12 research outputs found

    Quantization-aware Parameter Estimation for Audio Upmixing

    Get PDF
    International audienceUpmixing consists in extracting audio objects out of their downmix, given some parameters computed beforehand at a coding stage. It is an important task in audio processing with many applications in the entertainment industry. One particularly successful approach for this purpose is to compress the audio objects through nonnegative matrix factorization (NMF) parameters at the coder, to be used for separating the downmix at the decoder. In this paper, we focus on such NMF methods for audio compression, which operate at very low parameter bitrates. In existing methods, parameter estimation and quantization are conducted independently. Here, we propose two extensions: first, we jointly estimate and quantize the parameters at the coder to ensure good reconstruction at the decoder. Second, we propose a parameter refinement method operated at the decoder, that benefits from priors induced by quantization to yield better performance. We show that our contributions outperform existing baseline methods

    PB-IEF-03

    Get PDF

    Non-Negative Matrix Factorization Based Algorithms to Cluster Frequency Basis Functions for Monaural Sound Source Separation.

    Get PDF
    Monophonic sound source separation (SSS) refers to a process that separates out audio signals produced from the individual sound sources in a given acoustic mixture, when the mixture signal is recorded using one microphone or is directly recorded onto one reproduction channel. Many audio applications such as pitch modification and automatic music transcription would benefit from the availability of segregated sound sources from the mixture of audio signals for further processing. Recently, Non-negative matrix factorization (NMF) has found application in monaural audio source separation due to its ability to factorize audio spectrograms into additive part-based basis functions, where the parts typically correspond to individual notes or chords in music. An advantage of NMF is that there can be a single basis function for each note played by a given instrument, thereby capturing changes in timbre with pitch for each instrument or source. However, these basis functions need to be clustered to their respective sources for the reconstruction of the individual source signals. Many clustering methods have been proposed to map the separated signals into sources with considerable success. Recently, to avoid the need of clustering, Shifted NMF (SNMF) was proposed, which assumes that the timbre of a note is constant for all the pitches produced by an instrument. SNMF has two drawbacks. Firstly, the assumption that the timbre of the notes played by an instrument remains constant, is not true in general. Secondly, the SNMF method uses the Constant Q transform (CQT) and the lack of a true inverse of the CQT results in compromising on separation quality of the reconstructed signal. The principal aim of this thesis is to attempt to solve the problem of clustering NMF basis functions. Our first major contribution is the use of SNMF as a method of clustering the basis functions obtained via standard NMF. The proposed SNMF clustering method aims to cluster the frequency basis functions obtained via standard NMF to their respective sources by making use of shift invariance in a log-frequency domain. Further, a minor contribution is made by improving the separation performance of the standard SNMF algorithm (here used directly to separate sources) obtained through the use of an improved inverse CQT. Here, the standard SNMF algorithm finds shift-invariance in a CQ spectrogram, that contain the frequency basis functions, obtained directly from the spectrogram of the audio mixture. Our next contribution is an improvement in the SNMF clustering algorithm through the incorporation of the CQT matrix inside the SNMF model in order to avoid the need of an inverse CQT to reconstruct the clustered NMF basis unctions. Another major contribution deals with the incorporation of a constraint called group sparsity (GS) into the SNMF clustering algorithm at two stages to improve clustering. The effect of the GS is evaluated on various SNMF clustering algorithms proposed in this thesis. Finally, we have introduced a new family of masks to reconstruct the original signal from the clustered basis functions and compared their performance to the generalized Wiener filter masks using three different factorisation-based separation algorithms. We show that better separation performance can be achieved by using the proposed family of masks

    Deep learning-based music source separation

    Get PDF
    Diese Dissertation befasst sich mit dem Problem der Trennung von Musikquellen durch den Einsatz von deep learning Methoden. Die auf deep learning basierende Trennung von Musikquellen wird unter drei Gesichtspunkten untersucht. Diese Perspektiven sind: die Signalverarbeitung, die neuronale Architektur und die Signaldarstellung. Aus der ersten Perspektive, soll verstanden werden, welche deep learning Modelle, die auf DNNs basieren, für die Aufgabe der Musikquellentrennung lernen, und ob es einen analogen Signalverarbeitungsoperator gibt, der die Funktionalität dieser Modelle charakterisiert. Zu diesem Zweck wird ein neuartiger Algorithmus vorgestellt. Der Algorithmus wird als NCA bezeichnet und destilliert ein optimiertes Trennungsmodell, das aus nicht-linearen Operatoren besteht, in einen einzigen linearen Operator, der leicht zu interpretieren ist. Aus der zweiten Perspektive, soll eine neuronale Netzarchitektur vorgeschlagen werden, die das zuvor erwähnte Konzept der Filterberechnung und -optimierung beinhaltet. Zu diesem Zweck wird die als Masker and Denoiser (MaD) bezeichnete neuronale Netzarchitektur vorgestellt. Die vorgeschlagene Architektur realisiert die Filteroperation unter Verwendung skip-filtering connections Verbindungen. Zusätzlich werden einige Inferenzstrategien und Optimierungsziele vorgeschlagen und diskutiert. Die Leistungsfähigkeit von MaD bei der Musikquellentrennung wird durch eine Reihe von Experimenten bewertet, die sowohl objektive als auch subjektive Bewertungsverfahren umfassen. Abschließend, der Schwerpunkt der dritten Perspektive liegt auf dem Einsatz von DNNs zum Erlernen von solchen Signaldarstellungen, für die Trennung von Musikquellen hilfreich sind. Zu diesem Zweck wird eine neue Methode vorgeschlagen. Die vorgeschlagene Methode verwendet ein neuartiges Umparametrisierungsschema und eine Kombination von Optimierungszielen. Die Umparametrisierung basiert sich auf sinusförmigen Funktionen, die interpretierbare DNN-Darstellungen fördern. Der durchgeführten Experimente deuten an, dass die vorgeschlagene Methode beim Erlernen interpretierbarer Darstellungen effizient eingesetzt werden kann, wobei der Filterprozess noch auf separate Musikquellen angewendet werden kann. Die Ergebnisse der durchgeführten Experimente deuten an, dass die vorgeschlagene Methode beim Erlernen interpretierbarer Darstellungen effizient eingesetzt werden kann, wobei der Filterprozess noch auf separate Musikquellen angewendet werden kann. Darüber hinaus der Einsatz von optimal transport (OT) Entfernungen als Optimierungsziele sind für die Berechnung additiver und klar strukturierter Signaldarstellungen.This thesis addresses the problem of music source separation using deep learning methods. The deep learning-based separation of music sources is examined from three angles. These angles are: the signal processing, the neural architecture, and the signal representation. From the first angle, it is aimed to understand what deep learning models, using deep neural networks (DNNs), learn for the task of music source separation, and if there is an analogous signal processing operator that characterizes the functionality of these models. To do so, a novel algorithm is presented. The algorithm, referred to as the neural couplings algorithm (NCA), distills an optimized separation model consisting of non-linear operators into a single linear operator that is easy to interpret. Using the NCA, it is shown that DNNs learn data-driven filters for singing voice separation, that can be assessed using signal processing. Moreover, by enabling DNNs to learn how to predict filters for source separation, DNNs capture the structure of the target source and learn robust filters. From the second angle, it is aimed to propose a neural network architecture that incorporates the aforementioned concept of filter prediction and optimization. For this purpose, the neural network architecture referred to as the Masker-and-Denoiser (MaD) is presented. The proposed architecture realizes the filtering operation using skip-filtering connections. Additionally, a few inference strategies and optimization objectives are proposed and discussed. The performance of MaD in music source separation is assessed by conducting a series of experiments that include both objective and subjective evaluation processes. Experimental results suggest that the MaD architecture, with some of the studied strategies, is applicable to realistic music recordings, and the MaD architecture has been considered one of the state-of-the-art approaches in the Signal Separation and Evaluation Campaign (SiSEC) 2018. Finally, the focus of the third angle is to employ DNNs for learning signal representations that are helpful for separating music sources. To that end, a new method is proposed using a novel re-parameterization scheme and a combination of optimization objectives. The re-parameterization is based on sinusoidal functions that promote interpretable DNN representations. Results from the conducted experimental procedure suggest that the proposed method can be efficiently employed in learning interpretable representations, where the filtering process can still be applied to separate music sources. Furthermore, the usage of optimal transport (OT) distances as optimization objectives is useful for computing additive and distinctly structured signal representations for various types of music sources

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Principled methods for mixtures processing

    Get PDF
    This document is my thesis for getting the habilitation à diriger des recherches, which is the french diploma that is required to fully supervise Ph.D. students. It summarizes the research I did in the last 15 years and also provides the short­term research directions and applications I want to investigate. Regarding my past research, I first describe the work I did on probabilistic audio modeling, including the separation of Gaussian and α­stable stochastic processes. Then, I mention my work on deep learning applied to audio, which rapidly turned into a large effort for community service. Finally, I present my contributions in machine learning, with some works on hardware compressed sensing and probabilistic generative models.My research programme involves a theoretical part that revolves around probabilistic machine learning, and an applied part that concerns the processing of time series arising in both audio and life sciences

    A computational framework for sound segregation in music signals

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Audio for Virtual, Augmented and Mixed Realities: Proceedings of ICSA 2019 ; 5th International Conference on Spatial Audio ; September 26th to 28th, 2019, Ilmenau, Germany

    Get PDF
    The ICSA 2019 focuses on a multidisciplinary bringing together of developers, scientists, users, and content creators of and for spatial audio systems and services. A special focus is on audio for so-called virtual, augmented, and mixed realities. The fields of ICSA 2019 are: - Development and scientific investigation of technical systems and services for spatial audio recording, processing and reproduction / - Creation of content for reproduction via spatial audio systems and services / - Use and application of spatial audio systems and content presentation services / - Media impact of content and spatial audio systems and services from the point of view of media science. The ICSA 2019 is organized by VDT and TU Ilmenau with support of Fraunhofer Institute for Digital Media Technology IDMT

    Radial Basis Function Neural Network in Identifying The Types of Mangoes

    Get PDF
    Mango (Mangifera Indica L) is part of a fruit plant species that have different color and texture characteristics to indicate its type. The identification of the types of mangoes uses the manual method through direct visual observation of mangoes to be classified. At the same time, the more subjective way humans work causes differences in their determination. Therefore in the use of information technology, it is possible to classify mangoes based on their texture using a computerized system. In its completion, the acquisition process is using the camera as an image processing instrument of the recorded images. To determine the pattern of mango data taken from several samples of texture features using Gabor filters from various types of mangoes and the value of the feature extraction results through artificial neural networks (ANN). Using the Radial Base Function method, which produces weight values, is then used as a process for classifying types of mangoes. The accuracy of the test results obtained from the use of extraction methods and existing learning methods is 100%
    corecore