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Abstract—In this paper, the observer-based stabilization
problem is investigated for a class of discrete-time nonlinear
stochastic networked control systems (NCSs) with exogenous
disturbances. The signal transmission from the sensors to the
observer is implemented via a shared digital network, in which
both uniform quantization effect and stochastic communication
protocol (SCP) are taken into account to reflect several network-
induced constraints. The notion of input-to-state stability in
probability is introduced to describe the dynamical behaviors
of the closed-loop stochastic NCS that is effectively character-
ized by a general nonlinear stochastic difference equation with
Markovian jumping parameters. A theoretical framework is first
established to felicitate the dynamics analysis of the closed-loop
system in virtue of the switched Lyapunov function method and
the stochastic analysis techniques. By making full use of the quan-
tized measurement output under the scheduling of the SCP, the
existence conditions for an observer-based controller are estab-
lished under which the closed-loop system is input-to-state stable
in probability. Then, the explicit expression of the gain matrices
of the desired controller is given by resorting to a set of feasi-
ble solutions of certain matrix inequalities. The effectiveness of
the theoretical results is demonstrated by a numerical simulation
example.

Index Terms—Communication protocol, input-to-state stability
(ISS), networked control system (NCS), observer-based control,
quantization effects.
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I. INTRODUCTION

THE PAST decade has witnessed a rapidly growing
research interest in networked control systems (NCSs)

that have found extensive applications in a variety of
industrial processes including manufacturing, monitoring,
communication, and so on [8], [43]. Compared with the
conventional point-to-point control structures, NCSs are
more flexible in the system design with lower cost in
installation/maintenance due to the participation of digital
communication networks that may be shared by sensors, con-
trollers and actuators [11], [37], [39]. Owing to their attractive
advantages in engineering applications, NCSs have stirred par-
ticular research attention from control community. In recent
years, a rich body of literature has been available concerning
the issues of modeling, analysis and control synthesis for
NCSs (see [2]–[4], [9], [21], [22], [38], [40] and references
therein).

In real-world control systems, exogenous disturbances (e.g.,
unmoderated dynamics and measurement errors) may influ-
ence the dynamical behaviors and control performance seri-
ously [13], [14]. As such, it is of practical significance to
investigate the stability robustness against the exogenous dis-
turbances for control systems. Initially proposed in [27], the
notion of input-to-state stability (ISS) is capable of effectively
characterizing the response of asymptotically stable systems
to the bounded exogenous disturbances. Over the past years,
a large number of research results have been reported to cope
with the issues of ISS for dynamical systems with exoge-
nous disturbances [10], [16], [24], [25], [29], [34], [35], [41].
Nonetheless, comparing to the fruitful results for the con-
ventional point-to-point control systems, the corresponding
advances on the ISS behaviors for nonlinear stochastic NCSs
with exogenous disturbances have been relatively slow and the
related results have been scattered despite their great signif-
icance in practical applications, and this constitutes the first
motivation for us to carry out this paper.

It is well known that, in many computer-based control loops,
the quantizer is usually adopted to convert the analog sig-
nal (such as states, measured outputs, or control inputs) to
the corresponding discrete-time digital one because of the
limitation on bit rate. In the conversion process, the oper-
ation of rounding or truncation will inevitably result in the
quantization error which can be described as an unknown
but bounded disturbance [19]. Up to now, there have been
plenty of research papers published concerning the stability
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and stabilization problems of deterministic NCSs with quan-
tization effects [7], [26], [42]. In recent years, some progress
has also been made on the control synthesis for stochastic
NCSs with quantization effects [5], [6], [12], [33].

In a shared communication network, it is quite common
that the number of sensors getting access to the shared chan-
nel is limited due primarily to the bandwidth constraint [28],
[47]. In order to avoid the data congestion/collision, it is
necessary to propose an appropriate communication (or
scheduling) protocol to orchestrate the order of sensors being
given the license at each transmission instant [36], [45].
So far, a substantial amount of research work has been
reported to address the issues of performance analysis and
control synthesis for NCSs subjected to the protocol schedul-
ing [1], [17], [30], [32], [44], [46]. For instance, in [46], the
problems of set-membership filtering have been investigated
for a class of time-varying NCSs under the round-Robin and
the weighted try-once-discard (TOD) protocols, respectively.
A new concept of stochastic protocol has been proposed
in [30] and sufficient criteria have been obtained to render
the NCS with exogenous disturbances Lp stable. In [17],
the time-delay approach has been utilized to investigated the
network-based control for systems in which two classes of
stochastic protocols have been introduced to schedule the
activation of sensor nodes.

Recently, some initial effort has been devoted to the study
of deterministic NCSs with both quantization effects and
communication protocols [18], [20], [23], [31]. In [23], by
employing an emulation-like approach, a unified framework
has been established for the controller design of NCSs with
the dynamic quantization and the time scheduling. Within
the dynamic quantization and the Round-Robin protocol,
the exponential stability of a discrete-time linear plant has
been derived by utilizing feedback control in [18]. The
synchronization problem for chaotic neural networks has
been studied in [31], in which the quantization effect and
the TOD scheduling protocol have been taken into account.
Nevertheless, the problems of dynamics analysis and control
synthesis for nonlinear stochastic NCSs with both quanti-
zation effects and communication protocols have not been
adequately investigated due primarily to the substantial com-
plexities/difficulties in dealing with the simultaneous presence
of quantization errors and stochastic hybrid dynamics [48].
To the best of our knowledge, under the uniform quantization
effect and the stochastic communication protocol (SCP),
the problems of ISS in probability and design of stabilizing
controller for nonlinear stochastic NCSs with exogenous
disturbances are still open and remain challenging, and the
second aim of this paper is therefore to shorten such a gap.

In this paper, we endeavor to address the problems of
input-to-state stabilization and controller design for a class
of nonlinear stochastic NCSs with bounded exogenous distur-
bances. The measurement output of the plant is first quantized
by the uniform quantizer with finite levels and then trans-
mitted to the observer under the scheduling of the SCP. By
fully utilizing the output signals featured with the quantization
and the SCP scheduling, an observer-based controller is
developed with hope to guarantee the desired performance of

the closed-loop system. The main contributions of this paper
are highlighted as follows.

1) The observer-based stabilization problem is, for the
first time, investigated for the discrete-time nonlinear
stochastic NCSs with both uniform quantization effect
and SCP.

2) The notion of ISS in probability is extended to the case
of discrete-time stochastic systems with Markovian
jumping parameters with hope to reflect the stochas-
tic characteristics and bounded disturbances more
accurately.

3) A theoretical framework is established to investigate
the property of ISS in probability for the addressed
controlled system by employing the switched Lyapunov
function and stochastic analysis techniques.

4) The synthesis problem of the observer-based controller
depending on the SCP is addressed for the closed-loop
system and the gain matrices for the desired controller
are given by resorting to the feasibility of a set of
matrix inequalities.

The rest of this paper is organized as follows. The
problem of the input-to-state stabilization in probability for
a class of nonlinear stochastic NCSs with exogenous dis-
turbances is formulated in Section II, in which the uni-
form quantization effect and the SCP are also presented.
In Section III, a Lyapunov-like theorem is established, by
which several sufficient conditions are derived to guarantee the
performance of the ISS in probability and the observer-based
controller design algorithm is also established for the con-
trolled system. In Section IV, a numerical example is given
to illustrate the usefulness and flexibility of the theoretical
result developed in this paper. The conclusions are outlined
in Section V.

Notations: Let R+ and Z+ be the set of nonnegative real
numbers and nonnegative integers, respectively. Rn and Rn×m

denote, respectively, the n-dimensional Euclidean space and
the set of all n × m real matrices. The symbol |x| stands for
the Euclidean norm of a real vector x, and ‖A‖ denotes the
induced matrix norm. I represents the identity matrix of com-
patible dimensions. The symbol � will be used in some matrix
expressions to indicate a symmetric structure. For symmetric
matrices A and B, A > B means that A − B is positive def-
inite. AT and A−1 represent the transpose and inverse matrix
of A, respectively. Let λmin(·) and λmax(·) be the smallest
and the largest eigenvalue of a symmetric matrix, respec-
tively. Ln∞ denotes the class of measurable and essentially
bounded functions v : Z+ → Rn with the infinity norm
|v|∞ = ess supk∈Z+{|v(k)|} < ∞. A function γ : R+ → R+
is a K-function if it is continuous, strictly increasing and
γ (0) = 0; it is a K∞-function if it is a K-function and also
γ (s) → ∞ as s → ∞; it is a VK∞-function if it is a K∞-
function and also convex. A function β : R+ ×Z+ → R+ is
a KL-function if, for each fixed k ∈ Z+, the function β(·, k)
is a K-function, and for each fixed s ∈ R+, the function
β(s, ·) is decreasing and β(s, k) → 0 as k → ∞. Let Id
be the identity function and ψ ◦ φ represent the composition
of two functions φ and ψ . (�,F , {Fk}k≥0,P) represents the
complete probability space with � being a sample space, F
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being a σ -field, {Fk}k≥0 being a filtration and P being a
probability measure.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following general nonlinear stochastic discrete-
time system:

⎧
⎪⎪⎨

⎪⎪⎩

x(k + 1) = Ax(k)+ f (x(k))+ Bu(k)+ Dv1(k)
+g(x(k), v1(k))w(k)

y(k) = Cx(k)+ Ev2(k)
x(0) = x0 ∈ Rnx

(1)

where for k ∈ Z+, x(k) ∈ Rnx , u(k) ∈ Rnu , and y(k) ∈ Rny

denote the state, control input, and measured output vectors,
respectively. v1(k) and v2(k) represent the exogenous distur-
bances belonging to Lnx∞ and Lny∞, respectively. f : Rnx → Rnx

and g : Rnx × Rnx → Rnx are smoothly nonlinear vector-
value functions with f (0) = 0 and g(0, 0) = 0. w(k) ∈ R

is a zero-mean random sequence on the complete probabil-
ity space (�,F , {Fk}k≥0,P) and satisfies E{w2(k)} = 1.
A,B,C,D, and E are known constant matrices with compati-
ble dimensions.

Without loss of generality, we assume that the output y(k) of
the plant is measured by sensor nodes which are divided into
ny groups. The information exchange between the sensors and
the observer takes place over a shared communication network
with limited resources. In the following, we present the trans-
mission of the measurement output under the quantization
effect and the SCP in a step-by-step manner.

A. Quantization of the Measurement Output

According to [19], the quantization of signals is imple-
mented by a quantizer q : R → D, which is a piecewise
constant function with a finite subset D ⊂ R and satisfies

1) if |z| ≤ M, then |q(z)− z| ≤ 


2) if |z| > M, then |q(z)| > M −


where z ∈ R. M > 0 and 
 ≥ 0 are referred to as the
quantization range and quantization error of q, respectively.
Condition 1) indicates that the quantization error possesses a
bound if the quantizer does not saturate, while condition 2)
offers a way to check the possibility of saturation.

In this paper, we consider the uniform quantization effect
of the measurement output y(k). Denote by

ŷ(k) � q(y(k)) = (q1(y1) · · · qny(yny)
)T (2)

the quantized measurement output, in which qj (1 ≤ j ≤ ny)

is chosen to be the finite-level uniform quantizer described by
the following static nonlinear function:

qj(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩


q

[
z

q

]
, −(Mq + 0.5)
q ≤ z

≤ (Mq + 0.5)
q

Mq
q, z > (Mq + 0.5)
q

−Mq
q, z < −(Mq + 0.5)
q

where [ · ] is the operation of round for a real number, 
q ≥ 0
is a constant, and Mq is a positive integer.

It is easy to see that, if there is an integer i ∈ [ − Mq, Mq]
such that yj(k) ∈ [(i − 0.5)
q, (i + 0.5)
q], then the

component qj(yj(k)) of the quantized measurement output
takes the value i
q. Letting


(k) � ŷ(k)− y(k) (3)

be the quantization error, one concludes that 
(k) is a norm-
bounded vector satisfying

|
(k)| ≤
√

ny

2

q

by directly following the definition of the finite-level uniform
quantizer.

B. Stochastic Communication Protocol

Since the bandwidth constraint limits the amount of sen-
sors that can transmit signals in parallel, the SCP is adopted
to schedule the transmission of the quantized measurement
outputs for preventing the data from collision. By an SCP,
we mean that only one node of sensors i ∈ {1, 2, . . . , ny}
is chosen to acquire the channel access at each transmission
instant, that is, only one component of the latest quantized
measurement output ŷi(k) will be transmitted via the shared
network at time k, while other components without having
permission are held by the zero-order holders. For any trans-
mission time k, we denote by r(k) the label of the active
sensor node getting access to the network. As pointed out
by Donkers et al. [4], r(k) is a stochastic process which is
determined through a Markov chain on the complete prob-
ability space (�,F , {Fk}k≥0,P) taking values in a finite
set S � {1, 2, . . . , ny}. Under the condition r(k) = i, the
conditional probability of the active node r(k + 1) = j is
given by

P{r(k + 1) = j|r(k) = i} = πij (4)

where πij ≥ 0 (i, j ∈ S) and
∑ny

j=1 πij = 1 for any
i ∈ S . Clearly, � = (πij)ny×ny is the transition probability
matrix of r(k).

For i ∈ S , k ∈ Z+, let δ(i, r(k)) represent the scheduling
operator defined by the Kronecker delta function as follows:

δ(i, r(k)) =
{

1, i = r(k)
0, otherwise.

(5)

Let ȳi(k) (i ∈ S) be the final measurement output (received
by the observer) of the ith sensor node at time k after the
network scheduling. Thus, for k ∈ Z+, one has

ȳi(k) = δ(i, r(k))ŷi(k)+ (1 − δ(i, r(k)))ȳi(k − 1). (6)

Here, we assume that ȳi(−1) ∈ R is a known constant.
Denote

ȳ(k) �
(
ȳ1(k) · · · ȳny(k)

)T (7)

�r(k) � diag
{
δ(1, r(k)), . . . , δ(ny, r(k))

}
. (8)

From (3) and (6), the network-based measurement output
available to the observer is calculated as follows:

ȳ(k) = �r(k)ŷ(k)+ (I −�r(k))ȳ(k − 1)

= �r(k)Cx(k)+ (I −�r(k))ȳ(k − 1)

+ �r(k)Ev2(k)+�r(k)
(k) (9)

where ȳ−1 � ȳ(−1) = (ȳ1(−1) · · · ȳny(−1))T ∈ Rnx .
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C. Observer-Based Stochastic NCSs

In reality, the system states might not be completely acces-
sible due to the physical limitation or the implementation
cost. Thus, it is more practical to employ an observer-based
controller [38]. According to (9), we note that the final mea-
surement output ȳ(k) (available to observer) is characterized
by a formula with Markovian switching parameters. As such,
in this paper, a mode-dependent observer-based controller is
proposed as follows:

⎧
⎨

⎩

x̂(k + 1) = Ax̂(k)+ f (x̂(k))+ Bu(k)
+Lr(k)

(
ȳ(k)− Cx̂(k)

)

u(k) = Kr(k)x̂(k)
(10)

with the initial condition x̂(0) = x̂0 ∈ Rnx , where the vector
x̂0 could be zero or any known vector.

By letting the estimate error vector (between the plant and
the observer) be

e(k) � x(k)− x̂(k) (11)

the dynamics of the estimate error system is obtained as
follows:

e(k + 1) = (A − Lr(k)C
)
e(k)+ f (x(k))− f (x̂(k))

− Lr(k)
(
�r(k)C − C

)
x(k)− Lr(k)(I −�r(k))

× ȳ(k − 1)+ Dv1(k)− Lr(k)�r(k)Ev2(k)

− Lr(k)�r(k)
(k)+ g(x(k), v1(k))w(k) (12)

where e0 � e(0) = x(0)− x̂(0).
Denoting

ξ(k + 1) �
(
xT(k + 1) eT(k + 1) ȳT(k)

)T

and combining (1) and (9) with (12), the closed-loop stochastic
NCS can be reformulated as the following nonlinear stochastic
system with Markovian jumping parameters:

ξ(k + 1) = Fr(k)(ξ(k), v(k))+ Gr(k)(ξ(k), v(k))w(k) (13)

where

Fr(k)(ξ(k), v(k)) = Ar(k)ξ(k)+ F(ξ(k))+ Dr(k)v(k)

Gr(k)(ξ(k), v(k)) = (gT(x(k), v1(k)) gT(x(k), v1(k)) 0
)T

Ar(k) =
⎛

⎝
A + BKr(k) −BKr(k) 0

A21
r(k) A − Lr(k)C A23

r(k)
�r(k)C 0 I −�r(k)

⎞

⎠

A21
r(k) = −Lr(k)

(
�r(k)C − C

)

A23
r(k) = −Lr(k)(I −�r(k))

Dr(k) =
⎛

⎝
D 0 0
D −Lr(k)�r(k)E −Lr(k)�r(k)

0 �r(k)E �r(k)

⎞

⎠

F(ξ(k)) =
⎛

⎝
f (x(k))

f (x̄(k))− f (x̂(k))
0

⎞

⎠, v(k) =
⎛

⎝
v1(k)
v2(k)

(k)

⎞

⎠.

In addition, the initial condition of system (13) is assumed to
be r(0) � r0 ∈ S and ξ(0) � ξ0 = (xT

0 eT
0 ȳT−1)

T ∈ R2nx+ny .
Remark 1: As shown in Fig. 1, the measurement output

y(k) of the plant is first quantized by the finite-level uniform

Fig. 1. Stochastic NCS with observer-based controller subject to the
quantization and the SCP.

quantizer q(·), and it is then transmitted to the observer over
the network with the SCP. It should be pointed out that, due
to the presence of quantization effect and protocol schedul-
ing, the most recent measurement output ȳ(k) received by
the observer is quite different from those in the conventional
observer-based control loops [4], [6], [25], [28], [32]. On one
hand, the SCP makes the closed-loop system (13) a stochastic
hybrid system with Markovian switching parameters, which
may result in substantial challenges/difficulties to the dynam-
ics analysis/design issues. On the other hand, the finite-level
uniform quantizer introduces a norm-bounded and nonvanish-
ing quantization error to the system (13), which prevents the
controlled system from becoming asymptotically stable even
though the exogenous disturbances are absent.

The following definitions and lemmas will be employed in
later discussions.

Definition 1: The nonlinear stochastic Markovian switching
system (13) is said to be input-to-state stable in probabil-
ity with respect to v(k) if, for any given positive constant
ε ∈ (0, 1), there exist functions β ∈ KL, γ ∈ K such that

P{|ξ(k)| ≤ β(|ξ0|, k)+ γ (|v|∞)} ≥ 1 − ε

holds for any r0 ∈ S , ξ0 ∈ R2nx+ny and v ∈ L2ny+nx∞ . In
particular, if β(|ξ0|, k) = β̌(|ξ0|)e−θk with θ > 0 and β̌ ∈ K,
then the system (13) is said to be exponentially input-to-state
stable in probability.

Remark 2: This definition is capable of effectively char-
acterizing the response of asymptotically stable systems to
the bounded disturbances and the nonvanishing quantization
error. If the Markov chain r(k) chooses only one mode,
Definition 1 introduced in this paper can be considered as a
discrete-time version paralleling to the continuous-time coun-
terparts proposed in [16] and [41], which further means that
Definition 1 is quite different from the notion of γ -ISS in [29].
Furthermore, Definition 1 also extends [13, Definition 3.1] to
the case of stochastic Markovian switching systems. Compared
with the concept of ISS in moment sense presented in [10],
Definition 1 provides a milder perspective to evaluate the
dynamical behaviors for the stochastic Markovian switching
systems by resorting to the ISS gain and the probability of
sample trajectories entering a bounded domain.

Definition 2: System (1) is said to be input-to-state stabi-
lizable in probability by the observer-based controller (10) if,
for any i ∈ S , there exist observer gain matrices Li and control
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gain matrices Ki such that the closed-loop system (13) is input-
to-state stable in probability with respect to the exogenous
disturbances v1(k) and v2(k), and the quantization error 
(k).

Lemma 1 [13]: For any α ∈ K∞, there is a α̂ ∈ K∞
satisfying: 1) α̂(s) ≤ α(s), for any s ∈ R+ and 2) Id−α̂ ∈ K.

Lemma 2 [38]: Assume that B ∈ Rn×q is full column rank
and P ∈ Rn×n is a symmetric positive definite matrix. Then,
there exists a nonsingular matrix Q ∈ Rq×q such that PB =
BQ if and only if P has the following structure:

P = UT
(

P1 0
0 P2

)

U

with P1 ∈ Rq×q > 0, P2 ∈ R(n−q)×(n−q) > 0, and U is defined
by the following singular value decomposition of B:

(
�

0

)

= UBV �
(

U1
U2

)

BV (14)

where U ∈ Rn×n and V ∈ Rq×q are orthogonal matrices, and
U1 ∈ Rq×n, U2 ∈ R(n−q)×n, � = diag{σ1, σ2, . . . , σq}, and σi

(i = 1, 2, . . . , q) are nonzero singular values of B.

III. MAIN RESULTS

In this section, a framework is, for the first time, devel-
oped to study the ISS behavior in probability for discrete-time
nonlinear stochastic system with Markovian switching and
bounded exogenous disturbances. Within the framework estab-
lished, several sufficient criteria are given in the form of linear
matrix inequalities (LMIs), by which the mode-dependent
observer-based controller (10) is designed for the plant (1)
with hope to provide the controlled system (13) with the
exponential ISS in probability.

Theorem 1: For any i ∈ S , let the observer gain matrices
Li and the controller gain matrices Ki be given. Assume that
there are functions V : S × R2nx+ny → R+, α1, α2, α ∈ K∞,
and η ∈ K such that:

1) α1(|ξ |) ≤ V(i, ξ) ≤ α2(|ξ |), for any (i, ξ) ∈ S ×
R2nx+ny ;

2) E{V(r(k + 1), ξ(k + 1))|Fk} − V(r(k), ξ(k)) ≤
−α(|ξ(k)|)+ η(|v(k)|), for any k ∈ Z+;

3) α ◦ α−1
2 ∈ VK∞.

Then, the nonlinear stochastic Markovian switching
system (13) is input-to-state stable in probability with respect
to the disturbances v.

Proof: For any initial condition

(r0, ξ0) � (r(0), ξ(0)) ∈ S × R2nx+ny

we denote by ξ(k) the solution of system (13) for simplicity.
It is readily seen from the condition 1) that

α−1
2 (V(r(k), ξ(k))) ≤ |ξ(k)|

which, together with α ∈ K∞, further implies that

α ◦ α−1
2 (V(r(k), ξ(k))) ≤ α(|ξ(k)|) (15)

for k ∈ Z+.

It follows directly from conditions 2), 3), and (15) that:

E{V(r(k + 1), ξ(k + 1))− V(r(k), ξ(k))}
≤ −α ◦ α−1

2 (EV(r(k), ξ(k)))+ η(|v|∞).
Bearing in mind that VK∞ ⊂ K∞ and following from

Lemma 1, we conclude that there is a α̂ ∈ K∞ such that
α̂ ≤ α ◦ α−1

2 , which further results in:

EV(r(k + 1), ξ(k + 1)) ≤ (Id − α̂
)
(EV(r(k), ξ(k)))

+ η(|v|∞) (16)

with Id−α̂ ∈ K.
For any μ > 1, let

B �
{
(i, ξ) ∈ S × R2nx+ny : V(i, ξ) ≤ γ ∗(μ, |v|∞)

}
(17)

in which γ ∗(μ, |v|∞) � α̂−1(μη(|v|∞)). Next, we aim to
prove that, for any positive scalar ε ∈ (0, 1), there exist
functions β ∈ KL and γ ∈ K such that

P{|ξ(k)| ≤ β(|ξ0|, k)+ γ (|v|∞)} ≥ 1 − ε. (18)

In order to complete the proof of (18), we consider the
following two mutually exclusive cases.

Case 1: (r0, ξ0) ∈ B.
Case 2: (r0, ξ0) /∈ B.
For case 1, it follows from (r0, ξ0) ∈ B that:

EV(r(0), ξ(0)) ≤ γ ∗(μ, |v|∞). (19)

Recalling Id−α̂ ∈ K, we get from (16) and (19) that

EV(r(1), ξ(1)) ≤ (Id − α̂
)
(EV(r(0), ξ(0)))+ η(|v|∞)

≤ γ ∗(μ, |v|∞)− α̂ ◦ γ ∗(μ, |v|∞)+ η(|v|∞)
< γ ∗(μ, |v|∞). (20)

By the mathematical induction, one has for any k ∈ Z+

EV(r(k), ξ(k)) ≤ γ ∗(μ, |v|∞). (21)

Applying Chebyshev’s inequality yields that

P
{

V(r(k), ξ(k)) ≥ 1

ε
γ ∗(μ, |v|∞)

}

≤ EV(r(k), ξ(k))ε

γ ∗(μ, |v|∞) ≤ ε.

(22)

It should be kept in mind that the condition 1 implies
{

ω ∈ � : α1(|ξ(k)|) ≥ 1

ε
γ ∗(μ, |v|∞)

}

⊂
{

ω ∈ � : V(r(k), ξ(k)) ≥ 1

ε
γ ∗(μ, |v|∞)

}

which gives rise to

P
{

α1(|ξ(k)|) ≥ 1

ε
γ ∗(μ, |v|∞)

}

≤ P
{

V(r(k), ξ(k)) ≥ 1

ε
γ ∗(μ, |v|∞)

}

. (23)

Taking (22) into account, we derive that

P
{

α1(|ξ(k)|) ≥ 1

ε
γ ∗(μ, |v|∞)

}

≤ ε
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which leads to

P
{

|ξ(k)| ≤ α−1
1 ◦ γ

∗

ε
(μ, |v|∞)

}

≥ 1 − ε. (24)

By denoting

γ � α−1
1 ◦ α̂

−1

ε
◦ η (25)

and letting μ → 1+ on both sides of (24), we deduce that, for
k ∈ Z+

P{|ξ(k)| ≤ γ (|v|∞)} ≥ 1 − ε. (26)

For any β ∈ KL, it is worth noting that

P{|ξ(k)| ≤ γ (|v|∞)} ≤ P{|ξ(k)| ≤ β(ξ0, k)+ γ (|v|∞)}.
(27)

Thus, by following from (26) and (27), we arrive at (18) under
case 1.

For case 2, it is immediately known from (r0, ξ0) /∈ B
that EV(r(0), ξ(0)) > γ ∗(μ, |v|∞). Now, if EV(r(k), ξ(k)) >
γ ∗(μ, |v|∞) for all k ∈ Z+, then one obtains that

η(|v|∞) < 1

μ
α̂(EV(r(k), ξ(k))). (28)

Substituting (28) into (16) gives

EV(r(k + 1), ξ(k + 1))− EV(r(k), ξ(k))

≤
(

1

μ
− 1

)

α̂(EV(r(k), ξ(k))). (29)

Noting that μ > 1 and applying the standard comparison
lemma in [14], we conclude that there exists a function
β̂ ∈ KL such that

EV(r(k), ξ(k)) ≤ β̂(V(r(0), ξ(0)), k) (30)

for k ∈ Z+.
By making use of Chebyshev’s inequality again, we acquire

P
{

V(r(k), ξ(k)) ≥ 1

ε
β̂(V(r(0), ξ(0)), k)

}

≤ EV(r(k), ξ(k))ε

β̂(V(r(0), ξ(0)), k)
≤ ε. (31)

Along the similar line to obtain (23), we have

P
{

α1(|ξ(k)|) ≥ 1

ε
β̂(V(r(0), ξ(0)), k)

}

≤ P
{

V(r(k), ξ(k)) ≥ 1

ε
β̂(V(r(0), ξ(0)), k)

}

. (32)

Since β̂ is a KL-function, it is readily deduced from the
condition 1 that

P
{

α1(|ξ(k)|) ≥ 1

ε
β̃(α2(|ξ(0)|), k)

}

≤ P
{

α1(|ξ(k)|) ≥ 1

ε
β̂(V(r(0), ξ(0)), k)

}

. (33)

From (31)–(33), it is readily observed that

P
{

|ξ(k)| ≥ α−1
1

(
1

ε
β̂(α2(|ξ(0)|), k)

)}

≤ ε (34)

for k ∈ Z+.
Let

β(s, k) � α−1
1

(
β̂

ε
(α2(s), k)

)

(35)

which is also a KL-function due to [15, Lemma 4.2]. Then,
it follows from (34) that:

P{|ξ(k)| ≤ β(|ξ(0)|, k)} ≥ 1 − ε (36)

which further results in

P{|ξ(k)| ≤ β(|ξ(0)|, k)+ γ (|v|∞)} ≥ 1 − ε (37)

for k ∈ Z+, where γ ∈ K is defined in (25).
On the other hand, if there is a positive integer k > 0 such

that EV(r(k), ξ(k)) ≤ γ ∗(μ, |v|∞), then by denoting

k∗ � min
{
k : EV(r(k), ξ(k)) ≤ γ ∗(μ, |v|∞)

}

one obtains

EV(r(k), ξ(k)) > γ ∗(μ, |v|∞) (38)

for k ∈ [0, k∗ − 1].
Considering (28), we have

EV(r(k + 1), ξ(k + 1))− EV(r(k), ξ(k))

≤
(

1

μ
− 1

)

α̂(EV(r(k), ξ(k))) (39)

which, by following the similar line to the proof of (36),
leads to:

P{|ξ(k)| < β(|ξ(0)|, k)} > 1 − ε (40)

for k ∈ [0, k∗ − 1].
When k = k∗, it is readily obtained from the definition of

k∗ that

EV
(
r
(
k∗), ξ

(
k∗)) ≤ γ ∗(μ, |v|∞) (41)

which is followed immediately by:

EV(r(k), ξ(k)) ≤ γ ∗(μ, |v|∞) (42)

for any k ≥ k∗ by taking advantage of the analogy to (21).
Repeating the proof process from (22) to (26) yields that

P

{

sup
k≥k∗

|ξ(k)| ≤ γ (|v|∞)
}

> 1 − ε (43)

in which γ is defined in (25). Thus, combining (40) with (43)
indicates that for k ∈ Z+

P{|ξ(k)| ≤ β(|ξ(0)|, k)+ γ (|v|∞)} ≥ 1 − ε. (44)

Accordingly, (37) and (44) show that the assertion (18) is true
under case 2. Therefore, the proof is now complete.

Remark 3: In Theorem 1, a Lyapunov-like framework is
established, by which the dynamical behavior is investigated
for a class of discrete-time Markovian switching stochas-
tic systems with exogenous disturbances. By applying the
switched Lyapunov function method and stochastic analy-
sis techniques, the ISS property in probability for addressed
system is guaranteed under several very general condi-
tions described by K-functions. The evolution of states is
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characterized in (18), in which the ISS gain γ (|v|∞) depicts
the final upper bound for sample trajectories while the posi-
tive scalar 1− ε is used to quantify the possibility that sample
trajectories are bounded by γ (|v|∞) as k → ∞.

Remark 4: It is readily seen that Theorem 1 is a generaliza-
tion of [13, Lemma 3.5] in the case of stochastic Markovian
switching systems. Moreover, it can also be regarded as
a discrete-time counterpart of [34, Th. 1] and [16, Th. 2]
[41, Th. 2]. In view of the random nature (from the noises
and the SCP) and the nonvanishing disturbances (from the
quantization errors) of the addressed stochastic system with
Markovian switching, Theorem 1 focuses mainly on the
ultimate upper-bound of state trajectories as well as the
probability of state trajectories entering a bounded domain,
which is different from and less conservative than those
results in moment sense [10], [33].

It should be pointed out that the direct application of
Theorem 1 is inconvenient due mainly to the difficul-
ties/challenges in looking for appropriate functions to satisfy
conditions 1)–3) for general nonlinear functions f and g. In
what follows, by introducing several common assumptions on
nonlinearities, we further exploit an easy-to-use criterion to
address the ISS behavior in probability for the system (13).

Assumption 1: There are real matrices U1f and U2f such
that the nonlinear function f satisfies
(
f (x)− f (y)− U1f (x − y)

)T × (f (x)− f (y)− U2f (x − y)
) ≤ 0

for any x, y ∈ Rnx . Here, U1f and U2f are known constant
matrices with appropriate dimensions.

Assumption 2: There are real matrices Ug, Vg such that the
nonlinear function g satisfies

gT(x, y)g(x, y) ≤ xTUT
g Ugx + yTVT

g Vgy

for any x, y ∈ Rnx .
Theorem 2: Let the observer gain matrices Li and the

feedback gain matrices Ki be given for i ∈ S . Under
Assumptions 1 and 2, the nonlinear stochastic Markovian
switching system (13) is input-to-state stable in probabil-
ity with respect to v if there exist positive definite matrices
Pi ∈ R(2nx+ny)×(2nx+ny), Qi ∈ R(nx+2ny)×(nx+2ny) and two
positive constants σ1 and σ2 such that

(
�i ST

i P̄i

� −P̄i

)

< 0 (45)

for any i ∈ S , where

P̄i =
ny∑

j=1

πijPj, Si = (Ai I 0 Di
)

�i =

⎛

⎜
⎜
⎝

�i
11 σ ŨT

f 0 0
� −2σ1I 0 0
� � P̄i − σ2I 0
� � � −Qi

⎞

⎟
⎟
⎠

�i
11 = −Pi − σ1Ūf + 2σ2Ug,Ug = diag

{
UT

g Ug, 0, 0
}

Ũf = diag
{
Ũf , Ũf , 0

}
, Ūf = diag

{
Ūf , Ūf , 0

}

Ũf = U1f + U2f , Ūf = UT
1f U2f + UT

2f U1f .

Moreover, for any positive constant ε ∈ (0, 1), there exist a
function β̌ ∈ K, two positive constants θ and γ0 such that

P
{

|ξ(k)| ≤ β̌(|ξ(0)|)e−θk + γ0

(

|v1|∞ + |v2|∞ +
√

ny
q

2

)}

≥ 1 − ε (46)

holds.
Proof: Consider a mode-dependent Lyapunov-like function

as follows:

V(k) � V(r(k), ξ(k)) = ξT(k)Pr(k)ξ(k). (47)

For the brevity of notations, we denote r(k) = i ∈ S without
loss of generality. By calculating the difference of V(i, ξ(k))
along the solution of switched closed-loop system (13), one
obtains


V(k) = E{V(r(k + 1), ξ(k + 1))|Fk} − V(i, ξ(k))

= FT
i (ξ(k), v(k))P̄iFi(ξ(k), v(k))

+ GT
i (ξ(k), v(k))P̄iGi(ξ(k), v(k))− ξT(k)Piξ(k).

(48)

For any positive constant σ1, it is readily derived from
Assumption 1 that

2σ1f T(x(k))f (x(k))+ σxT(k)Ūf x(k)

−σ1(f
T(x(k))Ũf x(k)+ xT(k)ŨT

f f (x(k))) ≤ 0. (49)

It follows from the similar line to the proof of (49) that:

2σ1(f (x(k))− f (x̂(k)))T(f (x(k))− f (x̂(k)))

− σ1

((
f (x(k))− f (x̂(k))

)T
Ũf e(k)

+ eT(k)ŨT
f

(
f (x(k))− f (x̂(k))

))

+ σ1eT(k)Ūf e(k) ≤ 0. (50)

Combining (49) with (50) results in

F̃(k) � 2σ1FT(ξ(k))F(ξ(k))+ σ1ξ
T(k)Ūf ξ(k)

− σ1

(
FT(ξ(k))Ũf ξ(k)

)
− σ1

(
ξT(k)ŨT

f F(ξ(k))
)

≤ 0. (51)

For any positive constant σ2, it follows from Assumption 2
that:

σ2GT
i (ξ(k), v(k))Gi(ξ(k), v(k))

≤ 2σ2
(
ξT(k)Ugξ(k)+ vT(k)Vgv(k)

)
(52)

where Vg = diag{VT
g Vg, 0, 0}.

By taking into account (48), (51), and (52), one deduces
that


V(k) ≤ (Aiξ(k)+ F(ξ(k))+ Div(k))
TP̄i

× (Aiξ(k)+ F(ξ(k))+ Div(k))

+ GT
i (ξ(k), v(k))P̄iGi(ξ(k), v(k))

− ξT(k)Piξ(k)− vT(k)Qiv(k)+ vT(k)Qiv(k)

− F̃(k)+ 2σ2
(
ξT(k)Ugξ(k)+ vT(k)Vgv(k)

)

− σ2GT
i (ξ(k), v(k))Gi(ξ(k), v(k))

� ηT(k)�iη(k)+ vT(k)Q̃iv(k) (53)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

in which �i � ST
i P̄iSi +�i, Q̃i � Qi + 2σ2Vg and

η(k) = (ξT(k) FT(ξ(k)) GT
i (ξ(k), v(k)) vT(k)

)T
.

Clearly, we have Q̃i > 0. By following the condition (45)
and the well-known Schur complement lemma, we obtain
�i < 0 which, together with (53), gives rise to:


V(k) ≤ λmax(�i)η
T(k)η(k)+ λmax

(
Q̃i

)
vT(k)v(k)

≤ λmax(�i)ξ
T(k)ξ(k)+ λmax

(
Q̃i

)
vT(k)v(k). (54)

Let

α1(s) � min
i∈S

{λmin(Pi)}s2 (55)

α2(s) � max
i∈S

{λmax(Pi)}s2. (56)

It is readily seen that α1, α2 ∈ K∞ satisfy the condition 1 of
Theorem 1.

For any positive constant ρ satisfying

0 < ρ < min

{

min
i∈S

{−λmax(�i)},max
i∈S

{λmax(Pi)}
}

(57)

we choose

α(s) � ρs2, η(s) � max
i∈S

{
λmax

(
Q̃i

)}
s2 (58)

such that α, η ∈ K∞ and


V(k) ≤ −α(|ξ(k)|)+ η(|v(k)|) (59)

which means that the condition 2) holds. Furthermore, by
following from (56) and (58), one obtains that:

α ◦ α−1
2 (s) = ρ

maxi∈S{λmax(Pi)} s (60)

is a VK∞-function, which leads to the condition 3).
Consequently, according to Theorem 1, the discrete-time
nonlinear stochastic Markovian switching system (13) is input-
to-state stable in probability with respect to v.

Next, for any given ε ∈ (0, 1), we focus on finding an
appropriate function β̌ ∈ K, two positive constants θ and γ0
to satisfy the estimation (46), so as to eventually complete the
proof. To this end, it is readily deduced from (60) that

(
Id − α ◦ α−1

2

)
(s) =

(

1 − ρ

maxi∈S{λmax(Pi)}
)

s (61)

which is a K-function.
By choosing α̂ = α ◦ α−1

2 , it follows from (29) that:

EV(r(k + 1), ξ(k + 1))− EV(r(k), ξ(k))

≤
(

1

μ
− 1

)

α̂(EV(r(k), ξ(k)))

=
(

1

μ
− 1

)
ρEV(r(k), ξ(k))

maxi∈S{λmax(Pi)}
which further indicates that

EV(r(k + 1), ξ(k + 1)) ≤ ςEV(r(k)ξ(k))) (62)

for k ∈ Z+, where μ > 1 and

ς � μ(maxi∈S{λmax(Pi)} − ρ)+ ρ

μmaxi∈S{λmax(Pi)} ∈ (0, 1).

Applying the mathematical induction to (62) yields that

EV(r(k), ξ(k)) ≤ ςkV(r(0), ξ(0))

� β̂(V(r(0), ξ(0)), k). (63)

Bearing in mind that (25) and (35), it is readily seen that

β(|ξ0|, k) =
√

maxi∈S{λmax(Pi)}
mini∈S{λmin(Pi)}ε

√
ς

k|ξ0| � β̌(|ξ0|)e−θk

γ (|v|∞) =

√
√
√
√maxi∈S{λmax(Pi)} maxi∈S

{
λmax

(
Q̃i

)}

mini∈S{λmin(Pi)}ρε |v|∞
� γ0|v|∞

in which

β̌(|ξ0|) �
√

maxi∈S{λmax(Pi)}
mini∈S{λmin(Pi)}ε |ξ0| (64)

θ � ln

√
μmaxi∈S{λmax(Pi)}

μ(maxi∈S{λmax(Pi)} − ρ)+ ρ
(65)

γ0 �

√
√
√
√maxi∈S{λmax(Pi)} maxi∈S

{
λmax

(
Q̃i

)}

mini∈S{λmin(Pi)}ρε . (66)

By following from Definition 1 and (18), we conclude
that the estimation (46) is true and the Markovian switching
stochastic system (13) is exponentially input-to-state stable in
probability. The proof is complete.

Remark 5: Strictly speaking, Theorem 2 is more conserva-
tive than Theorem 1 due to Assumptions 1 and 2 on nonlin-
earities and the application of a quadratic switched Lyapunov
function. Nevertheless, the sufficient criterion proposed in
Theorem 2 is presented in the form of LMIs, which is easy
to check by using the MATLAB toolbox. Moreover, it follows
from (46) that Theorem 2 addresses the exponential ISS behav-
ior in probability for the closed-loop system (13), which has
not been discussed in [18], [20], [23], and [31]. The exponen-
tial decay rate θ determined in (65) quantifies the speed of the
convergence of sample trajectories, while the linear ISS gain
γ0|v|∞ given in (66) will increase along with the increasing
of |v|∞, which demonstrates the effects (from both bounded
exogenous disturbances and quantization errors) on the state
of the controlled system.

Having coped with the dynamics analysis of the closed-
loop system in terms of the feasibility of LMIs in Theorem 2,
we are now in the position to design the gain matrices Ki

and Li (i ∈ S) for the observer-based controller (10) so as to
stabilize the plant (1) in the sense of ISS in probability. For
this purpose, we present the following assumption without any
loss of generality.

Assumption 3: The control input matrix B is of full-column
rank, i.e., rank(B) = nu, and has the singular value decompo-
sition of the form (14).

Theorem 3: Under Assumptions 1–3, the plant (1) is input-
to-state stabilizable in probability by the observer-based con-
troller (10) if there exist a set of positive definite matrices
P̂1
(i) ∈ Rnu×nu , P̂2

(i) ∈ R(nx−nu)×(nx−nu), P(i)2 ∈ Rnx×nx ,
P(i)3 ∈ Rny×ny , Q(i)1 ∈ Rnx×nx , Q(i)2 ∈ Rny×ny , and Q(i)3 ∈
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Rny×ny , a set of constant matrices Y(i) ∈ Rnu×nx and Z(i) ∈
Rnx×ny , and two positive constants σ1 and σ2 such that for
any i ∈ S

�(i) �
(
�
(i)
11 �

(i)
12

� �
(i)
22

)

< 0 (67)

where

�
(i)
11 =

⎛

⎜
⎜
⎝

�̂(i) σ1ŨT
f 0 0

� −2σ1I 0 0
� � P̄(i) − σ2I 0
� � � −Q(i)

⎞

⎟
⎟
⎠

�
(i)
22 = diag

{
P(1) − 2P(i), . . . ,P(ny) − 2P(i)

}

�
(i)
12 =

(√
πi1

(
Ŝ(i)
)T
. . .
√
πiny

(
Ŝ(i)
)T
)

�̂(i) = −P(i) − σ1Ūf + 2σ2UT
g

P(i) = diag
{

P(i)1 , P(i)2 , P(i)3

}

Q(i) = diag
{

Q(i)1 , Q(i)2 , Q(i)3

}

P(i)1 = UT

(
P̂1
(i)

0

0 P̂2
(i)

)

U

P̄(i) =
ny∑

j=1

πijP
(j)

Ŝ(i) =
(

Ŝ(i)1 Ŝ(i)2 0 Ŝ(i)4

)

Ŝ(i)1 =
⎛

⎜
⎝

Ŝ(i)1,11 −BY(i) 0

Ŝ(i)1,21 Ŝ(i)1,22 −Z(i)(I −�i)

P(i)3 �iC 0 Ŝ(i)1,33

⎞

⎟
⎠

Ŝ(i)1,11 = P(i)1 A + BY(i), Ŝ(i)1,21 = −Z(i)�iC + Z(i)C

Ŝ(i)1,22 = P(i)2 A − Z(i)C, Ŝ(i)1,33 = P(i)3 (I −�i)

Ŝ(i)2 = diag
{

P(i)1 , P(i)2 , P(i)3

}

Ŝ(i)4 =
⎛

⎜
⎝

P(i)1 D 0 0
P(i)2 D −Z(i)�iE −Z(i)�i

0 P(i)3 �iE P(i)3 �i

⎞

⎟
⎠.

Ũf , Ūf , and Ug are the same definition in Theorem 2,
and U is defined by the singular value decompo-
sition of B in (14). Furthermore, the control gain
matrices Ki and the observer gain matrices Li are
designed as

Ki =
(

BTP(i)1 B
)−1

BTBY(i) (68)

Li =
(

P(i)2

)−1
Z(i) (69)

for i ∈ S .
Proof: It suffices to prove that (45) holds under

the conditions in this Theorem. Following the singular
value decomposition of B in (14), it is readily obtained
that:

B = UT
(
�

0

)

VT.

Thus, one has

BTB = V(�, 0)UUT
(
�

0

)

VT = V�2VT

BTP(i)1 B = V(�, 0)UUT

(
P̂(i)1 0
0 P̂(i)2

)

U

× UT
(
�

0

)

VT = V�P(i)1 �VT

which are nonsingular matrices.
Considering (68), we obtain Y(i) = V�−1P(i)1 �VTKi,

that is,

BY(i) = BV�−1P(i)1 �VTKi = P(i)1 BKi. (70)

Note that (69) implies P(i)2 Li = Z(i) which, together
with (70), leads to

Ŝ(i) =
(

P(i)Ai P(i) 0 P(i)Di

)
= P(i)Si.

Thus, we have

�
(i)
12 =

(√
πi1ST

i P(i) · · ·√πinyST
i P(i)

)
(71)

where Si is defined in Theorem 2.
Bearing in mind that for any i, j ∈ S

(
P(i) − P(j)

)(
P(j)
)−1(

P(i) − P(j)
)

≥ 0

that is,

− P(i)
(

P(j)
)−1

P(i) ≤ P(j) − 2P(i) (72)

we deduce that

�̃
(i)
22 ≤ �

(i)
22 (73)

where

�̃
(i)
22 � diag

{

−P(i)
(

P(1)
)−1

P(i), . . . ,−P(i)
(

P(ny)
)−1

P(i)
}

.

Substituting (71) and (73) into (67) gives
(
�
(i)
11 �

(i)
12

� �̃
(i)
22

)

≤ �(i) < 0. (74)

Pre- and post-multiplying (74) by

diag

⎧
⎪⎪⎨

⎪⎪⎩

I,
(

P(i)
)−1

, . . . ,
(

P(i)
)−1

︸ ︷︷ ︸
ny

⎫
⎪⎪⎬

⎪⎪⎭

we obtain that
⎛

⎜
⎜
⎜
⎜
⎜
⎝

�
(i)
11

√
πi1ST

i · · · √
πinyST

i

� −(P(1))−1 · · · 0
...

...
. . .

...

� 0 · · · −
(

P(ny)
)−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

< 0.

It follows from the Schur complement lemma that:

�
(i)
11 + ST

i

⎛

⎝

ny∑

j=1

πijP
(j)

⎞

⎠Si = �
(i)
11 + ST

i P̄(i)Si < 0
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which can be rewritten as
(
�
(i)
11 ST

i P̄(i)

� −P̄(i)

)

< 0.

Therefore, the proof is complete.
Remark 6: Within the theoretical framework proposed in

Theorem 2, an easy-to-operate method is developed for facil-
itating the design of the mode-dependent observer-based con-
troller with hope to render the plant (1) input-to-state stable
in probability. The gain matrices of the desired controller are
dependent on the Markovian switching signal which results
from the SCP in the communication network. It should be
mentioned that, when we deal with the issue of the controller
design, all gain matrices Ki, Li (i ∈ S) are variables to be
determined. Hence, (67) is no longer an LMI that can be solved
directly by utilizing the MATLAB LMI toolbox. In order to
overcome this difficulty, we first take advantage of Lemma 2
to convert the condition (67) into an LMI form with matrix
equation constraint, and then form a solvable convex problem
for the MATLAB LMI toolbox.

IV. NUMERICAL EXAMPLE

In this section, a simulation example is presented to illus-
trate the usefulness and flexibility of the theoretical result
developed in this paper.

The parameters of plant (1) are given as follows:

A =
⎛

⎝
0.85 −0.15 0.3
0.15 0.35 0.1

−0.25 −0.15 0.45

⎞

⎠,B =
⎛

⎝
2.5 2
2 3.5

1.5 1

⎞

⎠

C =
(

0.5 0.8 0.9
0.6 −0.7 0.5

)

,E =
(

0.5 0.1
0.3 0.1

)

D =
⎛

⎝
0.05 0.1 0.1

−0.02 0.05 0.15
0.1 0.15 0.1

⎞

⎠.

The nonlinear functions are assumed to be

f (x) = (f1(x) f2(x) f3(x))
T

with

f1(x) = −0.5x1 + 0.15x2 + tanh(0.15x1 − 0.1x3)

+ tanh(0.2x2 + 0.1x3)

f2(x) = 0.85x2 − 0.05x3 + tanh(0.05x1 − 0.15x2)

− tanh(0.05x1 + 0.1x3)

f3(x) = −0.1x1 + 0.15x3 − tanh(0.05x1 − 0.1x2)

− tanh(0.05x2 + 0.05x3)

and

g(x, y) =
⎛

⎝
0.15|x1| + y1
0.1|x2| + y2
0.08|x3| + y3

⎞

⎠.

It can be easily calculated that there are real matrices

U1f =
⎛

⎝
−0.5 0.15 −0.1
−0.05 0.7 −0.15
−0.15 −0.05 0.1

⎞

⎠

Fig. 2. State response of the open-loop system without disturbances.

U2f =
⎛

⎝
−0.35 0.35 0.1
0.05 0.85 −0.05
−0.1 0.1 0.15

⎞

⎠

Ug = √
2diag{0.15, 0.1, 0.08}

Vg = √
2diag{1, 1, 1}

such that Assumptions 1 and 2 hold.
It is readily seen that the plant (1) with above parameters

is unstable even though the exogenous disturbance v1(k) = 0
for all k ∈ Z+. The dynamics for the plant without the control
input and the exogenous disturbance is simulated in Fig. 2.

Set the transition probability matrix

� =
(

0.55 0.45
0.4 0.6

)

the bounded exogenous disturbances

v1(k) = 0.05(cos k sin k cos k)T

v2(k) = 0.05(cos k sin k)T

and the uniform quantizer with parameters 
q = 0.02,
Mq = 50, as well as ε = 0.05. By solving the LMIs (67),
we derive a set of feasible solutions for the gain matrices of
the mode-dependent observer-based controller as follows:

K1 =
(

0.1140 0.2382 0.0573
−0.1293 −0.2684 −0.0798

)

K2 =
(−0.0551 0.4222 −0.1447

0.0502 −0.3910 0.1084

)

L1 =
⎛

⎝
0.2233 0.0022
1.2601 −0.0098

−0.2429 0.0011

⎞

⎠

L2 =
⎛

⎝
0.0002 0.0325
0.0008 −1.2044

−0.0006 0.3111

⎞

⎠

such that the closed-loop system gains the desired control
performance of ISS in probability.

For the sake of simulation, we let the time interval be
[0, 100] and the initial values be r(0) = 1, x(0) =
(0.8 0.2 − 0.9)T, x̂(0) = (0 0 0)T, and ȳ(−1) = (0 0)T.
Based on the MATLAB software, the simulation results are
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Fig. 3. Switching of sensor nodes under the scheduling of SCP.

Fig. 4. Measurement outputs from sensors, quantizers, and the communica-
tion network.

shown in Figs. 3–7. In specific, under the scheduling of the
SCP, the Markovian switching signal r(k), which denotes the
label of active sensor node getting access to the network, is
depicted in Fig. 3. The measurement output y(k) of the sen-
sors, the quantized measurement output ŷ(k) as well as the
final measurement output ȳ(k) transmitted over the network are
illustrated in Fig. 4, from which we see that there are nonzero
errors among these output signals. Fig. 5 illustrates the control
input that is available to the plant. The state responses for the
controlled plant and the observer are presented in Fig. 6, which
demonstrates that the state trajectories enter a bounded domain
eventually. Fig. 7 shows the tracking error between the plant
and the observer, which oscillates near origin point rather than
approaches zero due to the presence of bounded exogenous
disturbances and the nonvanishing quantization error.

Remark 7: It should be pointed out that the results derived
in [10], [16], [24], [25], and [41] cannot be applied to investi-
gate the ISS behavior in probability because of the constraints
induced by the communication network. The control strate-
gies developed in [5], [6], [12], [19], and [42] are invalid
to deal with the performance analysis and the controller
design for this example due to the simultaneous presence of

Fig. 5. Control input generated by the observer-based controller.

Fig. 6. State response of the closed-loop system and the observer.

Fig. 7. Tracking error between the closed-loop system and the observer.

both uniform quantization and SCP. Furthermore, the methods
proposed in [18], [20], [23], and [31] are also inapplicable to
this example because of the stochastic noise and the nonva-
nishing disturbances (from both exogenous disturbances and
quantization error).
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V. CONCLUSION

In this paper, the problem of input-to-state stabilization in
probability has been investigated for a class of discrete-time
nonlinear stochastic NCSs with bounded exogenous distur-
bances. An observer-based state feedback controller has been
developed to guarantee the desired dynamical performance for
the controlled system. The control loop has been closed via
a shared communication network, in which the measurement
output of sensors has been quantized through the finite-level
uniform quantizer, after which it has been transmitted to
the observer under the scheduling of the SCP. The argument
closed-loop system has been described as a general nonlinear
Markovian switching stochastic difference equation, for which
a Lyapunov-like framework has been established to address
the ISS property in probability. The control gain matrices,
which are dependent on the SCP, have been designed subject
to the feasibility of a set of LMIs. A numerical example has
been used to illustrate the effectiveness of our results. For the
future research, the Round-Robin and the TOD protocols may
be investigated. In addition, it is of significant importance to
consider the case with both communication protocols and the
dynamical quantization.

REFERENCES

[1] D. Antunes, J. P. Hespanha, and C. Silvestre, “Stochastic networked
control systems with dynamic protocols,” Asian J. Control, vol. 17, no. 1,
pp. 99–110, 2015.

[2] R. Caballero-Águila, A. Hermoso-Carazo, and J. Linares-Pérez,
“Distributed fusion filters from uncertain measured outputs in sensor
networks with random packet losses,” Inf. Fusion, vol. 34, pp. 70–79,
Mar. 2017.

[3] R. Caballero-Águila, A. Hermoso-Carazo, and J. Linares-Pérez,
“Covariance-based fusion filtering for networked systems with random
transmission delays and non-consecutive losses,” Int. J. Gen. Syst.,
vol. 46, no. 7, pp. 752–771, 2017.

[4] M. C. F. Donkers, W. P. M. H. Heemels, D. Bernardini, A. Bemporad,
and V. Shneer, “Stability analysis of stochastic networked control
systems,” Automatica vol. 48, no. 5, pp. 917–925, May 2012.

[5] H. Dong, Z. Wang, S. Ding, and H. Gao, “Finite-horizon reliable con-
trol with randomly occurring uncertainties and nonlinearities subject to
output quantization,” Automatica, vol. 52, pp. 355–362, Feb. 2015.

[6] Y. Feng, X. Chen, and G. Gu, “Observer-based stabilizing controllers for
discrete-time systems with quantized signal and multiplicative random
noise,” SIAM J. Control Optim., vol. 54, no. 1, pp. 251–265, Feb. 2016.

[7] E. Garcia and P. J. Antsaklis, “Model-based event-triggered control
for systems with quantization and time-varying network delays,” IEEE
Trans. Autom. Control, vol. 58, no. 2, pp. 422–434, Feb. 2013.

[8] X. Ge and Q.-L. Han, “Consensus of multiagent systems subject to par-
tially accessible and overlapping Markovian network topologies,” IEEE
Trans. Cybern., vol. 47, no. 8, pp. 1807–1819, Aug. 2017.

[9] Z. Hu, F. Deng, M. Xing, and J. Li, “Modeling and control of Itô stochas-
tic networked control systems with random packet dropouts subject to
time-varying sampling,” IEEE Trans. Autom. Control, vol. 62, no. 8,
pp. 4194–4201, Aug. 2017.

[10] L. Huang and X. Mao, “On input-to-state stability of stochastic retarded
systems with Markovian switching,” IEEE Trans. Autom. Control,
vol. 54, no. 8, pp. 1898–1902, Aug. 2009.

[11] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proc. IEEE, vol. 95, no. 1, pp. 138–162,
Jan. 2007.

[12] A. Johnston and S. Yüksel, “Stochastic stabilization of partially observed
and multi-sensor systems driven by unbounded noise under fixed-rate
information constraints,” IEEE Trans. Autom. Control, vol. 59, no. 3,
pp. 792–798, Mar. 2014.

[13] Z.-P. Jiang and Y. Wang, “Input-to-state stability for discrete-time
nonlinear systems,” Automatica, vol. 37, no. 6, pp. 857–869, Jun. 2001.

[14] Z.-P. Jiang and Y. Wang, “A converse Lyapunov theorem for discrete-
time systems with disturbances,” Syst. Control Lett., vol. 45, no. 1,
pp. 49–58, Jan. 2002.

[15] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[16] S.-J. Liu and J.-F. Zhang, “Output-feedback control of a class of stochas-
tic nonlinear systems with linearly bounded unmeasurable states,” Int.
J. Robust Nonlin. Control, vol. 18, no. 6, pp. 665–687, Apr. 2008.

[17] K. Liu, E. Fridman, and K. H. Johansson, “Networked control with
stochastic scheduling,” IEEE Trans. Autom. Control, vol. 60, no. 11,
pp. 3071–3076, Nov. 2015.

[18] K. Liu, E. Fridman, K. H. Johansson, and Y. Xia, “Quantized con-
trol under round-Robin communication protocol,” IEEE Trans. Ind.
Electron., vol. 63, no. 7, pp. 4461–4471, Jul. 2016.
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