858 research outputs found

    Development of Novel Compound Controllers to Reduce Chattering of Sliding Mode Control

    Get PDF
    The robotics and dynamic systems constantly encountered with disturbances such as micro electro mechanical systems (MEMS) gyroscope under disturbances result in mechanical coupling terms between two axes, friction forces in exoskeleton robot joints, and unmodelled dynamics of robot manipulator. Sliding mode control (SMC) is a robust controller. The main drawback of the sliding mode controller is that it produces high-frequency control signals, which leads to chattering. The research objective is to reduce chattering, improve robustness, and increase trajectory tracking of SMC. In this research, we developed controllers for three different dynamic systems: (i) MEMS, (ii) an Exoskeleton type robot, and (iii) a 2 DOF robot manipulator. We proposed three sliding mode control methods such as robust sliding mode control (RSMC), new sliding mode control (NSMC), and fractional sliding mode control (FSMC). These controllers were applied on MEMS gyroscope, Exoskeleton robot, and robot manipulator. The performance of the three proposed sliding mode controllers was compared with conventional sliding mode control (CSMC). The simulation results verified that FSMC exhibits better performance in chattering reduction, faster convergence, finite-time convergence, robustness, and trajectory tracking compared to RSMC, CSMC, and NSFC. Also, the tracking performance of NSMC was compared with CSMC experimentally, which demonstrated better performance of the NSMC controller

    e-TLD: Event-based Framework for Dynamic Object Tracking

    Full text link
    This paper presents a long-term object tracking framework with a moving event camera under general tracking conditions. A first of its kind for these revolutionary cameras, the tracking framework uses a discriminative representation for the object with online learning, and detects and re-tracks the object when it comes back into the field-of-view. One of the key novelties is the use of an event-based local sliding window technique that tracks reliably in scenes with cluttered and textured background. In addition, Bayesian bootstrapping is used to assist real-time processing and boost the discriminative power of the object representation. On the other hand, when the object re-enters the field-of-view of the camera, a data-driven, global sliding window detector locates the object for subsequent tracking. Extensive experiments demonstrate the ability of the proposed framework to track and detect arbitrary objects of various shapes and sizes, including dynamic objects such as a human. This is a significant improvement compared to earlier works that simply track objects as long as they are visible under simpler background settings. Using the ground truth locations for five different objects under three motion settings, namely translation, rotation and 6-DOF, quantitative measurement is reported for the event-based tracking framework with critical insights on various performance issues. Finally, real-time implementation in C++ highlights tracking ability under scale, rotation, view-point and occlusion scenarios in a lab setting.Comment: 11 pages, 10 figure

    Adaptive Control of Systems with Quantization and Time Delays

    Get PDF
    This thesis addresses problems relating to tracking control of nonlinear systems in the presence of quantization and time delays. Motivated by the importance in areas such as networked control systems (NCSs) and digital systems, where the use of a communication network in NCS introduces several constraints to the control system, such as the occurrence of quantization and time delays. Quantization and time delays are of both practical and theoretical importance, and the study of systems where these issues arises is thus of great importance. If the system also has parameters that vary or are uncertain, this will make the control problem more complicated. Adaptive control is one tool to handle such system uncertainty. In this thesis, adaptive backstepping control schemes are proposed to handle uncertainties in the system, and to reduce the effects of quantization. Different control problems are considered where quantization is introduced in the control loop, either at the input, the state or both the input and the state. The quantization introduces difficulties in the controller design and stability analysis due to the limited information and nonlinear characteristics, such as discontinuous phenomena. In the thesis, it is analytically shown how the choice of quantization level affects the tracking performance, and how the stability of the closed-loop system equilibrium can be achieved by choosing proper design parameters. In addition, a predictor feedback control scheme is proposed to compensate for a time delay in the system, where the inputs are quantized at the same time. Experiments on a 2-degrees of freedom (DOF) helicopter system demonstrate the different developed control schemes.publishedVersio

    Robust Control

    Get PDF
    The need to be tolerant to changes in the control systems or in the operational environment of systems subject to unknown disturbances has generated new control methods that are able to deal with the non-parametrized disturbances of systems, without adapting itself to the system uncertainty but rather providing stability in the presence of errors bound in a model. With this approach in mind and with the intention to exemplify robust control applications, this book includes selected chapters that describe models of H-infinity loop, robust stability and uncertainty, among others. Each robust control method and model discussed in this book is illustrated by a relevant example that serves as an overview of the theoretical and practical method in robust control

    Performance Guarantee of a Class of Continuous LPV System with Restricted-Model-Based Control

    Get PDF
    This paper considers the problem of the robust stabilisation of a class of continuous Linear Parameter Varying (LPV) systems under specifications. In order to guarantee the stabilisation of the plant with very large parameter uncertainties or variations, an output derivative estimation controller is considered. The design of such controller that guarantee desired  induced gain performance is examined. Furthermore, a simple procedure for achieving the  norm performance is proved for any all-poles single-input/single-output second order plant. The proof of stability is based on the polytopic representation of the closed loop under Lyapunov conditions and system transformations. Finally, the effectiveness of the proposed method is verified via a numerical example

    Adaptive quantized control of uncertain nonlinear rigid body systems

    Get PDF
    This paper investigates the attitude tracking control problem for uncertain nonlinear rigid body systems, where both inputs and states are quantized. It is common in networked control systems that sensor and control signals are quantized before they are transmitted via a communication network. An adaptive backstepping control algorithm is developed for a class of uncertain multiple-input multiple-output (MIMO) systems where a class of sector bounded quantizers is considered. It is shown that all the closed-loop signals are ensured uniformly bounded and tracking is achieved. Further, the tracking errors are shown to converge towards a compact set containing the origin and the set can be made small by the choice of the quantization parameters and the control parameters. For illustration of the proposed control scheme, experiments were conducted on a 2 degrees-of-freedom (DOF) helicopter system.publishedVersio

    Advanced Modeling, Control, and Optimization Methods in Power Hybrid Systems - 2021

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on the Energy Internet, blockchain technology and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above
    corecore