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Abstract The multi-weighted coupled neural networks (MWCNNs) models
with and without coupling delays are investigated in this paper. Firstly, the
finite-time anti-synchronization of MWCNNs with fixed topology and switch-
ing topology is analyzed respectively by utilizing Lyapunov functional ap-
proach as well as some inequality techniques, and several anti-synchronization
criteria are put forward for the considered networks. Furthermore, when the
parameter uncertainties appear in MWCNNs, some conditions for ensuring ro-
bust finite-time anti-synchronization are obtained. Similarly, we also consider
the finite-time anti-synchronization and robust finite-time anti-synchronization
for MWCNNs with coupling delays under fixed and switched topologies respec-
tively. Lastly, two numerical examples with simulations are provided to confirm
the effectiveness of these derived results.

Keywords Finite-time anti-synchronization · Coupled neural networks ·
Multiple weights · Robust anti-synchronization · Switching topology

1 Introduction

In recent years, neural networks (NNs) have become a hot topic because of
their widespread applications, especially in optimization, associate memory,
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pattern recognition and so on [1–7]. Actually, these applications are heavily
dependent on their dynamical behaviors. Hence, a lot of meaningful and im-
portant research results have been reported on stability and passivity of NNs
[8–13]. Zhang et al. [8] studied the stability for a class of discrete-time NNs with
time-varying delay via an extended reciprocally convex matrix inequality. The
authors in [9] discussed the stability of complex-valued memristive recurrent
NNs. By utilizing Lyapunov functional approach and some inequality tech-
niques, the passivity and stability problems for NNs with reaction-diffusion
terms were considered in [10].

As a particular sort of complex networks, coupled NNs (CNNs) is com-
posed of many NNs which interact with each other. As we all known, syn-
chronization is one of the most significant dynamic properties in CNNs, which
has been applied in many areas such as image processing, secure communica-
tion [14,15]. Therefore, it is of great significance to investigate the synchro-
nization of CNNs [16–22]. Wang et al. [18] studied the local synchronization
problem for a sort of Markovian nonlinearly CNNs by applying the Lyapunov-
Krasovskii functional as well as free-matrix-based integral inequality. Based
on Lyapunov functions, Halanay inequality and stochastic analysis technique,
the exponential synchronization problem of CNNs with time-varying delay
was investigated in [19]. Several criteria for ensuring exponential synchroniza-
tion for markovian stochastic CNNs were carried out via adaptive feedback
control in [20]. The work in [22] analyzed the exponential synchronization
and passivity of CNNs with reaction-diffusion terms by adopting appropriate
pinning controllers. What is noteworthy is that anti-synchronization is also
a fascinating phenomenon in the real world, which widely exists in memris-
tive recurrent NNs, periodic oscillators, and so forth. Moreover, up to now,
anti-synchronization has been successfully applied in many fields, for instance,
image processing, information science and so on. Hence, it is highly meaning-
ful to study anti-synchronization [23–28]. Some conditions for guaranteeing
anti-synchronization of CNNs with mixed time-varying delays were set up via
randomly occurring control in [25]. Liu et al. [26] devoted themselves to the
anti-synchronization for the considered complex-valued memristive NNs by
employing suitable Lyapunov functional and some inequality techniques. In
[28], the anti-synchronization problem of a memristor-based bidirectional as-
sociate memory NN was studied by utilizing a robust feedback controller with
an appropriate gain control matrix.

In many practical applications, it is usually required to realize synchroniza-
tion within a limited time interval. Accordingly, a large number of literatures
on finite-time synchronization have been reported [29–40]. In [29], several con-
ditions for ensuring the finite-time synchronization of CNNs with time-varying
delays were derived by designing a stochastic multiple Lyapunov-Krasovskii
function and using weighted integral inequality. Some discontinuous or contin-
uous controllers were constructed for the finite-time synchronization problem
of switched CNNs in [30]. Sun et al. [32] investigated the finite-time synchro-
nization for two complex-variable chaotic systems with unknown parameters
via nonsingular terminal sliding mode control. However, only a few results have



Finite-time anti-synchronization of MWCNNs 3

been obtained about finite-time anti-synchronizaton up to now [41,42]. In [41],
the finite-time anti-synchronization for a class of time-varying delayed NNs
was studied via feedback control with intermittent adjustment. The authors
proposed some finite-time anti-synchronization criteria for memristive NNs by
designing a nonlinear controller in [42]. As far as we know, a great many of
existing networks can be described more accurately by multi-weighted com-
plex dynamical networks (MWCDNs), for instance, transportation networks,
social networks, communication networks and so on. Therefore, it is of great
significance to study MWCDNs [43]. Qiu et al. [43] proposed several finite-time
synchronization conditions for MWCDNs with and without coupling delays by
means of Lyapunov functional approach and state feedback controllers. How-
ever, there are only a few results reported on the finite-time synchronization
of MWCNNs [44]. In [44], several novel criteria for guaranteeing finite-time
synchronization of MWCNNs with and without coupling delays were provided
by exploiting new definitions of finite-time synchronization and designing ap-
propriate controllers. It is a pity that the finite-time anti-synchronization of
MWCNNs has not yet been considered in existing research results.

As is well known, the connection topology of most of networks mentioned
above is always supposed to be fixed. Nevertheless, in practical applications,
this requirement is very strict because of the impacts of limited communica-
tions and external disturbances. Therefore, more and more researchers devoted
themselves to studying the synchronization of NNs with switching topology
[45–48]. In [46], the authors investigated the finite-time synchronization of a
sort of uncertain CNNs with switching topology by constructing appropriate
Lyapunov-like functionals and using the average dwell time technique. The
work in [47] proposed some conditions for guaranteeing pinning synchroniza-
tion of directed networks with switching topologies by employing a multiple
lyapunov functions approach. Based on Lyapunov functional approach and
some inequality techniques, Qin et al. [48] studied the synchronization and H∞

synchronization of MWCDNs with fixed and switching topologies. However,
there is no research results reported on the finite-time anti-synchronization for
MWCNNs with switching topology until now.

On the other hand, some uncertain factors may be occurred in NNs due
to the existence of environmental noises and modeling errors, which might
cause the exact parameter values of NNs could not be obtained. Therefore, it
is important to consider the robust synchronization of CNNs which consisting
of several identical uncertain NNs [49–52]. In [49], the authors investigated
the robust synchronization of fractional-order CNNs by utilizing pinning con-
trol strategies. The robust synchronization problem for delayed CNNs with
uncertain parameters was studied by intermittent pinning control in [50]. By
using inequality techniques and constructing appropriate Lyapunov functional,
Qin et al. [51] discussed the robust synchronization and H∞ synchronization
of MWCDNs with uncertain parameters. To our best knowledge, the robust
finite-time anti-synchronization for MWCNNs with uncertain parameters has
never been discussed.
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On the basis of the above discussion, we study the finite-time anti-synchron
ization and robust finite-time anti-synchronization of MWCNNs with fixed and
switching topologies in this paper. Firstly, we present two MWCNN models.
The first one is with constant coupling, and the second MWCNN is with
delayed coupling. Then, several finite-time anti-synchronization criteria for
these considered networks with fixed as well as switching topologies are derived
respectively. Furthermore, some sufficient conditions for ensuring robust finite-
time anti-synchronization of MWCNNs with fixed and switching topologies are
also established.

In view of the above-mentioned discussion, the principal objective of this
paper is to study the finite-time anti-synchronization of multi-weighted cou-
pled neural networks (MWCNNs). The main contribution of this paper can be
summarized as follows.

(1) The finite-time anti-synchronization of MWCNNs with fixed and switch-
ing topologies is studied and several criteria are put forward by designing
suitable controller and constructing appropriate Lyapunov functional.

(2) Some conditions for guaranteeing the robust finite-time anti-synchronization
of MWCNNs with uncertain parameters under fixed and switching topolo-
gies are established respectively.

(3) For the delayed MWCNNs, the finite-time anti-synchronization and robust
finite-time anti-synchronization conditions are also derived similarly.

The outline of this paper is organized as follows. Several lemmas needed
to be used throughout this paper are provided in Section 2. Section 3 is de-
voted to analyzing finite-time anti-synchronization and the robust finite-time
anti-synchronization for MWCNNs with fixed and switching topologies, respec-
tively. In Section 4, the network model of MWCNNs with coupling delays is
introduced, and then the finite-time anti-synchronization and the robust finite-
time anti-synchronization for this kind of MWCNNs with fixed and switching
topologies are investigated. Two simulation examples are presented in Section
5 to verify the effectiveness of the obtained theoretical results. Finally, this
paper is concluded in Section 6.

2 Preliminaries

0 > χ ∈ R
n×n (0 6 χ ∈ R

n×n) symbols the matrix χ is semi-negative (semi-
positive) definite and symmetric, 0 > χ ∈ R

n×n (0 < χ ∈ R
n×n) shows

that the matrix χ is negative (positive) definite and symmetric. λM (·) and
λm(·) respectively signify the maximum and minimum eigenvalues of the cor-
responding matrix. In addition, for e(t) = (e1(t), e2(t), · · · , en(t))

T ∈ R
n, we

have ‖e(t)‖2 =

(

n
∑

ι=1
e2ι (t)

)
1
2

.

Lemma 1 (see [53]). Suppose that a continuous and positive-definite function
H(t) meets the following inequality:

Ḣ(t) 6 −µ(H(t))ω, t > 0, H(0) > 0,
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where 0 < µ ∈ R and 0 < ω < 1 are constants. Then,

(H(t))1−ω
6 (H(0))1−ω − µ(1− ω)t, 0 6 t 6 T,

and
H(t) = 0, t > T,

with T given by

T =
(H(0))1−ω

µ(1− ω)
.

Lemma 2 (see [54]). For νξ ∈ R, ξ = 1, 2, · · · , n, 0 < k 6 1, then

|ν1|
k + |ν2|

k + · · ·+ |νn|
k
> (|ν1|+ |ν2|+ · · ·+ |νn|)

k.

3 Finite-time anti-synchronization of MWCNNs

3.1 Anti-synchronization in finite time for MWCNNs

3.1.1 Anti-synchronization in finite time for MWCNNs with fixed topology

Consider the following MWCNNs with fixed topology:

Ẏι(t) =−AYι(t) +Dg(Yι(t)) + c1

κ
∑

j=1

G1
ιjΓ1Yj(t) + c2

κ
∑

j=1

G2
ιjΓ2Yj(t) + · · ·

+ cm

κ
∑

j=1

Gm
ιjΓmYj(t) + uι(t), ι = 1, 2, · · · , κ, (1)

where Yι(t) = (Yι1(t), Yι2(t), · · · , Yιn(t))
T ∈ R

n is the state vector of the ιth
node; A = diag(a1, a2, · · · , an) ∈ R

n×n > 0, D = (dιj)n×n ∈ R
n×n symbols a

constant matrix; g(Yι(t)) = (g1(Yι1(t)), g2(Yι2(t)), · · · , gn(Yιn(t)))
T ∈ R

n and
R ∋ cs > 0 represents coupling strength for the sth coupling form; uι(t) ∈ R

n

means the control input; Γs ∈ R
n×n is the inner coupling matrix of the sth

coupling form; Gs = (Gs
ιj)κ×κ ∈ R

κ×κ expresses coupling weight between
nodes in the sth coupling form, where Gs

ιj is defined as follows: Gs
ιj = Gs

jι > 0
if and only if there exists a connection between node ι and node j for the sth
coupling form; if not, Gs

ιj = Gs
jι = 0 (ι 6= j); and

Gs
ιι = −

κ
∑

j=1

j 6=ι

Gs
ιj , ι = 1, 2, · · · , κ,

where s = 1, 2, · · · ,m.

Assumption 1 The function gk(·) (k = 1, 2, · · · , n) satisfies

|gk(α1) + gk(α2)| 6 θk|α1 + α2|,

for any α1, α2 ∈ R, where 0 < θk ∈ R. Take Θ = diag(θ21 , θ
2
2, · · · , θ

2
n) ∈ R

n×n.
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Suppose Y0(t) = (Y01(t), Y02(t), · · · , Y0n(t))
T ∈ R

n is an arbitrary solution
for the network (1), then

Ẏ0(t) = −AY0(t) +Dg(Y0(t)). (2)

Definition 1 For all ι = 1, 2, · · · , κ, if there exists a constant T > 0 such that

lim
t→T

‖Yι(t) + Y0(t)‖2 = 0,

and ‖Yι(t) + Y0(t)‖2 = 0, for t > T,

then the network (1) is called to be anti-synchronized in finite time.

Design the following controller for the network (1):

uι(t) = −Wι(Yι(t) + Y0(t))− ηP
a−1

2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|
a, (3)

where Wι ∈ R
n×n, 0 < a < 1, sign(Yι(t) + Y0(t)) = diag(sign(Yι1(t) +

Y01(t)), sign(Yι2(t)+Y02(t)), · · · , sign(Yιn(t)+Y0n(t))), |Yι(t)+Y0(t)|
a = (|Yι1(t)+

Y01(t)|
a, |Yι2(t) + Y02(t)|

a, · · · , |Yιn(t) + Y0n(t)|
a)T , 0 < η ∈ R, 0 < P =

diag(p1, p2, · · · , pn) ∈ R
n×n, P

a−1

2 = diag(p
a−1

2

1 , p
a−1

2

2 , · · · , p
a−1

2
n ). Then, we

have

Ẏι(t) =−AYι(t) +Dg(Yι(t)) +
m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsYj(t)−Wι(Yι(t) + Y0(t))

− ηP
a−1

2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|
a.

Take eι(t) = Yι(t) + Y0(t). Then, one can get

ėι(t) =−Aeι(t) +Dg(Yι(t)) +Dg(Y0(t)) +
m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsej(t)

−Wιeι(t)− ηP
a−1

2 sign(eι(t))|eι(t)|
a. (4)

Theorem 1 If there exist matrices 0 < P = diag(p1, p2, · · · , pn) ∈ R
n×n and

W = diag(W1,W2, · · · ,Wκ) ∈ R
nκ×nκ such that

K1 +K2 +

m
∑

s=1

csG
s ⊗ (PΓs + Γ T

s P ) 6 0, (5)

where K1 = Iκ⊗(−PA−AP + PDDTP +Θ), K2 = −(Iκ⊗P )W−WT (Iκ⊗
P ), then the network (1) is said to be finite-timely anti-synchronized under
the controller (3). What’s more, the settling time of anti-synchronization T

satisfies T 6 T1 =
(V1(0))

1−a
2

η(1−a) .
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Proof. Define the following Lyapunov functional for network (4):

V1(t) =
κ
∑

ι=1

eTι (t)Peι(t). (6)

Then, one has

V̇1(t) =2

κ
∑

ι=1

eTι (t)P

(

−Aeι(t) +Dg(Yι(t)) +

m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsej(t)

+Dg(Y0(t))−Wιeι(t)− ηP
a−1

2 sign(eι(t))|eι(t)|
a

)

.

Obviously,

2eTι (t)PD(g(Yι(t)) + g(Y0(t))) 6 eTι (t)(PDDTP +Θ)eι(t). (7)

From (7), we can obtain

V̇1(t) 62

m
∑

s=1

κ
∑

ι=1

κ
∑

j=1

csG
s
ιje

T
ι (t)PΓsej(t) +

κ
∑

ι=1

eTι (t)(−PA−AP + PDDTP

+Θ)eι(t)− 2
κ
∑

ι=1

eTι (t)PWιeι(t)− 2η
κ
∑

ι=1

eTι (t)P
a+1

2 sign(eι(t))|eι(t)|
a

=eT (t)

[

Iκ ⊗ (−PA−AP + PDDTP +Θ) +

m
∑

s=1

csG
s ⊗ (PΓs

+ Γ T
s P )− (Iκ ⊗ P )W −WT (Iκ ⊗ P )

]

e(t)

− 2η

κ
∑

ι=1

eTι (t)P
a+1

2 sign(eι(t))|eι(t)|
a, (8)

where e(t) = (eT1 (t), e
T
2 (t), · · · , e

T
κ (t))

T . According to Lemma 2, we can easily
obtain

κ
∑

ι=1

eTι (t)P
a+1

2 sign(eι(t))|eι(t)|
a =

κ
∑

ι=1

n
∑

j=1

p
a+1

2

j |eιj(t)|
a+1

>

κ
∑

ι=1





n
∑

j=1

pje
2
ιj(t)





a+1

2

=

κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2 . (9)
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From (5), (8), (9) and Lemma 2, we can get

V̇1(t) 6eT (t)

[

Iκ ⊗ (−PA−AP + PDDTP +Θ) +

m
∑

s=1

csG
s ⊗ (PΓs + Γ T

s P )

− (Iκ ⊗ P )W −WT (Iκ ⊗ P )

]

e(t)− 2η
κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2

6− 2η

(

κ
∑

ι=1

eTι (t)Peι(t)

)
a+1

2

=− 2η(V1(t))
a+1

2 .

By Lemma 1, we can get V1(t) = 0, t > T1 with T1 = (V1(0))
1−a
2

η(1−a) .

On the other hand,

0 6 λm(P )

κ
∑

ι=1

eTι (t)eι(t) 6 V1(t), (10)

where λm(P ) > 0.
From (10), we obtain ‖eι(t)‖2 = 0, t > T1, where ι = 1, 2, · · · , κ. Therefore,

the network (1) achieves finite-time anti-synchronization under the controller
(3). The proof is completed.

3.1.2 Anti-synchronization in finite time for MWCNNs with switching
topology

In this section, we consider the following MWCNNs with switching topology:

Ẏι(t) =−AYι(t) +Dg(Yι(t)) + c1

κ
∑

j=1

G
1,ω(t)
ιj Γ1Yj(t) + c2

κ
∑

j=1

G
2,ω(t)
ιj Γ2Yj(t) + · · ·

+ cm

κ
∑

j=1

G
m,ω(t)
ιj ΓmYj(t) + uι(t), ι = 1, 2, · · · , κ, (11)

where Yι(t), g(·), A, D, uι(t), cs, Γs(s = 1, 2, · · · ,m) are defined similarly as
those in subsection 3.1.1, ω(t) : [0,∞) → I = {1, 2, · · · , i} symbols switching
signal. For each ς ∈ I, Gs,ς = (Gs,ς

ιj )κ×κ represents the coupling configuration
matrix in the sth coupling form for the ςth topology, which satisfies G

s,ς
ιj =

G
s,ς
jι > 0 if nodes ι and j are connected for the ςth topology; otherwise,

G
s,ς
ιj = G

s,ς
jι = 0 (ι 6= j); and

Gs,ς
ιι = −

κ
∑

j=1

j 6=ι

G
s,ς
ιj , ι = 1, 2, · · · , κ.
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For the network (11), design the same controller as (3). Then, we can obtain

Ẏι(t) =−AYι(t) +Dg(Yι(t)) +

m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj ΓsYj(t)−Wι(Yι(t) + Y0(t))

− ηP
a−1

2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|
a.

Let eι(t) = Yι(t) + Y0(t), then

ėι(t) =−Aeι(t) +Dg(Yι(t)) +Dg(Y0(t)) +
m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj Γsej(t)

−Wιeι(t)− ηP
a−1

2 sign(eι(t))|eι(t)|
a. (12)

Theorem 2 If there exist matrices 0 < P = diag(p1, p2, · · · , pn) ∈ R
n×n and

W = diag(W1,W2, · · · ,Wκ) ∈ R
nκ×nκ such that

K1 +K2 +

m
∑

s=1

csG
s,ς ⊗ (PΓs + Γ T

s P ) 6 0, (13)

where ς = 1, 2, · · · , i, K1 = Iκ ⊗ (−PA−AP + PDDTP +Θ) and K2 =
−(Iκ⊗P )W−WT (Iκ⊗P ), then the network (11) is finite-timely anti-synchronized
under the controller (3). Moreover, the settling time of anti-synchronization

T satisfies T 6 T1 = (V1(0))
1−a
2

η(1−a) .

Proof. Select the same Lyapunov functional as (6) for the network (12). Then,
we have

D+V1(t) =2

κ
∑

ι=1

eTι (t)P

(

−Aeι(t) +Dg(Yι(t)) +

m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj Γsej(t) +Dg(Y0(t))

−Wιeι(t)− ηP
a−1

2 sign(eι(t))|eι(t)|
a

)

62

m
∑

s=1

κ
∑

ι=1

κ
∑

j=1

csG
s,ς
ιj eTι (t)PΓsej(t) +

κ
∑

ι=1

eTι (t)(−PA−AP + PDDTP

+Θ)eι(t)− 2

κ
∑

ι=1

eTι (t)PWιeι(t)− 2η

κ
∑

ι=1

eTι (t)P
a+1

2 sign(eι(t))|eι(t)|
a

=eT (t)

[

Iκ ⊗ (−PA−AP + PDDTP +Θ) +

m
∑

s=1

csG
s,ς ⊗ (PΓs

+ Γ T
s P )− (Iκ ⊗ P )W −WT (Iκ ⊗ P )

]

e(t)

− 2η

κ
∑

ι=1

eTι (t)P
a+1

2 sign(eι(t))|eι(t)|
a.



10 Jie Hou et al.

It follows from (9), (13) and Lemma 2 that

D+V1(t) 6− 2η

κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2

6− 2η

(

κ
∑

ι=1

eTι (t)Peι(t)

)
a+1

2

=− 2η(V1(t))
a+1

2 .

Similar to the proof of Theorem 1, we can derive ‖eι(t)‖2 = 0, t >

T1, where ι = 1, 2, · · · , κ. Thus, the network (11) reaches finite-time anti-
synchronization under the controller (3). The proof is completed.

3.2 Robust anti-synchronization in finite time for MWCNNs

3.2.1 Robust anti-synchronization in finite time for MWCNNs with fixed
topology

During the modeling process of CNNs, the existence of environmental noise,
limitations of equipment and external interference may lead to the parameters
varying within bounded ranges in some circumstances. Therefore, we consider
a MWCNNs with parameteric uncertainties consisting of κ identical nodes in
this section which can be described as

Ẏι(t) =−AYι(t) +Dg(Yι(t)) + c1

κ
∑

j=1

G1
ιjΓ1Yj(t) + c2

κ
∑

j=1

G2
ιjΓ2Yj(t) + · · ·

+ cm

κ
∑

j=1

Gm
ιjΓmYj(t) + uι(t), ι = 1, 2, · · · , κ, (14)

where Yι(t), g(·), cs, Gs
ιj , Γs, s = 1, 2, · · · ,m, uι(t) have the same mean-

ings as those in subsection 3.1.1, and the parameters A and D change in the
following given ranges:























AI :={A = diag(ar) : A
−
6 A 6 A+, i.e., 0 < a−r 6 ar 6 a+r ,

r = 1, 2, · · · , n, ∀A ∈ AI},

DI :={D = (drj)n×n : D−
6 D 6 D+, i.e., d−rj 6 drj 6 d+rj , r,

j = 1, 2, · · · , n, ∀D ∈ DI}.

(15)

For convenience, we define

d̃rj = max{|d−rj|, |d
+
rj |}, r = 1, 2, · · · , n, j = 1, 2, · · · , n.
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Definition 2 For all ι = 1, 2, · · · , κ, A ∈ AI and D ∈ DI , if there exists a
constant T > 0 satisifying

lim
t→T

‖Yι(t) + Y0(t)‖2 = 0,

and ‖Yι(t) + Y0(t)‖2 = 0, for t > T,

then the network (14) with the parameter ranges defined by (15) is said to be
robustly anti-synchronized in finite time.

For the network (14), design the same controller as (3). Then, we can obtain

Ẏι(t) =−AYι(t) +Dg(Yι(t)) +

m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsYj(t)−Wι(Yι(t) + Y0(t))

− ηP
a−1

2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|
a.

Let eι(t) = Yι(t) + Y0(t), then

ėι(t) =−Aeι(t) +Dg(Yι(t)) +Dg(Y0(t)) +
m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsej(t)

−Wιeι(t)− ηP
a−1

2 sign(eι(t))|eι(t)|
a, (16)

where A and D belong to the parameter ranges defined by (15).

Theorem 3 If there exist matrices 0 < P = diag(p1, p2, · · · , pn) ∈ R
n×n and

W = diag(W1,W2, · · · ,Wκ) ∈ R
nκ×nκ such that

K3 +K2 +

m
∑

s=1

csG
s ⊗ (PΓs + Γ T

s P ) 6 0, (17)

where K2 = −(Iκ⊗P )W−WT (Iκ⊗P ), K3 = Iκ⊗(−PA− −A−P + ̺DP 2 +Θ),
̺D =

∑n

r=1

∑n

j=1 d̃
2
rj, then the network (14) with the parameter ranges de-

fined by (15) is robust finite-timely anti-synchronized under the controller (3).
What’s more, the settling time of anti-synchronization T satisfies T 6 T1 =
(V1(0))

1−a
2

η(1−a) .

Proof. Define the same Lyapunov functional as (6) for network (16). Then,
one has

V̇1(t) =2

κ
∑

ι=1

eTι (t)P

(

−Aeι(t) +Dg(Yι(t)) +

m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsej(t) +Dg(Y0(t))

−Wιeι(t)− ηP
a−1

2 sign(eι(t))|eι(t)|
a

)

.
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Obviously,

2

κ
∑

ι=1

eTι (t)PD(g(Yι(t)) + g(Y0(t))) 6

κ
∑

ι=1

eTι (t)(PDDTP +Θ)eι(t)

6

κ
∑

ι=1

eTι (t)(̺DP 2 +Θ)eι(t). (18)

From (18), we can obtain

V̇1(t) 62

m
∑

s=1

κ
∑

ι=1

κ
∑

j=1

csG
s
ιje

T
ι (t)PΓsej(t) +

κ
∑

ι=1

eTι (t)(−PA− −A−P )eι(t)

− 2

κ
∑

ι=1

eTι (t)PWιeι(t)− 2η

κ
∑

ι=1

eTι (t)P
a+1

2 sign(eι(t))|eι(t)|
a

+

κ
∑

ι=1

eTι (t)(̺DP 2 +Θ)eι(t)

=eT (t)

[

Iκ ⊗ (−PA− −A−P + ̺DP 2 +Θ) +

m
∑

s=1

csG
s ⊗ (PΓs

+ Γ T
s P )− (Iκ ⊗ P )W −WT (Iκ ⊗ P )

]

e(t)

− 2η

κ
∑

ι=1

eTι (t)P
a+1

2 sign(eι(t))|eι(t)|
a. (19)

It follows from (9), (17) and Lemma 2 that

V̇1(t) 6− 2η

κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2

6− 2η

(

κ
∑

ι=1

eTι (t)Peι(t)

)
a+1

2

=− 2η(V1(t))
a+1

2 .

Similar to the proof of Theorem 1, we can derive ‖eι(t)‖2 = 0, t > T1,
where ι = 1, 2, · · · , κ. Hence, the network (14) with the parameter ranges de-
fined by (15) achieves robust finite-time anti-synchronization under the con-
troller (3). The proof is completed.
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3.2.2 Robust anti-synchronization in finite time for MWCNNs with switching
topology

In this subsection, we consider the switched MWCNNs with parameter uncer-
tainties:

Ẏι(t) =−AYι(t) +Dg(Yι(t)) + c1

κ
∑

j=1

G
1,ς
ιj Γ1Yj(t) + c2

κ
∑

j=1

G
2,ς
ιj Γ2Yj(t) + · · ·

+ cm

κ
∑

j=1

G
m,ς
ιj ΓmYj(t) + uι(t), ι = 1, 2, · · · , κ, (20)

where Yι(t), g(·), uι(t), cs, Γs(s = 1, 2, · · · ,m) are defined similarly as those
in subsection 3.1.1, Gs,ς

ιj has the same definition as in subsection 3.1.2, and
A, D belong to the parameter ranges given by (15).

For the network (20), design the same controller as (3). Then, we can obtain

Ẏι(t) =−AYι(t) +Dg(Yι(t)) +
m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj ΓsYj(t)−Wι(Yι(t) + Y0(t))

− ηP
a−1

2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|
a.

Let eι(t) = Yι(t) + Y0(t), then

ėι(t) =−Aeι(t) +Dg(Yι(t)) +Dg(Y0(t)) +
m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj Γsej(t)

−Wιeι(t)− ηP
a−1

2 sign(eι(t))|eι(t)|
a, (21)

in which the parameters A and D change in some given parameter ranges
defined by (15).

Theorem 4 If there exist matrices 0 < P = diag(p1, p2, · · · , pn) ∈ R
n×n and

W = diag(W1,W2, · · · ,Wκ) ∈ R
nκ×nκ such that

K3 +K2 +

m
∑

s=1

csG
s,ς ⊗ (PΓs + Γ T

s P ) 6 0, (22)

where ς = 1, 2, · · · , i, K3 = Iκ ⊗ (−PA− −A−P + ̺DP 2 +Θ), K2 = −(Iκ ⊗
P )W − WT (Iκ ⊗ P ), ̺D =

∑n
r=1

∑n
j=1 d̃

2
rj, then the network (20) with the

parameter ranges defined by (15) is robust finite-timely anti-synchronized un-
der the controller (3). Moreover, the settling time of anti-synchronization T

satisfies T 6 T1 =
(V1(0))

1−a
2

η(1−a) .
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Proof. Select the same Lyapunov functional as (6) for the network (21). Then,
one has

D+V1(t) =2

κ
∑

ι=1

eTι (t)P

(

−Aeι(t) +Dg(Yι(t)) +

m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj Γsej(t) +Dg(Y0(t))

−Wιeι(t)− ηP
a−1

2 sign(eι(t))|eι(t)|
a

)

62

m
∑

s=1

κ
∑

ι=1

κ
∑

j=1

csG
s,ς
ιj eTι (t)PΓsej(t) +

κ
∑

ι=1

eTι (t)(−PA− −A−P )eι(t)

− 2

κ
∑

ι=1

eTι (t)PWιeι(t)− 2η

κ
∑

ι=1

eTι (t)P
a+1

2 sign(eι(t))|eι(t)|
a

+

κ
∑

ι=1

eTι (t)(̺DP 2 +Θ)eι(t)

=eT (t)

[

Iκ ⊗ (−PA− −A−P + ̺DP 2 +Θ) +

m
∑

s=1

csG
s,ς ⊗ (PΓs

+ Γ T
s P )− (Iκ ⊗ P )W −WT (Iκ ⊗ P )

]

e(t)

− 2η

κ
∑

ι=1

eTι (t)P
a+1

2 sign(eι(t))|eι(t)|
a.

It follows from (9), (22) and Lemma 2 that

D+V1(t) 6− 2η

κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2

6− 2η

(

κ
∑

ι=1

eTι (t)Peι(t)

)
a+1

2

=− 2η(V1(t))
a+1

2 .

Similar to the proof of Theorem 1, we can derive ‖eι(t)‖2 = 0, t > T1,
where ι = 1, 2, · · · , κ. Therefore, the network (20) with the parameter ranges
defined by (15) achieves robust finite-time anti-synchronization under the con-
troller (3). The proof is completed.

Remark 1 In recent years, some meaningful research results have been re-
ported on the dynamical behaviors of Markovian jump systems [55–61]. Shen
et al. [56] investigated the finite-time event-triggered H∞ control problem for
Takagi-Sugeno Markov jump fuzzy systems. As is well known, Markov jump
systems can be used to model some real-life systems experiencing random
changes in their parameters or structures. Therefore, it would be very interest-
ing to apply a Markov process into the MWCNNs considered in our paper and
investigate the finite-time anti-synchronization of MWCNNs with Markovian
jump topology. This would be a meaningful problem for our future research.
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4 Finite-time anti-synchronization of MWCNNs with coupling

delays

4.1 Anti-synchronization in finite time for delayed MWCNNs

4.1.1 Anti-synchronization in finite time for delayed MWCNNs with fixed
topology

In this section, we consider the following network model of MWCNNs with
coupling delays:

Ẏι(t) =−AYι(t) +Dg(Yι(t)) +

m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsYj(t− τs(t)) + uι(t), (23)

where ι = 1, 2, · · · , κ, Yι(t), g(·), A, D, cs, G
s
ιj , Γs, uι(t) are defined similarly

as those in subsection 3.1.1, τs(t) is the time-varying delay with 0 6 τs(t) 6 τ ,
s = 1, 2, · · · ,m.

Construct the controller for the network (23) as follows:

uι(t) =− ηP−1
m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

(Yι(h) + Y0(h))
TQs

ι (Yι(h) + Y0(h))dh

)
a+1

2

×
Yι(t) + Y0(t)

‖Yι(t) + Y0(t)‖22
− ηP

a−1

2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|
a

−Wι(Yι(t) + Y0(t)). (24)

where 0 < Qs
ι ∈ R

n×n, Qs = diag(Qs
1, Q

s
2, · · · , Q

s
κ), s = 1, 2, · · · ,m,Wι, a, P,

η, sign(Yι(t)+Y0(t)), |Yι(t)+Y0(t)|
a have the same meanings as in (3). Then,

we have

Ẏι(t) =−AYι(t) +Dg(Yι(t)) +

m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsYj(t− τs(t))−Wι(Yι(t) + Y0(t))

− ηP−1
m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

(Yι(h) + Y0(h))
TQs

ι (Yι(h) + Y0(h))dh

)
a+1

2

×
Yι(t) + Y0(t)

‖Yι(t) + Y0(t)‖22
− ηP

a−1

2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|
a.

Let eι(t) = Yι(t) + Y0(t). Obviously, we can obtain

ėι(t) =−Aeι(t)+Dg(Yι(t))+Dg(Y0(t)) +

m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsej(t−τs(t))−Wιeι(t)

− ηP−1
m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eTι (h)Q
s
ιeι(h)dh

)
a+1

2

eι(t)

‖eι(t)‖22

− ηP
a−1

2 sign(eι(t))|eι(t)|
a, (25)
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where ι = 1, 2, · · · , κ.

Theorem 5 Suppose τ̇s(t) 6 γs < 1. The network (23) realizes finite-time
anti-synchronization under the controller (24) if there exist matrices 0 < P =
diag(p1, p2, · · · , pn) ∈ R

n×n, W = diag(W1,W2, · · · ,Wκ) ∈ R
nκ×nκ and 0 <

Qs = diag(Qs
1, Q

s
2, · · · , Q

s
κ) ∈ R

nκ×nκ, such that

K1 +K2 +

m
∑

s=1

cs

(

FT
s Q−1

s Fs +
1

1− γs
Qs

)

6 0, (26)

where K1 = Iκ⊗ (−PA−AP +PDDTP +Θ), K2 = −(Iκ⊗P )W −WT (Iκ⊗
P ), Fs = Gs ⊗ (Γ T

s P ). In addition, the settling time of anti-synchronization

T satisfies T 6 T2 = (V2(0))
1−a
2

η(1−a) .

Proof. Construct a Lyapunov functional for network (25):

V2(t) =

κ
∑

ι=1

eTι (t)Peι(t) +

m
∑

s=1

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh. (27)

Then,

V̇2(t) 62

κ
∑

ι=1

eTι (t)P

(

−Aeι(t)+Dg(Yι(t))+Dg(Y0(t))+

m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsej(t−τs(t))

−Wιeι(t)−ηP
a−1

2 sign(eι(t))|eι(t)|
a

)

−

m
∑

s=1

cse
T (t−τs(t))Qse(t−τs(t))

−2η

κ
∑

ι=1

m
∑

s=1

(

cs

1−γs

∫ t

t−τs(t)

eTι (h)Q
s
ιeι(h)dh

)
a+1

2

+

m
∑

s=1

cs

1−γs
eT (t)Qse(t),

where e(t−τs(t)) = (eT1 (t−τs(t)), e
T
2 (t−τs(t)), · · · , e

T
κ (t−τs(t)))

T . Obviously,

2

m
∑

s=1

κ
∑

ι=1

κ
∑

j=1

csG
s
ιje

T
ι (t)PΓsej(t− τs(t))

=2

m
∑

s=1

cse
T (t)

[

Gs ⊗ (PΓs)
]

e(t− τs(t))

6

m
∑

s=1

cse
T (t)

[

Gs ⊗ (PΓs)
]

Q−1
s

[

Gs ⊗ (Γ T
s P ))

]

e(t)

+

m
∑

s=1

cse
T (t− τs(t))Qse(t− τs(t)). (28)



Finite-time anti-synchronization of MWCNNs 17

From (7), (9), (26), (28) and Lemma 2, we can obtain

V̇2(t) 6eT (t)
[

Iκ ⊗ (−PA−AP + PDDTP +Θ)
]

e(t) +

m
∑

s=1

cs

1− γs
eT (t)Qse(t)

+

m
∑

s=1

cse
T (t)

[

Gs ⊗ (PΓs)
]

Q−1
s

[

Gs ⊗ (Γ T
s P )

]

e(t)− 2

κ
∑

ι=1

eTι (t)PWιeι(t)

− 2η

κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2 − 2η

m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

=eT (t)

{

Iκ ⊗ (−PA−AP + PDDTP +Θ) +

m
∑

s=1

cs

1− γs
Qs − (Iκ ⊗ P )W

−WT (Iκ ⊗ P ) +

m
∑

s=1

cs
[

Gs ⊗ (PΓs)
]

Q−1
s

[

Gs ⊗ (Γ T
s P )

]

}

e(t)

− 2η
m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

− 2η

κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2

6− 2η

κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2 − 2η

m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

6− 2η

(

κ
∑

ι=1

eTι (t)Peι(t) +

m
∑

s=1

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

=− 2η(V2(t))
a+1

2 .

Similar to the proof of Theorem 1, it is easy to obtain ‖eι(t)‖2 = 0, ι =
1, 2, · · · , κ, t > T2. Obviously, the network (23) is finite-time anti-synchronization.
The proof is completed.

4.1.2 Anti-synchronization in finite time for delayed MWCNNs with
switching topology

Describe the network model of MWCNNs with coupling delays and switching
topology in this section as follows:

Ẏι(t) =−AYι(t) +Dg(Yι(t)) +

m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj ΓsYj(t− τs(t)) + uι(t), (29)

where ι = 1, 2, · · · , κ, Yι(t), g(·), A, D, cs, uι(t), Γs represent the same
definitions as in subsection 3.1.1, τs(t) is the time-varying delay as that in
subsection 4.1.1, and G

s,ς
ιj has the same meaning as that in subsection 3.1.2.
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Construct the same controller as (24) for the network (29). Then, one has

Ẏι(t) =−AYι(t) +Dg(Yι(t)) +

m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj ΓsYj(t− τs(t))−Wι(Yι(t) + Y0(t))

− ηP−1
m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

(Yι(h) + Y0(h))
TQs

ι (Yι(h) + Y0(h))dh

)
a+1

2

×
Yι(t) + Y0(t)

‖Yι(t) + Y0(t)‖22
− ηP

a−1

2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|
a.

Let eι(t) = Yι(t) + Y0(t). Then, we have

ėι(t) =−Aeι(t)+Dg(Yι(t))+Dg(Y0(t)) +

m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj Γsej(t−τs(t))−Wιeι(t)

− ηP−1
m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eTι (h)Q
s
ιeι(h)dh

)
a+1

2

eι(t)

‖eι(t)‖22

− ηP
a−1

2 sign(eι(t))|eι(t)|
a, (30)

where ι = 1, 2, · · · , κ.

Theorem 6 Suppose τ̇s(t) 6 γs < 1. The network (29) realizes finite-time
anti-synchronization under the controller (24) if there exist matrices 0 < P =
diag(p1, p2, · · · , pn) ∈ R

n×n, W = diag(W1,W2, · · · ,Wκ) ∈ R
nκ×nκ and 0 <

Qs = diag(Qs
1, Q

s
2, · · · , Q

s
κ) ∈ R

nκ×nκ, such that

K1 +K2 +

m
∑

s=1

cs

(

FT
s,ςQ

−1
s Fs,ς +

1

1− γs
Qs

)

6 0, (31)

where ς = 1, 2, · · · , i, K1 = Iκ ⊗ (−PA−AP + PDDTP +Θ), K2 = −(Iκ ⊗
P )W −WT (Iκ ⊗P ) and Fs,ς = Gs,ς ⊗ (Γ T

s P ). What’s more, the settling time

of anti-synchronization T satisfies T 6 T2 = (V2(0))
1−a
2

η(1−a) .
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Proof. Construct the same Lyapunov functional as (24) for network (30).
Then,

D+V2(t) 62
κ
∑

ι=1

eTι (t)P

(

−Aeι(t)+Dg(Yι(t))+Dg(Y0(t))+
m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj Γsej(t

−τs(t))−Wιeι(t)−ηP
a−1

2 sign(eι(t))|eι(t)|
a

)

+

m
∑

s=1

cs

1−γs
eT (t)Qse(t)

− 2η

κ
∑

ι=1

m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eTι (h)Q
s
ιeι(h)dh

)
a+1

2

−

m
∑

s=1

cse
T (t

− τs(t))Qse(t− τs(t))

6eT (t)
[

Iκ ⊗ (−PA−AP+PDDTP +Θ)
]

e(t) +

m
∑

s=1

cs

1− γs
eT (t)Qse(t)

+

m
∑

s=1

cse
T (t)

[

Gs,ς⊗(PΓs)
]

Q−1
s

[

Gs,ς⊗(Γ T
s P )

]

e(t)−2

κ
∑

ι=1

eTι (t)PWιeι(t)

−2η
κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2 − 2η
m
∑

s=1

(

cs

1−γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

=eT (t)

{

Iκ ⊗ (−PA−AP + PDDTP +Θ) +

m
∑

s=1

cs

1− γs
Qs − (Iκ ⊗ P )W

−WT (Iκ ⊗ P ) +
m
∑

s=1

cs
[

Gs,ς ⊗ (PΓs)
]

Q−1
s

[

Gs,ς ⊗ (Γ T
s P )

]

}

e(t)

− 2η

m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

− 2η

κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2

6− 2η

κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2 − 2η

m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

6− 2η

(

κ
∑

ι=1

eTι (t)Peι(t) +

m
∑

s=1

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

=− 2η(V2(t))
a+1

2 .

Similar to the proof of Theorem 1, it is easy to obtain ‖eι(t)‖2 = 0, ι =
1, 2, · · · , κ, t > T2. Obviously, the network (29) achieves finite-time anti-
synchronization. The proof is completed.
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4.2 Robust anti-synchronization in finite time for delayed MWCNNs

4.2.1 Robust anti-synchronization in finite time for delayed MWCNNs with
fixed topology

The MWCNNs model with coupling delays and parameter uncertainties is
described by:

Ẏι(t) =−AYι(t) +Dg(Yι(t)) +

m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsYj(t− τs(t)) + uι(t), (32)

where ι = 1, 2, · · · , κ, Yι(t), g(·), cs, Gs
ιj , Γs, uι(t) are defined similarly as

those in subsection 3.1.1, A, D are intervalized as those in (15), τs(t) is the
time-varying delay as that in subsection 4.1.1.

Design the same controller for the network (32) as (24). Then,

Ẏι(t) =−AYι(t) +Dg(Yι(t)) +
m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsYj(t− τs(t))−Wι(Yι(t) + Y0(t))

− ηP−1
m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

(Yι(h) + Y0(h))
TQs

ι (Yι(h) + Y0(h))dh

)
a+1

2

×
Yι(t) + Y0(t)

‖Yι(t) + Y0(t)‖22
− ηP

a−1

2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|
a.

Let eι(t) = Yι(t) + Y0(t). Then, we have

ėι(t) =−Aeι(t)+Dg(Yι(t))+Dg(Y0(t)) +
m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsej(t−τs(t))−Wιeι(t)

− ηP−1
m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eTι (h)Q
s
ιeι(h)dh

)
a+1

2

eι(t)

‖eι(t)‖22

− ηP
a−1

2 sign(eι(t))|eι(t)|
a, (33)

where ι = 1, 2, · · · , κ, A and D are uncertain parameters which belong to the
ranges given in (15).

Theorem 7 Suppose τ̇s(t) 6 γs < 1. The network (32) with the parameter
ranges defined by (15) achieves robust finite-time anti-synchronization under
the controller (24) if there exist matrices 0 < P = diag(p1, p2, · · · , pn) ∈ R

n×n,
W = diag(W1,W2, · · · ,Wκ) ∈ R

nκ×nκ and 0 < Qs = diag(Qs
1, Q

s
2, · · · , Q

s
κ) ∈

R
nκ×nκ, such that

K3 +K2 +

m
∑

s=1

cs

(

FT
s Q−1

s Fs +
1

1− γs
Qs

)

6 0, (34)
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where K3 = Iκ ⊗ (−PA− −A−P + ̺DP 2 +Θ), ̺D =
∑n

r=1

∑n
j=1 d̃

2
rj , K2 =

−(Iκ ⊗ P )W −WT (Iκ ⊗ P ), Fs = Gs ⊗ (Γ T
s P ). In addition, the settling time

of anti-synchronization T satisfies T 6 T2 = (V2(0))
1−a
2

η(1−a) .

Proof. The Lyapunov functional is constructed similarly as that in Theorem
5 for network (33). Then,

V̇2(t) 62

κ
∑

ι=1

eTι (t)P

(

−Aeι(t)+Dg(Yι(t))+Dg(Y0(t))+

m
∑

s=1

κ
∑

j=1

csG
s
ιjΓsej(t−τs(t))

−Wιeι(t)− ηP
a−1

2 sign(eι(t))|eι(t)|
a

)

−

m
∑

s=1

cse
T (t− τs(t))Qse(t−τs(t))

−2η

κ
∑

ι=1

m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eTι (h)Q
s
ιeι(h)dh

)
a+1

2

+

m
∑

s=1

cs

1− γs
eT (t)Qse(t)

6eT (t)
[

Iκ ⊗ (−PA− −A−P + ̺DP 2 +Θ)
]

e(t) +

m
∑

s=1

cs

1− γs
eT (t)Qse(t)

+

m
∑

s=1

cse
T (t)

[

Gs ⊗ (PΓs)
]

Q−1
s

[

Gs ⊗ (Γ T
s P )

]

e(t)−2

κ
∑

ι=1

eTι (t)PWιeι(t)

− 2η
κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2 − 2η
m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

=eT (t)

{

Iκ ⊗ (−PA− −A−P + ̺DP 2 +Θ) +

m
∑

s=1

cs

1− γs
Qs − (Iκ ⊗ P )W

−WT (Iκ ⊗ P ) +
m
∑

s=1

cs
[

Gs ⊗ (PΓs)
]

Q−1
s

[

Gs ⊗ (Γ T
s P )

]

}

e(t)

− 2η

m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

− 2η

κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2

6− 2η

κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2 − 2η

m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

6− 2η

(

κ
∑

ι=1

eTι (t)Peι(t) +

m
∑

s=1

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

=− 2η(V2(t))
a+1

2 .

Similar to the proof of Theorem 1, it is easy to obtain ‖eι(t)‖2 = 0, ι =
1, 2, · · · , κ, t > T2. Obviously, the network (32) with the parameter ranges
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defined by (15) achieves robust finite-time anti-synchronization under the con-
troller (24). The proof is completed.

4.2.2 Robust anti-synchronization in finite time for delayed MWCNNs with
switching topology

In this subsection, the network model of delayed MWCNNs with the parameter
uncertainties and switching topology is described by:

Ẏι(t) =−AYι(t) +Dg(Yι(t)) +
m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj ΓsYj(t− τs(t)) + uι(t), (35)

where ι = 1, 2, · · · , κ, Yι(t), g(·), cs, uι(t), Γs represent the same definitions
as those in subsection 3.1.1, A, D change in some given precision described
by (15), τs(t) is the time-varying delay as that in subsection 4.1.1, and G

s,ς
ιj

has the same meaning as that in subsection 3.1.2.
Construct the same controller as (24) for the network (35). Then,

Ẏι(t) =−AYι(t) +Dg(Yι(t)) +
m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj ΓsYj(t− τs(t))−Wι(Yι(t) + Y0(t))

− ηP−1
m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

(Yι(h) + Y0(h))
TQs

ι (Yι(h) + Y0(h))dh

)
a+1

2

×
Yι(t) + Y0(t)

‖Yι(t) + Y0(t)‖22
− ηP

a−1

2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|
a.

Let eι(t) = Yι(t) + Y0(t). Then, we have

ėι(t) =−Aeι(t)+Dg(Yι(t))+Dg(Y0(t)) +

m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj Γsej(t−τs(t))−Wιeι(t)

− ηP−1
m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eTι (h)Q
s
ιeι(h)dh

)
a+1

2

eι(t)

‖eι(t)‖22

− ηP
a−1

2 sign(eι(t))|eι(t)|
a, (36)

where ι = 1, 2, · · · , κ, A and D are uncertain parameters which belong to the
ranges given in (15).

Theorem 8 Suppose τ̇s(t) 6 γs < 1. The network (35) with the parameter
ranges defined by (15) achieves robust finite-time anti-synchronization under
the controller (24) if there exist matrices 0 < P = diag(p1, p2, · · · , pn) ∈ R

n×n,
W = diag(W1,W2, · · · ,Wκ) ∈ R

nκ×nκ and 0 < Qs = diag(Qs
1, Q

s
2, · · · , Q

s
κ) ∈

R
nκ×nκ, such that

K3 +K2 +

m
∑

s=1

cs

(

FT
s,ςQ

−1
s Fs,ς +

1

1− γs
Qs

)

6 0, (37)
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where ς = 1, 2, · · · , i, K3 = Iκ ⊗ (−PA− −A−P + ̺DP 2 +Θ), K2 = −(Iκ ⊗
P )W−WT (Iκ⊗P ), ̺D =

∑n

r=1

∑n

j=1 d̃
2
rj , Fs,ς = Gs,ς⊗(Γ T

s P ). What’s more,

the settling time of anti-synchronization T satisfies T 6 T2 = (V2(0))
1−a
2

η(1−a) .

Proof. Construct the same Lyapunov functional as in Theorem 5 for network
(36). Then,

D+V2(t) 62

κ
∑

ι=1

eTι (t)P

(

−Aeι(t)+Dg(Yι(t))+Dg(Y0(t)) +

m
∑

s=1

κ
∑

j=1

csG
s,ς
ιj Γsej(t

−τs(t))−Wιeι(t)−ηP
a−1

2 sign(eι(t))|eι(t)|
a

)

+
m
∑

s=1

cs

1− γs
eT (t)Qse(t)

− 2η

κ
∑

ι=1

m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eTι (h)Q
s
ιeι(h)dh

)
a+1

2

−

m
∑

s=1

cse
T (t

− τs(t))Qse(t− τs(t))

6eT (t)
[

Iκ ⊗ (−PA− −A−P + ̺DP 2 +Θ)
]

e(t) +
m
∑

s=1

cs

1− γs
eT (t)Qse(t)

+

m
∑

s=1

cse
T (t)

[

Gs,ς⊗(PΓs)
]

Q−1
s

[

Gs,ς⊗(Γ T
s P )

]

e(t)−2

κ
∑

ι=1

eTι (t)PWιeι(t)

− 2η

κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2 − 2η

m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

=eT (t)

{

Iκ ⊗ (−PA− −A−P + ̺DP 2 +Θ) +

m
∑

s=1

cs

1− γs
Qs − (Iκ ⊗ P )W

−WT (Iκ ⊗ P ) +

m
∑

s=1

cs
[

Gs,ς ⊗ (PΓs)
]

Q−1
s

[

Gs,ς ⊗ (Γ T
s P )

]

}

e(t)

− 2η

m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

− 2η

κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2

6− 2η
κ
∑

ι=1

(eTι (t)Peι(t))
a+1

2 − 2η
m
∑

s=1

(

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

6− 2η

(

κ
∑

ι=1

eTι (t)Peι(t) +

m
∑

s=1

cs

1− γs

∫ t

t−τs(t)

eT (h)Qse(h)dh

)
a+1

2

=− 2η(V2(t))
a+1

2 .



24 Jie Hou et al.

Similar to the proof of Theorem 1, it is easy to obtain ‖eι(t)‖2 = 0, ι =
1, 2, · · · , κ, t > T2. Obviously, the network (35) with the parameter ranges
defined by (15) achieves robust finite-time anti-synchronization under the con-
troller (24). The proof is completed.

Remark 2 In this paper, by designing suitable state feedback controllers, sev-
eral sufficient conditions which guarantee the finite-time anti-synchronization
of MWCNNs with and without coupling delays are obtained. To the best of
knowledge, this is the first paper toward to studying anti-synchronization for
MWCNNs in finite time. Recently, a few scholars established some novel finite-
time synchronization criteria for complex networks via intermittent feedback
control scheme [35,36]. Incorporating this new control approach and tech-
niques into the research on finite-time anti-synchronization of MWCNNs is a
very interesting and challenging problem, which would become one of research
topics of our future work.

5 Numerical Examples

Example 4.1. Consider the switched MWCNNs with parameter uncertainties
as follows:

Ẏι(t) =−AYι(t) +Dg(Yι(t)) + 0.5

6
∑

j=1

G
1,ς
ιj Γ1Yj(t) + 0.8

6
∑

j=1

G
2,ς
ιj Γ2Yj(t)

+ 1.1

6
∑

j=1

G
3,ς
ιj Γ3Yj(t) + uι(t), (38)

where ι = 1, 2, · · · , 6, ς = 1, 2, gk(σ) = |σ+1|−|σ−1|
4 (k = 1, 2, 3), G1,1 and

G1,2 are two possible topologies which are switched as G1,1 → G1,2 → G1,1 →
G1,2 → · · · , and each graph is active for 1s, G2,1, G2,2, G3,1, G3,2 are switched
in the same way. The inner coupling matrices Γ1, Γ2, Γ3 and the coupling
matrices G1,1 = (G1,1

ιj )6×6, G1,2 = (G1,2
ιj )6×6, G2,1 = (G2,1

ιj )6×6, G2,2 =
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(G2,2
ιj )6×6, G3,1 = (G3,1

ιj )6×6, G3,2 = (G3,2
ιj )6×6 are chosen as, respectively

Γ1 =





0.6 0.1 0
0 0.4 0
0 0.2 0.5



 , Γ2 =





0.7 0 0.2
0 0.4 0
0.3 0 0.7



 , Γ3 =





0.2 0 0
0 0.7 0.2
0.1 0 0.6



 ,

G1,1 =

















−0.7 0.1 0.1 0.3 0.2 0
0.1 −0.8 0 0.2 0.2 0.3
0.1 0 −0.4 0.2 0 0.1
0.3 0.2 0.2 −1.2 0.3 0.2
0.2 0.2 0 0.3 −0.9 0.2
0 0.3 0.1 0.2 0.2 −0.8

















,

G1,2 =

















−0.6 0.2 0 0.2 0.1 0.1
0.2 −0.5 0.1 0.1 0.1 0
0 0.1 −0.7 0 0.4 0.2
0.2 0.1 0 −0.5 0.2 0
0.1 0.1 0.4 0.2 −0.9 0.1
0.1 0 0.2 0 0.1 −0.4

















,

G2,1 =

















−0.8 0.2 0.1 0.2 0.3 0
0.2 −0.6 0 0.2 0 0.2
0.1 0 −1.0 0.3 0.4 0.2
0.2 0.2 0.3 −1.2 0.1 0.4
0.3 0 0.4 0.1 −1.0 0.2
0 0.2 0.2 0.4 0.2 −1.0

















,

G2,2 =

















−0.5 0.1 0 0.1 0.1 0.2
0.1 −0.7 0.4 0.1 0.1 0
0 0.4 −1.2 0 0.5 0.3
0.1 0.1 0 −0.5 0.3 0
0.1 0.1 0.5 0.3 −1.1 0.1
0.2 0 0.3 0 0.1 −0.6

















,

G3,1 =

















−0.7 0.3 0.1 0 0.1 0.2
0.3 −0.9 0.3 0.1 0 0.2
0.1 0.3 −0.9 0.2 0.3 0
0 0.1 0.2 −0.8 0.4 0.1
0.1 0 0.3 0.4 −0.9 0.1
0.2 0.2 0 0.1 0.1 −0.6

















,

G3,2 =

















−0.6 0.2 0 0.1 0.2 0.1
0.2 −0.8 0.2 0.2 0.2 0
0 0.2 −0.7 0 0.1 0.4
0.1 0.2 0 −0.6 0.3 0
0.2 0.2 0.1 0.3 −1.0 0.2
0.1 0 0.4 0 0.2 −0.7

















.
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The parameters A = diag(a1, a2, · · · , an), D = (drj)n×n in the network (38)
can be changed in the following given precisions:



























AI :={A = diag(ar) : A
−
6 A 6 A+, i.e., 0 < 0.5r 6 ar 6 0.6r,

r = 1, 2, · · · , n, ∀A ∈ AI},

DI :={D = (drj)n×n : D−
6 D 6 D+, i.e.,

0.2j

r + j
6 drj 6

0.3j

r + j
,

r, j = 1, 2, · · · , n, ∀D ∈ DI}.

(39)

Obviously, gk(·) (k = 1, 2, 3) satisfies Assumption 1 with θk = 0.5. Take
W = diag(0.2I3, 0.4I3, 0.3I3, 0.6I3, 0.7I3, 0.5I3). The following matrix P satis-
fying (22) can be computed by utilizing MATLAB Toolbox:

P =





0.3252 0 0
0 0.2505 0
0 0 0.1992



 .

According to Theorem 4, the network (38) with the parameter ranges
defined by (39) achieves robust finite-time anti-synchronization under the
controller (3) and the time estimation of achieving anti-synchronization is
T1 = 9.32. The simulation result is displayed in Figure 1.

Example 4.2. Consider the following switched MWCNNs with the pa-
rameter uncertainties and coupling delays:

Ẏι(t) =−AYι(t) +Dg(Yι(t)) + 0.2

6
∑

j=1

G
1,ς
ιj Γ1Yj(t− τ1(t)) + 0.1

6
∑

j=1

G
2,ς
ιj Γ2Yj(t

− τ2(t)) + 0.3

6
∑

j=1

G
3,ς
ιj Γ3Yj(t− τ3(t)) + uι(t), (40)

where ι = 1, 2, · · · , 6, ς = 1, 2, gk(σ) = |σ+1|−|σ−1|
8 (k = 1, 2, 3), τ1(t) =

1
10 − 1

30e
−t, τ2(t) =

1
10 − 1

40e
−t, τ3(t) =

1
10 − 1

50e
−t, τ = 1

10 , γ1 = 1
30 , γ2 =

1
40 , γ3 = 1

50 , G
1,1 and G1,2 are two possible topologies which are switched as

G1,1 → G1,2 → G1,1 → G1,2 → · · · , and G2,1, G2,2, G3,1, G3,2 are switched
in the same way with activation time of 1s for each graph. The inner coupling
matrices Γ1, Γ2, Γ3 and the coupling matrices G1,1 = (G1,1

ιj )6×6, G1,2 =

(G1,2
ιj )6×6, G2,1 = (G2,1

ιj )6×6, G2,2 = (G2,2
ιj )6×6, G3,1 = (G3,1

ιj )6×6, G3,2 =

(G3,2
ιj )6×6 are chosen as, respectively
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Γ1 =





0.4 0.1 0
0 0.5 0
0 0.2 0.6



 , Γ2 =





0.6 0 0.3
0 0.2 0
0.1 0 0.4



 , Γ3 =





0.3 0 0
0.1 0.4 0.2
0 0 0.5



 ,

G1,1 =

















−0.5 0.2 0.1 0 0.1 0.1
0.2 −1.0 0.2 0.3 0.1 0.2
0.1 0.2 −0.6 0.2 0 0.1
0 0.3 0.2 −0.9 0.3 0.1
0.1 0.1 0 0.3 −0.5 0
0.1 0.2 0.1 0.1 0 −0.5

















,

G1,2 =

















−1.0 0.3 0 0.2 0.3 0.2
0.3 −0.8 0.1 0.2 0.2 0
0 0.1 −0.8 0 0.5 0.2
0.2 0.2 0 −0.5 0.1 0
0.3 0.2 0.5 0.1 −1.4 0.3
0.2 0 0.2 0 0.3 −0.7

















,

G2,1 =

















−0.9 0.3 0.2 0 0.3 0.1
0.3 −1.0 0 0.3 0.1 0.3
0.2 0 −0.8 0.1 0.5 0
0 0.3 0.1 −0.7 0.1 0.2
0.3 0.1 0.5 0.1 −1.0 0
0.1 0.3 0 0.2 0 −0.6

















,

G2,2 =

















−0.7 0.2 0 0.2 0.1 0.2
0.2 −0.8 0.2 0.2 0.2 0
0 0.2 −0.8 0 0.4 0.2
0.2 0.2 0 −0.7 0.3 0
0.1 0.2 0.4 0.3 −1.3 0.3
0.2 0 0.2 0 0.3 −0.7

















,

G3,1 =

















−0.7 0.1 0.1 0.3 0.2 0
0.1 −0.8 0.2 0 0.3 0.2
0.1 0.2 −1.0 0.2 0.3 0.2
0.3 0 0.2 −0.6 0 0.1
0.2 0.3 0.3 0 −0.9 0.1
0 0.2 0.2 0.1 0.1 −0.6

















,

G3,2 =

















−0.8 0.2 0 0.4 0.1 0.1
0.2 −0.8 0.3 0.2 0.1 0
0 0.3 −0.8 0 0.4 0.1
0.4 0.2 0 −0.8 0.2 0
0.1 0.1 0.4 0.2 −1.0 0.2
0.1 0 0.1 0 0.2 −0.4

















.

The parameters A = diag(a1, a2, · · · , an), D = (drj)n×n in the network
(40) can be changed same as those in (39). Obviously, gk(·) (k = 1, 2, 3) satisfies
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Assumption 1 with θk = 0.25. TakeW = diag(0.2I3, 0.1I3, 0.3I3, 0.6I3, 0.4I3,
0.5I3). By employing MATLAB Toolbox, the following matrices P, Q1, Q2
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and Q3 satisfying (37) can be obtained:

P =





0.4613 0 0
0 0.3981 0
0 0 0.3020



 ,

Q1 = I6 ⊗





0.2083 0 0
0 0.2107 0
0 0 0.2110



 ,

Q2 = I6 ⊗





0.1050 0 0
0 0.1053 0
0 0 0.1054



 ,

Q3 = I6 ⊗





0.3067 0 0
0 0.3145 0
0 0 0.3157



 .

According to Theorem 8, the network (40) with the parameter ranges
defined by (39) achieves robust finite-time anti-synchronization under the
controller (24) and the time estimation of achieving anti-synchronization is
T2 = 4.46. The simulation result is displayed in Figure 2.

6 Conclusion

In this paper, the finite-time anti-synchronization and robust finite-time anti-
synchronization for MWCNNs with and without coupling delays have been
respectively studied. By making use of Lyapunov functional method as well as
inequality techniques, some finite-time anti-synchronization and robust finite-
time anti-synchronization conditions have been derived for those network mod-
els. Furthermore, we have also considered the finite-time anti-synchronization
and robust finite-time anti-synchronization of MWCNNs with switching topol-
ogy. Finally, several simulation examples have been provided to verified the
correctness of our results.
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