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Abstract 

This paper considers the problem of the robust stabilisation of a class of continuous Linear Parameter Varying 

(LPV) systems under specifications. In order to guarantee the stabilisation of the plant with very large parameter 

uncertainties or variations, an output derivative estimation controller is considered. The design of such 

controller that guarantee desired ℒ2 induced gain performance is examined. Furthermore, a simple procedure for 

achieving the ℒ2 norm performance is proved for any all-poles single-input/single-output second order plant. 

The proof of stability is based on the polytopic representation of the closed loop under Lyapunov conditions and 

system transformations. Finally, the effectiveness of the proposed method is verified via a numerical example. 

Keywords: Linear parameter-varying (LPV) system; Polytopic systems; Non-linear systems; Linear Matrix 

Inequalities; Performance control; ℒ2 induced gain.   

1. Introduction  

In order to avoid processing the non-linear systems, there is the class of systems presented in parametric form 

where the stability study is carried out. The obtained results of this class are generally very applicable thanks to 

numerous existing systematic methods. Yet, since some information about the model is no longer used, these 

results suffer from an important conservatism. Among these systems, one notes the less specific class of non-

linear systems like LPV systems [1, 2, 3] which allow to describe a global model as a set of linear sub-systems 

connected by functions. In addition, due to the variation and the non-linear nature of their parameters, the tuning 

of the complex plant still the subject of many researches. Even if the system model is available, its parameters 

identification is required for control law tuning. Unfortunately, the choice of the physical model structure, the 

identification of its parameters and then the experimental validation of the model are never simple and are time 

consuming.  

----------------------------------------------------------------------- 

* Corresponding author.  
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In order to control those plants and since internal states of most industrial systems cannot be directly measured 

and only their outputs are available for control purposes, output feedback controllers were proposed such as 

static output feedback [4, 5, 6], dynamic output feedback [7, 8, 9] and global sampled-data output feedback 

stabilization for a class of uncertain non-linear systems [10]. Often, the output feedback control involves two 

major problems. The first one is related to the feedback control law design for any plant to guarantee stability, 

tracking and performances. The second one is related to the non-availability of all variable parameters in real-

time for implementation of complex control laws. In fact, the control law depends on some of the variable 

parameters and on the system output. If no information about these variable parameters is available, a constant 

output feedback control gain may be a solution. But, in general, this alternative can yield to conservative results. 

Therefore, PID controllers are often tuned with a simple (linear) nonphysical model [11, 12]. Due to their linear 

nature, the traditional PID controllers are very used for the stability synthesis. However, the performance 

guarantee is often limited to a state-space region around a given set-point which could lead, when a process has 

a large operating domain, to poor results. 

In many practical control problems, since the state variable is not accessible for sensing devices and transducers 

are not available or are very expensive, the physical state variable of systems is partially or fully unavailable for 

measurement. In this cases, observer-based control should be considered to estimate the state. Thus, observer 

design has been the attracted field during the last decade and has turned out to be much more challenging than 

control problems. A great deal of research on the observer design for non-linear systems has been carried out 

such as the Kalman filter [13, 14, 15, 16], the Luenberger observer [17, 18, 19, 20], the 𝐻∞ filter [21, 22, 23, 24, 

25, 26, 27], the 𝐻2 filter [28, 29], the mixed 𝐻2/𝐻∞ filter [30, 31], the sliding mode observer [32, 33], the 𝐿𝑄 

control [34, 35, 36, 37] and the fuzzy observer-based control approaches [38, 39, 40, 41, 42, 43]. Each type of 

these observers has its own advantages and application fields. 

Recently, some new results in the framework of model free conytrol have been introduced by Join and his 

colleagues [44]. The latter is signal based and don’t require many information about the system. To implement 

this controller, the output derivatives have to be available in real time. In the literature, many variant of such 

controller have been developed (see [45, 46, 44, 47, 48, 49]). All these studies states that the stability as well as 

performances is ensured but none of them provides a standard proof on a class of system. 

In this frame, the authors of [50] use the polytopic transformation and the model-free theory to resolve the 

problem of stability tuning method with restrict model of non-linear systems. It turns out that the obtained 

results require, for the controller tuning, less information on the system : only an estimation of the non-linear 

functions bounded, an estimation of the input gain and the dynamic order are required. 

The originality in this work compared to the previous [50] is to show the existence of such controller for the 

stabilization of a class of linear parameter varying (LPV) systems under specifications. This controller has a 

fixed structure and only one parameter. The closed loop stabilization and performances are studied using the 
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Lyapunov theory, polytopic transformation, induced gain ℒ2
a
 and Linear Matrix Inequalities (LMI) conditions.  

The main issues addressed in this work are:   

    • Providing stability conditions under specifications using the control law introduced by [50].  

    • Proving the existence of a stabilizing derivative/controller pair ensuring the desired specifications for all 

models belonging to a special class of second order LPV systems (all-poles single-input/single- output systems).  

The rest of this paper is organized as follows. The Section II summarizes some of the main theoretical ideas 

which are shaping the model-free control presented on [50]. The third section is devoted to the stability 

synthesis under specifications of the closed loop. A particular class of second order non-linear systems is 

considered. In Section IV, some examples are illustrated in order to prove the usefulness of the proposed 

approach. The last section gives some conclusions and perspectives. 

2. Restricted model-based control: general principle 

This section will summarise some of the main theoretical ideas which are shaping the model-free control 

presented on [50]. We restrict ourselves for simplicity’s sake to a class of systems with a single control variable 

𝑢 and a single output variable 𝑦 i.e. Single-Input-Single-Output (SISO) systems with bounded time varying 

parameters. Since the model free control is sensitive to the presence of invariant zeros, the following class of 

SISO linear system with time varying parameters will be considered in the rest of this paper:  

𝑦(𝑛)(𝑡) = −𝑎0(𝑡)𝑦(𝑡) − ⋯− 𝑎𝑛−1(𝑡)𝑦
(𝑛−1)(𝑡) + 𝛼𝑢(𝑡),

|𝑎𝑖(𝑡)| < 𝑎𝑖 ,    ∀𝑖 = 0. . 𝑛 − 1
 (1) 

where 𝑦(𝑡) ∈ ℝ is the system output, 𝑢(𝑡) ∈ ℝ is the control input, 𝛼 is the input gain and 𝑎𝑖(𝑡) ∈ ℝ are scalar 

time varying unknown parameters that their absolute values are bounded by 𝑎𝑖 , ∀𝑖 = 0. . 𝑛 − 1. 

This system can be represented by the following state space equation by choosing 

𝑥𝑚(𝑡) = [𝑦(𝑡)    …    𝑦
(𝑛−1)(𝑡)]𝑇:  

{
�̇�𝑚(𝑡) = 𝐴𝑚(𝑡)𝑥𝑚(𝑡) + 𝐵𝑚𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑚𝑥𝑚(𝑡)

 (2) 

where 𝐴𝑚(𝑡) ∈ ℝ
𝑛×𝑛 represents the dynamic, 𝐵𝑚 ∈ ℝ

𝑛×𝑛𝑢  is the system input matrix and 𝐶𝑚 ∈ ℝ
𝑛𝑦×𝑛 is the 

system output matrix with:  

                                                           
a The considered ℒ2 norm is defined by: ||𝑢(𝑡)||ℒ2 = √∫  

+∞

0
|𝑢(𝑡)|2𝑑𝑡 



International Journal of Computer (IJC) (2022) Volume 42, No  1, pp 1-16 

4 

𝐴𝑚(𝑡) =

(

 
 

0 1 0 … 0
0 0 1 0 ⋮
⋮ ⋮ 0 ⋱ 0
0 … … … 1
−𝑎0(𝑡) −𝑎1(𝑡) … … −𝑎𝑛−1(𝑡))

 
 

𝐵𝑚
𝑇 = (0 0 … 0 𝛼), 𝐶𝑚 = (1 0 … … 0)

 (3) 

Since the time varying parameters of the state matrix of the system are bounded, it is more convenient to 

describe it by the polytopic form by considering the well known non-linear sector approach [51, 52]. This 

transformation allows to obtain a polytopic representation of the model in a compact and convex set of the state 

space:  

{
�̇�𝑚(𝑡) = ∑  𝑁

𝑖=1 𝜇𝑖(𝑡)𝐴𝑚𝑖𝑥𝑚(𝑡) + 𝐵𝑚𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑚𝑥𝑚(𝑡)
                                              (4) 

where the integer 𝑁 is the number of subsystems and 𝐴𝑚𝑖 ∈ ℝ
𝑛×𝑛 are known matrices. The functions 𝜇𝑖 are the 

weighting functions depend on the time. These functions verify the convex sum property in the polytopic model 

domain of validity. 

Since the idea of the controller structure is to nullify the system dynamic and then to replace it with the ideal 

dynamic for the closed loop, we consider the controller introduced by [50]:  

Proposition 1. Control Law  

𝑢(𝑡) = �̂�𝑛(𝑡) + �̂�𝑟(𝑡)

= −
1

�̂�
�̂�(𝑡) +

1

�̂�
(−𝐾�̂�(𝑡) + 𝑘0𝑟(𝑡)))

 (5) 

where   

    • �̂�(𝐭)  is an estimation of the ”structure” function 𝐹(𝑡) = 𝑓(𝑦, �̇�, … )  containing all-poles dynamic with 

eventually some disturbances. Note that the function 𝐹(𝑡) MUST be control independent (no zero dynamics);  

    • �̂� is an approximation of the input gain 𝛼. Note that the choice of the parameter �̂� will be informed by the 

analysis of non-grouped terms in the structural function 𝐹;  

    • �̂�(𝐭) = [𝑧0(𝑡)    …    𝑧𝑛−1(𝑡)]
𝑇 is a vector composed of 𝑧𝑖(𝑡): the estimations of the successive derivatives 

of the system output 𝑦(𝑖)(𝑡).  

    • 𝑛 ∈ 𝒩∗ is the order of the differential equation and it is supposed known.  

    • 𝐫(𝐭) is the reference;  

    • 𝐊 = [𝑘0, … , 𝑘𝑛−1] is a vector composed of the coefficients 𝑘𝑖 of the desired dynamic of the closed system 
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given by specifications such that:  

𝑦𝑟
(𝑛)
(𝑡) = −𝑘0𝑦𝑟(𝑡) − ⋯− 𝑘𝑛−1𝑦𝑟

(𝑛−1)
(𝑡) + 𝑘0𝑟(𝑡). (6) 

Remark 1. The latter controller is based on the model-free control introduced by Join and his colleagues [44] 

were authors  proposed an intelligent controller named : Intelligent Proportional-Integral-Derivative (iPID). The 

latter is signal based and don’t require many information about the system. The model free control is based on a 

local modelling, constantly updated, from the only knowledge of the input-output system behaviour. To 

implement this controller,  the output derivatives has to be available or estimated in real time.  

 

The presented controller gives a perfect closed loop only if a good estimation of the output derivatives and of 

the function F(t) are available. In order to set a simple solution, for design purpose, a simple filtered derivative 

approach has been considered in [50] as follows:  

{

𝑧0(𝑠)

𝑦(𝑠)
=

1

𝜏𝑠+1

𝑧𝑖(𝑠)

𝑦(𝑠)
= (

𝑠

𝜏𝑠+1
)
𝑖

    ∀𝑖 = 1. . 𝑛 − 1
 (7) 

This estimator is causal and ensures a good estimation if its parameter 𝜏 is sufficiently smaller than the fastest 

dynamic of the system. It provides the successive estimations 𝑧𝑖(𝑡) of 𝑦(𝑖)(𝑡) for all 𝑖 ∈ {1, … , 𝑛 − 1} where 𝑛 

presents the system order. 

Finally, as a result the controller/derivative pair composed of the control law (5) and the estimator (7) is defined 

by [50] as follow:  

Proposition 2. The state representation of the controller and its derivative can be given by:  

{
�̇�𝑒(𝑡) = 𝐴𝑜𝑥𝑒(𝑡) + 𝐵𝑜1𝑦(𝑡) + 𝐵𝑜2𝑟(𝑡)

𝑢(𝑡) = 𝐶𝑜𝑥𝑒(𝑡) + 𝐷𝑜1𝑦(𝑡) + 𝐷𝑜2𝑟(𝑡)
 (8) 

 with �̇�𝑒(𝑡) = [𝑧1(𝑡)  …  𝑧𝑛(𝑡)  �̂̇�(𝑡)]
𝑇 where 

𝑢(𝑠)

𝑢(𝑠)
=

1

𝜏𝑠+1
 and  

𝐴𝑜 = 𝐴𝑒 −
𝐵𝑒𝑢

�̂�
(𝐶𝑓𝑥 + 𝐾𝐶𝑒𝑦𝑥)

𝐵𝑜1 = 𝐵𝑒𝑦 −
𝐵𝑒𝑢

�̂�
(𝐶𝑓𝑦 + 𝐾𝐶𝑒𝑦𝑦)

𝐵𝑜2 =
𝐵𝑒𝑢

�̂�
𝑘0

𝐶𝑜 = −
1

�̂�
(𝐶𝑓𝑥 + 𝐾  𝐶𝑒𝑦𝑥)

𝐷𝑜1 = −
1

�̂�
(𝐶𝑓𝑦 + 𝐾  𝐶𝑒𝑦𝑦)

𝐷𝑜2 =
𝑘0

�̂�

 (9) 
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 where the different matrices are defined by  

𝐴𝑒 =

(

 
 
 
 
 
 
 
 

−
1

𝜏
0 … … … 0 0

−
1

𝜏2
−
1

𝜏
0 … … 0 0

−
1

𝜏3
−

1

𝜏2
−
1

𝜏
0 … 0 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮

−
1

𝜏𝑛−1
−

1

𝜏𝑛−2
… … −

1

𝜏
0 0

−
1

𝜏𝑛
−

1

𝜏𝑛−1
… … … −

1

𝜏
0

0 0 … … … 0 −
1

𝜏)

 
 
 
 
 
 
 
 

, 𝐶𝑓𝑥
𝑇 =

(

 
 
 
 

−
1

𝜏𝑛

−
1

𝜏𝑛−1

⋮

−
1

𝜏

−�̂� )

 
 
 
 

𝐶𝑓𝑦 =
1

𝜏𝑛
, 𝐵𝑒𝑦

𝑇 = (
1

𝜏

1

𝜏2
…

1

𝜏𝑛
0) , 𝐵𝑒𝑢 = (

0(1×𝑛)
1

𝜏

)

𝐶𝑒𝑦𝑥 = (
1 0(1×𝑛)
𝐴𝑒((1:𝑛−1)×(1:𝑛)) 0 ) , 𝐶𝑒𝑦𝑦 = (

0
𝐵𝑒𝑦(1:𝑛−1)

) , 𝐶𝑒𝑢
𝑇 = (

0(1×𝑛)
1

)

 (10) 

One remak  that the proposed approach requires less information on the system for the controller tuning : only 

the dynamic order, an estimation of the nonlinear functions bounded and an estimation of the input gain. 

 

Consider the closed loop composed of the LPV system (4) and the controller/derivative pair described in 

Proposition 2. The extended presentation of the closed loop with the extended state 𝑥(𝑡) = [𝑥𝑚(𝑡)  𝑥𝑒(𝑡)]
𝑇 is 

then given by:  

{
�̇�(𝑡) = 𝐴(𝜇(𝑡))𝑥(𝑡) + 𝐵𝑟(𝑡),
𝑦(𝑡) = 𝐶𝑥(𝑡)

 (11) 

 where for all 𝜇𝑖(𝑡) verifying the convex sum property:  

𝐴(𝜇(𝑡)) = ∑  𝑁
𝑖=1 𝜇𝑖(𝑡)𝐴𝑖

= ∑  𝑁
𝑖=1 𝜇𝑖(𝑡) (

𝐴𝑚𝑖 + 𝐵𝑚𝐷𝑜1𝐶𝑚 𝐵𝑚𝐶𝑜
𝐵𝑜1𝐶𝑚 𝐴𝑜

)
 (12) 

𝐴(𝑡) = (
𝐴𝑚(𝑡) + 𝐵𝑚𝐷𝑜1𝐶𝑚 𝐵𝑚𝐶𝑜
𝐵𝑜1𝐶𝑚 𝐴𝑜

) , 𝐵 = (
𝐵𝑚𝐷𝑜2
𝐵𝑜2

) , 𝐶𝑇 = (

0
⋮
0
𝐶𝑚
𝑇

)                                                           (13) 

For the sake of notation simplification, let us note : 𝐴(𝜇(𝑡)): = 𝐴(𝑡). The next section presents results for the 

stability study of this class of SISO systems under specifications. 

3. Performance synthesis 

 This section exposes the main contribution of this paper i.e. design procedures for the stabilization of non-linear 

systems under specifications. Since our goal is to make the dynamic of the closed loop system (11) closed to the 
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desired one (6), we are interested in minimizing the error 𝑒(𝑡) between the system output 𝑦(𝑡) and the ideal 

output 𝑦𝑟(𝑡) when these dynamics have the same reference 𝑟(𝑡). This will be achieved by minimizing the 

induced gain ℒ2 → ℒ2 described by:  

𝐽 = 𝑠𝑢𝑝𝑟∈ℒ2
||𝑒||ℒ2

||𝑟||ℒ2
;   ||𝑟||ℒ2 ≠ 0. (14) 

 It should be pointed out that the stability and the ℒ2 gain of LPV systems is equivalent to the existence of a 

Lyapunov function and based on LMI optimal techniques. The result is the following:  

Theorem 1.  The closed loop system composed of, the dynamic (1) with (5) and the specified dynamic (6) is 

globally asymptotically stable and verify 𝐽 < 𝛤 where 𝐽 is defined in (13), with a given 𝛤 > 0, if there exists a 

symmetric and positive-definite matrix 𝑃 (𝑃 = 𝑃𝑇 ≻ 0) such that the following condition holds:  

(
𝒜(𝑡)𝑇𝑃 + 𝑃𝒜(𝑡) + 𝒞𝑇𝒞 𝑃ℬ

ℬ𝑇𝑃 −Γ2𝐼𝑑
) < 0, (15) 

 with: 

𝒜(𝑡) = (
𝐴(𝑡) 0
0 𝐴𝑟

) , ℬ = (
𝐵
𝐵𝑟
) , 𝒞𝑇 = (

−𝐶𝑚
0(1×(𝑛+1))
𝐶𝑟

) (16) 

Where the different matrices are defined by (12) and (13) with (3).  

 Proof 1. The dynamic of the system given by specifications (6) can be represented by the following state space 

by choosing 𝑥𝑟(𝑡) = [𝑦𝑟(𝑡) … 𝑦𝑟
(𝑛−1)

(𝑡)]𝑇:  

{
�̇�𝑟(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑟(𝑡)
𝑦𝑟(𝑡) = 𝐶𝑟𝑥𝑟(𝑡)

 (17) 

 where  

𝐴𝑟 =

(

 
 

0 1 0 … 0
0 0 1 0 ⋮
⋮ ⋮ 0 ⋱ 0
0 … … … 1
−𝑘0 −𝑘1 … … −𝑘𝑛−1)

 
 
, 𝐵𝑟 =

(

 
 

0
0
⋮
0
𝑘0)

 
 
, 𝐶𝑟

𝑇 =

(

 
 

1
0
⋮
⋮
0)

 
 

 

Consider now the extended state space 𝒳(𝑡) = [𝑥(𝑡)  𝑥𝑟(𝑡)]
𝑇  such that 𝑥(𝑡) = [𝑥𝑚(𝑡)  𝑥𝑒(𝑡)]

𝑇  and 𝑥𝑟(𝑡) 

represent respectively the closed loop and the desired dynamic states. Thus, one gets:  

{
�̇�(𝑡) = 𝒜(𝑡)𝒳(𝑡) + ℬ𝑟(𝑡)
𝒴(𝑡) = 𝒞𝒳(𝑡)

 (18) 

where the different matrices are given by (16) with the appropriate matrices. 
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Consider the quadratic candidate Lyapunov function 𝑉 = 𝒳𝑇𝑃𝒳 such that 𝑃 = 𝑃𝑇 ≻ 0. Regarding to [53], if : 

 �̇� + 𝑒𝑇𝑒 − Γ2𝑟𝑇𝑟 < 0, 

 then  

 𝐽 = 𝑠𝑢𝑝𝑟∈ℒ2
||𝑒||ℒ2

||𝑟||ℒ2
< Γ;  ||𝑟||ℒ2 ≠ 0. 

 By developing the latter condition, condition (15) is achieved and so the stability of the closed loop under the 

desired specifications described by the induced gain 𝐽  (see [53] for the standard proof of the condition 

development).   

 Lemma 1.  The closed loop system composed of, the dynamic (1) with (5) and the specified dynamic (6) is 

globally asymptotically stable and verify 𝐽 < 𝛤 where 𝐽 is defined in (14), with a given 𝛤 > 0, if there exists a 

symmetric and positive-definite matrix 𝑃 (𝑃 = 𝑃𝑇 ≻ 0) such that, ∀𝑖 = 1. . 𝑁, the following conditions hold:  

(
𝒜𝑖
𝑇𝑃 + 𝑃𝒜𝑖 + 𝒞

𝑇𝒞 𝑃ℬ

ℬ𝑇𝑃 −Γ2𝐼𝑑
) < 0 (19) 

 where the different matrices are described by (16).  

 Proof 2. Consider the result of the previous Theorem 1. Since the matrix 𝐴(𝑡) is represented by the polytopic 

form (12), the condition (15) becomes:  

 

(
∑  𝑁
𝑖=1 𝜇𝑖(𝑡)𝒜𝑖

𝑇𝑃 + 𝑃∑  𝑁
𝑖=1 𝜇𝑖(𝑡)𝒜𝑖 + 𝒞

𝑇𝒞 𝑃ℬ

ℬ𝑇𝑃 −Γ2𝐼𝑑
) < 0

⇒ ∑  𝑁
𝑖=1 𝜇𝑖(𝑡) (

𝒜𝑖
𝑇𝑃 + 𝑃𝒜𝑖 + 𝒞

𝑇𝒞 𝑃ℬ

ℬ𝑇𝑃 −Γ2𝐼𝑑
) < 0

 

 

As ∀𝑖 = 1. . 𝑁, 0 ≤ 𝜇𝑖 ≤ 1, the last condition return to the one of  Theorem 1.   

4. Simulation example: inverted pendulum 

 In this section, we present simulation results showing the tracking performances of the proposed restricted-

model-based controller applied to an inverted pendulum system. Let us consider the polytopic representation of 

the inverted pendulum on a cart described by [54, 55] for a compact set of the state space:  

{
�̇�1 = 𝑥2

�̇�2 =
𝑔𝑠𝑖𝑛(𝑥1)−𝑎𝑚𝑙𝑥2

2𝑠𝑖𝑛(2𝑥1)/2−𝑎𝑐𝑜𝑠(𝑥1)𝑢

4𝑙/3−𝑎𝑚𝑙𝑐𝑜𝑠2(𝑥1)

                                                 (20) 

where 𝑥1 = 𝜃 is the angle of the pendulum with respect to the vertical line, 𝑥2 = �̇�  is the angular velocity, 
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𝑔 = 9.8𝑚/𝑠2 is the gravity constant, 𝑚 = 2𝑘𝑔 is the mass of the pendulum, 𝑀 = 8𝑘𝑔 is the mass of the cart, 

2𝑙 = 1𝑚 is the length of the pendulum, 𝑢 is the control applied to the cart and 𝑎 =
1

𝑚+𝑀
. The closed loop system 

is then described by (18) with:  

𝐴𝑚1 = (
0 1
17.29 0

) , 𝐴𝑚2 = (
0 1
9.35 0

). 

Remark 2. The inverted pendulum system is an unstable system widely used as a benchmark control problem 

[54, 56, 57]. The control problem of this plant has been addressed in many studies by considering for example 

Composite Learning Based Fuzzy Control [58], the T-S fuzzy control [59], Robust 𝐻∞ Nonlinear Control via 

Fuzzy Static Output Feedback [60], Multirate Output Feedback with Discrete Time Sliding Mode Control [61] 

and fuzzy PID (PI, or PD) control system transformed into the fuzzy static output feedback control system [62]. 

However, for the stability control of this system, the methods mentioned above require the formulation of the 

membership functions and the establishment of the model.  

4.1. Ideal Case 

The control objective is to force this system and its controller/derivative given by  Proposition 2 with an 

estimator parameter 𝜏 = 0.002 and without loss of generality an input gain 𝛼 = 1 to follow the dynamic of the 

reference model (17) with  

 𝐴𝑟 = (
0 1
−𝑘0 −𝑘1

) , 𝐵𝑟 = (
0
𝑘0
) , 𝐶𝑟

𝑇 = (
1
0
) 

where the parameters 𝑘0 = 25  and 𝑘1 = 11  are fixed under the desired specifications. Supposing that the 

specifications requires, in addition to ensuring the stability of the inverted pendulum, to guarantee an induced 

gain of order 𝐽∗ = 0.2.  

To verify the previous analysis results in terms of stability and performances, a simulation example of the 

inverted pendulum is given in Fig.1. This figure shows the regulation results of the pendulum angle 𝜃  by 

considering the proposed control law. From Fig.1.a, the system output successfully converges to the desired one, 

which means that the proposed scheme solves the regulation problem even in the case when the inverted 

pendulum has unknown bounded parameters and its states are not measurable. The performance of the proposed 

observer is shown in Fig.1.b. The proposed control law affects how fast the system output dynamic catch up 

with the ideal one. Finally, the control input 𝑢 converges to zero, as shown in Fig.1.c. The implementation of 

this controller on simulation has given good results, especially in terms of the capability to control and stabilize 

the system rapidly. 
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Figure 1: Response of (a) the system output dynamic 𝑦(𝑡) = 𝜃(𝑡), the desired dynamic output 𝑦𝑟(𝑡) and the 

reference 𝑟(𝑡), (b) the tracking error 𝑒𝑧(𝑡) = 𝑦𝑟(𝑡) − 𝑦(𝑡), (c) the control input 𝑢(𝑡) of the inverted pendulum 

for the induced gain 𝐽∗ = 0.2. 

4.2.  Influence of the noise 

 To illustrate the efficiency of the proposed design procedure and the attenuation problem given in this paper, 

we will consider the more general situation where the system is subject to perturbation 𝑤(𝑡). It is assumed that 

𝑤(𝑡) is a Gaussian noise with a variance 100 (see Fig.2.) influences on the angular velocity dynamic. The 

desired attenuation level (the induced gain) is 𝐽∗ = 0.2.  

From Fig.3. it can be seen from this results that in the case of the existence of the noise on the system state, the 

proposed controller scheme greatly converges to the desired dynamic under the desired specifications (see 

Fig.3.a). It can be seen from Fig.3.b. that the tracking error converges to zero quickly.  Yet, Fig.3.b. shows that 

the control signal u becomes affected by the chattering phenomena.          

 

Figure 2: Gaussian noise signal. 
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Figure 3: Response of (a) the system output dynamic 𝑦(𝑡) = 𝜃(𝑡), the desired dynamic output 𝑦𝑟(𝑡) and the 

reference 𝑟(𝑡), (b) the tracking error error 𝑒𝑧(𝑡) = 𝑦𝑟(𝑡) − 𝑦(𝑡), (c) the control input 𝑢(𝑡) of the disturbed 

inverted pendulum for the induced gain 𝐽∗ = 0.2. 

5. Conclusion 

 The problem of performance analysis of non-linear systems described by polytopic model with unmeasurable 

bounded parameter variables has been investigated. Considering the model free control developed in previous 

works, a simplified design of the controller was proposed. The controller design did not use an explicit model or 

the structural information of the plant. Favourable asymptotic convergence and improved tracking performances 

could be achieved through the induced gain ℒ2 study. As demonstrated in the simulation examples, the proposed 

method was provide its effectiveness. Yet, it still limited on the case of non-linear SISO system with bounded 

parameter and with no invariant zero. In addition, the proposed control law still based on a model and the setting 

of this controller under the desired specifications requires some knowledge about the system. Yet, one notes that 

it is possible to empirically adjust this controller if the system is not critical and/or stable using as initial value of 

a value less than the system dynamics (index value measured by test).  

The proposed approach requires less information on the system for the controller tuning : only the dynamic 

order, an estimation of the nonlinear functions bounded and an estimation of the input gain. This work has 

opened new perspectives of study: proposing a simple tuning method for the controller design involving lesser 

calculation efforts and could be implemented much easier than the traditional controllers. Another interresting 

point is to study the influence of fast dynamics (i.e. consider a controller order lower than the system) or 

extending the particular case (Multi-Input Multi Output, zero dynamics, …). 
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