(r) of

node2.

constrained communication resource and also reduce the data
collisions, we have introduced the RR protocol that acts as
a governor of the ordering of the network nodes gaining
the right for data transmission. A recursive estimator has
been devised with guaranteed upper bound for the estimation
error covariance, and such an upper bound has then been
minimized by adequately designing the estimator parameters.
Furthermore, we have discussed the boundedness of estimation
in the sense of mean square with the help of stochastic analysis
techniques. Finally, we have utilized a simulation exampleto
demonstrate the usefulness of the developed estimator design
scheme. The possible topics for the future research would
be the extension of the main results in this paper to the
filtering problems for more complex systems subject to various
communication protocols.
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