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Abstract

This thesis addresses the problem of music source separation using deep learning methods.
The deep learning-based separation of music sources is examined from three angles. These
angles are: the signal processing, the neural architecture, and the signal representation.
From the first angle, it is aimed to understand what deep learning models, using deep
neural networks (DNNs), learn for the task of music source separation, and if there is an
analogous signal processing operator that characterizes the functionality of these models.
To do so, a novel algorithm is presented. The algorithm, referred to as the neural couplings
algorithm (NCA), distills an optimized separation model consisting of non-linear operators
into a single linear operator that is easy to interpret. Using the NCA, it is shown that
DNNs learn data-driven filters for singing voice separation, that can be assessed using
signal processing. Moreover, by enabling DNNs to learn how to predict filters for source
separation, DNNs capture the structure of the target source and learn robust filters.

From the second angle, it is aimed to propose a neural network architecture that
incorporates the aforementioned concept of filter prediction and optimization. For this
purpose, the neural network architecture referred to as the Masker-and-Denoiser (MaD)
is presented. The proposed architecture realizes the filtering operation using skip-filtering
connections. Additionally, a few inference strategies and optimization objectives are pro-
posed and discussed. The performance of MaD in music source separation is assessed by
conducting a series of experiments that include both objective and subjective evaluation
processes. Experimental results suggest that the MaD architecture, with some of the
studied strategies, is applicable to realistic music recordings, and the MaD architecture
has been considered one of the state-of-the-art approaches in the Signal Separation and
Evaluation Campaign (SiSEC) 2018.

Finally, the focus of the third angle is to employ DNNs for learning signal representa-
tions that are helpful for separating music sources. To that end, a new method is proposed
using a novel re-parameterization scheme and a combination of optimization objectives.
The re-parameterization is based on sinusoidal functions that promote interpretable DNN
representations. Results from the conducted experimental procedure suggest that the
proposed method can be e�ciently employed in learning interpretable representations,
where the filtering process can still be applied to separate music sources. Furthermore,
the usage of optimal transport (OT) distances as optimization objectives is useful for
computing additive and distinctly structured signal representations for various types of
music sources.
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Zusammenfassung

Diese Dissertation befasst sich mit dem Problem der Trennung von Musikquellen durch
den Einsatz von deep learning Methoden. Die auf deep learning basierende Trennung
von Musikquellen wird unter drei Gesichtspunkten untersucht. Diese Perspektiven sind:
die Signalverarbeitung, die neuronale Architektur und die Signaldarstellung. Aus der
ersten Perspektive, soll verstanden werden, welche deep learning Modelle, die auf DNNs
basieren, für die Aufgabe der Musikquellentrennung lernen, und ob es einen analogen
Signalverarbeitungsoperator gibt, der die Funktionalität dieser Modelle charakterisiert.
Zu diesem Zweck wird ein neuartiger Algorithmus vorgestellt. Der Algorithmus wird als
NCA bezeichnet und destilliert ein optimiertes Trennungsmodell, das aus nicht-linearen
Operatoren besteht, in einen einzigen linearen Operator, der leicht zu interpretieren ist.

Aus der zweiten Perspektive, soll eine neuronale Netzarchitektur vorgeschlagen wer-
den, die das zuvor erwähnte Konzept der Filterberechnung und -optimierung beinhaltet.
Zu diesem Zweck wird die als Masker and Denoiser (MaD) bezeichnete neuronale Netzar-
chitektur vorgestellt. Die vorgeschlagene Architektur realisiert die Filteroperation unter
Verwendung skip-filtering connections Verbindungen. Zusätzlich werden einige Inferenzs-
trategien und Optimierungsziele vorgeschlagen und diskutiert. Die Leistungsfähigkeit von
MaD bei der Musikquellentrennung wird durch eine Reihe von Experimenten bewertet,
die sowohl objektive als auch subjektive Bewertungsverfahren umfassen.

Abschließend, der Schwerpunkt der dritten Perspektive liegt auf dem Einsatz von
DNNs zum Erlernen von solchen Signaldarstellungen, für die Trennung von Musikquellen
hilfreich sind. Zu diesem Zweck wird eine neue Methode vorgeschlagen. Die vorgeschla-
gene Methode verwendet ein neuartiges Umparametrisierungsschema und eine Kombi-
nation von Optimierungszielen. Die Umparametrisierung basiert sich auf sinusförmigen
Funktionen, die interpretierbare DNN-Darstellungen fördern. Der durchgeführten Ex-
perimente deuten an, daß die vorgeschlagene Methode beim Erlernen interpretierbarer
Darstellungen e�zient eingesetzt werden kann, wobei der Filterprozess noch auf separate
Musikquellen angewendet werden kann. Die Ergebnisse der durchgeführten Experimente
deuten an, daß die vorgeschlagene Methode beim Erlernen interpretierbarer Darstellungen
e�zient eingesetzt werden kann, wobei der Filterprozess noch auf separate Musikquellen
angewendet werden kann. Darüber hinaus der Einsatz von optimal transport (OT) Ent-
fernungen als Optimierungsziele sind für die Berechnung additiver und klar strukturierter
Signaldarstellungen.
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Acronyms

ADC analog-to-digital converter.

ANN artificial neural network.

BM binary mask.

BPTT back-propagation through time.

CNN convolutional neural network.

DAC digital-to-analog converter.

DAE denoising autoencoder.

DCT discrete cosine transform.

DFT discrete Fourier transform.

DNN deep neural network.

EDJM extended data Jabobian matrix.
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GPU graphics processing unit.

GRU gated recurrent unit.

GUI graphical user interface.
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IAM ideal amplitude mask.

IS Itakura-Saito.
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Glossary

artificial neural network is an information processing system that is inspired by bio-
logical neurons.

back-propagation is a learning algorithm that is very popular in deep learning research,
and is based on gradient descent and the chain rule of di�erentiation.

deep learning is one approach to artificial intelligence, comprising hierarchically multi-
ple (commonly greater than two) information processing systems, that gather knowl-
edge and learn complicated concepts related to a particular numerical computation
problem [1].

eigenvector or the characteristic vector of a linear transformation, is the non-zero vector
that changes only by a scalar factor when that linear transformation is applied to
that vector.

intrinsic dimension (of data) is the minimum dimensionality needed to accurately
represent the data.

learning algorithm is a computer program that is designed to increase the defined
performance measure, over a class of defined tasks, as the observations from data
(experience) are also increased [2].

linear program is a method to achieve the best plausible outcome, given an objective
that is mathematically expressed, with the method’s requirements being described
by linear relationships.

model is the description of an observed system, that processes information and yields an
outcome, using mathematical concepts.

NP-hard refers to a class of computational problems, such as decision problems, that
are at least as hard as the non-deterministic polynomial (time) (NP) problems that
can be verified, not solved, in polynomial time.
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optimal transport is the problem of allocating (transporting) resources or information
from one (geometrical) domain to another.

simplex is the generalization of a geometric object, such as a polytope, to arbitrary
dimensions.

skip connections is a simple and e�ective operation for deep learning approaches, that
allows the information from previous layers to be leaked (skipped) to the proceeding
ones.

skip-filtering connections is a type of skip connections that allows the information
from previous layers to be masked by the output of proceeding layers. The filtering
term is based on the analogy of time-frequency masking and filtering in audio, music,
and speech signal processing.

supervised learning is a type of learning algorithm that requires output targets or
labels for each sample in a data-set.

Toeplitz-matrix is an algebraic matrix that contains main and secondary diagonals,
whose entries are constants.

unsupervised learning is a type of learning algorithm that learns useful features, struc-
tures, and the structure of a given data-set, without explicit usage of output targets
or labels.

up-mixing (audio/music) is the process of computing multiple auditory signal chan-
nels, that have been previously mixed together by the process of audio/music down-
mixing.
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Chapter 1

Introduction

Preface
This thesis consists of research work from the author as an early stage researcher and
a Ph.D. student at the Fraunhofer Institute for Digital Media Technology and at the
Technical University of Ilmenau, respectively. The time period of the conducted research
spans from August 2015 to August 2020. The research works presented in this thesis have
been supported by the two following projects:

1. Machine Sensing Training Network (MacSeNet) (2015-2018): An Innovative Train-
ing Network (ITN) with the aim of training a new generation of creative, en-
trepreneurial, and innovative early stage researchers (ESRs) in the research area
of measurement and estimation of signals using knowledge or data about the under-
lying structure.

2. Informed Sound Activity Detection in Music Recordings (ISAD) (2018-2020): A
project supported by the German Research Foundation, with the goal to explore
fundamental techniques and computational tools for detecting sound sources or
characteristic sound events that are present in a given music recording.

Throughout this thesis the followed citation style includes in-text citations that are
numbered in square brackets, for example [1]. Each bracket refers to the full citation that
is listed in the Bibliography. The Bibliography is sorted numerically, and not alphabet-
ically. The author’s scientific publications are denoted by square brackets followed by
an alphanumerical indication, for example [A22], where “A” stands for authorship. The
above mentioned projects have enabled the author to work on research areas beyond the
content described in the following chapters and the corresponding publications are also
enlisted in the Bibliography.

1



CHAPTER 1. INTRODUCTION

1.1 Thesis Structure
This thesis is organized into six chapters:

The rest of Chapter 1 contains information about the structure of the thesis followed
by a general introduction to the problem of music source separation. Furthermore,
this chapter highlights the motivation, scope, challenges, and the contributions of
this thesis. The associated publications and the used mathematical notations are
also given in this chapter.

Chapter 2 provides technical background information on fundamental concepts that
are commonly used in deep learning-based music source separation. More specifi-
cally, this chapter introduces the reader to the basics of digital signal processing,
signal models, representations, artificial neural networks, masking-based separation
of music sources, and the evaluation of source separation methods.

Chapter 3 focuses on how artificial neural networks are used to separate music
sources. In particular, the focus is on spectral-based separation and a particular
neural network model that has been used extensively for signal recovery and music
source separation. In addition to this, an algorithm is introduced for examining what
neural networks learn from spectral data. This chapter includes details regarding
previously conducted research in music source separation, based on the previously
mentioned neural network model, and the relation of the proposed algorithm to
other research works.

Chapter 4 provides technical details for the proposed neural network architecture
for music source separation. Target applications are singing voice separation and
harmonic-percussive source separation. Additionally, this chapter contains informa-
tion regarding extended inference strategies and optimization objectives, followed by
the conducted experimental procedure for assessing the separation performance of
the proposed architecture. The relationship of the proposed architecture to previous
research is provided in the subsequent sections.

Chapter 5 focuses on learning representations from music signals. A particular
focus is given on the unsupervised learning of representations that are helpful for
the downstream task of singing voice separation. This chapter also provides details
regarding prior research that focuses on the learning of representations for audio,
speech, and music signals.

Chapter 6 concludes this thesis by summarizing the research work presented herein
and highlights future research directions.

1.2 Scope of the Thesis
Music plays an important role in arts and cultural activities. Although digitalization of
music has enabled many developments in archiving, sharing, analyzing, and processing of
music content, the interaction between humans and music content is still limited. That
is because the manipulation of individual auditory concepts, such as audio objects, is

2



CHAPTER 1. INTRODUCTION

an open problem. The ability to manipulate individual audio objects, e.g., change the
acoustic characteristics of a music instrument in a recording, enables the re-purposing of
music content. Examples of music re-purposing include music remixing, up-mixing for
immersive applications, acoustic condition matching, and karaoke entertainment systems,
among others.

Audio objects that are of high interest in this thesis are music sources. Although the
definition of a music source might refer strictly to a specific music instrument, such as a
violin in a string quartet, the term commonly refers to a group of music instruments that
have perceptually similar audible characteristics and/or convey subjectively similar music
information [3]. The task of estimating music sources from observed mixture signals is
referred to as music source separation. Music source separation is a special case of source
separation research [4], with the corresponding sources conveying music information. The
music sources to be separated are referred to as the target sources and the rest of the
sources are often regarded as the interfering source(s).

Based on the grouping of the target music sources two important cases of music source
separation emerge. These cases are singing voice separation and harmonic-percussive
source separation (HPSS). Singing voice separation considers the singing voice signal as
the target source. That includes any style of singing, independent from the music genre,
and in many recent studies [A9] it refers also to any additional backing vocals or synthe-
sized samples of singing voice. Music sources that do not fall in the category of singing
voice, are commonly denoted as the accompaniment source [A9] that interferes with the
target source in the observed mixture. On the other hand, HPSS aims at separating
music mixture signals into harmonic and percussive sources. Harmonic sources refer to
music instruments whose signals can be described as a combination of (sustained) os-
cillatory signals that evolve in time1, and percussive sources refer to music instruments
whose signals are described mostly by transients2 [3]. This broad categorization assumed
in HPSS falls short for many music sources. An example is signing voice that can be
characterized by a combination of both transients (vocal pulses) and oscillatory signals.
Due to the limitations of this broad categorization singing voice separation is commonly
distinguished from HPSS [A9]. An illustration of the above mentioned music signals is
given in Figure 1.1.

Independent from the cases of separating music sources with particular signal char-
acteristics, music source separation methods can be categorized based on the required a
priori information [9]. On one side of the spectrum, blind methods do not require any
information either about the target sources or about the process that yields the observed
mixture signal, i.e., the mixing process [4], [9]. Conversely, informed separation meth-
ods require any available information regarding the target sources [10] and the mixing
process [9]. In realistic scenarios, information about the individual target sources and
the mixing process is scarce. This in turn, makes the informed separation methods less
practical in real-world applications. On the other hand, the disregard of a priori informa-
tion by blind separation methods necessitates the use of assumptions regarding the target

1In ideal cases, the frequencies of oscillatory signals that are used to characterize harmonic sources
can be also harmonically related.

2In the context of computational musicology and music signal processing, defining the discriminative
characteristics of harmonic and percussive sources is still an open problem [5], [6]. In this thesis, the
widely-adopted definition of harmonic and percussive sources [3], [7], [8] is considered.
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(a) Excerpt of a clarinet signal (b) Excerpt of a snare drum signal

(c) Excerpt of a singing voice signal

Figure 1.1: Three short-time excerpts of music signals, illustrating the structure of signals
that exhibit (a) harmonic, (b) percussive, and (c) both signal characteristics.

sources and the mixing process. Most commonly used assumptions are the statistical
independence or the (low) mutual information between the target sources [4].

Most of the time, these assumptions do not hold in music source separation, due to
the structure of the target and interfering sources and the exhibited correlations between
them [A9], [3], [9]. Consequently, blind separation methods fail at robustly separating
music sources [A9], [9]. To alleviate this severe limitation, research has underlined the
importance of introducing empirical information about the target sources or the mixing
process [9], or the development of methods for computing side information from the mix-
ture signal that is relevant to the target sources [11]. Although it is possible to further
categorize those methods based on the exploited empirical or side information [A9], this
thesis focuses on data-driven approaches to music source separation. Readers interested
in more specific taxonomies of audio and music source separation methods are kindly
referred to [9] and [A9].

Data-driven approaches acquire a priori information, regarding the target sources and
the mixing process, by means of a learning algorithm and a collection of music signals, i.e.,
a data-set. A data-driven approach that has received a lot of attention, due to its remark-
able performance in music source separation, is deep learning. Deep learning replaces
human engineered signal processing operations, that are commonly used to compute side-
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information regarding the mixing process and the target sources, by learnable operators
(functions). These functions are learned with respect to the objective of estimating the
target source(s) from the mixture, i.e., directly separating the target source(s).

1.3 Challenges & Thesis Contributions
In this thesis, deep learning approaches to music source separation are seen as a domain
informed method for performing source separation. The domain refers to the set of
information that the deep learning approaches employ for learning. This set of information
contains the underlying signal structure of the target source(s), the mixture signal(s), and
the inter-dependencies between the source(s) and the mixture. The learning from the
domain can be either supervised or unsupervised.

Given the two previously mentioned learning paradigms, this thesis pursues and iden-
tifies the following goals and challenges. In supervised learning, the goal is to e�ciently
learn the un-mixing process. In this case, one challenge that arises is the applicability
of the learned un-mixing process to music signals outside the observed domain, i.e., gen-
eralizing to unseen music mixtures. Another challenge is the learning of the un-mixing
process when the available computational resources or the size of the domain, used for
learning, are limited. Last but not least, another challenge is the interpretation and
understanding of what deep learning approaches to music source separation learn using
the provided domain information. The latter challenge is emerging because it o�ers an
additional angle of evaluating deep learning approaches, other than the usage of typical
metrics, that assesses the learning capabilities of the corresponding approaches.

In the case of unsupervised learning, the goal is to learn the underlying signal structure
of the source(s) and of the mixture so that it can be used for un-mixing the target
source(s). In this case, two challenges are identified. The first challenge is to learn music
signal representations that are convenient for separating the target source(s). The second
challenge is the interpretation of the learned signal representations. Having in mind
the above described goals and the associated challenges, the work presented in the next
chapters of this thesis makes the following contributions:

• An algorithm for distilling non-linear deep neural networks (DNNs), enabling the
understanding of how DNNs separate music sources in the frequency domain.

• Experimental evidence that DNNs learn data-driven filter operators that can be
further enhanced by using skip-filtering connections; a revisit of a simple technique
that is utilized in state-of-the-art music source separation approaches.

• An e�cient neural architecture that uses skip-filtering connections and is applicable
to singing voice separation, and HPSS, leading to competitive results.

• A re-parameterization scheme for the decoding functions of denoising autoencoders
(DAEs), enabling the computation of interpretable signal representations that are
convenient for music source separation.
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1.4 Associated Publications
The thesis content is based on the selected publications listed below. For publications
that contain a significant overlap of contributions between co-authors, a clarification is
given beneath each corresponding list of publication regarding the author’s.

Journal Articles

[A9] Z. Rafii, A. Liutkus, F. R. Stöter, S. I. Mimilakis, D. FitzGerald, and B. Pardo,
“An Overview of Lead and Accompaniment Separation in Music”, IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 26, no. 8, pp. 1307–
1335, 2018

[A22] S. I. Mimilakis, K. Drossos, E. Cano, and G. Schuller, “Examining the Mapping
Functions of Denoising Autoencoders in Singing Voice Separation”, IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 266–278,
2020

The author’s contributions in the overview article presented in [A9], are the literature
overview, method descriptions, and illustration of some figures for the data-driven and
optimization-based approaches.

Peer-reviewed Conference Papers

[A6] S. I. Mimilakis, K. Drossos, T. Virtanen, and G. Schuller, “A Recurrent Encoder-
Decoder Approach with Skip-filtering Connections for Monaural Singing Voice Sepa-
ration”, in 2017 IEEE 27th International Workshop on Machine Learning for Signal
Processing (MLSP), 2017, pp. 1–6

[A10] S. I. Mimilakis, K. Drossos, J.-F. Santos, G. Schuller, T. Virtanen, and Y.
Bengio, “Monaural Singing Voice Separation with Skip-Filtering Connections and
Recurrent Inference of Time-Frequency Mask”, in Proceedings of the 43rd Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP 2018),
2018

[A11] K. Drossos, S. I. Mimilakis, D. Serdyuk, G. Schuller, T. Virtanen, and Y. Bengio,
“MaD TwinNet: Masker-Denoiser Architecture with Twin Networks for Monaural
Sound Source Separation”, in Proceedings of the 2018 IEEE International Joint
Conference on Neural Networks (IJCNN), 2018

[A12] K. Drossos, P. Magron, S. I. Mimilakis, and T. Virtanen, “Harmonic-Percussive
Source Separation with Deep Neural Networks and Phase Recovery”, in Proceedings
of the 16th International Workshop on Acoustic Signal Enhancement (IWAENC),
2018, pp. 421–425

[A14] S. I. Mimilakis, E. Cano, D. FitzGerald, K. Drossos, and G. Schuller, “Exam-
ining the Perceptual E�ect of Alternative Objective Functions for Deep Learning
Based Music Source Separation”, in Proceedings of the 52nd Asilomar Conference
on Signals, Systems, and Computers, 2018, pp. 679–683
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[A21] S. I. Mimilakis, K. Drossos, and G. Schuller, “Unsupervised Interpretable Rep-
resentation Learning for Singing Voice Separation”, in Proceedings of the 27th Eu-
ropean Signal Processing Conference (EUSIPCO 2020), 2020

The work presented in [A10] semantically builds on [A6] and contains two main ideas: the
usage and model improvements for skip-filtering connections and the recurrent inference
algorithm. The author’s contributions concern the first idea that has been extensively
used ever since in music source separation based on deep learning. The work presented
in [A11] builds on [A10], with the author’s contributions being the experimental procedure
and equal contribution to the development stages. In [A12], the work of [A11] is applied
to the problem of HPSS combined with a phase retrieval algorithm. The author has equal
contributions with K. Drossos and P. Magron with respect to the development of the
experimental procedure and the writing process. In [A14], the author has developed the
experimental procedure and has equally contributed to E. Cano for conducting listening
tests.

Scientific Archives

[A5] S. I. Mimilakis and G. Schuller, Investigating the Potential of Pseudo
Quadrature Mirror Filter-Banks in Music Source Separation Tasks, 2017. arXiv:
1706.04924 [cs.SD]

[A24] S. I. Mimilakis, K. Drossos, and G. Schuller, Revisiting Representation Learning
for Singing Voice Separation with Sinkhorn Distances, 2020. arXiv: 2007.02780
[cs.SD]

In [A5], the author’s contribution lies in the idea of investigating the applicability of a
particular signal representation to the problem of music source separation. The filter-bank
design method is accredited to G. Schuller.

Data-sets

[A8] Z. Rafii, A. Liutkus, F. Stöter, S. I. Mimilakis, and R. Bittner, The MUSDB18
Corpus for Music Separation, 2017. [Online]. Available: https://doi.org/10.
5281/zenodo.1117372

The author’s contribution in the MUSDB18 data-set [A8] is the production and mixing of
the raw audio multi-tracks, originally used in a previous version of the MUSDB18 data-set
known as the Demixing Secrets Dataset3 (DSD100).

1.5 Notation
In order to preserve consistency of the mathematical notation throughout this thesis, a
list of symbols is given below. The list’s primary use is for the convenience of the reader.

• Vectors are denoted by boldface letters, such as x.
3http://www.sisec17.audiolabs-erlangen.de
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• Vectors are assumed to be column-vectors, whose elements can be accessed via
indexing yielding scalars. More formally,

x =

S

WWWU

x1

x2

...
xn

T

XXXV
=

S

WWWU

x[1]

x[2]

...
x[n]

T

XXXV
,

where the n-th element is represented using a numerical subscript, i.e., xn, but also
using brackets, i.e., x[n]. The latter notation is used as an intermediate point
between the notation used in digital signal processing and the algebraic operations
commonly used in deep learning research.

• The (column-)vector containing N values that are equal to one is defined as

1N =

S

WU
1
...
1

T

XV

• Matrices are denoted by capital boldface letters, such as X. Similarly to the
vector notation, the matrix elements are denoted by

X =

S

WU
X11 X12 . . . X1M

...
...

. . .
...

Xn1 Xn2 . . . XNM

T

XV =

S

WU
X[1,1] X[1,2] . . . X[1,M ]

...
...

. . .
...

X[n,1] X[n,2] . . . X[N,M ]

T

XV .

• The N ◊ M all-zero matrix (null matrix) is denoted as 0N◊M and is defined as

0N◊M =

S

WU
0 · · · 0
...

. . .
...

0 · · · 0

T

XV .

• Diagonal matrices are defined as matrices whose entries outside the main diagonal
are all zero. All diagonal matrices are assumed to be symmetric diagonal matrices,
i.e., they are square.

• A diagonal matrix can be constructed using the diag(·) operator and given a
vector argument. For example, given a vector argument v œ R3 the corresponding
diagonal matrix V œ R3◊3 can be computed as V = diag(v), where

diag(v) =

S

U
v[1] 0 0
0 v[2] 0
0 0 v[3]

T

V .

• The trace of a matrix X œ RN◊N is defined as

tr(X) =
Nÿ

n=1

X[n,n].
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• All element-wise operations on vectors and matrices are characterized by a circular
symbol. For example, multiplication is denoted by “§”, exponentiation using an
exponent – by “·§–”, and division by “£”. Exception to the circular symbol that
can still refer to element-wise operations, are defined functions (presented in
advance), the square root function “

Ô
·”, and the absolute value function “| · |”

that, when applied to vectors and matrices, an element-wise operation is assumed.

• The application of the absolute value function “| · |” to complex-valued numbers,
vectors, and matrices refers to the modulus of complex numbers, that is defined as

|x + iy| =


x2 + y2 ,

where i =
Ô

≠1.

• Transposition of a vector, or a matrix is denoted by x€ and by X€, respectively.
Hermitian transposition is denoted by XH .

• The set of real, complex, integer, positive integer, and non-negative real numbers
is denoted by R, C, Z, Z+, and RØ0, respectively. Less general sets, such as
data-sets, are denoted by letters and are defined using curly brackets. For
example, a data-set containing K x and y vectors is denoted as D œ {x(i)

, y(i)}K

i=1
.

• Intervals are indicated using brackets, e.g. (–, —), [–, —]. Intervals are also used as
subscripts. In that case, a sub-set is assumed. For example, the sub-set of integers
in the closed interval of [≠5, 5] is denoted by Z[≠5,5].

• Functions are denoted by lower case letters with the corresponding arguments
being inside the parentheses, e.g., f(·).

• Functions of particular interest, that are defined and explained in this thesis, are
denoted by capital calligraphic letters. Examples include the discrete Fourier
transform FDFT(·) and the mean squared error loss function LMSE(·), among
others.

• The ceiling and floor functions are denoted as Á·Ë and Â·Ê, respectively.

• To describe a method that has multiple levels of dependencies, this thesis also uses
random variable notation. In this case, signals of interest are considered as
realizations of random variables. Random variables are denoted in italic, i.e. “x”
in contrast to the scalar “x”.

• Random variables, vectors, matrices, functions, and sets, can also have an
alphabetical subscript or superscript, e.g., e(distortion) or fdec(·). The subscripts
and superscripts are used to denote the link of the variable, vector, matrix,
function, or set, to a specific operation or computational outcome. When multiple
operations or computational outcomes are addressed, the asterisk “ú” is used for
brevity to replace the alphabetical subscripts or superscripts.
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Chapter 2

Fundamentals of Deep
Learning-Based Music Source
Separation

2.1 Introduction
The task of separating music sources is approached using digital signal processing tech-
niques [3]. These techniques operate on discrete-time signals defined on a finite set. To
obtain such signals, let us briefly consider a very common signal acquisition pipeline.
Emitted acoustic signals are first captured by an electroacoustic device, such as a micro-
phone. A microphone converts acoustic pressure fluctuations over time into a continuous
electrical signal [12]. By means of a signal transformation, such as the (short-time) Fourier
transform, this electrical signal can be described by frequency dependent amplitude and
phase information.

Since music signals are meant for human listening and the human auditory system
is band-limited from 20 Hz to 20 kHz, the continuous electrical signal can be accord-
ingly band-limited, discretized, and encoded as a numerical sequence. To that aim, the
Nyquist-Shannon sampling theorem informs us that a sampling frequency greater or equal
to 40 kHz is necessary for the discretization of a band-limited audio signal. After the dis-
cretization, the amplitude values of the signal are mapped to the nearest amplitude values
of a pre-defined and finite numerical set. This process of mapping is commonly known
as quantization. Both processes, discretization and quantization, are standard in digital
audio consumer devices and are usually implemented by the analog-to-digital converter
(ADC). The inverse operations are performed by the digital-to-analog converter (DAC).
Proper quantization of audio signals leads to inaudible errors due to the masking e�ects
in the human auditory system [13]. Typical audio converters use 16 bits per sample, and
a sampling frequency of 44.1 kHz.

Although it could be argued that the above processes are sub-optimal for a wide range
of signal processing applications [14] and these processes could be further optimized for
the task of separating signals, nearly all digital music content is acquired using these
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conventional processes. And so this thesis aims at addressing the problem of separating
music sources from mixture signals that are acquired from a conventional acquisition
process, disregarding more advanced signal acquisition techniques [14]. The rest of this
chapter is organized as follows: Section 2.2 introduces the basics of signal modelling and
establishes the connection between signal models and artificial neural networks (ANNs).
Section 2.3 describes mixing models that are relevant in deep learning-based music source
separation, and focuses on the separation of music sources from realistic mixtures. To
this end, Section 2.4 provides information regarding the evaluation procedures used for
assessing the performance of music source separation approaches.

2.2 From Signal Models to Neural Networks
The modelling of signals and the investigation of signal representations are open research
topics that have received attention from various research areas, such as sparse-aware signal
processing [15], compressed sensing [14], and deep learning [1]. Consequently, there is a
vast amount of information regarding concepts, algorithms, and approaches for modelling
and representing signals. This section aims at conveying the important information rel-
evant to audio and music signal processing and the connection between signal modelling
and artificial neural networks.

2.2.1 Signal Modelling Basics
Almost every digital signal processing technique, including source separation, can be
broken down and understood using the fact that any discrete-time signal can be composed
as a weighted sum of elementary functions [16]. These elementary functions are commonly
referred to as basis functions. Assuming that a music signal has been acquired according
to the acquisition process described in Section 2.1, let x œ RT

[≠1,1]
denote the discrete-

time music signal, where T is an integer denoting the number of time-domain samples and
determines the dimensionality of x. This signal is henceforth denoted as the time-domain
signal. Composing x using a weighted sum of N basis functions can be expressed as

x = Wz. (2.1)

In Eq. (2.1), W is a T ◊ N matrix that consists of N column vectors that are the basis
functions. Each basis function is denoted as wn and is a vector of size T . In order to
compose the signal x each wn is weighted by the vector element z[n]. In the context of
composing the time-domain audio signal x, Eq. (2.1) is also know as synthesis. Using
the synthesis operation, the task of source separation can now be seen as the selection of
the basis functions or the elements contained in z that correspond to the target source(s)
and not to the interfering source(s)1 [4], [7], or as the anew estimation of W and z with
respect to the target source(s)2.

The vector elements contained in z form the representation of the time-domain signal
x. Generally, the representation is said to be complete when the number of basis functions

1The selection process follows the assumption that the basis functions in W lead to disjoint and
orthogonal sources [17], a property that is later discussed in Section 2.3.4.

2The estimation of the corresponding variables with respect to an objective can be performed as in
the training of artificial neural networks discussed in Section 2.2.4.
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is equal to the dimensionality of x, i.e., N = T . For the cases of N < T and N > T the
representation is said to be under-complete and over-complete, respectively [16]. It should
be stated that a complete representation can be considered as over-complete even when
N = T . That is usually the case when W contains redundant or linear-dependent basis
functions. As a consequence of the redundancy, the representation is called over-complete
and redundant, or just redundant for short.

In many realistic scenarios, audio and music signals can last from a few seconds to
several hours. The variability of the signals’ length imposes also a change in the size
of each basis function wn when Eq. (2.1) is used to obtain the corresponding signals.
Even in the case of processing a signal of only a few seconds long, the number of samples
T can be very large, e.g., T = 105 for a duration of 5 seconds only at the sampling
frequency of 20 kHz. That is because T is the product between the sampling frequency,
that is usually at least 32 kHz for music signals, and the duration of the signal in seconds.
Consequently, the operation described in Eq. (2.1) becomes very demanding, with respect
to the computational resources, and in many practical scenarios ine�cient. Additionally,
the dependency of Eq. (2.1) on the number of time-domain samples, makes the operation
of Eq. (2.1) not applicable for processing audio and music signals of arbitrary length.

To alleviate the above problems and be able to develop digital signal processing tech-
niques that e�ciently process audio and music signals of arbitrary lengths, the local struc-
ture of the time-domain signals is exploited. For very short-time excerpts (segments) of
a time-domain signal, it can be observed that the statistical properties, such as the mean
and the variance, remain approximately constant. Additionally, periodic structures can
be observed by correlating any of the previously mentioned segments with time-shifted
versions of the same segment. In other words, the signals are weakly stationary and are
denoted as wide-sense stationary (WSS). An illustration of the weak stationarity is given
in Figure 2.1.

Figure 2.1: A half-second signal recording of a cello music instrument. Zooming into a
segment of 100 milliseconds (ms), a periodic and WSS signal is observed.
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In practice, audio and music signals are subdivided into small segments, denoted as
time-frames, and it is assumed that the (segmented) signal in each time-frame is WSS.
Subdividing a long signal yields a matrix X œ RT

Õ◊M

[≠1,1]
that contains M time-frames that

are available in the audio signal x œ RT

[≠1,1]
. Each time-frame is a vector that contains

T
Õ samples and T

Õ is smaller than the number of samples contained in the original signal,
i.e., T

Õ π T . The segmentation and re-arrangement of the signal x into the matrix X is
formally expressed as

X =

S

WU
x[0] x[s] x[2s] . . .

...
...

...
. . .

x[T Õ≠1] x[s+T Õ≠1] x[2s+T Õ≠1] . . .

T

XV ,

where s is a positive integer, such that T
Õ Ø s > 0, and denotes the step-size of the time-

domain signal segmentation. The step-size of the segmentation determines the overlap
between the adjacent time-frames. The matrix X can now be used to process the audio
signal or to compute the signal representation, using a predefined and fixed number of
time-domain samples. The operation for obtaining the corresponding vector x from the
matrix form X is a vectorization algorithm that is commonly referred to as the overlap-
add, computed as

x[t] =
ÿ

m

X[t≠m s,m] ’t œ [0, 1, . . . , T ≠ 1], (2.2)

where t and m œ [0, 1, . . . , M ≠ 1] are indices for the time-domain samples of x and time-
frames of X, respectively. For the equality expressed in Eq. (2.2) to hold, it is assumed
that

X[tÕ,m] = 0 if t
Õ ”œ [0, 1, . . . , T

Õ ≠ 1].

In order for the overlap-add algorithm to perfectly yield x when s < T
Õ using Eq. (2.2),

the application of a windowing function is necessary3. The windowing function is applied
element-wise to each column vector of X, formally expressed as

X = diag(v)

S

WU
x[0] x[s] x[2s] . . .

...
...

...
. . .

x[T Õ≠1] x[s+T Õ≠1] x[2s+T Õ≠1] . . .

T

XV , (2.3)

where v œ RT
Õ is the windowing function and diag(·) is the diagonal operator. It should

be noted that windowing functions do not satisfy the equality expressed in Eq. (2.2) for
all s values, i.e., the overlap-add procedure does not yield the original audio signal. For
a comprehensive review of various step-sizes for various windowing functions, interested
readers are referred to [18], [19]. An illustration of the Hamming windowing function,
that is a typical windowing function in music source separation, is given in Figure 2.2.

3Windowing functions are useful also for reducing cross-talk between frequency components in relevant
frequency analyses [18]. However, in the context of music source separation experimental evidence [A5]
suggests that the cross-talk reduction of windowing functions plays a negligible role in the estimation or
separation of sources. In relevant literature [A9], nearly all of the approaches for music source separation
select the appropriate windowing function based on the empirically chosen time-resolution of the short-
time transform; a mindset adopted by this thesis.
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Figure 2.2: The Hamming windowing function applied to the 100 ms time-frame of the
cello recording.

By using the above matrix expressions, the functionality of Eq. (2.1) remains the same.
However, the representation z is replaced by the matrix Z of size T

Õ ◊M . Each column in
Z is the representation of each corresponding column (time-frame) in the matrix X. The
main benefit of the segmentation process is that the basis functions, contained in W, and
the corresponding representation have dramatically smaller dimensions, leading to more
computationally e�cient processing of audio and music signals. The signal information
with respect to time variation is acquired from the time-frames of the representation,
allowing the analysis and modelling of the temporal structure of music signals.

2.2.2 Signal Representations
The central point of the previous section is the synthesis operation of a signal x. In
contrast, this section focuses on computing the representation z. Computing signal repre-
sentations can be understood as the decomposition, also known as analysis, of the signal
x into a finite set of components. Since the representations are computed for each time-
frame and the matrix notation (using Eq. (2.3)) will cause a clutter in the notation, the
data-set notation is introduced. Specifically, instead of dealing with two di�erent matri-
ces, one for the signal and one for the representation, and accessing each corresponding
matrix’s column to denote a single time-frame vector, each time-frame vector is consid-
ered an individual example (data-point) in the data-set D. To distinguish between the
M time-frame vectors, i.e, the examples, a bracketed superscript to each vector is used,
i.e., D œ {x(i)

, z(i)}M

i=1
.

For audio and music signal processing applications, universally optimal signal repre-
sentations do not exist. That is because optimal representations are dependent on the
provided or computed basis functions, and the basis functions are adapted towards the
requirements of the signal processing application [20]. For computing signal representa-
tions, two general frameworks can be distinguished from relevant research literature [15,
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Chapter 9],[20], [21]. In the first framework, the aim is to find the best representation zo(i)

given the basis functions W, by solving the following constrained optimization problem:

zo
(i) = arg

z(i)
min ||z(i)||0,

subject to x(i) = Wz(i).
(2.4)

In Eq. (2.4) the objective is to find the representation that has the smallest number of
non-zero elements, i.e., the sparsest representation, that satisfies Eq. (2.1). The number
of non-zero elements is given by the ¸0 vector norm (|| · ||0). However, the computation of
the ¸0 norm used in Eq. (2.4) is NP-hard. To alleviate this, the ¸0 norm is often replaced
by an approximation. Most commonly the ¸1 norm (|| · ||1)is used [20]. The replacement
by the ¸1 norm relaxes the problem of Eq. (2.4) to a linear program that can be solved
using a wide range of algorithms. Examples of algorithms that have been successfully
applied in audio and music signal processing are the basis pursuit algorithm [22], the
iterative thresholding algorithm [23], and greedy approaches such as the matching pursuit
algorithm [24], [25]. This category of approaches is extensively used and investigated in
the research fields of sparse coding and compressed sensing [14], [20].

Regarding the second framework, computing representations can be seen from a more
general point of view that encompasses the first framework. More specifically, the second
framework relies on energy-based learning4 [21]. Particularly to the problem of learning
signal representations, energy-based learning allows to learn models, i.e., functions for
analyzing and synthesizing the signal(s) of interest. The learning of models is performed
by using an energy function denoted by E(·). The function E(·) yields a scalar value that
is very small, ideally 0, when the signal estimated by the model is very close or ideally
identical to x(i). In contrast, the energy function yields a high value when the signal
constructed by the model is not equal or similar to x(i). In many practical scenarios
of digital signal processing the energy function is implemented as a divergence function
or a loss function L(·) that evaluates how close or similar two signals are. Typical loss
functions are computed using a (vector) norm of the residual between the constructed
and the target signal.

The above described framework finds many applications and is general enough to
include the extremely wide range of algorithms, methods, and models that have been
devised in order to analyze and process signals. For example, energy-based learning can
be seen as a minimization problem with the main objective to obtain the output of the
energy function as close as possible to 0. Taking that into account, the problem of Eq. (2.4)
can be re-formulated using energy-based learning as

zo
(i) = arg

z(i)
min E(x(i)

, W, z(i)) (2.5)

E(x(i)
, W, z(i)) = L(x(i)

, M(W, z(i))) . (2.6)

The energy function defined in Eq. (2.6) can be also sparsity promoting, with respect to
z(i), as in Eq. (2.4). This can be done by adding the ¸p vector norm as an additional term
in the loss function L(·). In Eq. (2.6), M(·) is an auxiliary function that allows an extra
degree of freedom for interacting and operating on the corresponding arguments, i.e., W

4Not to be confused with energy-based models discussed in [21].
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and z(i). Specifically for this case, the auxiliary function is defined as the vector-matrix
product between the representation z(i) and the matrix W

M(W, z(i)) := Wz(i) .

It should be stated that the auxiliary function M(·) can be used to express an arbitrary
or even non-linear operation applied to z.

Since the objective of energy-based learning is to push down the output of the en-
ergy function, or in other words minimize the loss L(·), additional directions in learning
representations emerge. These directions aim at overcoming the limitations that might
be imposed when learning of representations is performed using a fixed set of basis func-
tions. Learning representations with a fixed set of basis functions could potentially lead
to representations that do not accurately characterize the signals of interest [26], [27]. To
alleviate this issue, the minimization described in Eq. (2.5) can be performed with respect
to a set of variables W instead of considering only the representation z(i). More formally,
Eq (2.5) can be revisited using

Wo =arg
W

min E(x(i)
,W) , where

W = {z(i)
, W}

(2.7)

is a set that contains both the representation z and the matrix W. The important thing
to notice here is that by using Eq. (2.7), both the basis functions and the representation
can be learned with respect to the signal x(i). The task of learning new basis functions
W, is commonly referred to as dictionary learning [26], and goes hand-in-hand with the
task of learning (sparse) signal representations [20], [28].

In addition to the previously mentioned joint learning of dictionaries and representa-
tions, Eq. (2.5) and Eq. (2.6) can be further extended. Two frequently used extensions
in digital signal processing and deep learning are the explicit formulation or design of
the auxiliary function M(·) in Eq. (2.6) and the learning of basis functions that describe
the whole signal data-set D. The learning of basis functions that describe the whole
data-set can be achieved by minimizing the output of the energy function E(·) averaged
over the data-set. This type of minimization is commonly referred to as empirical loss
minimization [21] and it is formally expressed along the lines of Eq. (2.6) as

E(D,W) = 1
M

Mÿ

i=1

L(x(i)
, M(W, z(i))) , (2.8)

where M is the number of paired-vectors, i.e., x(i) and z(i), contained in D.
In addition to the above, many approaches have considered replacing the explicit

optimization with respect to the representation z(i) by a proxy. An extensively used
proxy is to express the representation z(i) as a function of the signal x(i). The function of
the signal x is usually parameterized by an additional set of basis functions that is shared
among all M examples. By letting the additional basis functions be denoted by Wa, in
the simplest case the representation z(i) can be computed as a function of the signal x(i)

using:
z(i) = Wax(i) . (2.9)
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In Eq. (2.9) the matrix Wa transforms the signal x into the corresponding representation.
The subscript “a” is used for Wa in Eq. (2.9) to denote the analysis operator of the
signal x(i). The goal now is to find the set of both analysis and synthesis basis functions
W = {W, Wa} that minimize the output of the energy function. There are two benefits for
learning suitable analysis and synthesis basis functions with respect to an objective that is
expressed as a minimization problem of the output of the energy function. The first benefit
is that by using the learned analysis basis functions to transform an audio mixture signal,
the resulting representation can be used to detect the sources contained in the mixture
signal. The detection of sources is often easier in the representation domain, computed
using the analysis basis functions, compared to the time-domain of audio signals [20].
The second benefit, is that ideally the learned synthesis basis functions can be used to
reconstruct the transformed signal without any loss of information. This is particularly
useful when the representation is processed, e.g., the interfering sources are detected and
removed by an appropriate operation5, and then the representation is used to obtain the
time-domain signal with the help of the synthesis basis functions. With this in mind,
there are two important directions that are of high relevance to this thesis; namely, these
are (handcrafted) audio signal transforms and learned transforms by neural networks.

2.2.3 Audio Signal Transforms
A very common choice for selecting the analysis basis functions Wa is based on the
local structure of the audio and music signals, described in Section 2.2.1. The weak
stationarity and specifically the periodicity observed in the short-time segments of audio
and music signals, implies that the class of periodic functions could serve as a reasonable
starting point for selecting the basis set W = {W, Wa}. In particular, periodic functions
that enable an intuitive transformation of audio signals are sinusoidal functions, i.e.,
cosine and sine functions. Sinusoidal functions contain a very limited frequency content,
i.e., frequency bandwidth, of a single frequency. This enables the transformation of an
audio signal into a representation that conveys information about frequencies. Often this
transformation is related to the human auditory system [13], and the modelling of music
instruments [7], making sinusoidal functions an attractive choice for separating music
sources. That is because, music source separation can be also seen as a frequency filtering
operation [3], [29].

The most well-known and commonly used transform in music source separation that
employs sinusoidal functions is the discrete Fourier transform (DFT). The DFT is a
complex-valued transform that uses the analysis matrix Wa œ CN◊N as

Wa[k,n] = 1Ô
N

3
cos(2fikn

N
) ≠ i sin(2fikn

N
)
4

, (2.10)

where 1Ô
N

is a normalization scalar that is useful in obtaining the basis functions for
the synthesis W, i =

Ô
≠1 , and cos(·) and sin(·) denote the cosine and sine functions,

respectively. In Eq. (2.10), k and n are integers k, n œ [0, 1, . . . , N ≠ 1] that denote the
index of the frequency and time-sample of each function, respectively. Although using the
DFT implies that complex numbers have to be used to process real-valued time-domain

5Examples of operations are given in Section 2.3.
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signals, the convenience of using a complex-valued representation is the computation of
the magnitude and the phase of the signal. The magnitude is the modulus of the complex
valued representation applied to each frequency component, or sub-band, and the phase
is the complex angle computed in each sub-band.

Subject to the goal of minimizing the output of the energy function E(·), expressed in
Eq. (2.6), the complex-valued exponential functions employed in the DFT, can be handy.
That is because the employed functions are orthogonal to each other, forming an orthogo-
nal basis over N samples [16]. This means that the (real-valued) product between Wa and
its Hermitian transpose WH

a
is the identity matrix IN . From an algebraic perspective,

by computing Wa using Eq. (2.10) and by allowing the synthesis basis functions be

W = Wa
H ,

any audio and music signal can be analyzed and synthesized without losing any information
for that signal, i.e., x is perfectly reconstructed resulting into a nullification of the output
of the energy function.

The DFT can be also used to compute a time-localized transformation of the signal.
This transform is denoted as the short-time Fourier transform (STFT), and it employs the
above described analysis and synthesis matrices {Wa, W}. The main di�erence between
the DFT and the STFT is that the STFT applies the DFT to all short-time segments
available in the signal. This is done by using Eq. (2.3), where the time-domain signal
x œ RT

[≠1,1]
, of T samples, is segmented into M time-frames, each consisting of T

Õ samples.
At each time-frame, a windowing function is applied, leading to the yielded matrix form
XT

Õ◊M of the signal x. By ensuring that the number of samples in each time-frame of
X is equal to the number of basis functions N , i.e., T

Õ = N , a straightforward way to
perform the STFT analysis and synthesis is by using:

Z = WaX (2.11)
X = R(WZ) , (2.12)

where R(·) is the operator retaining the real-valued elements of a matrix.
The process of computing the STFT, involves selecting two transformation parameters.

The transformation parameters are the number of basis functions N and the step-size of
the segmentation. The number of basis functions N a�ects the resolution of the transform,
i.e., how many sinusoidal functions are used to describe the signal. On the other hand,
the step-size controls the time resolution of the STFT, i.e, how many time-frames are used
to describe the variation of the signal with respect to time. Both hyper-parameters are
important as there is always a trade-o� between favoring frequency analysis over time. In
music source separation, it is more common to favor frequency resolution over high time
resolution, as the sources can be distinguished better and therefore are easier to separate,
up to a certain extent [30]. To obtain more accurate analysis estimates, with respect to
frequency, signal up-sampling techniques, such as zero-padding, can be used [18].

Focusing on the complex-valued representation computed using the STFT (Eq. (2.11)),
i.e., Z œ CN◊M , the magnitude |Z| œ RN◊M

Ø0
and the phase Z\ œ RN◊M information is
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computed using

|Z| =


R(Z)§2 + I(Z)§2 (2.13)

Z\ = arctan
1 I(Z)

R(Z)

2
. (2.14)

In Eqs.(2.13)–(2.14), I(·) is the operator that retains only the imaginary values from the
vector/matrix, and arctan in Eq. (2.14) is the arc-tangent function. The basis functions
used in the DFT and the STFT are conjugate symmetric between positive (the lower
half of the DFT sub-band indices) and negative frequencies (the upper half of the DFT
sub-band indices). Consequently, the representation Z of a real-valued signal is redundant.

(a) Magnitude (left) and phase (right) spectrogram representations of a cello recording.

(b) Magnitude (left) and phase (right) spectrogram representations of a drum-set recording.

Figure 2.3: Magnitude and phase spectrogram representations of a cello recording (a) and
a drum-set recording (b). The STFT is computed using a window size of 2048 samples, a
Hamming windowing function, and step size of 256 samples. The redundant information
of the negative frequency sub-bands is omitted.

This particular redundancy of the DFT and the STFT and the necessity of processing
complex-valued representations is sometimes not desired in applications such as (sparse)
audio coding [31]. For such applications, real-valued transforms are used [31]. Real-valued
transforms employ only cosine functions. Examples of real-valued transforms include the
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discrete cosine transform (DCT) and variants, such as the modified discrete cosine trans-
form (MDCT), and modulated transforms, such as the pseudo-quadrature mirror filter-
banks (PQMF) [32]. Although there is a great variety of real-valued transforms, music
source separation research has mostly focused on using the STFT [A9]. An explanation
to this is that the magnitude information computed using the STFT conveys the essen-
tial information of the underlying structure of the music sources and exhibits temporal
attributes, such as the slow time-variance for sustained music signals that can be used
for separation [11], [33]–[35]. An illustration of the magnitude and phase spectrogram
representations of a cello and a drum-set recording is given in Figure 2.3.

From a general point of view, all the above described transforms that are based on
sinusoidal functions rely on an assumption of some sort of optimality with respect to
the coordinate space used to describe audio signals. In the case of sinusoidal functions,
the assumption is that sinusoids form the eigenvectors of the normalized auto-correlation
(covariance) matrix of the audio signals. However, this can be true only if the covariance
matrix of the audio signals to be transformed, i.e., the covariance of the matrix X, is a
circulant matrix6 as the (auto) covariance of a stationary first-order Makrov process [36],
[37]. That is because sinusoidal functions are the solutions to the matrix diagonalization
problem of a circulant matrix [37]. Therefore, sinusoidal functions serve as characteris-
tic functions for forming the coordinate space of a linear transformation. Nonetheless,
the covariance matrix of music signals is usually not strictly circulant, and consequently
sinusoidal functions do not form the ideal transform, even if they allow perfect reconstruc-
tion of the signal(s). An illustration of the covariance matrix of a music signal recording
is given in Figure 2.4. The covariance matrix is computed using a cello recording of 8

(a) Covariance matrix of a cello recording.

Figure 2.4: An illustration of the covariance matrix of a cello recording.

seconds long and segmented using Eq. (2.3) for T
Õ = 2048(≥ 50ms).

In Figure 2.4, it can be observed that the non-negative entries of the covariance matrix
exhibit strong correlations between non-neighbouring samples of an audio signal. That is
in contrast to the structure of circulant covariance matrices suggesting that only adjacent
samples are correlated. This in turn, makes the assumption of a first-order Markov process

6A circulant matrix is a special case of a Toeplitz matrix. Covariance matrices that are Toeplitz,
suggest that the underlying signals are WSS.
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with a circulant covariance matrix only a fair proxy to the empirical statistics of audio
signals. It also raises the suspicion that sinusoidal functions might not be the best choice
for audio signal transforms, even if these transforms o�er an intuitive and informative
way to process audio and music signals.

Considering the above, the learning of audio signal transforms is an emerging research
direction. Learned audio signal transforms can be computed using a variety of algebraic
methods including the Karhunen-Loéve transform, that is similar to singular value de-
composition (SVD) and principal component analysis (PCA). Another approach towards
learning audio signal transforms is artificial neural networks (ANNs). The latter approach
allows many more degrees of freedom in learning signal transforms. The learning of the
transforms can be performed using the framework of energy-based learning described in
Section 2.2.2. For example, the signal transformations can be non-linear, enabling the
modelling of more complicated signal structures. Also, the signal transform can be hier-
archical, i.e., a composition of di�erent and cascaded transforms, enabling the discovery
of more abstract descriptions of audio signals [1].

2.2.4 Artificial Neural Networks
ANNs have been initially developed as a mathematical model of biological brains, and par-
ticularly the way that information is processed by biological neurons [38], [39]. Although
ANNs are a parsimonious model of biological neurons, they have received a lot of attention
in research communities, due to their good performance in the hierarchical processing of
information using a series of cascaded operators [40]–[42]. The hierarchical processing of
information is useful in problems that can be formally expressed as classification, pattern
recognition, or regression problems [1]. The fundamental structure of an ANN consists
of a set (a network) of nodes that are connected. The connection between the nodes is
determined by a set of weights, that are adapted towards minimizing the provided loss
function using signal observations (data points). Over the last decades many types of
ANNs have been proposed. The most well established and used ones in music source sep-
aration are (deep) feed-forward neural networks (FNNs)7 [38], [42], convolutional neural
networks (CNNs) [43], and recurrent neural networks (RNNs) with extensions such as the
long short-term memory (LSTM) networks, and gated recurrent units (GRUs) [44].

Feed-forward Neural Networks

FNNs can be seen as a learned function that aims at mapping an input vector x œ RN

to an output target vector y œ RNo . In the context of music source separation, x is often
the mixture signal and y is the target source signal. The mapping function x ≠æ y is
mainly parameterized by weights that establish the connection between multiple nodes in
the network. Towards computing y, FNNs use multiple functions in series and in practice
FNNs yield an approximation of y that is denoted by ŷ œ RNo . The output of each one
of those functions is denoted as the hidden or latent representation of the input to that
function.

7FNNs are also known as the multi-layer perceptron, when the output of the (multi-layer) FNN
corresponds to the probability of the input belonging to a certain class, event or pattern [1].
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Non-linear FNNs that compute a single latent representation of su�ciently high di-
mensionality, i.e., equal to the intrinsic dimension of the input data, can approximate
any continuous function8 [45]. If the network uses two or more latent representations
for computing ŷ, the neural network is referred to as deep; otherwise it is referred to
as shallow. Additional computations of latent representations extend the approximation
capabilities of the FNN. However, in many applications the choice of the dimensionality
for each latent representation and the number of computed representations remains a
heuristic choice that is verified empirically [1].

More formally, using a deep FNN to compute L latent representations and the out-
put ŷ, let W(l) œ RNl◊Nl≠1 denote the l-th weights matrix used to compute l-th latent
representation z(l) œ RNl . The dimensionality of the previously computed representation
is denoted by Nl≠1 and Nl is the dimensionality of the succeeding representation. The
representations are computed using a series of vector-matrix products as

z̃(l) = W(l)z(l≠1) + b(l) , (2.15)

and the application of an activation function g(·)

z(l) = g
(l)(z̃(l)) . (2.16)

The activation function g
(l)(·) is an element-wise non-linear function that is used to com-

pute the l-th representation and b(l) œ RNl is the bias vector that allows shifting the
output of the vector-matrix product prior to the application of the non-linear function.
For l = 0 in Eq. (2.15), it is assumed that z(0) = x and N(l=0) = N . The output of the
FNN is then computed by another vector-matrix product followed by the application of
a non-linear function as

ỹ = W(o)z(L) + b(o) (2.17)
ŷ = g

(o)(ỹ) (2.18)

In Eqs. (2.17), (2.18) the superscript “·(o)” is used to denote the output weights and
biases, that are di�erent from the weights and biases used to computed the previous
representation.

Common choices for the element-wise and non-linear activation functions g(·) are the
hyperbolic tangent tanh(·) function defined as

tanh(x) = exp(2x) ≠ 1
exp(2x) + 1 , (2.19)

the (logistic) sigmoid ‡(·) function defined as

‡(x) = 1
1 + exp(≠x) , (2.20)

and the rectified linear unit (ReLU) [46] function defined as

ReLU(x) =
I

0, if x < 0
x, otherwise .

(2.21)

8The approximation can be performed to arbitrary precision, given that the input and output domains
are defined on a compact numerical set.
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Using Eqs. (2.19)–(2.21) to compute the latent representation(s) and the output ŷ, makes
the FNN non-linear and flexible to find non-linear classification boundaries or approximate
complex-structured functions [1].

In order for the FNN to yield reliable predictions ŷ, i.e., the predictions are similar
to the target y subject to a given metric, the parameters of the FNN are updated. The
updates are performed in an iterative way during the training process. The goal of the
training process is to estimate the parameters, i.e., the weights and biases, of the FNN so
that the di�erence between the predicted ŷ and targeted output y is minimized. Since the
functions expressed in Eqs. (2.15)–(2.21), i.e., the vector-matrix products and the element-
wise activation functions, are di�erentiable9, the parameters of the FNN can be optimized
by using gradient descent. A well-known algorithm based on gradient descent is the back-
propagation algorithm [42], [48]. Back-propagation uses the chain rule of di�erentiation
to compute partial derivatives with respect to all parameters of the FNN. More formally,
allow L(y, ŷ) be a di�erentiable loss function that yields the error E, i.e.,

E = L(y, ŷ) .

Then, the partial derivatives of the FNN parameters are calculated as

ˆE
ˆW(o)

= � ˆỹ
ˆW(o)

(2.22)

ˆE
ˆb(o)

= � ˆỹ
ˆb(o)

, (2.23)

where
� := ˆE

ˆỹ = ˆE
ˆŷ

ˆŷ
ˆỹ , (2.24)

and ˆŷ
ˆỹ is the first derivative of the selected activation function g

(o)(·) with respect to ỹ.
In the above notation, the functional dependence of E and L(·) is used for convenience
and it admits ˆE

ˆŷ := ˆL(y,ŷ)

ˆŷ . From Eq. (2.15) and Eq. (2.17) it follows that the partial
derivative with respect to the bias vector(s) is the all-ones vector 1Nl≠1 . Similar to the
above, the partial derivatives with respect to the parameters that compute the l-th latent
representation, i.e., W(l) and b(l) are computed10as

ˆE
ˆW(l)

= � ˆỹ
ˆz(L)

ˆz(L)

ˆz̃(L)
. . .

ˆz̃(l + 1)

ˆz(l)

ˆz(l)

ˆz̃(l)

ˆz̃(l)

ˆW(l)
(2.25)

ˆE
ˆb(l)

= � ˆỹ
ˆz(L)

ˆz(L)

ˆz̃(L)
. . .

ˆz̃(l + 1)

ˆz(l)

ˆz(l)

ˆz̃(l)

ˆz̃(l)

ˆb(l)
, (2.26)

for l > 0. After the computation of the partial derivatives, the parameters (W(l), b(l),
9The gradients for the ReLU function (Eq. (2.21)) can be calculated using a subgradient method. For

x = 0 an intended gradient [47] value of 0 is used, following the work presented in [46].
10In software packages for automatic di�erentiation, such as the one used in [49], the vectors and

matrices of Eq. (2.25) and Eq. (2.26) are not computed anew for every layer. The above equations are
used as an example of the involved calculations.
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W(o), and b(o)) are updated using:

W(ú)

u+1
= W(ú)

u
≠ ÷

ˆE

ˆW(ú)

u

(2.27)

b(ú)

u+1
= b(ú)

u
≠ ÷

ˆE

ˆb(ú)

u

, (2.28)

where u > 0 is the iteration index (gradient step), and ÷ is a scalar known as the learning
rate. The asterisk “·(ú)” is used to replace the superscript identifiers “·(l)” and “·(o)” in
order to denote the applicability of Eq. (2.27) and Eq. (2.28) to all parameters of the
network.

Recent works in deep learning involve solvers that re-calculate the evaluated partial
derivatives used in Eq. (2.27) and Eq. (2.28). The re-calculation is based on higher order
moments (aggregating information of past gradient steps) of the partial derivatives in
order to adaptively weight the values of the partial derivatives. A solver that is extensively
used in this thesis is the Adam algorithm [50], [51]. Adam is a popular choice due to its
convergence performance in stochastic optimization, where multiple update steps u are
performed using data-points from a given data-set. The pseudocode for Adam is given in
Appendix B.

Recurrent Neural Networks

Data such as audio signals exhibit strong temporal patterns. At a given time instance
an audio signal exhibits strong dependencies on past time instances. An important type
of ANNs that takes into account those dependencies in time is the RNN. Unlike FNNs,
RNNs also process past information of the input data. Specifically, instead of mapping
input to output vectors, as in the case of the FNNs, RNNs in principle map from the
previously observed input vectors to each output. More formally, let X œ RT ◊N be a
matrix that consists of a sequence of T vectors, and each vector xt œ RN has a size N

X = [x0, . . . , xT ≠1] .

In many music source separation applications, the matrix X can be thought of as a
sequence of time-frames obtained from segmenting audio signals, as in the segmentation
process by using Eq. (2.3). It should be noted that the RNN is not restricted to the usage
of the above described organization of time-frames in X, but instead refers to a rather
general process of sequential information [52]. Using the RNN, without bias vectors, the
latent representation z(h)

t
œ RNh at each time-step t is computed by recursively applying:

z̃(h)

t
= W(i-h)xt + W(h-h)z(h)

t≠1
(2.29)

z(h)

t
= g

(h)(z̃(h)

t
) . (2.30)

In Eq. (2.29), W(i-h) œ RNh◊N and W(h-h) œ RNh◊Nh are the weights of the RNN that
compute the input-to-hidden (i-h) and hidden-to-hidden (h-h) representations, respec-
tively. The dimensionality of the latent representation is Nh. Furthermore, it is assumed
that for the initial time-step t = 0, z(h)

t≠1
is the null vector. The output of the RNN
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ŷt œ RNo at each time-step t, is computed using

ŷt = W(h-o)z(h)

t
, (2.31)

where W(h-o) œ RNo◊Nh is the hidden-to-output weight matrix, and No is the dimension-
ality of the output vector.

For computing the derivatives with respect to the parameters of the RNN, W(i-h),
W(h-h), and W(h-o), the back-propagation algorithm can be used. However, for calculating
the partial derivatives of the RNN the back-propagation algorithm has to consider all the
time-steps involved in the computation of the latent representation and output [52], [53].
This is commonly referred to as back-propagation through time (BPTT) and is introduced
in [54]. By letting Y œ RT ◊No and Ŷ œ RT ◊No be the matrices that contain the sequences
of the target yt and predicted ŷt vectors, respectively, and

Et = L(yt, ŷt)

be the outcome of a di�erentiable loss function at time-step t, the derivative of the total
sum of errors E with respect to W(h-o) is calculated as

ˆE
ˆW(h-o)

=
T ≠1ÿ

t=0

ˆEt

ˆŷt

ˆŷt

ˆW(h-o)
. (2.32)

For calculating the derivatives of E with respect to W(h-h) and with respect to W(i-h), let
�(h) be a matrix used to denote either W(h-h) or W(i-h). Then, the derivative of E with
to respect to �(h) can be calculated by summing the derivatives for all time-steps T

ˆE
ˆ�(h)

=
T ≠1ÿ

t=0

ˆEt

ˆ�(h)
. (2.33)

Then, each derivative at time-step t is calculated using the temporal contribution of all
the previous time-steps as

ˆEt

ˆ�(h)
=

tÿ

tÕ=0

ˆEt

ˆŷt

ˆŷt

ˆzt

ˆzt

ˆztÕ

ˆ
+ztÕ

ˆ� , (2.34)

where ˆ
+ztÕ
ˆ� is the instantaneous partial derivative. The instantaneous partial derivative

considers the time-step prior to t
Õ as a constant, so that ˆ

+ztÕ
ˆ� computes only the derivative

of ztÕ with respect to � at time-step t
Õ. As it can be seen from Eq. (2.29), each zt is

dependent on its previous state zt≠1. Therefore, ˆzt
ˆztÕ

has to consider the dependencies on
the previous state and is calculated as

ˆzt

ˆztÕ
=

tŸ

tÕÕ=tÕ+1

ˆztÕÕ

ˆztÕÕ≠1

, (2.35)

where t
ÕÕ is an index introduced to compute the products up to time-step t. Then, the up-

date of the RNN parameters, W(h-o), W(h-h), and W(i-h), can be performed as previously
shown in Eq. (2.27).
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Eqs. (2.33)–(2.34) suggest that computing derivatives with respect to the parameters
of the RNNs involves computing sum-of-products for each time-step t. By inspecting
Eq. (2.34) closer and considering W(h-h) as the parameter to be optimized, it can be
seen that a recursive product is computed between W(h-h) and the first derivative of the
employed non-linear function g

(h)(·) with respect to the state zt≠1. The recursive compu-
tation of the product is problematic in many cases, as for long sequences the derivatives
can explode or vanish [52], [53], [55], meaning that the norm of the calculated gradients
goes to zero or reaches exceedingly high values. Consequently, training RNNs becomes ex-
tremely di�cult [52], [53], [56]. To alleviate this issue, the LSTM architecture is proposed
in [57].

The LSTM architecture mitigates the exploding or vanishing gradients problem, by
using memory and gating units. Memory units are linear functions for recurrent self-
connectivity. Gating units control the flow of information from and to the memory unit.
These two units allow the network to better control the gradient values at each time-
step. The control of the gradient values is performed by using suitable parameter updates
that are computed by the gating units. The capabilities of the LSTM architecture to
solve problems where long temporal dependencies have to be modelled are demonstrated
in [52]. A less computationally demanding alternative to the LSTM architecture, that
is based on the gating mechanisms of the LSTM architecture, is the GRU architecture
presented in [44]. The GRU architecture has comparable performance to the LSTM [58]
in modelling long temporal dependencies of the data, but requires computing fewer gating
mechanisms than the LSTM. Due to the comparable performance and the reduction in
the number of parameters, the GRU is used in this thesis.

More specifically, the GRU architecture employs two gating units at each time-step t.
The gating units are the update gate ht œ RNh

[0,1]
, that controls the information fed into

the memory, and the forget gate rt œ RNh
[0,1]

, that controls the information flowing out of
the memory of the GRU. In more details, the representation11 zt œ RNh

[≠1,1]
at time-step t

is computed as
zt = (1 ≠ ht) § zt≠1 + ht § z̃t , (2.36)

where the update gate ht is computed as

ht = ‡(W(i-h)xt + W(z-h)zt≠1) , (2.37)

and z̃t œ RNh
[≠1,1]

is the candidate hidden state. The candidate state is processed by the
application of the forget gate rt at time-step t, and is computed using

z̃t = tanh(W(i-z)xt + rt § (W(h-h)zt≠1)) . (2.38)

Practically, Eq. (2.38) for rt = 1Nh and ’t œ [0, 1, . . . , T ≠1] boils down to the conventional
RNN, from Eq. (2.29) and Eq. (2.30), that uses the tanh(·) as a non-linear function. To
this end, the forget gate rt is computed at time-step t using

rt = ‡(W(i-r)xt + W(z-r)zt≠1) . (2.39)
11Compared to the paper introducing the GRU architecture [44], in this section the used notation

between the latent representation z and the update gate h has been swapped, in order to preserve
consistency in the notation from previous sections, regarding the latent representations.

27



CHAPTER 2. FUNDAMENTALS OF DEEP LEARNING-BASED MUSIC SOURCE
SEPARATION

The weight parameters of the GRU that are optimized, are W(i-h)
, W(i-z)

, W(i-r)

œ RNh◊N , and W(z-h)
, W(h-h)W(z-r) œ RNh◊Nh . Optionally, three bias vectors b(h),

b(z), and b(r) can be added to Eq. (2.37), Eq. (2.38), and Eq. (2.39), respectively, prior
to the application of each respective non-linear function. The bias vectors are omitted
from the above described equations for brevity. By using the representation computed
by the GRU, an additional FNN can be applied to obtain the outputs of the GRU at
each time-step, as previously done in Eq. (2.31). Then, by providing a di�erentiable loss
function L(·), the previously mentioned parameters of the GRU can be optimized using
the BPTT algorithm.

All previously mentioned RNN architectures process the input sequence using a direc-
tion that starts from t = 0 and advances to t = T ≠ 1, that is the termination step of
the recursion. This e�ectively models data dependencies, at a current time-step t, using
only past information. However, information from future time-steps can be also useful in
various applications of sequence modelling [52], [59]. To that aim, RNNs can be extended
to process sequences using two sequence directions rather than only one. In that case,
the RNN is denoted as bi-directional. To do so, two RNNs with di�erent parameters are
used to compute the time-dependent latent information. The first RNN accepts as input
the input sequence X and processes it according to the previously mentioned recursive
equations and the second RNN accepts as input the time-reversed version of the input
sequence X, that is commonly denoted as Ω≠X. For clarity, the original sequence is also
denoted as ≠æX. The latent information yielded from the two RNNs is concatenated, form-
ing a new latent representation of higher dimensionality. This higher dimensional latent
information contains richer information with respect to time-dependencies of the input
data [52], [59].

Convolutional Neural Networks

CNNs, introduced in [43], have been extremely popular in image processing and recog-
nition, due to their performance in detecting patterns and shapes in images [60]. The
architecture of the CNN is in a sense similar to the FNN as the CNN does not process
temporal data recursively as in the case of RNNs. Instead, a convolution12 operation is
applied between the input signal and a set of kernels. The assumption behind the usage
of CNNs is that the structure of the input signal(s) is characterized by spatial informa-
tion, e.g., neighboring pixels of an image or adjacent time-samples of an audio signal.
The spatial information is exploited by the CNNs by means of the convolution operation,
resulting in learning representations that encode certain information about the structure
of the input signal(s).

In more details, the application of a single one-dimensional (1D) CNN to the input
signal x œ RN , using a set of C kernels wc œ RLk , is described as

Z[t,c] =
Lk≠1ÿ

lk=0

x[St+lk]wc[lk] , (2.40)

12The term convolution is used in a loose sense. From a signal processing point of view, a cross-
correlation is computed between a signal and a set of kernels. However, kernels are often randomly
initialized and the order reversal of the samples in each kernel is omitted in the notation.
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where Lk is the length of the kernels, lk œ [0, 1, . . . , Lk ≠ 1] is the sample position index in
each kernel wc, and S is the stride size that allows stepping over S samples in the signal
x. In Eq. (2.40), t, 0 < t Æ ÁN/SË, is an integer that indexes the temporal resolution of
the outcome of the convolution.

The latent representation Z œ RT ◊C consists of C components and it can be further
processed using CNNs. In this case, an additional set of No kernels is employed and the
kernels are indexed by c

Õ. Each kernel W(o)

cÕ œ RL
Õ
k◊C is a matrix composed of C column

vectors, one for each component in the representation Z œ RT ◊C . Also, the kernels
have a temporal length L

Õ
k
, and each kernel computes the contribution of every c in the

representation, to the output of the CNN, Ŷ œ RT
Õ◊No using

Ŷ[tÕ,cÕ] =
C≠1ÿ

c=0

L
Õ
k≠1ÿ

l
Õ
k=0

Z[SÕtÕ+„ l
Õ
k,cÕ]W

(o)

cÕ
[l

Õ
k,c]

. (2.41)

In Eq. (2.41), S
Õ is the stride hyper-parameter of the second convolutional network, and „

is the dilation factor [61]. The dilation factor is an optional hyper-parameter that allows
each kernel W(o)

cÕ to aggregate information from proceeding time-frames, enabling each
kernel to “be stretched” in the temporal domain of the representation by a factor „. The
dilation can also be applied to Eq. (2.40) but it is neglected for clarity in the presentation of
the CNNs. The parameters of the CNN can be optimized by employing a di�erentiable loss
function L(·) and the target output Y œ RT

Õ◊No . Then, the back-propagation algorithm
can be applied as in the case of the FNNs, with the only peculiarity that the sample order
in each kernel is reversed when the partial derivatives are computed13 [43].

To compute the temporal length of the output of any CNN, termed as To, the stride, the
dilation factor, the kernel length, and the temporal length Ti of the signal or representation
to be convolved are taken into account. Specifically, the output To is computed as

To = ÁTi ≠ Lk ≠ (Lk ≠ 1)(„ ≠ 1) + 2P

S
+ 1 ≠ 0.5Ë ,

where P is an integer that denotes the number of zeroes that are appended before and after
the signal or representation to be convolved. In this thesis, all convolutional operations
use the above formula to determine the zero-padding factor P . This is performed in order
to maintain the expected time-resolution, dependent on the application.

Network Initialization

All the above mentioned weight and bias parameters of the described neural networks
are initialized and then optimized by gradient descent-based algorithms. In this thesis all
considered bias vectors are initialized with zero values. For weight parameters, a random
initialization procedure is performed. During this procedure, values are randomly drawn
from a normal or a uniform distribution and scaled according to a selected scaling strategy.
The scaling is performed because it plays a crucial role in gradient-based optimization,
as the norm of the gradients can be dauntingly high leading to a degenerate training
procedure. The strategies employed in this thesis are the one presented in [62] for the

13CNNs that use kernels whose sample ordered is reversed are also loosely denoted as transposed CNNs.
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RNNs and/or GRUs, and the scaling strategy presented in [63] and in [64] for FNNs and
for CNNs. Each selected distribution and strategy is given in the corresponding sections
of each chapter that describe the followed experimental procedure.

Practical Considerations

The previously presented computations of latent information or outputs by using DNNs,
and the calculation of partial derivatives are computed using numerical software packages.
These packages include automatic di�erentiation mechanisms to keep track of all the
variables and the respective partial derivatives. In this thesis Pytorch [49] is used, due
to its powerful automatic di�erentiation mechanism and its flexibility towards developing
novel modules for deep learning-based research. Due to the high dimensionality of audio
and music signals and the usage of a data-set that contains hours of audio material, all
the computations presented in this thesis are performed using graphics processing units
(GPUs). Specifically, all described experiments are using either an Nvidia Titan X or an
Nvidia GTX 1050Ti GPU with single precision floating point operations.

2.3 Mixing Models & Separation by Masking
Apart from the models that aim at characterizing or representing individual signals, such
as the ones presented in Section 2.2, mixing models aim at characterizing the function
for mixing individual signals, i.e., the mixing function. Towards that aim, two mixing
models are commonly assumed: the instantaneous (linear) and the convolutive mixing
model. Each mixing model can be characterized as time-invariant or time-variant.

2.3.1 Instantaneous Mixing Model
The main assumption behind the instantaneous mixing model, is that the sources’ signals
have been processed only by amplitude scaling, prior to the computation of their mixture.
More formally, let j œ [1, . . . , J ] be an integer denoting the j-th source xj œ RT

[≠1,1]
,

ch œ [1, 2] be the index of the channel of a signal, and xch m œ RT

[≠1,1]
be the mixture of

J Ø 2 sources in channel ch. The instantaneous mixing model is formally described as

xch m =
Jÿ

j=1

–ch jxj

where –ch j is a scalar value, denoted as the gain, that modifies the amplitude of each
source in channel ch. The instantaneous mixing model can be further extended to take
into account possible time fluctuations of the gain values. In this case, the instantaneous
mixing model is characterized as time-variant and is formally expressed as

xch m[t]
=

Jÿ

j=1

–ch j [q]
xj [t]

,
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where q is an index that is computed as a function of t and is used to denote the slower,
compared to t, time-variation of the gain values14. For the case of the instantaneous
mixing model, the goal of source separation methods is to estimate the target sources xj

from the observed mixture xm. Due to the simplicity of the instantaneous mixing model,
it has been assumed in many unsupervised or blind source separation methods [4], [9].

2.3.2 Convolutive Mixing Model
The convolutive mixing model assumes that prior to the mixing of the sources, each source
has been recorded in a room with particular acoustic characteristics (e.g., reverberation)
or processed by a digital signal processing operation, such as a delay, a filter, or a re-
verberation e�ect. The previously mentioned assumptions are commonly modeled by the
convolution of each source signal with a particular finite impulse response. More formally,
let hch j œ RT

Õ denote the finite impulse response that is applied to the j-th source and
in channel ch. Then, the convolutive mixing model is expressed as

xch m[t]
=

Jÿ

j=1

T ≠1ÿ

tÕ=0

–ch j(xj [t≠tÕ]hch j [tÕ]) ,

where the sum in the convolution is assumed to be computed using indices t≠t
Õ for which

the source signal is defined.
In addition to the above formula, the convolutive mixing model can be extended in

its time-variant form. For the time-variant case, each source can be convolved by a set
of Q

Õ finite impulse responses Hch j œ RT
Õ◊Q

Õ that depend on channel ch. The di�erence
compared to the time-invariant case, is that the j-th source xj is convolved with a di�erent
response, i.e., the q

Õ-th finite impulse response of Hch j , depending on the time instance t.
The variation of the finite impulse response with respect to time, allows the convolutive
model to describe moving sources, where the movement of the source imposes a change of
the source’s observed signal characteristics. Examples of signal characteristics include the
delay of the source or the magnitude of individual frequency sub-bands, that are described
by di�erent finite impulse responses. The time-variant convolutive mixing model can be
formally expressed as

xch m[t]
=

Jÿ

j=1

T
Õ≠1ÿ

tÕ=0

–ch j(xj [t≠tÕ]Hch j [tÕ,qÕ]) ,

where q is an integer that denotes the usage of the q-th finite impulse response contained
in Hch j . The integer q is computed as a function of time t.

As the convolution operation is applied prior to the addition of the sources, the dif-
ficulty of separating the target source(s) is increased. To simplify this problem, audio
signal transforms are used [9]. That is because signal transforms such as the STFT can
be used to simplify the convolutions as element-wise multiplications, in the respective
domain. However, the number of samples used for the STFT should be at least twice as

14The computation of q depends on the number of predetermined gain values at time indices t. Most
of the times, these factors depend on artistic usage for simulating the position of source in the panoramic
field composed by the two available channels [12], [65].
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big as the length of the impulse responses [66], posing another benefit of using the STFT
instead of real-valued transforms such as the MDCT. In the case of the convolutive mixing
model, the goal of the separation methods is to recover the j-th target source after the
application of the convolution and the gain. The target source signal after the previously
described operations is referred to as the target source image, that essentially describes
the contribution of a source to the mixture [9], [67].

2.3.3 Relaxed Mixing Model
Music mixtures available from various media streaming services are not the outcome of a
simple sum of signals that have been either convolved with an impulse response or scaled
by a gain value. In contrast to the previously introduced mixing models, the music sources
in this case have undergone a production stage [65]. Specifically, each source is processed
by a series of signal processing operations that include digital audio e�ects [65]. Many of
the digital audio e�ects used for audio mixing are non-linear [65], [68]. Consequently, the
assumption that the mixing function can be modelled by the convolutive mixing model
falls short. The mixing model that yields the mixture of produced music sources can be
formally expressed as

xch m =
Jÿ

j=1

Gch j(x̃j) ,

where Gch j(·) : RT ‘æ RT is a function that applies a series of audio e�ects to the initial
source signal x̃j . The function Gch j can be di�erent for each source and channel15 and
is applied to x̃j according to subjective criteria [65]. In nearly all realistic scenarios, the
function Gch j(·) is unknown, i.e., there is no information regarding what audio e�ects
have been applied to each source. Consequently, the previously described mixing models
fall short since devising the inverse operation that estimates x̃j from xj is di�cult and
it is an open research problem. To mitigate this di�culty, the problem of music source
separation is often relaxed. The relaxation follows the principle used in the convolutive
mixing model and the goal is to separate the target source image xch j that includes the
application of Gch j(·), i.e.,

xch j = Gch j(x̃j) .

In music production [65] or data-sets for music source separation [A8], xch j is often
denoted as the source track.

The above relaxation, leads to the following (relaxed) mixing model

xch m =
Jÿ

j=1

xch j .

Although the relaxed mixing model may seem simpler than the instantaneous mixing
model, presented in Section 2.3.1, the non-linear functions Gch j(·) applied to the cor-
responding sources increase the di�culty for separating the target source(s) from the

15The function Gch j is di�erent for each channel for expressing multi-channel audio e�ects. It should
be noted that Gch j can also consider inter-channel dependencies, but the explicit conditioning on channel
information is dropped from the notation for brevity.
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observed mixture. That is because each Gch j(·) is often composed by audio e�ects [65]
that are often non-linear [68] and entangle the mixing process more than the application
of gain values or the convolution with impulse responses. However, the relaxed mixing
model does not consider additional (non-linear) signal processing operations applied to
the mixture signal xch m, after the addition of the sources and the application of each
Gch j(·). The process of further modifying the mixture is commonly denoted as (audio)
mastering [69], and is used most of the times in distributed music content. The process
of audio mastering could potentially increase the di�culty of separating music sources.

2.3.4 Music Source Separation via Masking
For separating music sources from the observed single-channel (monaural) or two-channel
(stereo) music mixtures, filtering is a widely used process. More specifically, a time-
frequency representation of the monaural16 mixture signal is computed using the STFT
FSTFT(·) yielding the complex-valued matrix Ym œ CN◊T

Õ of N frequency sub-bands and
T

Õ time-frames
Ym := FSTFT(xm) .

Then, a source-specific filter, henceforth denoted as the mask, is applied to the mixture
representation. The estimated time-domain signal of the target source j can be com-
puted using the inverse short-time Fourier transform (ISTFT) and the filtered mixture
representation as

xj ¥ x̂j = FISTFT

!
Ym § Mú

j

"
,

where “§” is the element-wise multiplication, FISTFT(·) denotes the ISTFT and Mú
j

œ
RN◊T

Õ is the computed mask.
There are multiple methods for computing source specific masks. All masking methods

require that the time-frequency representation, most commonly the magnitude representa-
tion, of the target and interfering sources is estimated. In the last years, the most common
way to estimate these spectrograms is by using deep learning [A9]. Deep learning-based
approaches to music source separation are discussed in detail in Chapter 3 and Chapter 4.
For simplicity, in this subsection it is assumed that the sources are provided by optimized
DNNs, such as the ones described in Section 2.2.4. To that aim, let |Ŷj | œ RN◊T

Õ

Ø0
denote

the estimated magnitude spectrogram of the j-th source.
Using the estimated magnitude representations, the first method computes a binary

mask (BM), MBM œ {0, 1}N◊T
Õ , using the following fraction of magnitude information

Mj
BM = g

A
|Ŷj | £

1 Jÿ

jÕ ”=j

|ŶjÕ |
2B

. (2.42)

In Eq. (2.42), “£” is the element-wise division and j
Õ is an index that denotes only the

interfering source(s) contained in the mixture and not the target source j. The element-
wise function g(·) is defined as

g(y) =
I

1, if y Ø 0.5
0, otherwise

.

16The focus is given on monaural signals since the most common masking operations operate on each
individual channel.
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The function g(·) outputs a binary indicator of the dominance, with respect to the mag-
nitude, of the target source in each frequency sub-band for every time-frame.

The application of BMs in music source separation leads in many cases to unwanted
reconstruction artifacts, such as music distortion [70]. That is due to the abrupt changes
of the mask values between adjacent time-frames of the representation. Nonetheless,
computing BMs can yield some insight information regarding the overlap that the tar-
get and interfering sources have in the computed representation. Specifically, in [17] the
(windowed) disjoint-orthogonality (W-DO) objective measure is introduced. The W-DO
measure uses the computed BM to evaluate the orthogonality between target and inter-
fering sources, and how well the target source can be separated, enabling the evaluation of
representations subject to the task of music source separation [A5], [30]. The computation
of the W-DO measure is given in the Appendix C.

In an attempt to alleviate the music distortions introduced by the application of the
BM to the mixture signal, many approaches for music source separation consider soft-
masking (SM) methods [A9]. An SM method allows the values of the computed mask
to vary continuously between zero and one, instead of being binary. To that aim, the
mask of the j-th source using a SM method, MSM

j
œ RN◊T

Õ

[0,1]
, is computed as the ratio of

–≠power magnitude spectrograms

Mj
SM = |Ŷj |§– £

1 Jÿ

jÕ=1

|ŶjÕ |§–

2
. (2.43)

In Eq. (2.43), “–” is the exponent that is applied element-wise to the magnitude spec-
trogram of each source. For – = 2, Eq. (2.43) boils down to the generalized Wiener
filtering [29], [70], [71]. Soft masks considered for separating a music source make the
assumption that the –-power magnitude spectrograms are additive, i.e., the sum of all
|Ŷj |§– is equal to the –-power magnitude spectrogram of the observed mixture |Ym|§–.
However, the assumption of source additivity is often violated, especially in real-world
examples of music mixtures.

In an attempt to avoid the source additivity assumption, two alternative approached
are commonly considered. The first approach is to compute ideal amplitude masks (IAMs)
defined as

Mj
IAM = |Ŷj | £ |Ym| , (2.44)

commonly followed by a truncation operation [72]. The truncation is necessary, since the
IAM is only optimal, i.e., it maximizes the source separation performance, when the are
no phase di�erences between the mixture and the j-th source signals. However, this is
often violated in real-world mixtures of music sources, and a truncation method that uses
the phase di�erence information is presented in [72].

For the second approach, two strategies for SM have been proposed. The first strategy,
presented in [29], replaces the magnitude spectrograms in the numerator and denominator
of Eq. (2.43) by the computation of a divergence for each frequency sub-band and time-
frame. Specifically, the numerator is replaced by the element-wise divergence between
the target source and the observed mixture spectrogram. The denominator is replaced
by the sum of all divergence output values between the interfering source(s) and the
mixture. Depending on the selected divergence in [29], either the generalized Kullback-
Leibler (KL) or the Itakura-Saito (IS) divergence, the numerator and denominator are
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element-wise exponentiated either by – = 1 or – = 2, respectively. The choice for the
exponent – is based on the statistical assumptions of the employed divergence, i.e., for
the KL and IS, respectively [73], and of the –≠power spectrograms [70].

More recently, the work based on divergences [29] has been revisited in [70] from a
statistical perspective that takes into account the (heavy tailed) distributions of magni-
tude spectrograms. Specifically, it is proposed in [70] to compute the soft-mask(s) using
Eq. (2.43), but with the usage of an ideally optimal, with respect to additivity, exponent
–

o. More specifically, it is proposed to solve the following problem

–
o = arg

–

min || |Ym|§– ≠
Jÿ

j=1

|Ŷj |§– ||1/–

1
, (2.45)

by using a grid-search in the interval (0, 2]. Although the strategy of finding optimal
exponents for soft-mask computation improves music source separation performance [70],
the assumption that the choice of the exponent is based on magnitude spectrogram distri-
butions serves only as a proxy. That is because phase information determines the choice
of the exponent, as suggested by the work presented in [74]. However, phase information
of other music sources is in many cases unavailable, since each source has to be estimated
accurately first and then a phase retrieval algorithm has to be applied. Consequently, the
computation of soft-masks using source phase information, such as selecting the exponent
for Eq. (2.43) based on phase distributions of the sources or the usage of phase-sensitive
masks [72], is often impractical. In addition to this, the studies presented in [29], [70], [74]
suggest directions for computing soft-masks, highlighting the fact that the mask compu-
tation should be subject to optimization, depending on the separation method.

It should be noted that all the masking methods discussed above can be used with the
spectrogram information of the true sources, that can be obtained from data-sets [A8].
In this case, |Ŷj | can be replaced by the true source magnitude spectrogram |Yj | in
Eqs. (2.42)–(2.45). Furthermore, the mask computation above can be extended to multiple
channels of music signals [75]. This is done by first computing the corresponding mask,
most commonly using the generalized Wiener filtering, for the monaural estimate(s) of
the target source(s). Then, the spatial covariance matrix of the multi-channel mixture
signal is computed [75], [76] for each frequency sub-band. The spatial covariance matrix
is used to compute the multi-channel mask that is applied to each channel of the mixture
signal’s STFT, yielding a multi-channel estimate of the target source.

2.4 Source Separation Performance Evaluation
In order to assess the performance of music source separation approaches, research has
also focused on the development of appropriate evaluation methodologies. These method-
ologies can be grouped into objective and subjective. Objective evaluation methodologies
aim at a systematic assessment of source separation approaches, using objective metrics.
This leads to a standardized evaluation procedure that can be adopted by music source
separation research so that a comparison between separation approaches can be made.
However, objective measures often cannot reflect the perceptual quality of audio and mu-
sic signals [77]. To that aim, research has focused on the development of perceptually
motivated objective measures for audio source separation evaluation [78] and routines for
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the subjective evaluation of music source separation methods [79]. Subjective evaluation
methodologies aim at qualitatively assessing the performance of separated music sources.
The caveat of qualitative assessment is that it relies on listening tests that require multiple
and often trained human participants. This makes qualitative assessment cumbersome for
large-scale evaluation studies. It is important to note that both groups of methodologies
require a data-set of isolated music sources and the corresponding mixtures. In this thesis,
the employed data-set for evaluation is the MUSDB18 [A8] that consists of two-channel
music mixtures.

2.4.1 Objective Assessment
The objective assessment of music source separation approaches is based on the compu-
tation of measures that are fractions of energies between computed components of the
separated source. These measures are namely the signal-to-distortion ratio (SDR), the
signal-to-interference ratio (SIR), and the signal-to-artifacts ratio (SAR), and are the
standard measures for source separation evaluation [80], [81]. The computation of the
measures is based on the BSSEval framework presented in [80]. More specifically, the
evaluation metrics reported in this thesis are computed using the fourth version of the
BSSEval framework, that is presented in [81] and originally proposed in [67]. That version
uses the source images for computing the source components used in the evaluation, and
considers two-channel (stereo) signals17.

More formally, let ch œ [1, 2] be the index of the channel of a source or signal, then
the j-th estimated source x̂ch j is modeled as the sum of the true source xch j and source
specific error components e(ú)

ch j
œ RT

x̂ch j = xch j + e(spat)

ch j
+ e(interf)

ch j
+ e(artif)

ch j
, (2.46)

where e(spat)

ch j
, e(interf)

ch j
, and e(artif)

ch j
are the source error components for spatial, interference,

and artifacts or distortions, respectively. The source error components are computed using
all the true and estimated sources xch j and x̂ch j , respectively, by first calculating two
types of least-squares projectors. The projectors are based on linear filtering. The first
projector type is calculated for the target source Pj(·) and the second one is calculated
for the interference(s) PjÕÕ(·). These two types of projectors18 are source-specific and are
computed across channels ch. Essentially, the projection operators compute the error
components as filtered versions of xch j by projecting the estimated sources onto the
corresponding signal sub-spaces as

e(spat)

ch j
:= Pj(x̂ch j) ≠ xch j (2.47)

e(interf)

ch j
:= PjÕÕ(x̂ch j) ≠ Pj(x̂ch j) (2.48)

e(artif)

ch j
:= x̂ch j ≠ PjÕÕ(x̂ch j) . (2.49)

Using the above error components, the SDR, SIR, and SAR metrics for the j-th source
17Two-channels are used due to the structure of the employed data-set [A8].
18In this context, the projectors are constructed by using a set of signals, e.g., {xch 1, xch 2, . . . , xch J }.
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are computed as

SDRj = 10 log
10

A q
ch

||xch j ||2
2

q
ch

||e(spat)

ch j
+ e(interf)

ch j
+ e(artif)

ch j
||2

2

B
(2.50)

SIRj = 10 log
10

Aq
ch

||xch j + e(spat)

ch j
||2

2

q
ch

||e(interf)

ch j
||2

2

B
(2.51)

SARj = 10 log
10

Aq
ch

||xch j + e(spat)

ch j
+ e(interf)

ch j
||2

2

q
ch

||e(artif)

ch j
||2

2

B
. (2.52)

The above metrics are expressed in dB (the higher the better), and are computed over
segments of the respective signals. Following signal separation and evaluation campaign
(SiSEC) rules [81], the length of the segments is 2 seconds with an overlap of half a
second between segments. The overall reported value for each corresponding metric is
most commonly the median or average value, across all segments within each track and
then across the number of tracks in the data-set.

A limitation of the above metrics and especially the SDR, Eq. (2.50), which is the
most used separation metric [A9], [81], is that the metrics are sensitive to scale pertur-
bations [82]. For example, this can be seen by substituting Eq. (2.46) into Eq. (2.50) the
SDR metric becomes the logarithmic-scaled signal-to-noise ratio (SNR), with the SNR
being defined as

SNRj = ||xj ||2
2

||xj ≠ x̂j ||2
2

. (2.53)

The SNR metric (the lower the better) is sensitive to scale perturbations. Consequently,
the above metrics do not fully reflect the actual separation performance of an approach, as
the metrics could be further increased by potentially considering gain manipulations of the
separated source19 [82]. To tackle this problem, the scale-invariant versions of the metrics
are presented in [82]. In this thesis, and particularly in Chapter 4, the non-scale-invariant
metrics are used is in order to preserve a consistent comparison to previously proposed
approaches for music source separation. The scale-invariant SDR is used in Chapter 5.

2.4.2 Subjective Assessment
The subjective assessment of music source separation approaches focuses on the percep-
tual evaluation of the quality of the separated source(s). This is achieved by means of
listening tests. In audio and music source separation research, listening tests are not that
common, although studies suggest that listening tests should be highly considered [79].
To conduct a listening test, a standard procedure is followed, and there exist various
standards to do so. A particularly useful, to music source separation, standard is the
International Telecommunication Union (ITU) standard (ITU-R BS.1534-1) [84] denoted
as multiple stimulus with hidden reference and anchors (MUSHRA). In this thesis, a web-
based graphical user interface (GUI) for conducting the MUSHRA tests is used. The

19Metrics that are variant to scale could be also informative in music source separation evaluation.
That is the case when the separated sources are used for (automated) re-purposing tasks [A2], [83].
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implementation is based on the work presented in [85]. An illustration of the GUI used
to conduct the listening test is given in Figure 2.5.

Figure 2.5: Illustration of the GUI that is used to conduct listening tests. The GUI relies
on the framework presented in [85].

For evaluating the performance of music source separation approaches, listening tests
based on MUSHRA qualitatively evaluate the degradation of the estimated music source(s).
The evaluation is based on the score assigned by the listener. The score is given in com-
parison to the original signal of the target music source. According to the MUSHRA
standard, a hidden anchor signal is additionally used during the listening tests. The an-
chor signal is a degraded version of the original music source, serving as the low-bound
for the score. Particularly for audio and music source separation, the degradation used
in MUSHRA tests is computed by either using the mixture signal directly as the hidden
anchor, or more diligently, by synthetically generating source separation artifacts, inter-
ference, and music distortion. The method to synthesize the separation artifacts relies
on the linear filtering operators [78], i.e., the Eqs. (2.47)–(2.49), that are used to decom-
pose the estimated signal into artifacts, interference, and distortion components. These
components are then added to the clean target source signal to compute the degraded
version.
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Chapter 3

Neural Network-Based Music
Source Separation

Preface
In this chapter, the focus is given on the separation of music sources by using (deep) neu-
ral networks. A particular neural network model that has led to several breakthroughs in
music source separation and has been extended to that aim is the denoising autoencoder
(DAE) model presented in [86], [87]. To examine the e�ectiveness of the DAE model
and its published extensions in music source separation literature, this chapter formally
describes the DAE model, including the corresponding extensions, and presents an al-
gorithm for investigating what source separation models, based on the DAE, learn from
spectral music data. The presented algorithm is denoted as the neural couplings algorithm
(NCA) and the content of this chapter is based on [A22]. The corresponding source code
is publicly available1.

3.1 Introduction
The separation of music sources using deep learning is an active research area that has
attracted a lot of attention and many approaches have been proposed in related litera-
ture [A9], [81], [88]. A commonly used practice that has led to breakthroughs in music
source separation performance, is the usage of the time-frequency representation of the
mixture signal as input to the deep neural network (DNN) [A9], [81]. Depending on
the target output signal, three di�erent classes of approaches can be identified2. The

1Algorithm gist: https://github.com/Js-Mim/nca_mss, experimental code and trained models:
https://zenodo.org/record/2629650

2It could be argued that there is a fourth class of approaches that is based on deep clustering [89].
However and according to the results presented in [89], deep clustering in music source separation relies
on mask prediction to a great degree. Mask prediction approaches are the second class of approaches
discussed here. Deep clustering approaches are discussed from a neural network network perspective in
Section 4.2.
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approaches in the first class, referred to as spectral approximation methods, use the time-
frequency representation of the target source as the target output of the DNN. This
input-output relationship of signals follows the seminal work of the DAE model presented
in [86], [87]. The DAE in [86], [87] is presented as a model for signal recovery from
corrupted observations. It should be denoted that the DAE model, as originally defined
in [86], is not restricted to symmetric encoding-decoding functions with dimensional-
ity reduction, commonly referred to as bottleneck [86][Sec. 5]. Following the definition
from [86], the term DAE refers to methods for signal recovery from corrupted signals.

For the second class of approaches, the target output signal is the pre-computed and
source-dependent time-varying filter, i.e., the mask, that is used for filtering the mixture
input signal [90]–[92]. The methods in this category will be referred to as mask prediction
methods. As described in Section 2.3.4 of Chapter 2, the usage of pre-computed masks
requires the information of at least two sources, the target and the interfering source(s)
contained in the mixture [90], [91]. That is di�erent from the first class of approaches that
require only the time-frequency representation of the target source [90], [93]. Furthermore,
the computation of masks imposes various assumptions regarding the additive properties
of the sources [70], [74]. In practice, those assumptions do not hold true. Consequently,
it is hard to define what the mask target should be. In some cases, the masks predicted
by the DNN are sub-optimal and require additional DNN (re)training procedures [90].
These training procedures aim at improving the separation performance [90], suggesting
that the mask computation should be subject to optimization.

Although the mask prediction approaches are not the central focus of this thesis, their
relevance is that they inspired the third class of approaches. Conceptually, the third class
combines spectral approximation and mask prediction, and are referred to in this thesis as
skip-filtering connections. Specifically, these methods allow deep learning models to im-
plicitly mask the input mixture signal by using the output of the deep learning model [A6],
[94]–[96]. This operation yields a filtered version of the mixture signal, that serves as an
estimate of the target source signal and is used to optimize the corresponding model [A6],
[94], [96]. The optimization is performed using a signal reconstruction objective as done
in the spectral approximation. In contrast to mask prediction methods [A6], [A10], [A11],
[94], [96], methods based on skip-filtering connections do not require pre-computed masks.
While the terminology of skip-filtering connections is used in the context of music source
separation [A6], [A10], [A11], the speech enhancement and separation community often
refers to methods in the third class as the signal approximation method [94], [97].

Subject to the estimation of the target source signal(s), the spectral approximation
methods usually rely on an additional post-processing step using the generalized Wiener
filtering [A9], [A10], [76], [81], [90], [93], [98], [99]. The usage of this additional post-
processing is an empirical strategy to obtain target signals of better perceptual quality
than the direct outputs of the DAEs [93], [98]. In contrast, approaches based on skip-
filtering connections, which implicitly mask the mixture signal, yield competitive, yet
not superior, results compared to the spectral approximation approaches, without the
need of post-processing using the generalized Wiener filtering3 [A11], [96]. Furthermore,
approaches based on skip-filtering connections tend to result in better separation per-

3The performance of the approaches based on skip-filtering connections can be further improved by
employing post-processing based on the generalized Wiener filtering [100].
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formance than mask prediction approaches [A6], [A10]4. This experimental evidence is
also reflected in source separation evaluation studies, like for instance, the large-scale
study presented in [81]. However, from this experimental evidence it is not clear why ap-
proaches that focus on spectral approximation of the target source [76], [93], [99] require
the post-processing step of generalized Wiener filtering. It is also intriguing to provide
an explanation on why methods based on skip-filtering connections [A10], [94], [96] work
well in practice. With this in mind, the first research question that this chapter aims at
answering is RQ1 - Why is masking important in approaches based on the DAE
model?

Additionally, the work presented in [101] underlines the tendency of the encoding and
decoding functions of the DAE to become symmetric during training. The composition
of symmetric encoding and decoding functions yields another function, i.e., the mapping
function for transforming the input signal to the corresponding output, that shares many
similarities with the identity function. For spectral-based denoising, the similarities of the
mapping function with the identity function result into a trivial scaling of the input mix-
ture spectrogram. That could potentially result in poor estimation of the target source
spectra, unless the learned function is derived from an ideal and time-variant frequency
mask [102], computed using an appropriate time-frequency masking technique [72]. Sub-
sequently, the second research question that this chapter aims at answering is RQ2 - Do
DAEs commonly employed in music source separation learn trivial solutions
for the given problem?

To answer these research questions, the focus of this chapter is source separation mod-
els that operate on the magnitude spectra of the observed music mixture. Furthermore,
it is proposed to examine the mapping functions of DNN-based music source separation
approaches to estimate the magnitude spectra of the singing voice. Since nearly all music
separation approaches are non-linear, the computation of the mapping function is not
straightforward. To tackle that, an experimentally derived algorithm is presented and
used. The algorithm approximates the mapping function of the non-linear model previ-
ously optimized for source separation. The result of the algorithm is a matrix that is
utilized to linearly map the magnitude information of the mixture to the target source
magnitude spectra. The algorithm is denoted as the neural couplings algorithm (NCA).

The spectral approximation and the skip-filtering connection methods for music source
separation are clustered together under the general family of DAEs, since these approaches
follow the exact same principle as the DAE model presented in [87]; that is, to recover
a target signal from its corrupted version. Specifically, this chapter focuses on three
particular and fundamental extensions of the DAE model for music source separation:

1. DAE: The DAE model presented in [87], as it forms the baseline that source sepa-
ration approaches have built upon.

2. MSS-DAE: The music source separation denoising autoencoder (MSS-DAE), that
is a multi-layered extension of the DAE applied to music source separation following
the pioneering works presented in [76], [93].

3. SF: The implicit mask prediction via the skip-filtering (SF) connections presented
in [A6], [94], [96].

4Supporting results to this claim are also presented in Chapter 4.
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For these three models, the rectified linear unit activation function (ReLU) is used,
as it is experimentally shown to perform well in music source separation tasks [93]. The
target signal to be estimated by each model is the singing voice magnitude spectra. For
assessing the mapping functions of each model the outcome of the NCA is used. The
couplings matrix, computed using the NCA, is used to objectively compute a fraction
of the magnitude contained in the main and o�-diagonal elements of the corresponding
matrix, and is explained in detail in the following sections. The rest of this chapter is
organized as follows: Section 3.2 provides background information on the DAEs and the
extensions proposed for the problem of music source separation tasks. The proposed
algorithm for computing the mapping function is described in Section 3.3. The followed
experimental procedure followed by the findings are given in Section 3.4. Section 3.5
summarizes this chapter and points out the limitations of the conducted study.

3.2 Denoising Autoencoders
3.2.1 Background
Music source separation based on DAEs relies on a supervised learning scenario. Formally,
given a data-set D = {x̃

(i)
, x

(i)}K

i=1
, comprised of K œ Z+ training examples indexed by

i, the goal is to learn a denoising function f(·) (or unmixing function in the context of
source separation). The function f(·) is parameterized by ◊, and estimates the clean x

from the noisy x̃ observation, i.e., f : ◊ ◊ x̃ ‘æ x. Obtaining x̃ involves a mixing process,
which for audio signals is commonly assumed to be the addition of the interfering or noise
signal xn and the target source signal x [A10], i.e., x̃ = x + xn. The mixing process using
the interfering source signal xn is di�erent from the corruption process used originally for
DAEs in [87]. Specifically, the signal xn can be characterized as a generic multi-modal
distribution-based noise, that is di�erent from the pre-defined and constant distribution-
based noise used in the DAE model [87] for unsupervised learning.

The learning of the parameters ◊ relies on the energy-based learning framework pre-
sented in Chapter 2. More specifically, given a reconstruction loss function L(·) the
parameters ◊ are optimized using

◊
o = arg

◊

min
Kÿ

i=1

L(x(i)
, x̂

(i)), (3.1)

where x̂ is an estimate of x, and ◊
o is the (ideally optimal) parameter or set of parameters,

that minimizes the empirical loss. The updates of the parameters towards obtaining ◊
o

are carried out using stochastic gradient descent over samples drawn from the data-set D
and optional heuristics, such as early stopping [52].

In [87], two functions are employed by the DAE model in order to approximate the
unmixing function f(·). These two functions are namely the encoding fenc : ◊enc ◊ x̃ ‘æ z

and the decoding function fdec : ◊dec ◊ z ‘æ x. The set of parameters for the encoding
and decoding functions is defined as

◊ := {◊enc, ◊dec}
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(a) DAE (b) MSS-DAE (c) SF

Figure 3.1: Illustration of the probabilistic graphical models5 of encoder-decoder configu-
rations examined in this chapter. The Illustration is based on [A22]. (a) DAE : a denoising
auto-encoder model [87]. (b) MSS-DAE : a three layer example of a DAE model adapted
to music source separation [76], [93]. (c) SF : skip-filtering connections [A6], [A10], [94],
[96]. Solid arrows are functions computed by neural networks. Dashed arrows are the
identity function. In the context of the input and latent variables, the symbol “§” refers
to the multiplication of the corresponding variables.

and is optimized according to Eq. (3.1). In the context of music source separation, the
motivation is to learn the empirical (unnormalized) distribution

q(x|x̃) (3.2)

through the usage of a latent representation z, and the utilization of the decoding process
fdec(·). An illustration of the DAE model is given in Figure 3.1a. In Eq. (3.2) the empirical
distribution of the corruption or mixing process is considered as a known constant [87],
[103], [104] that is independent from the clean target x, and is neglected from the explicit
formulation. However, music source separation approaches based on the DAE [76], [93],
[98] also assume that the corruption process is a constant, which does not hold true in
practice.

The benefit of incorporating the latent variable z into the model is that it provides
a representation or feature space that is useful for denoising auto-encoding [87]. In mu-
sic source separation, an often used extension of the DAE model includes the usage of
extra latent variables, computed using additional computational layers [76], [93]. The
graphical model of a three layer example of the DAE model, employed in music source
separation, is denoted as MSS-DAE and is illustrated in Figure 3.1.b. The additional
layers are experimentally justified for improved separation performance [76], [90], [93],
[98]. Specifically, the performance of the methods and the approximation of the target
source x is shown empirically to be based on the computation of z¸, that is a deeper and
hidden representations of z that leads to the conditional distribution q(z¸|z¸≠1) [76], [90],
[93]. The subscript ¸ œ {1, 2, . . . , L} denotes the layer and the depth of the computed,
hidden representations.

5The purpose of the graphical models is to denote the dependencies between variables of computational
graphs used in music source separation. The circular dependencies should not to be confused with any
type of recurrence.
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As in the case of the DAE, the music source separation approaches based on skip-
filtering connections use the same two functions, i.e., fenc(·) and fdec(·). The conceptual
di�erence with the DAE is that the decoder yields the mask variable m, i.e., fdec : ◊dec ◊
z ‘æ m, and the clean source is computed as

x = m § x̃. (3.3)

Eq. (3.3) shows the simplicity of implementing the skip-filtering connections, which allow
x̃ to be propagated to the encoding and to the last decoding function of the model [A6],
[94], [97]. Subject to the target source x and since both the mask m and the target signal
x are computed as a function of the signal x̃, i.e.,

x = fdec(fenc(x̃)) § x̃ ,

the separation model based on skip-filtering connections leads to the following empirical
distribution6:

q(x|x̃)q(x̃) . (3.4)

The above empirical distribution is conceptually di�erent from the one of the DAE and
MSS-DAE, which model q(x|x̃) directly. Essentially, the SF model naively takes into
account the empirical distribution of the corruption or mixing process, by considering the
mixture’s empirical distribution. That is because the masking operation is considered
as a part of the computational graph through the variable m. For the SF model and
its corresponding conditional, the product between distributions is the product of the
(unnormalized) probability values between the outcome of the DAE and x̃.

3.2.2 Connection to Music Source Separation & Related Work
The most widely adopted way to perform music source separation using the family of
DAEs and (deep) neural network models, is to employ the magnitude spectral represen-
tations computed using the short-time Fourier transform (STFT). This is performed in
order to reduce the overlap that the sources exhibit in the time-domain signal representa-
tion [20], and to exploit the wide-sense stationarity and the phase-invariant structure(s)
of specific types of music sources [8]. Consequently, the variables of the DAE, MSS-DAE,
and SF models can be seen as vectors containing magnitude spectral information. More
specifically, x̃, x̂, x œ RN

Ø0
, and z œ RF

Ø0
are the mixture signal, the estimated target7

source signal, the target source signal, and the latent representation (after the application
of the ReLU function), respectively. N denotes the dimensionality of the input comprising
the frequency sub-bands of a time-frame computed using the STFT and F denotes the
dimensionality of the hidden representations. It should be stated that since the phase
information is not considered, the additive properties of the mixing process for computing
x̃ do not longer hold, i.e., x̃ ”= x + xn, where xn is the interfering source. Furthermore,
the symbol “§” now refers to the Hadamard (element-wise) product that scales each
frequency sub-band of the previously mentioned vector(s).

6The empirical distribution is expressed with respect to the input-output relationship of the model
and thus, di�ers from the dependencies of the mask variable m shown in Figure 3.1c.

7Joint separation of sources can be performed with the described models. However, a single target is
considered here following the pioneering works presented in [76], [90], [93], [98].
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For estimating music sources using DAEs, the authors in [76] propose the use of multi-
layered feed-forward neural networks, using context information of past and future STFT
magnitude spectra. Context information for spectral-based denoising via feed-forward
neural networks is also proposed in [93]. Aiming to model the dependencies of adjacent
time-frames, the work in [98] proposes to use bi-directional RNNs instead of feed-forward
neural networks. In both [98] and [76] the estimated sources are further processed using
the multi-channel Wiener filtering.

The skip-filtering connections are a straightforward extension of the denoising source
separation (DSS) framework (in the spectral domain), presented in [102]. In the DSS
framework, it is proposed to perform spectral-based denoising by learning a sparse matrix
with non-zero elements only on the main diagonal. These elements allow a scalar filtering
operation of each corresponding frequency sub-band [105]. In music source separation,
the frequency sub-band scaling is achieved by employing the Hadamard product between
the mask and the corresponding frequency-domain signal. The usage of the Hadamard
product instead of the diagonal matrix, proposed in the DSS framework, enables the music
source separation approaches based on deep learning to generate time-varying frequency
masks and to use neural architectures that exploit time-varying information of the signals,
such as recurrent neural networks (RNNs) and/or convolutional neural networks (CNNs).
The skip-filtering connections are also similar to the highway connection networks pre-
sented in [106] for training very deep neural networks. Specifically, highway connection
networks employ the Hadamard products between inputs and outputs of neural network
layers. In the case of highway connection networks, the Hadamard products are used as the
gating mechanisms in RNN architectures, such as the long short-term memory (LSTM)
network. The main di�erence between the skip-filtering connections and the highway net-
work connections, is that for the skip-filtering connections the predicted masks applied to
the corresponding inputs are dependent on latent representations, computed by the net-
work. In contrast, highway connection networks condition the predicted masks directly
on the input signal. The usage of latent representations plays an important role in the
denoising performance of the corresponding model, as shown in [86].

3.2.3 Implementation of the Models
Focusing on the graphical models presented in Figure 3.1, the problem is simplified to
feed-forward neural network (FNN) layers, and constrained to the minimization of the
mean squared error (MSE) loss function, defined as:

LMSE(x(i)
, x̂(i)) = 1

N
||x(i) ≠ x̂(i)||2

2
, (3.5)

where || · ||2 denotes the ¸2 vector norm. Stochastic gradient descent is performed to opti-
mize the model parameters with respect to Eq. (3.5). This training configuration including
the MSE was adopted from state-of-the-art approaches in music source separation [A6],
[A14], [76], [93], [98], [99].

An example of calculating the representation z and approximating the i-th data exam-
ple of the target source x̂, using the mixture signal x̃ and the corresponding encoding and
decoding functions is given in Eqs. (3.6)–(3.12) for the DAE, MSS-DAE, and SF models.
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z(i)

DAE
= g(Wencx̃(i) + benc), (3.6)

x̂(i)

DAE
= g(Wdecz(i)

DAE
+ bdec), (3.7)

z(i)

MSS-DAE
= g(W(¸=1)

g(Wencx̃(i) + benc) + b(¸=1)), (3.8)

x̂(i)

MSS-DAE
= g(WÕ

dec
z(i)

MSS-DAE
+ bÕ

dec
), (3.9)

z(i)

SF
= g(WÕÕ

enc
x̃(i) + bÕÕ

enc
), (3.10)

x̂(i)

SF
= g(WÕÕ

dec
z(i)

SF
+ bÕÕ

dec
) § x̃(i), where (3.11)

g(x) = max(0, x). (3.12)

The equations Eq. (3.6), Eq. (3.8), and Eq. (3.10) describe the encoding functions and
the equations Eq. (3.7), Eq. (3.9), and Eq. (3.11) describe the decoding functions of
each model. The weight matrices and bias terms are denoted by W and b, respectively.
The subscripts “enc” and “dec” stand for encoder and decoder layers, respectively. The
superscripts “Õ” and “ÕÕ” in the weights and biases are used to distinguish between the
parameters of di�erent models (e.g. between W of MSS-DAE and DAE models). In more
detail, Eq. (3.6) and Eq. (3.7) express the encoding and decoding functions for the DAE
model. An example of a three layered MSS-DAE model, with a single decoding function,
for approximating the target source is provided by Eq. (3.8) and Eq. (3.9). The SF model
in Eq. (3.10) and Eq. (3.11) employs the same encoding and decoding configuration as
the DAE, with the only di�erence the output of the decoding is element-wise multiplied
with the input to the model. The important thing to notice here, is that Eqs. (3.6)–
(3.11) suggest that the encoding and decoding functions are realized as a series of linear
operators and element-wise applications of the ReLU activation function, expressed in
Eq. (3.12).

3.3 Computing Mapping Functions
3.3.1 Motivation & Related Work
The motivation behind the neural couplings algorithm (NCA) is to compute a linear
mapping function that describes how the input data are transformed to obtain the desired
target source, according to the approach under examination. The NCA di�ers from
methods that aim at explaining the neural network decisions, like for instance the layer-
wise relevance propagation method presented in [107], or explaining the predictions of
a classifier [108], [109]. However, the NCA shares many similarities with the knowledge
distillation concept presented in [110]. The conceptual di�erence between the NCA and
the previously stated methods is that the NCA specifically approximates the mapping
function of a pre-trained neural network model. It does not aim at compressing the
neural network model as in [110], or at pin-pointing input spectral features that a�ect the
choice of the neural network model as in [107]. Instead, the couplings matrix computed
using the NCA expresses the transfer of energy from one frequency sub-band to another,
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di�erentiating from the distance-dependent mapping(s) between data distributions as in
the case of optimal transportation theory [111], [112] in the discrete case.

Furthermore, the NCA is conceptually similar to the extended data Jabobian matrix
(EDJM) framework, presented in [113], that analyses the functionality of DNNs. The
di�erence between the EDJM and NCA, is that NCA seeks a simpler linear matrix that
can be easily evaluated using digital signal processing. In contrast, the EDJM focuses
on the spectral analysis of the resulting mapping matrix, which is not that informative
for the particular problem of examining music source separation approaches based on
neural networks. Another di�erence is that the computations used by the NCA, formally
described in the next sub-section, are simpler than the explicit computation of latent
gradient information used in the EDJM [113]; an important factor considering the high
dimensionality of audio spectrogram data. The formulation used by the NCA, shares many
similarities with the methodology used in [114] for the examination of the performance of
randomly parameterized DNNs, based on the computation of super-masks8.

3.3.2 The Neural Couplings Algorithm
The NCA is an iterative method for approximating the mapping function of a non-linear
source separation model. The mapping function is defined as a local a�ne transformation
of magnitude spectral data. The a�ne transformation is constrained to be linear, time-
invariant9, and model-dependent in order to enable an intuitive examination of what
each source separation model has learned. The a�ne transformation is represented by
a matrix that is denoted as the couplings matrix C œ RN◊N . The couplings matrix C
is used to transform, the input mixture magnitude spectrum x̃ to the output y œ RN

Ø0

of the last layer of each corresponding model including the non-linearity, i.e., the output
of the decoding matrix followed by the ReLU function. The vector y is used to denote
the output of the decoding function in each model. Specifically, the output for the DAE
and MSS-DAE models is the singing voice spectra, and for the SF model is the derived
frequency mask. The indexing by i in x̃ and y is dropped in order to denote the usage of
spectral data that are not sampled from the training data-set.

The reason for using the mask instead of singing voice spectra for the SF model fol-
lows naturally from the graphical models illustrated in Figure 3.1. Particularly for the SF
model, illustrated in Figure 3.1c, the information of the mixture spectra is also necessary
after the decoding process in order to estimate the source via masking using the Hadamard
product expressed in Eq. (3.11). As masking is an additional operator that heavily de-
pends on the mixture data, the computation of a single a�ne transformation would fail to
approximate both the masking and the mapping function of the model. A solution to this
is given by knowledge distillation [110]; that is, to use the last hierarchical variable that is
computed using the model’s parameters. This leads to a fair usage of information during
the approximation of the NCA among source separation models. Furthermore, the ReLU
function applied to the decoding stage, is also considered by the NCA since an algebraic

8The work presented in [114] and the NCA both propose methods to compute super-masks, i.e., weight
matrices for scaling the parameters of the DNN. However, the areas of applications of the NCA and of
the work presented in [114] are di�erent.

9The source separation models are also time-invariant and thus, only frequency dependencies are
considered.
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expression for the ReLU function is given in [115], and its relevance in the computation
of the couplings matrix is explained later in this section.

In the ideal case in which each model is linear, the couplings matrix, and thus the
mapping function, is expressed algebraically as the product of the corresponding encoding
and decoding matrices. That product is denoted as the linear composition. Neglecting
the bias terms for brevity in the notation, the linear composition is computed for each
model as follows:

Co
linear-DAE

= WdecWenc, (3.13)
Co

linear-MSS-DAE
= WÕ

dec
W(¸=1)WÕ

enc
, and (3.14)

Co
linear-SF

= WÕÕ
dec

WÕÕ
enc

. (3.15)

Since the DAE, MSS-DAE, and SF models are non-linear, the direct application of
Eqs. (3.13)–(3.15) would result into rather crude approximations of each model’s mapping
function. Even the linear behaviour of the ReLU function in the non-negative range, and
of the vector-matrix products expressed in Eqs. (3.6)–(3.11), is not su�cient for the
above linear composition functions to hold. The ReLU function performs a thresholding
operation on the variables that yield the latent z and output y vectors that are learned
through observations drawn from the training data-set. This in turn makes each model
highly non-linear [27].

An algebraic expression of the ReLU function that is related to the concept of thresh-
olding of negative values is presented in [115]. In [115, Section 3 and Eq. (3)], a single
application of the ReLU function for a given input vector x̃ can be expressed as a binary
diagonal matrix, that sets to 0 any negative value of the encoded vector. The binary
diagonal matrix is denoted by G. Consequently, to obtain the couplings matrix of the
DAE, MSS-DAE, and SF models, it is necessary to compute as many matrices G as the
number of application of the ReLU function in the DAE, MSS-DAE, and SF models:

Co = GdecWdec . . . GencWenc. (3.16)

Furthermore, to compute each matrix Gú in Eq. (3.16), it is necessary to learn the
model specific dependencies that are captured by the DAE, MSS-DAE, and SF models
during the supervised training [27], [115]. The asterisk “ú” in the notation is used for
brevity, and replaces the subscripts and/or superscripts of the layer identifiers initially
used in Eqs. (3.6)–(3.11). The data dependencies expressed by each Gú refer to the
algebraic operations between the mixture x̃ or the corresponding latent vectors z, i.e., the
encoding or decoding matrices Wú, and the corresponding bias terms bú as in Eqs. (3.6)–
(3.12).

A straightforward way to learn the data dependencies can be derived from the knowl-
edge distillation concept presented in [110]. In knowledge distillation, a neural network,
i.e., the student, is optimized by means of (stochastic) gradient descent to predict the out-
put of a more complicated model (e.g. the non-linear DAE, MSS-DAE and SF). Subject
to the goal of this work, gradient descent is employed similarly to the knowledge distil-
lation [110], and the student network is constrained to be a linear, a�ne transformation
from x̃ to y. That transformation is based on the product of the mixture spectra x̃ and
the couplings matrix C. For computing the couplings matrix C it is proposed to solve
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the following optimization problem:

Co = arg
C

min||y ≠ Cx̃|| , (3.17)

where || · || is the ¸1 norm and x̃ is sampled from the testing data-set10. The output vector
y is computed by using x̃ as an input to the corresponding model. The ¸1 norm is used
instead of the ¸2 norm in the above optimization, because the vector y is expected to be
sparse, due to the application of the ReLU function [27]. Commonly, the ¸1 norm o�ers
an attractive objective for error minimization between sparse vectors, when the choice of
the regularization strength parameter in the sparse aware setting of ¸2-based optimization
is di�cult [15, Chapter 9]. By minimizing the ¸1 norm of errors it can be interpreted as
expecting the reconstruction error to follow an exponential distribution [15, Chapter 9].
Given that Eq. (3.17) is inspired by the student network of the knowledge distillation
concept [110], this strategy is denoted as the student.

To compute Co, let E denote the ¸1 norm of the error of Eq. (3.17) and computed as

E = ||y ≠ Cx̃|| .

For the student strategy the following partial derivatives are used:

� := ˆE
ˆC = ˆE

ˆCx̃
ˆCx̃
ˆC (3.18)

From Eq. (3.18), it follows that the gradient signal � that is used to update C in an
iterative manner is given by

� = sgn(Cx̃ ≠ y)x̃€ ,

where sgn(·) is the signum element-wise function and ·€ is the vector/matrix transpo-
sition. The gradient signal � suggests that the optimal Co lies over the least a�nity
between the mixture magnitude spectra x̃ and Cx̃ ≠ y. This means that the updates
of C only favor the minimization of the reconstruction error term. Although this strat-
egy could yield simplified and robust surrogates of possibly deep and complex models for
source separation (in terms of reconstruction errors) [110], it neglects the learned data
dependencies contained in the encoding and decoding matrices of Eq. (3.16).

According to [113], the learned data dependencies of the encoding and decoding
functions are the key ingredient to characterize the functionality of a non-linear model.
In [113], it is also shown that those dependencies are described by linear systems that can
be computed using observations of x̃, y and the corresponding weight matrices. Given
that the current goal is to approximate the functionality of the model, i.e., including the
knowledge captured by the encoding/decoding matrices Wú and the bias terms bú, an al-
ternative strategy is proposed and is denoted as the compositional. The proposed strategy
composes the couplings matrix C similar to the composition expressed in Eq. (3.16) and
hence, the name compositional. In contrast to the method presented in [113], the compo-
sitional approach does not require the explicit computation of the latent information zú of
each model. Instead, it uses directly Gú to extract data dependencies contained in each
Wú, capturing both the information of the encoding/decoding matrices and the spectral

10The training data-set can also be used. For testing the generalization of the approach, the testing
data-set is used.
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Figure 3.2: An illustration of how the couplings matrix C is computed using the compo-
sitional strategy. The compositional strategy takes into account the encoding/decoding
matrices Wú by preserving and scaling the relevant corresponding matrix elements using
the matrices Gú. Only for illustration purposes, the matrices are assumed to be non-
negative and continuously vary between zero and one. White color is used for matrix
elements whose values are zero and (dark) purple color is used for values close to one.

data. In contrast to EDJM framework [113], the NCA practically allows the computa-
tion of the mapping function(s) at a lower computational cost, due to the fewer required
algebraic operations. Furthermore, the computation using the dependencies contained in
each Wú enables the NCA to compute the mapping function that describes multiple data
observations, that is particularly useful for spectral-based music source separation.

More specifically, it is proposed to exploit the fact that the ReLU function behaves
linearly in the non-negative range where the mixture x̃, the output y, and the latent z
vectors reside in. Therefore, and according to Eqs. (3.6)–(3.11), the relevant components
that a�ect which elements are thresholded by the ReLU function for computing the latent
z and output y vectors, are: i) the row-vectors contained in each Wú and ii) the corre-
sponding bias term bú applied after each vector-matrix product and before the application
of the ReLU function. Inspired by [115], that models the ReLU function as a diagonal
matrix Gú that scales the row-vectors of Wú in Eq. (3.16), the NCA builds the couplings
matrix for the compositional strategy as follows:

C = (Wdec § Gdec) . . . (Wenc § Genc). (3.19)

The Hadamard product in Eq. (3.19) accounts for each individual element of the row-
vectors contained in the corresponding Wú, rather than having a single scalar value per
row-vector as in the case of the matrix product using the diagonal matrix. Practically,
this mitigates the usage of binary diagonal matrices and allows more degrees of freedom
into the approximation, as the operator is applied to all the elements of the corresponding
matrix vectors [115]. A visual example of the compositional strategy (Eq. (3.19)) is given
in Figure 3.2.

The reason for accounting for all the elements, is that there are two important features
that carry the essential information that characterize the model-dependent processing of
non-negative vectors. These two features are: i) the sign and ii) the magnitude of each
corresponding element in each Wú. To consider the influence of the sign of the elements
in each Wú, each matrix Gú is restricted to be non-negative, i.e., Gú œ RN◊N

Ø0
. To do so,

and to account for the influence of the bias terms, each Gú is computed as

Gú = g(Ĝú) (3.20)
Ĝú = Pú(Wú + bú1€

N
)€

. (3.21)
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In Eq. (3.21) the N≠th dimensional vector 1€
N and the bias vector bú are used in order

to add the bias vector to each column-vector of Wú.
By the application of Gú via the Hadamard product, the elements in Wú are either

preserved and scaled or nullified. This depends on the individual element’s relevance for
mapping the mixture magnitude spectra under linear constraints. The relevance itself is
dependent on the sign and the magnitude, and their e�ect on mapping the magnitude
information through the matrix C. The latter is enforced through Eq. (3.17). For com-
puting the relevance, it is proposed to learn an additional a�ne transformation computed
for each matrix Wú plus the corresponding bias term bú. This a�ne transformation is
denoted by the matrix Pú and its purpose is to discover the correlations in the shifted
versions of the column-vectors of Wú that are computed by adding the bias term bú.
These correlations are useful for determining the relevance of each matrix element in Wú
for computing C using Eq. (3.19). The corresponding basis vectors of Pú are unknown
for the compositional strategy. To jointly compute the unknowns of the compositional
strategy, back-propagation is used.

To further analyze how the previously mentioned data dependencies are learned using
the compositional strategy, let us consider the case in which a single encoding and decoding
matrix is used, as in the DAE and SF models. For the compositional strategy, it is
necessary to compute two matrices Penc and Pdec whose corresponding partial derivatives
are defined as

ˆE
ˆPdec

= ˆE
ˆC

ˆC
ˆGdec

ˆGdec

ˆPdec

(3.22)

ˆE
ˆPenc

= ˆE
ˆC

ˆC
ˆGenc

ˆGenc

ˆPenc

. (3.23)

Using Eq. (3.18) and by calculating the partial derivatives of Eqs. (3.19), (3.20), and
(3.21) with respect to Gú and Pú respectively, the above partial derivatives lead to the
following update rules for Penc and Pdec:

ˆE
ˆPdec

=
1

�(Wenc § Genc) § Wdec § g
Õ(Ĝdec)

21
Wdec + bdec1€

N

2
(3.24)

ˆE
ˆPenc

=
1

(Wdec § Gdec)€� § Wenc § g
Õ(Ĝenc)

21
Wenc + benc1€

N

2
, (3.25)

where g
Õ(x) is the first derivative of the ReLU element-wise function, that is approximated

by a function that is equal to 1 for positive inputs and 0 otherwise. Gdec and Genc are
computed using Eq. (3.21).

In Eq. (3.24) and Eq. (3.25), instead of considering only the gradient for minimizing the
reconstruction error �, the models’ optimized parameters partake into the optimization
of the compositional strategy. Specifically, Wú and bú contribute to the optimization in a
similar vein as the linear compositions described in Eqs. (3.13)–(3.15). This can be seen,
by the products between the outer parentheses that surround the encoding and decoding
matrices in Eqs. (3.24) and (3.25). The Hadamard products including the g

Õ(x) inside
the first parentheses of Eq. (3.24) and Eq. (3.25) can be understood as the search of
elements, contained in the decoder and encoder matrices, that contribute to the mapping
of the mixture to the corresponding output. From the above, it can be said that the
compositional strategy applies a layer-wise restriction. The layer-wise restriction forces the
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couplings matrix to be computed using the parameters of each model, similar to the linear
composition that algebraically corresponds to the mapping function. This is in contrast
to the student strategy, which does not take into account the information in each Wú and
bú. It should be mentioned that regardless of the strategy, i.e., student or compositional,
the computed matrices Cú are allowed to retain negative values. That is because the
destructive property of the negatives values during the computation of the vector-matrix
products are helpful in estimating the target source’s magnitude information. The pseudo-
algorithm of the NCA for both strategies is given in Algorithm 1.

Algorithm 1 The Neural Couplings Algorithm
Require: Mixture spectra x̃, model M(·), model’s parameters Wú, bú, N ◊ N identity

matrix IN , total number of layers in model L
Õ, number of iterations Nit, strategy

S œ {student, compositional}, random generator function rnd, optimizer/solver A(·)
1: y Ω M(x̃)
2: if S is student then
3: C Ω rnd

4: else
5: C Ω IN

6: for l
Õ := 1 to L

Õ do
7: PlÕ Ω rnd

8: GlÕ Ω g(PlÕ(WlÕ + blÕ1€
N

)€)
9: C Ω (WlÕ § GlÕ)C

10: end for
11: end if
12: for i = 1 to Nit do
13: E Ω ||y ≠ Cx̃||
14: if S is student then
15: C Ω C ≠ A(i, ˆE

ˆC )
16: else
17: C Ω IN

18: for l
Õ := 1 to L

Õ do
19: PlÕ Ω PlÕ ≠ A(i, ˆE

ˆPlÕ
)

20: GlÕ Ω g(PlÕ(WlÕ + blÕ1€
N

)€)
21: C Ω (WlÕ § GlÕ)C
22: end for
23: end if
24: Co Ω C
25: end for
26: return Co
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3.4 Experimental Procedure
3.4.1 Training & Assessing Separation Models
To optimize the parameters used by the operations described in Eqs. (3.7)–(3.11), the
100 two-channel multi-tracks available in the the MUSDB18 data-set [A8] are used. The
multi-track recordings are sampled at 44100 Hz. For each multi-track, the mixture and
singing voice signals in the data-set are used. A monaural mixing is performed for each
signal by averaging the two available channels. For constructing the data-set D, the
STFT analysis is performed for each mixture and corresponding source signal, using a
hamming windowing 46 ms long, a factor of 2 for zero-padding, a hop-size of 8.7 ms,
and a frequency analysis of N

Õ = 4096. Due to the redundancies of the discrete Fourier
transform, only the first N = 2049 frequency sub-bands are retained for constructing the
data-set. After computing the magnitude of the complex representation, each frequency
sub-band is normalized to have a unit variance with respect to the time frames.

A single encoding and decoding layer is used for all models and in all approaches. The
number of hidden layers for MSS-DAE is set to L = 2 (MSS-DAE has L

Õ = 4 layers in
total). The dimensionality through the layers is preserved the same in order to avoid any
implicit model regularization [101], [116], [117]. The number of layers for the MSS-DAE
model was chosen experimentally according to the saturation in minimizing Eq. (3.5)
during the training process, with respect to the number of hidden layers. All the weight
matrices are initialized with samples drawn from a normal distribution and scaled by

Ò
1

N

as proposed in [64]. The bias terms are initialized to zero.
The data-set D is randomly shu�ed, and the training is performed using batches

of 128 time-frames. For gradient-based optimization, the Adam algorithm [50] is used
with the initial learning rate set to 1e ≠ 3, and decreased by half if no improvement to
the loss was observed for two consecutive iterations over all available training data. The
exponential decay rates for the first and second-order moments of the Adam algorithm are
set to 0.9 and 0.999, respectively, following the proposed settings presented in [50]. The
training is terminated after no improvement is observed over four consecutive iterations
throughout the training data. The previously described training procedure is repeated
50 times using di�erent random initialization states. This is performed in an attempt to
minimize the induced bias of randomly initializing the models’ layers, and therefore more
reliably addressing the second research question “RQ2 - Do DAEs commonly employed in
music source separation learn trivial solutions for the given problem?”.

To assess the source separation models, it is proposed to evaluate the ability of each
model to exploit the structure in music spectral representations. To that aim, the cou-
plings matrix computed by the NCA is used. The couplings matrix acts as a data and
model-specific filtering operator. According to [105], there are two broad classes of filter-
ing operators. The first class is the vector filtering operator, where the matrix responsible
for filtering, i.e., the couplings matrix in the studied case, contains high values of mag-
nitude on o�-diagonal elements. The main benefit of o�-diagonal elements is that they
allow the exploitation of inter-frequency relationships of the spectral data.

In contrast, the second class of filtering operators is denoted as scalar filters. Scalar
filters are characterized by magnitude only on the main diagonal of the couplings matrix.
Each element on the main diagonal scales individually the corresponding frequency sub-
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band. The latter operation is equivalent to the application of a masking strategy [72]. In
practice, source separation models are optimized using many training examples. Conse-
quently, learning a mapping function with activity on the main diagonal could imply a
limited performance in estimating the singing voice spectra for multiple examples in the
data-set.

Based on the arguments expressed in the above paragraphs, the trace-to-o�-diagonal-
ratio (TOD-R) objective measure [A22] is employed. . The TOD-R is computed as follows:

TOD-R(Cú) =
Ô

N
tr(|Cú|)

||Cú § (JN ≠ IN )|| , (3.26)

where tr(·) is the trace function, IN is the N ◊ N identity matrix, and JN is the N ◊ N

matrix with all its elements equal to one. The scaling by
Ô

N is performed in order to
compensate for the expected high values of the denominator in Eq. (3.26) as the norm is
computed using far more matrix elements than the trace in the numerator. The element-
wise absolute | · | is computed prior to the computation of the trace to avoid biasing the
ratio due to the norm (sum of absolute values) in the denominator of Eq. (3.26). Small
values of TOD-R indicate that the o�-diagonal elements of the couplings matrix retain
higher magnitude values than the elements on the main diagonal and vice versa. High
o�-diagonal activity suggests that the mapping function of the model exploits more inter-
frequency relationships rather than estimating values that scale the mixture spectra as in
scalar-based filtering and frequency masking [105].

3.4.2 Computing & Assessing the Neural Couplings
For computing the neural couplings, it is required to solve the optimization problem
expressed in Eq. (3.17). To that aim, the test subset from the MUSDB18 data-set [A8] is
used. The test subset comprises 50 additional two-channel, multi-tracks sampled at 44100
Hz. For computing the STFT the same parameters are employed as previously used during
the construction of the training data-set D, reported in Sec. 3.4.1. Since the separation
models are able to process multiple time-frame vectors of mixture spectra rather than
a single instance drawn from the data-set, the mapping functions are computed using
a batch of adjacent magnitude vectors. The batch is drawn from the test subset and
the size is set to T = 350 (≥ 3.1 seconds long) time-frames. The hyper-parameter T

is experimentally chosen based on the available computational resources. Generally, the
larger the T becomes the more general are the computed mapping functions.

Following the above usage of a batched spectral data, the NCA can be simply refor-
mulated using matrix notation: X̃ œ RN◊T

Ø0
instead of x̃ œ RN

Ø0
and Y œ RN◊T

Ø0
instead

of y œ RN

Ø0
. For the solver denoted as A(·) in Algorithm 1, the Adam algorithm (Algo-

rithm 4) is used with a learning rate equal to 4e
≠4 and the same exponential decay rates

as in Section 3.4.1. The total number of iterations is set to 600, and the random function
(rnd in Algorithm 1) refers to drawing samples from a normal distribution scaled by

Ò
1

N

as proposed in [64]. The above mentioned hyper-parameters were chosen experimentally.
In comparison to the optimization of the music source separation models presented

in Section 3.4.1, the couplings matrix is computed for each model and for each batch of
adjacent magnitude vectors drawn from the test subset of MUSDB18 data-set [A8]. The
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pre-trained parameters of each one of the three models are randomly drawn from one
of the 50 training instances. In a series of initial experiments it was observed that the
silent segments in the used multi-tracks led to randomly structured and sparse, i.e., low
¸1 norm values, row-vectors of the computed couplings matrix Co. Although the observed
convergence of the NCA was satisfactory for the silent segments, it significantly biased
the TOD-R measure in an unpredictable manner. Therefore, from each multi-track 30
seconds are selected, where all music sources, available in the data-set, are active. The
selection of the active waveform regions, is based on the generator11 used in the music
source separation evaluation campaign [81].

The convergence of the NCA is analysed quantitatively. The analysis aims at assessing
the ability of the NCA to accurately approximate the models’ outputs. For intuitively
evaluating the accuracy of the approximation the signal-to-noise ratio (SNR), expressed
in dB, is used. For the DAE and MSS-DAE models, the SNR is computed using the singing
voice magnitude spectra estimated by the NCA, and the singing voice magnitude spectra
estimated by the corresponding models. For the SF model, the predicted mask using the
NCA is first applied to the input mixture, and the outcome is used to compute the SNR.
This is done because the SF model does not employ any pre-computed mask during its
optimization that could be used for evaluating the NCA. For baseline comparison, the
linear composition and the identity function are used as proxies to the couplings matrix,
i.e., C is computed using Eqs. (3.13)–(3.15) and C = IN , respectively. Since the SNR is
computed using the approximations of the NCA and the models’ outputs, di�erent SNR
values across the source separation models are expected.

In addition to the above, the SNR is also computed using the NCA approximation
and the true source singing voice spectra. Then, the SNR values are compared with the
SNR computed using the models’ outputs and the true source singing voice spectra. This
is done in order to intuitively quantify the loss of information induced by the NCA. The
previously mentioned analysis is performed for each strategy, model, and segment in each
multi-track. It is important to note that the goal here is to understand the power of the
NCA to deliver an accurate approximation of the model’s output.

3.4.3 Results & Discussion
To address the second research question “RQ2: Do DAEs commonly employed in
music source separation learn trivial solutions for the given problem?”, the
linear composition functions are computed for the three models (DAE, MSS-DAE, and
SF) using Eqs. (3.13)–(3.15). The average result across the 50 performed experimental
iterations from the composition functions is illustrated in Figure 3.3. The computation
of the linear compositions draws inspiration from the findings presented in [101] that
underlines the tendency of encoding and decoding functions to become symmetric, that
practically leads to learning scalar filtering operators.

By observing Figure 3.3 it is evident that the two models that map directly the mixture
magnitude spectra to the singing voice spectra (DAE and MSS-DAE) have a prominent
main diagonal structure. This means that through training, the corresponding encoding
and decoding functions tend to become symmetric [101], in an attempt to provide a so-
lution in the MSE sense. Therefore, it is plausible that the DAE and MSS-DAE models

11Available at: https://github.com/sigsep/sigsep-mus-cutlist-generator

55



CHAPTER 3. NEURAL NETWORK-BASED MUSIC SOURCE SEPARATION

Figure 3.3: The linear composition of the models’ encoding and decoding functions. The
compositions are computed using the Eqs. (3.13)–(3.15), and averaged across the 50 exper-
imental iterations. The first 744 frequency sub-bands (≥ 8kHz) are displayed for clarity.
Left Column: Composition for the denoising auto-encoder model [87] (DAE). Middle Col-
umn: Composition for the four layer extension of the DAE model, adapted to music source
separation (MSS-DAE) [76], [93]. Right Column: Composition for the skip connections
for filtering the input mixture (SF) [A6], [94], [96]. Illustration is based on [A22].

learned trivial solutions to the problem of singing voice separation. This could result in
severely restricting the overall separation performance. On the other hand, employing the
skip-connections as performed in the SF model, it can be observed from the right column
of Figure 3.3, that the activity has been repelled from the main diagonal. This can be
explained by recalling that the estimation of the singing voice spectra can be performed
also by scaling the individual frequency sub-bands of the mixture, which in turn is ex-
pressed by a diagonal matrix. The above observations combined with the latter statement
provide a simple explanation on why skip-connections [118] and end-to-end learning [119],
where the time-domain signals are used instead of spectrograms, are emerging directions
in music source separation.

Aiming to address the other research question “RQ1: Why is masking important
in approaches based on the DAE model?”, the attention is directed at the computed
mapping functions using the NCA, and the model assessment via the TOD-R metric.
Table 3.1 summarizes the TOD-R results for each model and for both strategies, i.e.,
student and compositional. The average TOD-R across all the segments of the test-
subset is reported. Inside the parentheses the standard deviation of the corresponding
measurements is provided. Bold faced numbers indicate the smallest obtained value for the
TOD-R (smaller is better), implying that the model has exploited a richer inter-frequency
structure. The results of Table 3.1 show that the SF model provides the smallest TOD-R
value for both strategies. More specifically, the TOD-R for the compositional strategy
and for the SF model is 12 times smaller than the TOD-R for the DAE model, which
has equal number of encoding and decoding layers. In comparison to the MSS-DAE
model that comprises two additional hidden layers, the TOD-R value of the SF model is
decreased by approximately 4.6 times. Therefore, it could be concluded that the skip-
filtering connections can be seen as a simple method to repel source separation approaches
from learning solutions that concentrate most of the activity on the main diagonal of their
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Table 3.1: Assessing the mapping functions. The TOD-R metric (Eq. (3.26)) for each
strategy and model. Lower TOD-R values indicate high o�-diagonal activity and thus,
the model’s ability to learn inter-frequency relationships.

Model
Strategy DAE MSS-DAE SF
Student 0.03 (±0.00) 0.03 (±0.00) 0.02 (±0.00)

Compositional 0.36 (±0.13) 0.14 (±0.04) 0.03 (±0.01)

Table 3.2: Assessing the approximation performance of the mappings computed by the
NCA, compared to the models’ outputs. The mean and standard deviation of the SNR,
expressed in dB, are reported. For comparison, the linear composition and identity func-
tion are used. Bold faced values denote the best approximation performance.

Model
Strategy DAE MSS-DAE SF
Student 6.51(±1.79) 9.11(±1.09) 6.53(±2.31)

Compositional 4.78(±2.69) 9.25(±1.13) 5.98(±2.24)
Baseline DAE MSS-DAE SF

Linear Comp. 0.01(±0.01) ≠174.9(±18.4) 0(±0)
Identity Funct. 2.38(±0.81) 3.05(±0.66) 2.51(±1.03)

corresponding mapping function(s).
Additionally, Table 3.2 presents the results from the evaluation of the approximation

performance of the NCA strategies by means of the SNR. The corresponding values are
reported in dB. The average approximation performance of the NCA for the DAE and SF
models and both strategies, outperforms the linear composition by approximately 6dB.
For the case of the MSS-DAE model the approximation performance of the NCA is better
than the linear composition by a very large margin that is greater than 100 dB. Closer
experimental inspections suggest that the large margin is due to the exceeding norm of
the spectra approximated by the linear composition. The exceeding norm of the spectra
is itself due to the high norm of the row-vectors of C, that is computed using the linear
composition of the MSS-DAE’s weight matrices and bias vectors. This in turn, shows
that by increasing the number of layers in non-linear source separation models, the linear
composition is a poor proxy of the models’ mapping functions. As for the identity function,
i.e., using the mixture instead of the models’ output spectral estimates, it is outperformed
by the NCA on average, across strategies and models, by ≥ 4dB. The student strategy
outperforms the compositional strategy on average across the source separation models
by 0.7 dB. This is due to the fact that the student strategy employs gradient updates that
are related only to the reconstruction error minimization.

To further understand the approximation performance of the NCA, the employed seg-
ments in the test subset are used to calculate the SNR values between the NCA approxi-
mation and the true singing voice spectra. The results from this assessment are presented
in Table 3.3. By observing the results in Table 3.3 it is highlighted that the NCA approx-
imations are marginally better than those obtained directly with the models’ outputs.
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(a) Student: DAE

(b) Student: MSS-DAE
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(c) Student: SF

(d) Compositional: DAE
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(e) Compositional: MSS-DAE

(f) Compositional: SF
Figure 3.4: The outcome of the NCA for the DAE, MSS-DAE, and SF models using
a ≥ 3 seconds excerpt from the file Al James - Schoolboy Fascination (test subset of
MUSDB18) [A22]. Sub-figures (a)–(c): The couplings matrices and the corresponding
spectral estimates using the student strategy. Sub-figures: (d)–(f): The couplings matrices
and the corresponding spectral estimates using the compositional strategy.
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Table 3.3: Assessing the approximation performance of the mappings computed by the
NCA, compared to the true singing voice spectra. The mean and standard deviation of
the SNR, expressed in dB, are reported. For comparison, the three separation models’
outputs are also reported.

Model
Strategy DAE MSS-DAE SF
Student ≠4.02(±2.43) ≠1.94(±2.03) ≠4.88(±3.06)

Compositional ≠5.50(±3.41) ≠2.36(±2.29) ≠4.15(±3.41)
Model Output ≠5.05(±3.05) ≠2.17(±2.43) ≠4.74(±3.15)

More specifically and on average across strategies and models, a small improvement of
≥ 0.17 dB is observed. It should be denoted that the results presented in Table 3.2 and
Table 3.3 do not aim at showing a correlation between the ability of a separation model
to learning inter-frequency relationships and the objective performance of singing voice
separation. Instead, Table 3.2 and Table 3.3 demonstrate the approximation performance
of the NCA for various strategies and baselines.

Focusing on the structure of the mapping functions that are computed using the NCA
via the student strategy, illustrated in the first row of Figure 3.4, it can be seen that the
couplings matrices, serving as the corresponding mapping functions, are nearly identical
between the DAE and MSS-DAE models, and marginally di�erent from the SF model.
The marginal di�erences can be explained by the fact that the couplings matrix for the
SF model was optimized according to Eq. (3.17) using the output masks of the SF model
as target function(s) Y, as opposed to the DAE and MSS-DAE models that use the
corresponding singing voice spectral estimates as target function(s).

The above tendency is also demonstrated in Table 3.1, where the statistics of the TOD-
R metric for the student strategy are exactly the same for the DAE and the MSS-DAE
models. This shows that the mappings are nearly identical between the models. This can
be explained by recalling the Eq. (3.17) and Eq. (3.18) that depict the approximation of
the mapping functions by observing only input-output and model-dependent relationships
of spectral representations. This in turn, neglects the parameters of the model. The
disuse of the model’s parameters during the optimization of the NCA is a convex problem
that is experimentally shown to lead to almost the same solution during the experimental
realization. However, according to [113] the disuse of the model parameters leads to system
solutions that do not characterize the functionality of the non-linear model. Consequently,
the attention is given on the compositional strategy, that includes the knowledge of the
parameters of each model.

In the second row of Table 3.1 and in Figure 3.4d and Figure 3.4e, a pattern that
is evident among the mapping functions of the DAE and MSS-DAE models is the high
diagonal activity. As observed from Figure 3.4f, the main diagonal activity is not appar-
ent in the mapping function of the SF model that employs the skip-filtering connections.
Specifically, the mapping function of the SF model has pushed most of its activity away
from the main diagonal. For small N , i.e., in the first matrix rows of the zoomed mapping
function displayed in Figure 3.4f, it can be seen that elementary spectral structures are
formed. Those spectral structures are related to the target spectra of Figure 3.4f as both
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the spectral and the mapping function illustrations concentrate magnitude information
in same frequency sub-band regions. According to the graphical model and its expected
conditional, i.e., Figure 3.1c and q(x|x̃)q(x̃), it can be underlined that the mapping func-
tion of the SF model captures the relevant structure of the target source that has been
observed in the mixture. That structure is then used to construct time-frequency mask
that can be applied to suppress the interfering sources. Nonetheless, the presented re-
sults do not provide evidence regarding the capacity of the SF model in learning spectral
structures from the training data.

To this end, Figure 3.4 also shows that the additional layers that the MSS-DAE model
employs are essentially used to model additional inter-frequency relationships, compared
to the DAE model that comprises only two layers and concentrates most of its activity
on the main diagonal. The MSS-DAE model not only pushes its activity to o�-diagonal
elements but also forms a structured matrix, mostly seen in the zoomed couplings matrix of
Figure 3.4e, that is roughly similar to a circulant matrix with sparse entries. Those types of
matrices are commonly used in digital signal processing for convolutional operators. This
observation somewhat justifies the advantage of incorporating additional computational
layers into a source separation model as proposed in [76], [93], and serves as an explanation
on why convolutional layers are attractive choices in source separation models [99]. On
the other hand, the DAE model has a simpler structure similar to a band matrix, with
the minor o�-diagonal activity denoting the spectral relationships, i.e., quasi-harmonic
structures of the singing voice.

3.5 Summary
In this chapter, the main theme is the separation of singing voice separation by means of
neural networks and particularly the most commonly used neural network model in music
source separation, i.e., the denoising autoencoder (DAE) presented in [87]. To understand
how DAEs process music mixture signals in order to separate music sources two research
questions were formalized: RQ1 - “Why is masking important in approaches based
on the DAE model?”, and RQ2 - “Do DAEs commonly employed in music
source separation learn trivial solutions for the given problem?”.

In an attempt to answer those questions it is proposed to examine the mapping func-
tions of the corresponding models applied to the particular problem of singing voice sep-
aration. For computing the mapping functions, an experimentally derived algorithm was
proposed. The algorithm is denoted as the neural couplings algorithm (NCA), and two
strategies are investigated for assisting the NCA to compute the mapping functions. The
first strategy, denoted as the student, is based on the neural network distillation concept
presented in [110]. It is observed that the student strategy leads to ambiguous results
regarding the approximation of the mapping functions, as it does not account for the
model’s parameters. As an alternative, the compositional strategy is proposed for taking
into account the model’s already optimized parameters for the problem of singing voice
separation. The compositional strategy encompasses, into the optimization objective, the
algebraic definition of the mapping function of a model.

Using the compositional strategy and the computed mapping functions, the DAE
model is investigated among its multi-layered extension employed in relevant tasks (MSS-
DAE) [76], [93], [98], and the DAE with skip-filtering (SF) connections that are used to
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mask the mixture spectra similarly to a time-frequency filtering operation [A6], [94], [96].
By examining the overall structure of the mapping functions, it can be concluded that the
source separation models learn data-driven filtering functions when they are optimized for
singing voice separation. Specifically, the DAE model learns trivial solutions because the
corresponding encoding and decoding functions become symmetric during the training
procedure. Consequently, the filtering functions learned by the DAE act as scalar filters
in the frequency domain potentially limiting the overall source estimation performance.

Furthermore, employing the skip-connections as in the SF model can be seen as a
simple method to enforce DAEs to learn richer inter-frequency dependencies compared
to the DAE. This can justify the empirically observed performance boost over DAEs in
previous works like [A10], [A11], [94], [96]. Finally, the additional computational layers
employed in the MSS-DAE model, seem to promote the learning of filter kernels with a
sparse and circulant structure roughly similar to convolutional operations. However, those
kernels share many similarities with scalar filters, as in the case of the DAE, which reduce
the overall filtering performance and support the experimental results in [93] that promote
the usage of masking as a post-processing step for estimating the target source(s).

Although this study does not fully reflect the current trends in deep learning-based
music source separation, it serves as a first step towards understanding what non-linear
models learn from data when they are optimized to separate the singing voice. For
instance, a model that uses skip connections is presented in [96]. That model is based
on ladder-like concatenations. According to the results presented in [96], the improved
performance in music source separation is observed when the skip-filtering connections
were introduced to the model. In addition to this, the skip-filtering connections are also
an important ingredient in end-to-end learning approaches. An example is the the Conv-
TasNet model [120] that has surpassed the oracle performance in speech signal separation.

Directions for future research include the examination of another important type of
skip connections that are commonly referred to as residual connections. Residual connec-
tions play an important role in signal enhancement and denoising [118] and have been
used in music source separation [99] and evaluation [98]. The reason that residual con-
nections have not been studied here is that the skip-filtering have played a much more
important role in music source separation, due to their connection to masking that is a
vastly used time-frequency operation. Finally, expanding the proposed study to more ad-
vanced architectures is also emerging. That is because the current study has solely focused
on data-dependent inter-frequency relationships, whereas it is well known that temporal
information conveys much information in music signals. It should be stated though, that
the mappings, with respect to the frequency structure, for recurrent and convolutional
neural networks are not expected to deviate significantly from the mappings presented in
this work. That is because the signal estimation is based on vector and matrix products
as the models examined in this chapter.
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Chapter 4

Masker-and-Denoiser
Architecture

Preface
This chapter focuses on a learning algorithm, based on a neural network architecture, that
learns masks for music source separation. That neural network architecture is denoted
as the Masker-and-Denoiser (MaD) and it relies on the skip-filtering connections. The
usage of these connections is based on the findings presented in Chapter 3, where the
skip-filtering connections are shown to repel deep learning approaches to music source
separation from learning trivial filtering operations for the problem of music source sepa-
ration. The performance of the MaD architecture is assessed in tasks including monaural
singing voice separation and harmonic-percussive source separation (HPSS). The content
of this chapter is based on the publications [A6], [A9]–[A12], [A14]. The corresponding
source code for the experiments, including audio examples for the separated source(s),
can be accessed online1. Additional results for this chapter are included in Appendix D.

4.1 Introduction
Many deep learning approaches for music source separation rely on the computation of
source-dependent masks [81], [88]. The application of source-dependent masks is most
commonly performed in the frequency domain using the short-time Fourier transform
(STFT), as described in Section 2.3.4 of Chapter 2 for the case of informed source sep-
aration. The di�erence with the case of informed source separation is that the mask is
inferred, either explicitly or implicitly, by the deep neural network (DNN) that is condi-
tioned on the information of the mixture signal.

There are three categories of approaches for inferring the source-dependent masks from
the mixture signal using deep learning. These categories are: i) the spectral approximation,
ii) the (explicit) mask prediction, and iii) a combination of the two previous categories

1Latest MaD models: https://github.com/Js-Mim/mss_pytorch, MaD with Twin Networks: https:
//github.com/Js-Mim/mad-twinnet, and HPSS experiments: https://github.com/Js-Mim/phase-hpss
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that incorporate the masking operation as a part of the computational graph. The latter
category uses the skip-filtering connections. Following the experimental results presented
in Chapter 3, the usage of skip-filtering connections is justified as a simple method for
DNNs to capture the structure of the target source from within the observed mixture
signal. This chapter proposes a neural network architecture for music source separation
based on these connections. The architecture is denoted as the MaD architecture and is
evaluated for its performance in singing voice and accompaniment source separation and
HPSS. The rest of this chapter is organized as follows: Section 4.2 provides information
regarding previous works in audio and music source separation that are related to the
proposed architecture. Section 4.3 gives a detailed description of the proposed architecture
including extensions regarding the mask inference. Section 4.4 provides technical details
regarding the training objectives of the proposed architecture. Section 4.5 describes the
followed experimental procedure, followed by Section 4.6 that presents and discusses the
results from the conducted experiments. Section 4.7 summarizes this chapter.

4.2 Related Work
4.2.1 Spectral Approximation Approaches
The approaches in this category try to first estimate the target and interfering source(s)
from the mixture signal, and then post-process the estimates by means of generalized
Wiener filtering. The output of the post-processing step is the final output of these
approaches. More formally, let Ym œ CT ◊N

Õ be the STFT of the mixture signal, with N
Õ

frequency sub-bands and T time-frames. Furthermore, let |Yj |– œ RT ◊N
Õ

Ø0
be the –-power

magnitude spectrogram of the j-th source computed using the STFT. The goal of the
approaches in this category is to learn a single or multiple functions f

(1)

j
(·), depending on

the number of the target sources, for estimating the magnitude of J sources. The input to
the functions is the mixture’s magnitude spectrograms, learning the following mapping:

f
(1)

j
: |Ym|– ‘æ |Yj |–, ’ j œ J .

The above mapping strategy is widely adopted, since it’s implementation is straight-
forward by using the denoising autoencoder (DAE) model [86], [87]. Di�erentiating from
the DAE model, the additive noise corresponds to the addition of other sources. Nonethe-
less, the experimental findings presented in Chapter 3 suggest that the DAE model learns
trivial solutions to the problem of singing voice separation, leading to sub-optimal sepa-
ration performance. One way to improve the separation performance is to post-process
the estimated magnitude spectrograms by applying source-dependent masks. This post-
processing step has been employed by nearly all the approaches in the first category. The
masks computed for the post-processing step are using the estimated source magnitude
spectrograms [76], [93], i.e., the outputs of each f

(1)

j
(·) after the training procedure. The

computation of the masks is based on a soft-masking (SM) method, by using each source’s
estimated magnitude spectrogram |Yj |– to Eq. (2.43).

More specifically, in [93] it is proposed to train multiple, one for each target source,
multi-layered DAEs, using feed-forward neural network (FNN). Each multi-layered DAE
estimates the magnitude spectrogram of the corresponding target source and is trained

66



CHAPTER 4. MASKER-AND-DENOISER ARCHITECTURE

in a greedy and layer-wise fashion2. The training is performed using audio signals from
a non-public data-set containing various music instruments, including the singing voice
source. After the training procedure the estimated target sources’ spectrograms, from each
multi-layered DAE, are used to compute source-dependent masks that are applied to the
mixture. Similarly in [121], it is proposed to extend the usage of DAEs by an adaptive
fine-tuning scheme that uses normal auto-encoders3. The auto-encoders fine-tune the
predictions of the DAEs for the target sources. Then, the fine-tuned spectrograms for
each source are used to compute source-dependent soft-masks that are applied to the
mixture. The latter results into the final estimates of various audio and music sources,
including the singing voice and accompaniment.

Similarly, in [76] it is proposed to train multiple, one for each target source, multi-
layered DAEs using FNNs, to predict the power spectral density (PSD), i.e., the power
magnitude spectrograms for – = 2, of the target sources. The PSD of the monaural
mixture is used as input to the multi-layered DAE. The estimated sources’ PSDs are
then used to compute the multi-channel, two-channel in this case, Wiener filtering using
the model presented in [75] and refined using an iterative scheme based on expectation-
maximization. Combining the ideas from [93] and [76], the work presented in [98] proposes
to use bi-directional long short-term memory (LSTM) layers to predict the PSDs of the
target sources. Then, the time-domain sources are first estimated using the inverse short-
time Fourier transform (ISTFT) and the mixture phase information. Finally, the sources
are refined by recomputing the STFT of the estimated time-domain source signals, and
using the multi-channel Wiener filtering to obtain the refined spectral estimates. The
refined spectral estimates of each target source are then transformed to the time-domain
using the ISTFT. Then, the reconstructed time-domain signals are linearly mixed with the
corresponding estimated sources from the exact method presented in [93]. In an attempt to
decrease the extensive computations used by the above mentioned separation approaches,
in [122] it is proposed to use two-dimensional convolutional neural network (CNN), to
estimate the PSDs of the target sources, that are then refined by the multi-channel Wiener
filtering, as in [76], [98]. Tow-dimensional CNNs are also proposed by the work presented
in [99], where di�erent convolutional kernels, employed by the two-dimensional CNNs, are
applied to sub-sets of frequency sub-bands of the mixture’s magnitude spectrogram. The
estimated target sources’ magnitude spectrograms, are then used as input to the multi-
channel Wiener filtering to yield the final spectral estimates of the target sources. The
approach presented in [99] has led to state-of-the-art results in music source separation,
with the reported performance relying on additional training data that are not publicly
available.

2In the greedy and layer-wise training setup and in the context of the work presented in [93], each
computational layer in the corresponding DAE, i.e., each individual FNN, is optimized to yield the
magnitude spectrogram of the target source. The input to that FNN is the output of the previously
trained FNN. In the case of the first layer, the mixture magnitude spectrogram is used. After all FNNs
have been trained, the FNNs are cascaded to form the multi-layered DAE model, that is then fine-tuned
with the objective of estimating the magnitude spectrogram of the target source. The greedy layer-wise
technique has been extensively used prior to the research that examines better initialization strategies for
DNNs [64].

3Similar to the DAE model but without any corruption or process applied to the input signal.
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4.2.2 Mask Prediction Approaches
The approaches of the second category aim at explicitly predicting the source-dependent
mask(s). More specifically, allow Mú

j
to denote the j-th mask computed by utilizing

an appropriate masking method, such as a soft-masking (SM) method or a binary mask
(BM). Then, the goal of the mask prediction approaches is to learn a function f

(2)(·),
that maps the mixture magnitude spectrogram to the source dependent mask Mú

j
of size

T ◊ N
Õ, i.e.,

f
(2) : |Ym| ‘æ Mú

j
, ’ j œ J .

Although the strategy of explicitly predicting the source-dependent masks is attractive,
as there is no need to estimate the interfering source(s) in order to compute the target
source’s mask, there are two severe limitations to this approach. The first limitation is
that defining a loss function for minimization is an open question. The second limitation
is that the learning of the function f

(2)(·) relies on a training procedure that uses sub-
optimal masks as the target output. The target output masks are pre-computed using
a data-set of multi-track audio signals. The sub-optimality is due to the fact that the
non-linear mixing parameters of the target source are unknown, i.e., the function Gch j(·)
from the assumed relaxed mixing model4 is not known. In practice, it is very common
to pre-compute BMs or masks derived from a SM method, and then use these masks
as training target output(s) [90], [123]–[125]. This choice disregards that BMs induce
music distortions in the separated signal and the computation of SM assumes that the
sources are additive. For instance, in [123] it is proposed to use a DNN comprising of
two-dimensional CNNs for predicting the BMs for the singing voice and accompaniment
sources, respectively. Similarly, in [124] it is proposed to use multiple DNNs, based on
FNNs, to estimate both BMs and soft-masks for each target source. The estimated masks
are then linearly combined together to compute a soft-mask, that reduces the musical
distortions and artifacts, that are induced from the application of the predicted BM to
the mixture spectrogram. To this end, the method presented in [90] and [125] builds on
the previously mentioned method of [124], by introducing a post-processing step of the
masked mixture spectrograms using an optimized DAE. The DAE is optimized similarly to
the spectral approximation approaches, and it is shown in [124] to improve the separation
performance of singing voice and accompaniment sources in terms of signal-to-distortion
ratio (SDR) and signal-to-interference ratio (SIR). An alternative approach that is based
on spectral clustering [126] is presented in [89]. In [89] a supervised approach to clustering,
using deep bi-directional LSTMs, is used to compute features for discriminating between
the singing voice and the accompaniment sources. These discriminative features are used
to predict both binary and soft masks for the separation of the previously mentioned
music sources.

4.2.3 Skip-filtering connection Approaches
In order to alleviate the problem of using pre-computed and sub-optimal masks as train-
ing targets for the DNN, the strategy employing the skip-filtering connections5 combines

4Interested readers are referred to Section 2.3.3 of Chapter 2.
5The term skip-filtering connections is described in Chapter 3. This term is mostly used in music

source separation. For speech enhancement and separation literature, the same approach is denoted as
the signal approximation method; a term easily confused with spectral approximation.
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the two previous categories of approaches, i.e., the spectral approximation and the ex-
plicit mask prediction approaches, by allowing the masking operation to be a part of the
optimization. The goal of this category of approaches is to learn a function f

(3)(·) that
predicts the source-dependent and optimized, according to a loss function, mask Mo

j
given

the magnitude spectrogram of the mixture signal, i.e.,

f
(3) : |Ym| ‘æ Mo

j
, subject to |Yj | ¥ Mo

j
§ |Ym| and ’ j œ J .

The strategy with the skip-filtering connections serves as a simple extension to the DAE
model, that allows the DAE model to implicitly mask the input mixture signal. The
applied mask is provided by the output of the model and the application of the mask
results into a filtered version of the mixture signal. The filtered signal is used as an
approximation of the true target source’s magnitude spectrogram. In contrast to the
mask prediction, the approaches based on skip-filtering connections do not require pre-
computed masks to be optimized.

In the context of neural network-based source separation, this strategy is proposed
in [94] for the separation of speech signals. The work presented in [94] involves the training
of deep LSTM networks to yield the source-dependent6 masks that filter the input mixture
magnitude spectrum. The parameters of the deep LSTM network are optimized using the
magnitude spectrogram of the target speaker(s) as target output. Focusing on singing
voice and accompaniment source separation, the work presented in [95] proposes to use
RNNs to predict the magnitude spectrograms of the singing voice and the accompaniment
source, similar to the spectral approximation approach. Then, the magnitude estimates
are given to a deterministic function that involves the computation of a soft-mask, based
on the generalized Wiener filtering. The output mask is applied to the mixture. According
to [95], although the approximation of the time-frequency mask is subject to optimization,
the optimization is based on the ability of the neural network layers to estimate the
spectrogram of the sources. Consequently, the method presented in [95] does not allow
the deep RNNs to learn the masking process, but rather to output magnitude estimates
that can be used to compute soft-masks as a ratio of magnitude spectrograms.

With the main ambition to also learn the masking process using DNNs, the author’s
work, previously published in [A6], proposes to directly mask the mixture magnitude spec-
trum with the output of the model based on bi-directional RNNs and particularly gated
recurrent units (GRUs). This approach has been extended in [A10], [A11], introducing
the architecture denoted as the MaD and extensions such as the recurrent inference [A10]
and the usage of twin networks [A11]. The technical details regarding the MaD archi-
tecture and the extensions are given in the following sections. The MaD architecture is
considered one of the state-of-the-art approaches in SiSEC 2018 campaign [127]. It should
be stated that the skip-filtering connections have been proposed also in [96] for singing
voice and accompaniment source separation. The main di�erence between [96] and the
proposed architecture is that in [96] it is proposed to use two-dimensional CNNs instead
of RNNs, employed in [A6], [A10], [A11], and the usage of additional skip-connections
that leak, by means of concatenation, the representations computed by previous layers to
the following ones. Furthermore, the experimental results presented in [96] suggest that
the skip-filtering connections are mostly responsible for the observed improvements in the
separation performance of the singing voice.

6In the case of speech separation, each source refers to a single speaker.
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More recent approaches, employ the skip-filtering connections for semi-supervised
learning in singing voice separation [128]. In addition to that, the skip-filtering con-
nections are the main ingredient of current state-of-the-art approaches to music source
separation that yield remarkable results [100], [129], [130]. For instance, in [100], [129] it is
proposed to use the two-dimensional CNNs, as in [96], combined with post-processing steps
based on the generalized Wiener filtering7. Furthermore, the model presented in [100],
[129] is trained on additional and non publicly available data. To this end, in [130] it
is proposed to use bi-directional LSTMs and (data) normalization layers, combined with
post-processing steps based on the generalized Wiener filtering as in [100] and [129].

4.3 Proposed Architecture
4.3.1 Overview of the Architecture
The proposed architecture takes as input the time-domain samples of the mixture signal
and outputs the time-domain samples of the target source. The architecture consists of
four modules. An illustration of the proposed architecture and its corresponding modules
is given in Figure 4.1. The first module performs the signal analysis and the pre-processing
of the analyzed signal. The second module accepts as input the analyzed and pre-processed
signal and predicts the source-dependent mask. The mask is applied to the analyzed
signal, creating a filtered version of the corresponding signal. The filtered version is the
first estimate of the target source that is then given to the third module. The third
module enhances the first estimate of the target source by predicting and applying a
denoising filter. Finally, the output of the third module is given to the fourth module
that constructs the time-domain samples of the target source. The second module of the
proposed architecture is denoted as the “Masker”, and the third module is denoted as the
“Denoiser”8. The Masker and the Denoiser modules are denoted separately, because the
Masker is optimized to predict the source-dependent time-frequency mask that yields the
first estimate of the source, whereas the Denoiser is optimized to enhance the output of
the Masker by additionally predicting and applying a time-frequency mask.

The Masker consists of an encoder, a decoder, and the skip-filtering connections be-
tween the input to the Masker and the output of the decoder. More specifically, the
encoder is implemented using a single layer of a bi-directional RNN [59] and is denoted as
the RNNenc(·). The decoder consists of a single layer of a uni-directional RNN, denoted
as the RNNdec(·), and the sparsifying transform implemented using a feed-forward neural
network (FNN) layer. The Denoiser is implemented using two FNN layers that are used
for encoding and decoding the frequency information from the Masker, and are denoted
as the FNNenc(·) and the FNNdec(·), respectively. The output of the FNNdec(·) is used to
mask the input to the Denoiser, using the the skip-filtering connections. The Masker and

7The post-processing steps based on the generalized Wiener filtering, include estimating all the sources
with multiple, one for each target source, DNNs with skip-filtering connections. These estimates are then
used to compute soft-masks that are applied to the mixture. This particular post-processing step is
understood as a fusion of information from multiple separation models, based on DNNs, that have been
trained to separate di�erent music sources. The fusion of separation models is empirically shown to yield
further improvements to the overall separation quality.

8Not to be confused with the definition of the denoising autoencoder (DAE) [86].
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Figure 4.1: Overview of the Masker-and-Denoiser (MaD) architecture for music source
separation. Circled crosses denote element-wise multiplication. Illustration reproduced
from [A10].

the Denoiser modules are jointly optimized using stochastic gradient in a supervised fash-
ion. All the previously mentioned RNNs in the proposed architecture are gated recurrent
units (GRUs), following the Eqs. (2.36)–(2.39) discussed in Chapter 2.

4.3.2 Signal Analysis & Input Pre-processing
Let xm œ RT

Õ

[≠1,1]
be the vector containing T

Õ time-domain samples of the monaural mix-
ture of J sources, sampled at 44.1 kHz. The monaural signal xm is used to obtain a time-
frequency representation of the mixture signal using the STFT. The STFT is computed
using a Hamming windowing function, that is 2049 samples long (46 ms). The step-size
of the STFT is 384 samples (8.7 ms). Prior to the application of the discrete Fourier
transform (DFT) matrix, each segmented time-frame is zero-padded to N

Õ = 4096 sam-
ples. This is performed in order to increase the frequency resolution that leads to higher
disjointness of the sources in the computed time-frequency representation [30], without
smearing the time resolution [18].

Subsequent to the STFT of xm, only the positive frequencies including the DC term are
retained, i.e., the first N = 2049 frequency sub-bands are used and the rest are omitted.
This yields the complex-valued time-frequency representation of xm that is denoted as
Ym œ CT ◊N . Using the complex-valued representation of the mixture, the phase and the
magnitude spectrograms are computed. The mixture signal’s phase spectrogram is used
for reconstructing the time-domain samples of the estimated target source. The mixture’s
magnitude spectrogram, denoted as |Ym| œ RT ◊N

Ø0
, is then split in B = ÁT/MË sub-
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sequences, where T is the number of time-frames and M is the length of the sequence. The
splitting of |Ym| into sub-sequences is performed to train the GRUs in a computationally
e�cient manner. That is because the sequence length of music signal spectrograms is
most of the times very large. By recalling the necessary recursive Eqs. (2.36)–(2.39)
used by the GRUs to compute the hidden representations, it can be deduced that the
process of high dimensional and lengthy time-frequency information leads to extremely
slow computations of the gradients required for optimizing the corresponding parameters
of the corresponding GRU.

The computed sub-sequences overlap by an empirical factor of 2 L time-frames, where
L is an integer denoting the overlap factor in time-frames. The overlap between sub-
sequences is introduced in order to use the overlapping time-frames as context informa-
tion for the encoding stage performed by the RNNenc(·). Each overlapping sub-sequence
contains M frames of the mixture’s magnitude spectrogram |Ym| and is denoted as
Yin œ RM◊N

Ø0
, where the subscript “·in” denotes the input to the Masker. Specifically,

each Yin is computed as

Yin =

S

WU

|Ym[tÕ,0]| . . . |Ym[tÕ,N≠1]
|

...
. . .

...
|Ym[tÕ+M≠1,0]| . . . |Ym[tÕ+M≠1,N≠1]

|

T

XV , (4.1)

where t
Õ is an integer indicating the time-frame index in the mixture magnitude spectro-

gram |Ym|. The integer t
Õ is calculated using the following expression:

t
Õ = (b ≠ 1) M ≠ (b ≠ 1) 2 L ,

where b is an integer smaller or equal than the total number of sub-sequences B, i.e.,
b œ Z[1,B]. The explicit indication of b in Yin is dropped for clarity in the notation.
In the case that the above expression results into time-frame indices that exceed the
number of time-frames M in the mixture spectrogram, zero-padding is applied, i.e., if t

Õ
>

M, then |Ym[tÕ,n]| := 0 ’ n œ [0, 1, . . . , N ≠ 1]. The usage of overlapping time-frames can
be seen as having temporal context information of L time-frames before and L time-frames
after (a total of 2 L time-frames), that is used for the RNNenc(·). The usage of temporal
context information is useful for both deep learning based music source separation [93],
[98] and for discovering meaningful temporal patterns in sequences using RNNs [52].

4.3.3 The Masker
The input to the Masker is each sub-sequence Yin that is computed from the input pre-
processing module. Only for, and prior to the encoding of each Yin a low-bandwidth ver-
sion of Yin is computed. This is done by preserving only the first F frequency sub-bands
in each time-frame, yielding the frequency-reduced sequence of magnitude information
that is denoted as Ytr œ RM◊F

Ø0
. This operation is denoted as trimming in Figure 4.1,

hence the subscript “·tr”. The trimming operation is useful for reducing the number of
trainable parameters of the Masker and is dependent on the hyper-parameter F . The
hyper-parameter F is chosen according to the expected frequency bandwidth that is nec-
essary to detect the target source(s) from the observed mixture spectrogram. Particularly
for the prediction of the mask that separates the singing voice or the harmonic sources,
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the first F = 744 frequency sub-bands are retained. This set of frequency sub-bands
includes bandwidth information up to 8 kHz, where the most relevant spectral content is
located for harmonic and quasi-harmonic music instruments [7].

The trimmed magnitude spectrogram of the mixture Ytr is used as input to the encoder
RNNenc(·) that is implemented as a single-layered bi-directional GRU. The bi-directional
GRU consists of a forward GRU and a backward GRU. The parameters of each GRU, i.e.,
the matrices and biases, are not shared between the forward and the backward GRUs. The
forward GRU takes ≠æYtr as input, which is equal to the sequence Ytr, and the backward
GRU takes as input the sequence-reversed version of Ytr, denoted as Ω≠Ytr. The time-
reversed version of Ytr is computed as

Ω≠Ytr =

S

WU
Ytr[M≠1,0] . . . Ytr[M≠1,F ≠1]

...
. . .

...
Ytr[0,0] . . . Ytr[0,F ≠1]

T

XV .

The arrows “≠æ· ” and “Ω≠· ” indicate the direction of the sequence processed by the forward
and backward GRU, respectively. After the processing of the sequences by the forward
and the backward GRUs, the resulting hidden representations9 are updated by means
of residual connections [131]. The residual connections are computed between ≠æYtr,

Ω≠Ytr

and the corresponding outputs from the forward and backward GRU, respectively. The
residual connections assist in the more stable training of the bi-directional GRU [52]. After
the application of the residual connections, the updated representations are concatenated
together to construct H̃enc œ RM◊2 F . More formally, H̃enc is computed as

H̃enc =

S

WWWWWWWWWWWU

≠æH [0,0] + ≠æY tr[0,0] . . .
≠æH [M≠1,0] + ≠æY tr[M≠1,0]

...
. . .

...
≠æH tr[0,F ≠1] + ≠æY tr[0,F ≠1] . . .

≠æH [M≠1,F ≠1] + ≠æY tr[M≠1,F ≠1]

Ω≠H [0,0] + Ω≠Y tr[0,0] . . .
Ω≠H [M≠1,0] + Ω≠Y tr[M≠1,0]

...
. . .

...
Ω≠H [0,F ≠1] + Ω≠Y tr[0,F ≠1] . . .

Ω≠H [M≠1,F ≠1] + Ω≠Y tr[M≠1,F ≠1]

T

XXXXXXXXXXXV

€

,

where ≠æH,
Ω≠H œ RM◊F

[≠1,1]
are the outputs of the forward and of the backward GRU, respec-

tively. The residual connections are used to allow the gradients to flow through the encoder
directly, resulting into a more stable gradient-based optimization of the parameters of the
MaD architecture [131].

With the main ambition to enforce the decoder RNNdec(·) to focus only on the sequence
frames that are relevant to the decoding of the source-dependent and optimized mask,
H̃enc is further processed by a sub-sampling operation. The sub-sampling operation drops
the first L and the last L time-frames, that are used as context information for the Masker.

9The term hidden representation follows the definition of the GRU given in the Eqs.(2.36)–(2.39) of
Chapter 2. It should be mentioned that hidden state(s) is an alternative and frequently used term in
related literature.
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This results in the output of the encoder Henc œ RM
Õ◊2 F , i.e.,

Henc := RNNenc(≠æYtr,
Ω≠Ytr)

with M
Õ
< M , and Henc is computed by sub-sampling H̃enc as

Henc =

S

WU
H̃enc[L,0] . . . H̃enc[L,2 F ≠1]

...
. . .

...
H̃enc[M≠1≠L,0] . . . H̃enc[M≠1≠L,2 F ≠1]

T

XV .

The output of the encoder Henc is then given to the decoder RNNdec(·). The RNNdec(·)
is implemented using a single-layered GRU which outputs the hidden representation
Hj

dec
œ RM

Õ◊2 F

[≠1,1]
, i.e.,

Hj
dec = RNNdec(Henc) .

Then, Hj

dec
is used as input to the sparsifying transform that yields an approximation of

the j-th source’s optimized mask. The approximated mask is denoted as M̃j œ RM
Õ◊N

Ø0
and

has the full spectral bandwidth as the mixture magnitude spectrogram. The sparsifying
transform is implemented using a FNN, followed by the application of the element-wise
rectified linear unit (ReLU)(Eq. (3.12)) function as

M̃j = ReLU(Hj

dec
Wmask + 1M Õ bmask

€). (4.2)

In Eq. (4.2) Wmask œ R2 F ◊N is the weight matrix of the sparsifying transform and
bmask œ RN is the corresponding bias vector of the sparsifying transform. The bias vector
is added to all time-frames M

Õ after its product with the vector 1M Õ . The transform is
characterised as sparsifying due to the application of the ReLU function [27] that sets to
zero the negative values after the above described operations using Wmask and bmask.

The output of the Masker is obtained by using the skip-filtering connections between
the predicted mask M̃j and the sub-sampled version of the mixture magnitude spectro-
gram Yin. The sub-sampling is performed with respect to the time-frames and is denoted
as YÕ

in
œ RM

Õ◊N

Ø0
. Formally, YÕ

in
is computed as

YÕ
in

=

S

WU
Yin[L,0] . . . Yin[L,N≠1]

...
. . .

...
Yin[M≠1≠L,0] . . . Yin[M≠1≠L,N≠1]

T

XV ,

and is then filtered by the predicted mask M̃j as

Yfilt = M̃j § YÕ
in

. (4.3)

The output of Eq. (4.3) is the filtered version of the sub-sampled mixture magnitude
spectrogram, denoted as Yfilt œ RM

Õ◊N

Ø0
, and serves as a first estimate of the target source’s

magnitude spectrogram. The subscript “·filt” is used to denote that the corresponding
magnitude spectrogram has undergone a filtering process.
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4.3.4 The Recurrent Inference Algorithm
In many cases the e�ective modeling and processing of long sequences relies on the usage of
multiple computational layers of RNNs [1], [52]. Experimental results in speech and music
source separation research presented in [94], [98], suggest that the additional computa-
tional layers of RNNs increase the objective separation performance of the corresponding
architecture. However, the number of computational layers is chosen heuristically. In
addition to this, the increase of computational layers employing RNNs and particularly
either GRUs or LSTMs, dramatically increases the number of parameters to be optimized
and makes the gradient-based optimization of the added layers harder [52], [53]. To avoid
the previously described problems and being inspired by deep learning methods where
the number of computational layers is stochastic [132], the recurrent inference algorithm
is proposed. The recurrent inference algorithm is based on the method presented in [132],
but with the di�erence that the parameters to be optimized, i.e., the weight matrices and
bias vectors, are shared among the computational layers used by the proposed algorithm.

Algorithm 2 The Recurrent Inference Algorithm
Require: Function of the recurrent decoder RNNdec(·), output of the encoder Henc,

maximum number of iterations iter, and the termination threshold ·term,
1: Sj

0
Ω RNNdec(Henc)

2: i Ω 0
3: while i Æ iter do
4: Hj

dec
Ω RNNdec(Sj

i≠1
)

5: if ||Sj

i≠1
≠ Hj

dec
||2

2
Ø ·term then

6: Sj

i
Ω Hj

dec

7: i Ω i + 1
8: else
9: Terminate the process

10: end if
11: end while
12: return Hj

dec

Subject to the MaD architecture, the recurrent inference algorithm is used in the
Masker and processes the latent representation computed by RNNdec(·). The latent rep-
resentation computed using RNNdec(·) a�ects the predicted mask. The recurrent inference
algorithm is employed by the Masker with the main ambition to improve the separation
performance of the Masker. The recurrent inference is an iterative process and con-
sists in reevaluating the source-dependent latent representation Hj

dec
, produced by the

RNNdec(·). The iterative process is terminated when the convergence criterion is reached.
This circumvents the need for specifying a fixed number of application of the RNNdec(·).
The stopping criterion is based on the threshold value ·term, operating on the L2 matrix
norm (|| · ||2

2
) of the di�erences between the consecutive estimates, i.e., the estimates of

of Hj

dec
from one iteration to the other. The comparison between consecutive estimates

of Hj

dec
practically indicates how much did Hj

dec
change compared to it’s previous evalu-

ation using RNNdec(·). A maximum number of iterations (iter) is used to avoid having
infinite iterations until the convergence criterion is met, i.e., the L2 matrix norm of dif-
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ferences is smaller than ·term. The recurrent inference is given in Algorithm 2 and its
benefits in singing voice separation are presented and discussed in Section 4.6 among a
few hyper-parameter choices.

4.3.5 The Denoiser
The output of the masker Yfilt is further processed by the Denoiser. The Denoiser is
used because the Masker is expected to allow interferences from other active sources to
the magnitude spectrogram of the target source10. One explanation to the allowed inter-
ferences is because the Masker consists of only three computational layers, the encoder,
the decoder, and the sparsifying transform, that could potentially decrease the learning
capabilities of the Masker [1]. In more details, the Denoiser is a two-layer denoising
auto-encoder [86] with skip-filtering connections [A22]. The Denoiser consists of the FNN
encoder (FNNenc(·)), and the FNN decoder (FNNdec(·)). The parameters of the FNNenc(·)
and of the FNNdec(·) are shared between the time-frames of the spectrogram sequence.
The output of the Denoiser is denoted as Ŷj

seq
œ RM

Õ◊N

Ø0
and is the estimated magnitude

spectrogram of the target source. The subscript “·seq” is used to indicate that the output
of the Denoiser is a sub-sequence of the initial magnitude spectrogram. Formally, the
output of the Denoiser Ŷj

seq
is computed as

Ŷj

seq
= FNNdec(FNNenc(Yfilt)) § Yfilt, (4.4)

where
FNNenc(Yfilt) := ReLU(YfiltWenc + 1M Õ benc

€),
Wenc œ RN◊ÂN/2Ê is the weight matrix of the FNN encoder, and benc œ RÂN/2Ê is the
bias vector that is added to the M

Õ time-frames of the encoded information of Yfilt. The
dimensionality of the encoded information is approximately half of N . This is done in an
attempt to enforce the Denoiser to encode the relevant information of the filtered, by the
Masker, magnitude spectrogram [117]. The decoding process of the Denoiser is defined as

FNNdec(FNNenc(Yfilt)) := ReLU(FNNenc(Yfilt)Wdec + 1M Õ bdec
€),

where Wdec œ RÂN/2Ê◊N is the weight matrix of the FNN decoder and bdec œ RN is the
bias vector that is added to the M

Õ time-frames of the Denoiser’s decoded mask.

4.3.6 Output Processing & Synthesis
All the previously mentioned operations performed by the Masker and the Denoiser are
applied to all B overlapping sub-sequences, that are computed using Eq. (4.1). Each
output sub-sequence of the Denoiser Ŷj

seq
œ RM

Õ◊N

Ø0
is combined with the rest of the

Denoiser’s output sub-sequences. Due to the induced overlap between the sub-sequences,
the inverse operation of Eq. (4.1) is a time-frame wise concatenation of the sub-sequences.
The result of the concatenation is the full-sequence magnitude spectrogram of the j-
th source denoted as Ŷj œ RM◊N

Ø0
. By exploiting the symmetry between positive and

negative frequency sub-bands in the representation computed by the STFT and by using
the phase information of the mixture, the time-domain samples of the target source x̂j œ
RT

Õ

[≠1,1]
are computed using the ISTFT.

10The expectation is verified using experimental results demonstrated in Section 4.6.
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4.4 Training Objectives
To optimize the parameters of the Masker and the Denoiser, i.e., the weight matrices
and the bias vectors employed in the operations described in the previous sub-sections, a
training process is performed. The training process aims at minimizing the empirical loss
of the MaD architecture between the estimated and the true spectrogram of the target
source. The empirical loss is computed as a linear combination of two terms that are
namely: i) the reconstruction term, and ii) the penalty term. The empirical loss is termed
as E

MaD

ú œ RØ0 and is computed as

E
MaD

ú = E
M

ú + E
D

ú¸ ˚˙ ˝
reconstruction

+ Ê E
R

ú¸ ˚˙ ˝
penalty

, (4.5)

where E
M

ú œ RØ0 and E
D

ú œ RØ0 are the loss values that are specific to the Masker
and to the Denoiser, respectively. The computation of the Masker-specific loss value
E

M

ú follows the probabilistic graphical model of the skip-filtering connections, illustrated
in Figure 3.1c of Chapter 3. In practice, the computation of E

M

ú enforces the Masker
to predict a source-dependent mask rather than a time-variant gain envelope, that is
applied to the mixture’s magnitude spectrogram Yin. The mask prediction is enforced by
training the Masker to reconstruct the magnitude spectrogram of the target source. The
computation of the Denoiser-specific loss value E

D

ú , in addition to E
M

ú , provides the the
objective to the Denoiser to further enhance the output of the Masker, resulting into an
increased separation performance of the MaD architecture.

In Eq. (4.5), Ê is a scalar that controls the strength of the penalty term in the compu-
tation of the empirical loss E

MaD

ú . The penalty’s loss value is denoted as E
R

ú œ RØ0 and
is computed using the Masker. The superscript ·R is used to distinguish the penalty term
from the Masker and the Denoiser specific objectives. The computation of the loss value
is performed only for the Masker and not for the Denoiser, since the Masker consists of far
more many trainable parameters than the Denoiser, that might lead to poor separation
performance during the evaluation stage of the MaD architecture. Also, the Masker is
implemented using RNNs that are most of the times very di�cult to optimize for e�ec-
tively processing long temporal sequences [52], [53], [133], thus reducing the performance
of RNNs in processing music spectrograms.

The asterisk “ú” in Eq. (4.5) is used for brevity and it replaces the subscripts that
denote the di�erent loss functions used for optimizing the MaD architecture. In par-
ticular, two di�erent loss functions are considered for computing the loss values of the
reconstruction term in Eq. (4.5). These two loss functions are the mean squared error
(MSE), denoted as LMSE(·), and the generalized Kullback-Leibler (KL) divergence, that
is denoted as LKL(·). The LMSE(·) is examined because it is employed by state-of-the-art
approaches in music source separation [76], [93], [98], [99]. On the other hand, the KL
divergence is examined because it is shown in [29], [70] that the KL divergence is a good
criterion for comparing the magnitude spectrograms of music sources, following the as-
sumption that the distribution of the magnitude spectrograms are approximated by tailed
distributions such as the Laplacian distribution.

More formally, allow FMasker(·) and FDenoiser(·) to denote the (parameterized) func-
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tions of the Masker and the Denoiser, respectively, so that

Yfilt := FMasker(Yin), and
Ŷj

seq
:= FDenoiser(Yfilt).

Then, the loss values specific to the Masker and to the Denoiser using the MSE loss
function LMSE(·) are computed as

E
M

MSE
= LMSE(|Yj

seq
|, Yfilt)

E
D

MSE
= LMSE(|Yj

seq
|, Ŷj

seq
),

where |Yj

seq
| œ RM

Õ◊N

Ø0
is the sub-sequence of the target source’s magnitude spectrogram,

computed using the STFT followed by Eq. (4.1), and the sequence sub-sampling operation
used by the Masker. The MSE between two matrices A, Â œ RM

Õ◊N is defined as

LMSE(A, Â) := 1
M Õ N

||A ≠ Â||2
2
, (4.6)

where || · ||2 denotes the L2 matrix norm. The loss values using the LKL(·) are computed
as

E
M

KL
= LKL(|Yj

seq
|, Yfilt)

E
D

KL
= LKL(|Yj

seq
|, Ŷj

seq
).

The KL divergence between two non-negative matrices B, B̂ œ RM
Õ◊N

Ø0
is defined as

LKL(B, B̂) := 1
M Õ N

||B § log( B
B̂ + ‘

) ≠ B + B̂||1, (4.7)

where log(·) is the element-wise logarithmic function, || · ||1 is the L1 matrix norm, and
‘ = 1e

≠24 is a small value to ensure numerical stability. It should be noted that the usage
of LKL(·) treats the frequency sub-band magnitude values, in the employed magnitude
spectrograms |Yj

seq
|, Yfilt, and Ŷj

seq
, as un-normalized probability values.

To compute the loss value E
R

ú of the penalty term, two loss functions are examined.
These loss functions are namely the L1 based loss function, that yields the loss value
E

R

L1
œ RØ0, and the loss function computed using the Twin Network (TwinNet) technique,

presented in [133]. The first loss function is based on the L1 matrix norm that is computed
using the weight matrix of the sparsifying transform employed by the Masker, i.e., the
Wmask œ R2 F ◊N . The purpose of this loss function is to further promote the sparsity
of the predicted target-source mask. Formally, the loss value using the normalized L1

matrix norm is computed as

E
R

L1 = 1
2 F N

||Wmask||1. (4.8)

Using the above definitions for computing the corresponding loss values and Eq. (4.5),
the following training objectives are formed to train the MaD architecture:

E
MaD
MSE/L1

= E
M

MSE
+ E

D

MSE
+ Ê E

R

L1 (4.9)

E
MaD
KL/L1

= E
M

KL
+ E

D

KL
+ Ê E

R

L1 . (4.10)
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4.4.1 Twin Network
The second loss function examined for computing the loss value for the penalty term
is based on the TwinNet technique [133]. The TwinNet technique penalizes a RNN by
computing a loss value using a parameterized function, i.e., an additional neural network,
whose parameters are optimized with the rest of the model, which in this case is the
MaD architecture. The TwinNet technique shares similarities with the the bi-directional
RNNs. In addition to the forward RNN, the TwinNet adds a second neural network that
is a duplicate of the forward RNN. The duplicate of the RNN is denoted as the twin RNN
and processes the sequence that is inputted to the forward RNN in the backward direction
(Ω≠· ). However, instead of combining the hidden representations computed by the forward
RNN and the twin network, as done in bi-directional RNNs, the TwinNet technique uses
a loss function that depends on the the twin RNN. That loss function enforces the hidden
representations computed by the forward RNN and the twin network to be as similar as
possible. The loss function further ensures that the hidden representation computed by
the forward RNN encodes the information that is stored in the twin network that processes
the sequence in the backward order. Practically, the TwinNet technique encourages the
forward RNN to anticipate the future information that is encoded in each time-step of
the representation of the twin RNN, resulting into a better modelling of both past and
future context information by the forward RNN [133].

An illustration of the TwinNet technique used in the MaD architecture is given in
Figure 4.2.In the context of the MaD architecture, the TwinNet is used to penalize the

Figure 4.2: Overview of the Masker-and-Denoiser (MaD) architecture using the TwinNet
technique. The illustrated modules in magenta color are used only during the training
procedure. Circled crosses denote element-wise multiplication. Illustration reproduced
from [A11].

RNN decoder of the masker RNNdec(·). That is because RNNdec(·) computes the hidden
representation that is used for obtaining the mask of the target source, and RNNdec(·)
could benefit from exploiting the strong temporal patterns evident in the magnitude
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spectrograms of music mixtures. Furthermore, twin networks o�er an alternative and
less computationally expensive technique to e�ectively process sequences compared to
the recurrent inference described in Section 4.3.4. The RNNdec(·) is trained with the loss
function computed using the TwinNet, hypothesizing that the decoded time-frequency
mask, for separating the target source, should remain the same regardless the direction of
the sequence computed using the RNNdec(·). In other words, the direction in time, e.g.,
forward or backward, that one chooses to process the mixture’s magnitude spectrogram
should be independent from the structure of the time-frequency mask that separates the
target source.

More formally, let RNNtwin(·) be the twin of the RNNdec(·). The input sequence to
RNNdec(·), denoted as Henc, is also given to RNNtwin(·) but reversed, i.e.,

Hj

twin
= RNNtwin(Ω≠Henc) .

The output of RNNtwin(·), denoted as Hj

twin
œ RM

Õ◊2 F

[≠1,1]
is used to compute the loss value

for RNNdec(·) as
E

R

twin
= ||Hj

dec
Wa� ≠ Hj

twin
||2, (4.11)

where Wa� œ R2 F ◊2 F is a trainable, a�ne, and linear transformation of Hj

dec
, that allows

small perturbations to the output of RNNdec(·). The a�ne transformation is used only
for the computation of the L2 matrix norm of the di�erences between Hj

dec
and Hj

twin
.

Using E
R

twin
in Eq. (4.11) the last examined objective for the MaD architecture is defined

as
E

MaD
KL/twin = E

M

KL
+ E

D

KL
+ Ê E

R

twin
. (4.12)

As shown in [133], the e�ectiveness of the twin network to penalize the RNNdec(·)
is based on the ability of the twin network to reconstruct the target sequence from the
observed reversed latent representation11. To do so, the twin network also duplicates
the sparsifying transform and the skip-filtering connections that are used to compute
the magnitude of the target source. That magnitude estimate is used to to compute
a reconstruction loss value, that is denoted as E

twin

KL
œ RØ0. The loss value E

twin

KL
is

computed as
E

twin

KL
= LKL(|Yj

seq
|, Ytwin), (4.13)

where Ytwin œ RM
Õ◊N

Ø0
is the spectrogram output of the twin network, that is computed

using the duplicated sparsifying transform followed by the skip-filtering connections, as
shown in Fig. 4.2. More specifically, Ytwin œ RM

Õ◊N

Ø0
is a filtered version of the mixture

magnitude spectrogram YÕ
in

and is computed as

Ytwin = ReLU(Hj

twin
Wtwin + 1M Õ btwin

€) § YÕ
in

. (4.14)

In Eq. (4.14) Wtwin œ R2 F ◊N and btwin œ RN are the weight matrix and the bias vector of
the duplicated sparsifying transform, respectively. The loss value E

twin

KL
is detached from

the calculation of gradients used for optimizing the parameters of the MaD architecture,
and therefore it does not contribute to the calculation of E

MaD
KL/twin using Eq. (4.12). This is

11In [133] it is proposed to maximize the log-likelihood of the observed data given the reversed sequence.
In the context of this work, the log-likelihood maximization corresponds to reconstructing the spectrogram
of the target source.
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done in order to prevent the preceding di�entiable modules of the Masker in assisting the
minimization of Eq. (4.11). This enforces only the parameters of the twin network to be
optimized using Eq. (4.12) and thus computing representations Hj

dec
that are meaningful

for penalizing the RNNdec(·). After the training procedure of the MaD architecture, the
twin network is discarded and it does not contribute to the separation of the target source.

4.5 Experimental Procedure
The goal of the experimental procedure is to experimentally justify the suitability of the
MaD architecture in music source separation tasks. The considered music source sep-
aration tasks are singing voice separation and HPSS, and the employed data-set is the
MUSDB18 data-set [A8]. For the experiments focusing on singing voice and accompani-
ment separation, the accompaniment signal is computed as the sum of the bass, drums,
and other music instruments, such as synthesizers, contained in the MUSDB18 data-set.
For the HPSS, the harmonic source is computed as the sum of the singing voice, the
bass, and the other music instruments. The percussive source is the drums track of the
previously mentioned data-set.

With a focus on singing voice separation, the perceptual relevance of the previously
described training objectives is also investigated. The investigation is performed by con-
ducting listening tests based on the multiple stimulus with hidden reference and anchors
(MUSHRA) standard. The degradation of the hidden anchor relies on the synthetic com-
putation of artifacts, interference, and distortion components using the clean target source
signal, as previously proposed in [78], [79] and described in Section 2.4.2. To this end, the
best performing model, based on the obtained experimental results, is compared to other
competitive methods from the spectral approximation and mask prediction approaches.
It should be noted, that the comparison presented herein serves only the purpose of
highlighting the potentials of the proposed architecture, given the most competitive and
related, to the MaD architecture, approaches.

4.5.1 Training
The MaD architecture is trained multiple times using various target sources, training
objectives, and using extensions, such as the recurrent inference. To that aim, the 100
two-channel multi-tracks from the MUSDB18 data-set are used. The multi-tracks are
sampled at 44.1 kHz. For each multi-track, the time-domain signals of the monaural
version of the mixture and of the target source, either the singing voice or the harmonic
or the percussive source, are down-mixed to a monaural version by averaging the two
available channels12. The time-frequency representations of the monaural time-domain
signals are computed by the input pre-procesing module of the proposed architecture
described in Section 4.3.2. Then, the time-frequency representations of the respective
signals are segmented into sub-sequences using Eq. (4.1).

For computing B = ÁT/MË sub-sequences that are used to optimize the parameters
of the MaD architecture, the length of each sub-sequence is set to M = 60 time-frames,

12Initial experiments indicated that training with time-frequency representations of monaural signals
yields equivalent separation performance, with respect to the corresponding objective metrics, compared
to the training using the information from the two available channels.
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modelling a sequence of approximately 0.5 seconds. The hyper-parameter that controls
the number of time-frames used as context information for the sequence processing using
the Masker is L = 10, i.e., the first 10 and the last 10 time-frames in each sub-sequence.
For the recurrent inference algorithm, described in Section 4.3.4, the termination threshold
is set to ·term = 1e

≠3 and two iteration values iter = [3, 10] are examined. All of the
previously mentioned hyper-parameters are chosen based on an small scale experimental
procedure involving a grid search of the respective hyper-parameters, the evaluation of the
separation performance using a smaller sub-set of the training data-set, and the available
computational resources.

In the training objectives, two scalar values are considered for controlling the strength
of the penalty term. These values are Ê = 0 and 0.5. The value 0 is used to examine if the
penalty term has any e�ect on the separation performance, and the value 0.5 was chosen
experimentally according to the balance between the loss values of the reconstruction and
penalty terms in Eqs. (4.9)–(4.10), and Eq.(4.12). The conducted experiments for each one
of the above considered variations of the MaD architecture, i.e., di�erent hyper-parameter
for the recurrent inference or a di�erent training objective, use a random initialization
with fixed seed to ensure a fair comparison. For all the considered RNNs contained in
the Masker, the hidden-to-hidden matrices are initialized with random values and scaled
according to the method presented in [62]. All the other matrices are initialized with
values drawn from a normal distribution and scaled using the method presented in [64].
The respective bias vectors are initialized with zeroes. All the parameters are jointly
optimized using the Adam algorithm [50], with a learning rate equal to 1e

≠3 and the
default coe�cients for the first and second-order moments. The batch size is set to 16
sub-sequences. Prior to each gradient update, the L2 norm of each computed gradient
is clipped to 0.5 for ensuring a stable training of the employed RNNs [52]. The total
number of iterations throughout the whole training data-set is set to 100, and the training
procedure is terminated if the average training loss value has not been decreased after 3
consecutive iterations.

4.5.2 Evaluation
For evaluating the separation performance of the MaD architecture, including the exten-
sions, the rest of the 50 tracks from the MUSDB18 data-set are used. From each track
the left and right channels are given independently as input to the MaD architecture,
yielding two-channel estimates of the target sources. This is done in an attempt to assess
the performance of the MaD architecture without any post-processing or enhancement
steps. To estimate the accompaniment source in the singing voice separation case study,
spectral subtraction is employed after the estimation of the singing voice magnitude spec-
trogram. For HPSS the MaD architecture is trained for each target source independently.
Then, the estimated sources from the proposed architecture and the true sources, from
the evaluation sub-set of MUSDB18, are used to compute the signal-to-distortion ratio
(SDR), the signal-to-interference ratio (SIR), and the signal-to-artifacts ratio (SAR) ob-
jective measures. The computation of the objective measures is performed for one-second
segments of the corresponding files, and the median values, across segments and tracks,
of the measures are reported.

For assessing the e�ect of the recurrent inference algorithm, the focus is given on
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singing voice and accompaniment source separation. Each optimized version of the MaD
that uses a di�erent values for iter, is used to compute the SDR, SIR, and SAR values.
In addition to these objective measures, the average time required to process a sequence
using the RNNdec(·), employed by the Masker, is calculated. Specifically, the average
time in ms is calculated for the RNNdec(·) to process the output of the bi-directional
GRU encoder Henc, yielding the source dependent latent information of the mask Hj

dec
.

The length of the sequences is approximately 0.5 seconds long, and the calculations are
performed on a computer with an 8-core Intel Xeon CPU (3.50GHz), 32 GB of RAM, and
the Nvidia Titan X GPU.

For showcasing the performance of the MaD architecture, a comparison with state-of-
the-art approaches for deep learning-based music source separation is also conducted. To
limit the number of possible evaluation configurations the best performing variation of
the MaD architecture is used and compared with the following approaches: i) UHL [98]
– A spectral approximation approach involving multiple three-layered DAEs using bi-
directional LSTMs data-augmentation, during the training procedure, and followed by
a post-processing step involving the multi-channel Wiener filtering for separating the
singing voice and accompaniment sources, ii) GRA [90] – An approach for (explicit) mask
prediction using FNNs for predicting both binary and soft masks that are then linearly
combined for singing voice and accompaniment source separation, iii) HUA+ [95] – The
first approach that incorporates the masking process into the computational graph of the
DNN, re-implemented using a three-layered bi-directional LSTM that yields the magni-
tude spectrograms of the singing voice and accompaniment sources that are then used to
compute soft-masks that are applied to each channel, iv) LPR [129] – A state-of-the-art
and very recent model for music source separation that uses the skip-filtering connections
and two-dimensional CNNs, followed by a post-processing step that fuses the outcomes
of multiple separation models that are optimized with di�erent target sources, and v)
LOR [134] – A state-of-the-art approach in deep learning based HPSS, that uses two-
dimensional CNNs and the skip-filtering connections, without post-processing steps. In
the case that the compared approaches have been engineered and trained on the previous
version of MUSDB18 data-set, i.e., the DSD100 data-set that comprises fewer multi-tracks
for training, the previously described steps for training and evaluation are repeated for
the MaD architecture using the DSD100 data-set. In that case, the computation of the
objective measures is based on the BSSEval version 3, following the SiSEC evaluation
rules. Due to the increased number of experimental results, the results from the compar-
ison with other supervised approaches for singing voice and accompaniment separation
are presented and discussed in the Appendix D.

Listening Tests

The listening tests are based on the MUSHRA standard [84] and are conducted to cross-
validate whether perceptual quality improvements for singing voice separation, could be
perceived when using any of the examined training objectives. The training objectives
employed in the subjective evaluation are the KL-based objective E

MaD
KL/L1

, the MSE-based
objective E

MaD
MSE/L1

, and the KL-based objective with the twin network E
MaD
KL/twin, as described

in Section 4.4. The choice of these objectives is based on the singing voice separation per-
formance, reported and discussed in Section 4.6. The singing voice separation is considered
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as a case study due to it’s high importance in music source separation [81], [88].
To that aim, a total number of 7 participants (after post-screening) participated in

the listening tests. All of the participants have an experience in audio signal processing.
A selection of six 10-second segments from the test sub-set of MUSDB18 data-set was
used as test corpus in the listening tests13. The segments used in the listening tests
were chosen such that they include 3 male and 3 female singers, ensuring timbre and
genre diversity. The anchor signals were generated to resemble distortions produced by
source separation algorithms, following the procedure described in Section 2.4.2. The
participants of the listening tests were asked to rate the general separation quality, in
the context of the experimental findings presented in [135] for the subjective definition
of separation quality. All participants were asked to rate the test content using a scale
from 0 to 100, divided into 5 equal intervals with the following quality descriptors: bad
[0-20], poor [20-40], fair [40-60], good [60-80], and excellent [80-100]. Each participant
went through a training phase for getting familiar with the goal of the listening tests
and the GUI used in the tests. The average rating with respect to the test segments is
reported.

4.6 Results & Discussion
4.6.1 Singing Voice & Accompaniment Source Separation
The e�ect of the Denoiser

To justify the usage of the Denoiser module in the MaD architecture, Table 4.1 and
Table 4.2 demonstrate the separation performance for singing voice and accompaniment
source separation, respectively. The separation performance is based on the calculation of
the median values for the SDR, SIR, and SAR objective measures in dB (the higher the
better), by either omitting (“7”) or incorporating (“3”) the Denoiser in the separation of
the target source during the evaluation14.

Table 4.1: The e�ect of the Denoiser module on the objective singing voice separation
performance, using two training objectives. Both training objectives are computed using
Ê = 0.5. Values in boldface denote the best obtained performance.

Objective Denoiser SDR (dB) SIR (dB) SAR (dB)

E
MaD
KL/L1

7 3.92 8.41 4.59
3 4.02 8.63 4.53

E
MaD
MSE/L1

7 4.02 7.81 4.28
3 4.10 8.68 4.41

The results in Table 4.1 show that the Denoiser further enhances the output estimates
of the Masker by marginally improving the overall SDR and decreasing the interferences

13Audio corpus can be publicly accessed from https://zenodo.org/record/1476866.
14Training the Denoiser separately from the Masker and then evaluating the MaD with and without

the Denoiser, leads to identical results with training the Masker combined with the Denoiser and omitting
the Denoiser only at the evaluation stage.
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Table 4.2: The e�ect of the Denoiser module on the objective performance in accompani-
ment separation, computed using the objective evaluation measures and the MUSDB18
data-set. Values in boldface denote the best obtained performance.

Objective Denoiser SDR (dB) SIR (dB) SAR (dB)

E
MaD
KL/L1

7 9.93 12.49 12.94
3 10.03 12.60 12.91

E
MaD
MSE/L1

7 9.93 12.67 12.21
3 10.11 12.99 12.53

from other sources. In particular for the E
MaD
KL/L1

training objective, by incorporating the
Denoiser the median SDR is improved by 0.10 dB, the SIR is improved by 0.22 dB,
but the SAR decreases by 0.06 dB. Also, for the E

MaD
MSE/L1

training objective, the e�ect
of the Denoiser is more prominent than E

MaD
KL/L1

, since the median SIR value is increased
by 0.87 dB, compared to the usage of only the Masker for separating the target source.
When the Denoiser is used marginal di�erences in the SDR and SAR values are observed.
Specifically, SDR is improved by 0.08 dB and the SAR is decreased by 0.13 dB.

For the separation of accompaniment music sources, the results from Table 4.2 show
that the Denoiser is beneficial as in the case of singing voice separation. Focusing on the
E

MaD
KL/L1

training objective, the usage of the Denoiser leads to improvements in the median
SDR by 0.10 dB, in the SIR by 0.11 dB. For the SAR measure a marginal decrease of 0.03
dB is observed. However, for the E

MaD
MSE/L1

training objective, the usage of the Denoiser
improves the separation performance of the MaD architecture with respect to all the
objective measures. Specifically, the SDR is improved by 0.18 dB and the SIR and SAR
are both improved by 0.32 dB. From Tables 4.1 and 4.2 it is evident that the e�ect of the
Denoiser is to eliminate remaining intereferences from the Masker, enhancing the overall
performance of the MaD architecture.

The e�ect of the recurrent inference algorithm

Focusing on the e�ect of the recurrent inference algorithm, i.e., Algorithm 2, Table 4.3
presents the results from objectively evaluating the MaD architecture (including the De-
noiser module) optimized using the KL-based training objective E

MaD
KL/L1

with Ê = 0.5. In
addition to the SDR, SIR, and SAR objective measures, the processing time in ms (the
lower the better) is also reported. From the results presented in Table 4.3 two observations
can be made. The first observation is that the recurrent inference algorithm dramatically
increases the computation time that is required to obtain the latent representation Hj

dec
.

Specifically, the required processing time for iter = 3 is 156 ms that is approximately
equal three times the baseline time, i.e., for iter = 0. Furthermore, for iter = 10 the pro-
cessing time is approximately equal to seven times the baseline time. The higher standard
deviation in processing time observed for iter = 10, compared to smaller values for iter,
and the incremental increase of processing time from iter = 3 to iter = 10, suggest that
the maximum number of iterations to 10 is not all the times reached, meaning that that
iter = 10 is a heuristically safe upper bound for the iterative process.

The second observation is that the recurrent inference algorithm is useful only for
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Table 4.3: The e�ect of the recurrent inference algorithm, used by the RNNdec(·) Masker,
in singing voice and accompaniment source separation, including the processing time
required (standard deviation in parentheses). The objective evaluation measures and
the average processing time are reported on the MUSDB18 data-set. Values in boldface
denote the best obtained performance subject to the target source.

Target Source iter SDR (dB) SIR (dB) SAR (dB) Time (ms)

Sing. Voice

0 4.02 8.63 4.53 50(±4)
3 4.02 7.85 4.53 156 (±1)
10 3.88 9.22 4.11 355 (±11)

Accompaniment

0 10.03 12.60 12.91 50(±4)
3 9.92 14.38 11.86 156 (±1)
10 9.94 14.94 11.55 355 (±11)

increasing the SIR by 0.59 dB and by 2.34 dB for the singing voice and accompaniment
separation, respectively. This observation can be made for iter = 10. In contrast to the
SIR, the SDR and SAR values are shown to decrease by 0.14 dB and 0.42 dB for singing
voice separation, and by and 0.09 and 1.36 dB for the separation of the accompaniment
source. In the case that iter = 3 there are not any significant improvements for singing
voice separation, but only an increase of the SIR by 1.78 dB for the accompaniment source
separation and compared to iter = 0. In summary, the recurrent inference algorithm can
be seen as an e�ective way to improve only the interference reduction capabilities of the
MaD architecture. However, that comes at the cost of increased computation time, that
is important especially during the training phase, and the decrease of the SDR that is
considered a very important objective measure in source separation.

The e�ect of the training objectives

The results from the objective assessment are presented in Table 4.4 for the task of singing
voice separation. The corresponding results for the accompaniment source are given in
the Appendix D. In more details, the median values for the SDR, SIR, and SAR objective
measures are reported for the MaD architecture that was trained with the MSE-based
objective E

MaD
MSE/L1

, the KL-based objective E
MaD
KL/L1

, and the KL-based objective using the
TwinNet E

MaD
KL/twin, for two values of Ê = 0 and 0.5 that controls the strength of the penalty

term in the training objective.
As can be seen in Table 4.4, including the penalty term in the training objective of

the MaD architecture results in an overall improvement of the SDR and SIR objective
measures. For the SAR measure, a marginal decrease of the median value is observed.
In more details, using the L1 matrix norm as a penalty on the weights of the sparsifying
transform, i.e., Eq. (4.8), a negligible improvement in the SDR of 0.01 dB and 0.02 dB is
observed for the E

MaD
KL/L1

and the E
MaD
MSE/L1

training objectives, respectively. For the SIR, the
penalty computed using Eq. (4.8) leads to an improvement of 0.13 dB for the KL-based
objective E

MaD
KL/L1

and 0.55 dB for the MSE-based objective E
MaD
MSE/L1

. The di�erence in the
observed improvements of the median SIR measure between E

MaD
KL/L1

and E
MaD
MSE/L1

, can be
explained due to the di�erent matrix norms employed in the KL divergence (Eq. (4.7))
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Table 4.4: The e�ect of various training objectives on the performance in singing voice
separation, computed using the objective evaluation measures and the MUSDB18 data-
set. Values in boldface denote the best obtained performance.

Objective Ê SDR (dB) SIR (dB) SAR (dB)

E
MaD
KL/L1

0 4.01 8.50 4.55
0.5 4.02 8.63 4.53

E
MaD
MSE/L1

0 4.08 8.13 4.43
0.5 4.10 8.68 4.41

E
MaD
KL/twin 0.5 4.16 9.96 4.26

and the MSE (Eq. (4.6)). The L2 matrix norm used in Eq. (4.6) could yield smaller
values for the error signal allowing the L1 matrix norm, used to compute the penalty
term (Eq. (4.8)), to have a greater impact on the computation of the gradients. For
the SAR, Table 4.4 suggests that the usage of a penalty term decreases the respective
objective measure by 0.02 dB for both E

MaD
KL/L1

and E
MaD
MSE/L1

. In addition to this, the usage
of the KL diverge to compute the reconstruction term yields the best results with respect
to the SAR.

By comparing the objectives E
MaD
KL/L1

, E
MaD
MSE/L1

, and E
MaD
KL/twin, with respect to the SDR,

SIR, and SAR measures, it can be seen in Table 4.4 that the usage of the TwinNet
yields the best results with respect to the median SDR and SIR measures. Specifically,
the E

MaD
KL/twin marginally improves the SDR by 0.14 dB and 0.06 dB in comparison to the

E
MaD
KL/L1

and E
MaD
MSE/L1

objectives, respectively, for Ê = 0.5. However, the usage of E
MaD
KL/twin

leads to improvements with respect to the SIR that are 1.33 dB and 1.28 dB, compared to
E

MaD
KL/L1

and E
MaD
MSE/L1

objectives, respectively. This observation considers the penalty term
with Ê = 0.5. Also, it can be observed that for Ê = 0 the SAR decreases by 0.29 dB and
0.17 dB compared to E

MaD
KL/L1

and E
MaD
MSE/L1

objectives, respectively. The case of Ê = 0 is
considered since it results in the highest median SAR according to the Table 4.4.

In addition to the above, the usage of the TwinNet yields superior performance to
the recurrent inference algorithm, without the necessity of increasing the processing time
of a sequence during the estimation of the target source. This observation can be made
by comparing the corresponding results of the recurrent inference presented in Table 4.3
and the results of the TwinNet in Table 4.4. In particular and in comparison to the
recurrent inference algorithm, using the the TwinNet technique the SIR is increased by
0.44 dB without the decrease of the SDR objective measure. From these observations it
can be concluded that the usage of the TwinNet technique results in improvements of two
important objective measures in music source separation, namely the SDR and the SIR.

The qualitative e�ect of the training objectives

From a qualitative perspective, a closer inspection of the previously mentioned marginal
di�erences between the training objectives with respect to the SDR, SIR, and SAR mea-
sures is given in Fig. 4.3 Specifically, Fig. 4.3 illustrates the average score (the higher the
better), that is obtained from the listening tests highlighting trends of the the perceptual
e�ects that the training objectives have on the singing voice separation performance using
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the MaD architecture. The average score is computed within the 95% confidence intervals
for the most competitive training objectives, with respect to the SDR and SIR measures.

As it can be seen in Fig. 4.3, the MaD architecture optimized with the three training
objectives has obtained score values between the range of 40 and 60. The obtained scores
suggest that a fair separation quality is achieved by the MaD architecture, according
to the MUSHRA specifications. In contrast to the marginal improvements of E

MaD
KL/twin

Figure 4.3: Average scores obtained from the listening tests for the three training objec-
tives: E

MaD
KL/L1

, E
MaD
MSE/L1

, and E
MaD
KL/twin for Ê = 0.5.

with respect to the SDR and SIR observed in Table 4.4, the usage of the objective with
the TwinNet technique has an e�ect on the perceptual quality of singing voice separa-
tion. Specifically, E

MaD
KL/twin received an average score of 54.49, that is approximately 6

points higher than the E
MaD
KL/L1

and E
MaD
MSE/L1

, on average. This suggests that the usage of
the TwinNet technique leads to perceptually relevant improvements in the singing voice
separation quality. Even though that the number of participants in the listening test is
not su�ciently large to argue about significant di�erences between objective and sub-
jective evaluation scores, the reported di�erences allow a more thorough inspection of
the marginal improvements observed of the objective measures reported in Table 4.1. It
should be noted that the reported discrepancy between objective and subjective evalua-
tion measures follows similar trends that are presented in [79], where results from listening
tests, that were performed at a larger scale, do not always coincide with the SDR, SIR,
and SAR measures.

Comparison with other supervised approaches

For demonstrating benchmark results in comparison to other deep-learning based ap-
proaches in music source source separation, Table 4.5 and Table 4.6 provide the median
SDR, SIR, and SAR objective measures for the MaD architecture, using the TwinNet
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technique (MaD-TwinNet). More specifically, Table 4.5 demonstrates results in compar-
ison to legacy approaches and Table 4.6 focuses on recent state-of-the-art approaches in
music source separation.

Table 4.5: Results from the objective evaluation for singing voice and accompaniment
source separation using the SDR, SIR, and SAR objective measures. Results reported on
the DSD100 data-set and in comparison to legacy approaches for mask prediction. Values
in boldface denote the best obtained performance.

Target Source Approach SDR (dB) SIR (dB) SAR (dB)

Sing. Voice

GRA [90] 0.92 6.28 3.49
HUA+ [95] 2.27 8.28 3.71

MaD-TwinNet 4.57 8.17 5.61

Accompaniment

GRA [90] 4.52 8.78 14.67
HUA+ [95] 6.33 13.71 8.22

MaD-TwinNet 9.58 13.09 11.67

The results presented in Table 4.5 suggest that the separation performance using the
MaD architecture with the TwinNet technique leads to superior results for both singing
voice and accompaniment separation, compared to legacy approaches that either predict
(un-optimized) masks explicitly (GRA), or using the magnitude estimates of the RNNs to
compute soft-masks and jointly optimize the parameters of the RNNs (HUA+). Specif-
ically, the MaD-TwinNet outperforms the explicit mask prediction approach (GRA) by
an average of 4.36 dB and 3.10 dB in the SDR and the SIR objective measures, respec-
tively. Subject to the SAR, the MaD-TwinNet is outperformed by 0.88 dB on average,
with respect to the two target sources. In comparison to the HUA+ approach, that does
not consider optimizing the predicted masks for the target sources, the MaD-TwinNet
yields superior results only with respect to the SDR and SAR measures. Specifically,
on average across the two target sources the MaD-TwinNet outperforms the HUA+ ap-
proach by 2.68 dB, in both the SDR and the SAR measures. Subject to SIR, the HUA+
approach outperforms the MaD-TwinNet by 0.39 dB. One interpretation of the above re-
sults is that allowing supervised approaches to yield and optimize source-dependent mask,
as the Mad-TwinNet does, yields superior superior results without the necessity of any
post-processing steps.

For providing benchmark results compared to more recent approaches, the median
SDR, SIR, and SAR values are presented in Table 4.6 for the singing voice and accompa-
niment sources. From Table 4.6 it can be seen that the usage of data-augmentation, used
in UHL, combined with the fusion of multiple source separation approaches optimized
with various target sources, a strategy followed by both LPR and UHL, yield significantly
better SDR, SIR, and SAR measures than the MaD-TwinNet. Particularly, the UHL ap-
proach yields the best results surpassing the MaD-TwinNet by 1.96 dB and the LPR by
1.60 dB in the SDR measure and on average with respect to the two target sources. For
the SIR and the SAR measures a similar trend can be seen in Table 4.6. On average with
respect the singing voice and accompaniment sources, the UHL approach outperforms the
LPR approach by 2.84 dB and 4.10 dB, and the MaD-TwinNet by 6.07 dB and 2.59 dB
for the SIR and the SAR measures, respectively.

89



CHAPTER 4. MASKER-AND-DENOISER ARCHITECTURE

Table 4.6: Results from the objective evaluation for singing voice and accompaniment
source separation using the SDR, SIR, and SAR objective measures. Results reported
on the MUSDB18 data-set and in comparison to state-of-the-art approaches. Values in
boldface denote the best obtained performance.

Target Source Approach SDR (dB) SIR (dB) SAR (dB)

Sing. Voice
MaD-TwinNet 4.16 9.96 4.26

LPR [129] 4.32 12.62 4.10
UHL [81], [98] 5.93 11.69 6.28

Accompaniment
MaD-TwinNet 10.09 12.89 12.86

LPR [129] 10.65 13.46 11.51
UHL [81], [98] 12.23 17.23 13.43

From the above observations, two evident trends can be highlighted by by recalling
that UHL is a spectral approximation approach and LPR employs the skip-filtering con-
nections plus the fusion of multiple trained source separation models. The first trend is
that the spectral approximation benefit from using data-augmentation and the fusion of
multiple models, by means of generalized Wiener filtering, yielding superior results. The
second trend is that source separation models employing the skip-filtering connections also
benefit from post-processing steps involving the application of soft-masks by fusing the
outputs of multiple separation models. The latter trend is mostly evident for interference
reduction, i.e., the increase of the SIR, that can be observed by comparing LPR that uses
the previously mentioned post-processing technique and the MadTwin-Net that does not
include any post-processing steps.

4.6.2 Harmonic & Percussive Separation
For demonstrating the potential of the proposed architecture to separate other music
sources other than the singing voice or accompaniment, Table 4.7 presents the objective
performance of the proposed architecture in harmonic and percussive source separation.
In particular, the median SDR, SIR, and SAR values are reported for the MaD-TwinNet
using the MUSDB18 data-set and compared to a state-of-the-art approach to HPSS [134],
that is denoted as LOR. The MaD-TwinNet is considered in the evaluation, as it was
shown in the above presented results that the MaD-TwinNet yields perceptually relevant
improvements to the separation performance of the proposed architecture.

The results from Table 4.7 suggest that the MaD-TwinNet performs better than the
LOR approach with respect to to the suppression of percussive in the harmonic source,
as indicated by the SIR that is by 2.61 dB higher than the LOR for harmonic sources.
Furthermore, it can be seen that the MaD-TwinNet produces less separation artefacts
for the percussive source, compared to the LOR approach. This is supported by the
0.7 dB di�erence in the SAR objective measure between the MaD-TwinNet and LOR.
Recalling that the LOR approach is based on two-dimensional CNNs and the skip-filtering
connections, whereas the Mad-TwinNet relies on RNNs and the skip-filtering connections,
the results of Table 4.7 show that the usage of CNNs is beneficial for improving the
separation quality of both harmonic and percussive sources. This can be seen from the
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Table 4.7: Results from the objective evaluation for harmonic and percussive source
separation using the SDR, SIR, and SAR objective measures. Results reported on the
MUSDB18 data-set and compared to a state-of-the-art HPSS approach. Values in bold-
face denote the best obtained performance subject to the target source.

Target Source Approach SDR (dB) SIR (dB) SAR (dB)

Harmonic MaD-TwinNet 8.93 13.09 11.46
LOR [134] 9.71 10.48 13.32

Percussive MaD-TwinNet 3.61 4.84 6.05
LOR [134] 3.70 5.84 5.35

SDR objective measure of the LOR approach, that is superior to the Mad-TwinNet by
0.78 dB and by 0.09 dB for the harmonic and the percussive source, respectively.

4.7 Summary
This chapter presented a neural network architecture that relies on two concepts. The
first concept is the skip-filtering connections, that serves as an extension of the denoising
autoencoder (DAE) model and is particularly useful for music source separation in the
time-frequency domain. The second concept is to treat the time-frequency representations
of music signals as sequences with rich temporal information, that can be exploited for
music source separation. To that aim, recurrent neural networks (RNNs) and particularly
gated recurrent units (GRUs) were employed in the proposed neural network architecture.
The proposed architecture is denoted as the Masker-and-Denoiser (MaD) and several ex-
tensions to the architecture have been presented. These extensions include the usage of
alternative training objective functions but also techniques that aim at increasing the
capabilities of the proposed architecture, for modelling and processing sequences of mu-
sic signals’ time-frequency representations. These techniques are namely the recurrent
inference algorithm and the twin network technique [133].

To assess the performance of the MaD architecture in music source separation, an
experimental procedure was conducted. The experimental procedure involved the opti-
mization of the proposed architecture for estimating various music sources that include
the singing voice, the accompaniment, the harmonic, and the percussive sources. Fur-
thermore, the optimized MaD architecture, for each target music source, was used in an
evaluation procedure that involves the computation of objective measures, such as the
signal-to-distortion ratio (SDR), the signal-to-interference ratio (SIR), and the signal-
to-artifacts ratio (SAR). For the singing voice and accompaniment separation listening
tests with trained listeners were conducted, highlighting the perceptual relevance of the
employed enhancement to the MaD architecture. The experimental results showed three
main trends. The first trend is that the MaD architecture produces fair separation re-
sults for singing voice separation, while the enhancements regarding the sequence pro-
cessing and particularly the usage of the twin network technique [133], yielded to per-
ceptually relevant improvements in the overall separation quality. The second trend is
that proposed architecture outperformed the approaches that aim at explicitly predicting
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a pre-computed and un-optimized time-frequency masks. However, the MaD architec-
ture was surpassed by approaches that rely on post-processing steps for estimating the
target sources. Those post-processing steps commonly include the fusion of predictions
from multiple deep learning-based source separation models via the usage of generalized
Wiener filtering and or linear mixing. Finally, the third trend is that the optimization
of RNNs subject to the spectral-based music source separation is cumbersome, and with-
out additional techniques, such as the twin network or fusion of multiple networks, it is
di�cult to achieve the current performance standards in music source separation.

92



Chapter 5

Learning Representations for
Separation

Preface
In the previous chapters the focus is given on supervised approaches to music source
separation. Those approaches are optimized using the magnitude representations of the
mixture and of the target sources’ signals as input and output targets respectively. The
used magnitude representations are computed using the short-time Fourier transform
(STFT). The motivation for using the STFT is that the separation is understood as a
filtering operation, which is an intuitive process. The goal of this chapter is to go be-
yond the usage of STFT, and explore methods for learning signal representations directly
from time-domain music signals. Furthermore, the computed representations consist of
attributes that are useful for the task music source separation. To evaluate the benefits
of the learned representations, the separation of the singing voice source from the accom-
paniment is considered as the downstream task. The work presented in this chapter is
based on the works [A21], [A24]. The corresponding source code, based on the PyTorch
framework [49], is available online1. Additional results are given in Appendix E.

5.1 Introduction
Recent advances in music source separation rely on deep learning approaches that can be
discriminated in two categories. In the first category the separation approaches operate
in the STFT domain [100], [130], and are denoted as spectral-based approaches. In the
second category the separation approaches operate directly on the waveform signals [136],
[137], i.e., the approaches are trained end-to-end, and are denoted as waveform-based
approaches. Spectral and waveform based approaches have in common that they implicitly
compute source-dependent masks that are applied to the mixture signal, prior to the

1https://github.com/Js-Mim/rl_singing_voice
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reconstruction of the target signals [100], [130], [136], [137]2.
Although the implicit masking is shown to be a simple and robust method to learn

source dependent patterns for source separation [A22], one could expect that waveform
based approaches would significantly outperform the spectral ones. That is because wave-
form based approaches are optimized using time-domain signals that also contain the
phase information, that unarguably carries important signal information [A13], [3], [11]
and has been neglected by many spectral based approaches [A10], [A11], [100], [130].
Nonetheless, previously conducted experiments and reported results suggest that spectral
based approaches have comparable or marginally better separation performance to the
waveform ones [130], [136], [137]. Since both waveform and spectral approaches rely on
deep neural networks (DNNs) and for both approaches a considerable engineering e�ort
has been directed to the employed neural architecture, it is evident that the di�erence in
the performance between the two di�erent approaches can be attributed to the utilized
signal representation that is used for separation.

For the spectral-based approaches the utilized representation is the non-negative signal
representation o�ered by the magnitude of the STFT. For the waveform-based approaches
the representation is computed by trainable encoding functions, commonly neural net-
works. The parameters of the encoding functions are optimized jointly with the rest of
the separation model. The optimization of the separation model, and thus also the encod-
ing functions that compute the representations, is based on minimizing loss objectives that
assess the reconstruction of the signals of the target sources given the mixture signal as in-
put [136], [137]. In this case and subject to the representations, the learning is performed
using solely discriminative optimization objectives, that aim at distinguishing between
the mixture and the target sources. As shown in [104], this could potentially impose
severe limitations in the generalization capabilities of the learned representations, as the
learning process based on discriminative objectives does not aim at capturing the essential
structure of the signals [86], [87]. Furthermore, the learned representations obtained by
approaches utilizing end-to-end training are not easily nor intuitively interpreted, com-
pared to the pre-computed signal representations that utilize the STFT.

In an attempt to learn music signal representations that capture the structure of
the music signals, are interpretable, and consist of attributes that are useful for music
source separation, the focus is given on neural-based representation learning [138]. The
following sections present a new and simple method for learning representations of time-
domain music signals. The proposed method is characterized as unsupervised because
the optimization of the method does not depend on labelled categorical data, i.e., labels
for distinguishing between the music sources, and the representation attributes (discussed
later) are learned using unsupervised training objectives. Furthermore, these training
objectives do not target the learning of the unmixing function, i.e., the mapping from
the mixture to the target source signal as done in the previous chapters. This in turn,
alleviates the need of having either labelled or paired training data (i.e., matched multi-
track audio data of each corresponding source). However, the proposed method still
requires isolated source’s audio signals, but this information is more accessible than paired
multi-track data.

The rest of this chapter is organized as follows: Section 5.2 provides information re-
2Subject to the masking strategy, the thesis refers to the adaptation of Conv-TasNet [120] for music

signals also presented in [136].
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garding previously published research that is related to representation and interpretable
representation learning for audio and speech processing and enhancement. The proposed
method for learning representations is described in Section 5.3, followed by the experi-
mental procedure described in Section 5.4. Section 5.5 presents and discusses the results
obtained from the experimental procedure, including visualizations of the obtained rep-
resentation(s). Section 5.6 summarizes the findings presented in this chapter.

5.2 Related Work
The proposed method is based on the denoising autoencoder (DAE) model [87] that can
be used also for unsupervised learning of signal features and representations, other than
trained in a supervised way to separate music sources as previously done in Chapters 3
and 4. The DAE can e�ciently learn the empirical distribution of the signal of interest,
i.e., the signal to be denoised [87], [104]. This is achieved by optimizing the DAE with the
unsupervised objective to reconstruct the clean signal from a noisy version. Subject to this
work, the underlying assumption is that a model capable of computing representations
that characterize the clean signal of interest can be obtained by learning the empirical
distribution of the observed data. Contrary to the DAE, the proposed method uses a
simple and real-valued sinusoidal-based model for the decoding functions. The sinusoidal
model consists of amplitude-modulated cosine functions, and whose parameters are jointly
optimized with the rest of the DAE. The motivation behind using a sinusoidal model as a
decoding function is to guide via back-propagation the encoding layers of the DAE to learn
and convey information regarding the energy of specific cosine functions that compose the
audio signal. This leads to interpretable representations akin to the STFT.

Employing a vastly used digital signal processing operation for decoding functions is
inspired by two works. The first work introduces the concept of di�erentiable digital signal
processing [139] where the parameters of common digital signal processing functions are
optimized by means of back-propagation. In the case of the proposed method, back-
propagation is applied with respect to the parameters of a simple signal model that is
based on sinusoidal functions. The second work that the proposed method is inspired
from, is the Sinc-Network presented in [140]. The Sinc-Network uses sinc functions in the
encoding layers of convolutional kernels for interpretable deep learning. The Sinc-Network
has been extended to complex-valued representations for speaker separation [141].

The proposed method di�ers from [141] as the representation of the proposed method is
real-valued, alleviating the cumbersome signal processing operations on complex numbers.
Furthermore, the proposed method di�ers from approaches that initialize the front-end
parts of the networks with cosine functions [142] that are then updated by means of back-
propagation. The di�erence is that the proposed method inherits the cosine functions
as a part of the model to be optimized. Finally, the proposed method is similar to the
sound source separation method presented in [143]. In [143] an encoder gets as an input the
signals of the sources and their corresponding mixture, and outputs latent representations
of the signals of each source and the mixture. Then, using these latent representations,
the method calculates and applies source dependent masks to the latent representation of
mixture. The result of the application of the masks is given as an input to the decoder,
which outputs an estimation of the signal of each source. The encoder and the decoder
are jointly optimized to minimize the reconstruction error between the ground truth and
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the estimated signals of each source, i.e., a discriminative training is performed. However,
using reconstruction objectives in a discriminative setting for separating only specific
sources, could severely restrict the representation learning capabilities of encoder-decoder
methods [104]. In contrast, the proposed method uses information from the mixture and
target source signals using unsupervised and non-discriminative training objectives that
aim at capturing the structure of the music signals.

5.3 Proposed Method
The proposed method employs an encoder E(·) and a decoder D(·). The input to the
method is a music signal, x œ RN

[≠1,1]
, with N time-domain samples. The output of the

method is the learned non-negative representation of x, A œ RC◊T

Ø0
, with T templates of

C features. The C features can be viewed as analogous to the frequency bins and the
T templates as the analogous to the time-frames in a time-frequency representation. A
is computed by the encoder E(·), and is interpreted as the magnitude information for a
real-valued, sinusoidal-based model, employed by the decoder D(·).

To optimize E(·), the decoder D(·) is used. In addition to this, a data-set of monaural
(single channel) recordings of singing voice, xv œ RN

[≠1,1]
, and accompanying musical

instruments xac œ RN

[≠1,1]
is used. Using xv two synthetic signals are created. The first

synthetic signal, x̃m œ RN

[≠1,1]
, is the result of an additive corruption process, where the

accompanying musical instruments such as drums, guitars, synthesizers, and bass (i.e. a
generic multi-modal distribution-based noise) are added to xv:

x̃m = xv + xac .

The second synthetic signal, x̃v œ RN

[≠1,1]
, is also the result of a corruption process, where

Gaussian noise is added to xv, independently of the amplitude of xv.
During training, the encoder E(·) computes two non-negative representations Am œ

RC◊T

Ø0
and Av œ RC◊T

Ø0
, using the two above mentioned synthetic signals, x̃m and x̃v,

respectively. Av is used as input to D(·), and D(·) outputs an approximation of the clean
singing voice signal xv, denoted as x̂v. Am is solely used to calculate an additional loss
function. This is done in order to enforce E(·) to learn about the additive multi-modal
noise. Essentially, the encoder is informed about more realistic corruption process that
might occur in realistic data-sets. An illustration of the training procedure is shown in
Figure 5.1.

After the training process of the proposed method, E(·) can take as an input any
musical signal x, and will output the representation of x, denoted as A. Furthermore,
an approximation of the signal x can be computed using the decoder D(·). The bene-
fits for doing so, is that A has good music signal representation attributes that include
interpretability (post-hoc [144]), non-negativity3, and structured spectrogram-like repre-
sentations. Furthermore, the inputted signal x can be approximated from A using D(·),
with a small reconstruction error for the parts that the singing voice signal is active. Con-
sequently, the method could be e�ectively used in the downstream task of singing voice
separation, but not limited to.

3Non-negativity or in other words the disregard of phase information in music source separation has
played an important role in devising models and approaches [A9].

96



CHAPTER 5. LEARNING REPRESENTATIONS FOR SEPARATION

Figure 5.1: Overview of the proposed method for representation learning.

5.3.1 The Encoder
The encoder E(·) computes the representation(s) using two one-dimensional (1D) con-
volutions with strides and in series. The first 1D convolution uses a stride size S and a
set of C kernels, kc œ RL, where c = [0, 1, . . . C ≠ 1] is the kernel index. The temporal
length of each kernel k is L samples. As input to the first convolution, the signals x̃m and
x̃v are used. The outputs are the latent representations H̃m œ RC◊T

Ø0
and H̃v œ RC◊T

Ø0
,

respectively. More formally, the latent representations are computed as

H̃m[c,t] =
L≠1ÿ

l=0

x̃m[St+l] kc[l] (5.1)

H̃v[c,t] =
L≠1ÿ

l=0

x̃v[St+l] kc[l], (5.2)

where t œ [0, 1, . . . , T ≠ 1] and l œ [0, 1, . . . L ≠ 1] are integers denoting the time-frame
and the kernel sample indices, respectively. Appropriate zero-padding is applied to x̃m

and x̃v, so that T = ÁN/SË. Each latent representation is used as an input to the second
1D convolution, which uses another set of C kernels, KÕ

cÕ œ RL
Õ◊C , with a temporal

length of L
Õ samples, that is L

Õ
<< L. The output channels are indexed by c

Õ, where
c

Õ = [0, 1, . . . , C ≠ 1].
The outputs of the second convolution using the previously computed representations,

are denoted by Hm œ RC◊T and Hv œ RC◊T , respectively. The second convolution is
performed with a dilation factor of „ and a unit stride S = 1, as

Hm[cÕ,t] =
C≠1ÿ

c=0

L
Õ≠1ÿ

lÕ=0

H̃m[c,t+„lÕ]K
Õ

cÕ
[lÕ,c]

(5.3)

Hv[cÕ,t] =
C≠1ÿ

c=0

L
Õ≠1ÿ

lÕ=0

H̃v[c,t+„lÕ]K
Õ

cÕ
[lÕ,c]

. (5.4)
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Then, the representations Am and Av are computed using the previously computed
latent representations, Hm and Hv respectively, and by means of residual connections,
followed by the application of the rectified linear unit (ReLU) function [46] as

Am = ReLU(Hm + H̃m) (5.5)
Av = ReLU(Hv + H̃v) . (5.6)

The application of the ReLU function promotes non-negative and sparse representations
by preserving positive values and setting the rest to zero [27], and is shown to be par-
ticularly useful in general modelling of audio signals [145]. Another targeted and useful
attribute of the learned representation is that of smoothness [142], [145], especially useful
when real-valued cosine functions are involved in auto-encoding or separation models [142].
Smoothness refers to the slow time variation of the representation, and is useful for gen-
eral audio signal modelling. That is because the modelling of audio signals based on
cosine functions requires the phase information for reconstruction. Phase information is
usually encoded as the sign (positive or negative value) of the real-valued representation,
that varies along the time-frames of the representation. Since the negative values are
nullified by the application of the ReLU function, neighbouring time-frames, that convey
similar information for music signals are expected to be non-smooth. To compensate for
the expected non-smoothness, the second convolution operation uses dilated convolutions
that aggregate temporal information from neighboring time-frames [61] and updated using
residual connections.

In order to enforce the learning of smooth representations, a representation objective is
introduced. The introduced objective is a loss function that the encoder has to minimize.
The most straightforward way to enforce the smoothness is to compute the norm of
the first-order di�erences of the representation [146]. To do so, the (anisotropic) total-
variation denoising loss is used. Specifically, the representation of x̃m, Am, is used to
compute the total variation denoising (LTV(·)) as

LTV(Am) = 1
CT

1 C≠1ÿ

c=1

T ≠1ÿ

t=0

|Am[c,t] ≠ Am[c≠1,t]|

+
T ≠1ÿ

t=1

C≠1ÿ

c=0

|Am[c,t] ≠ Am[c,t≠1]|
2

. (5.7)

Practically, LTV(·) penalizes E(·) by the norm of the first order di�erence across both
time-frames T and templates C. The former promotes slow time varying representations
as the magnitude of the STFT representation, and the latter promotes a grouping of the
template activity. It should be noted that the smoothness, as a representation objective,
is not expected to smear any transient information contained in the time-domain signal.
That is because transients, in the computed representations, are expected to be active
only in a few time-frames. By optimising with longer signals and thus, increasing the
number of time-frames of the representation, the first order di�erence does not exceed
high values on average. The previously mentioned attributes of the desired representation
attributes are formed from domain knowledge that is based on the STFT. Furthermore,
LTV(·) is an unsupervised objective that depends only on the representation Am, and
does not imply any separation objective, i.e., estimating Av from Am.
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Although LTV(·) seems an attractive loss function due to its simple computation, it has
a severe limitation. According to [147, Theorem 2] the total-variation distance, and in this
particular case the sum of absolute di�erences employed in Eq.(5.7), is not a suitable loss
function for data distributions supported by low-dimensional manifolds. Instead, optimal
transportation distances are more suitable. Under the hypothesis that both the singing
voice and the mixture signals, and their corresponding representations can be described
by low-dimensional manifold(s), an alternative unsupervised objective to LTV(·) is also
examined.

Sinkhorn distances LSK(·) allow an e�cient computation of optimal transportation
loss [148]. The goal here is to minimize the distribution di�erences between local time-
frames. The locality of the computation is dependent on the considered number of time-
frames T . More specifically and subject to the goal of this work, Sinkhorn distances are
computed as

LSK(Am) = ÈP⁄, Â(Am)Í , (5.8)
where “È·, ·Í” is the Frobenious dot-product and Â : RC◊T

Ø0
‘æ RT ◊T

Ø0
is a function that com-

putes the matrix M œ RT ◊T

Ø0
of pair-wise distances, i.e., M = Â(Am). More specifically,

the pair-wise distances are computed as

M[t ,tÕ] =
1 C≠1ÿ

c=0

(|Am[c,t] ≠ Am[c,tÕ]|)p

21/p

. (5.9)

In Eq. (5.9) t, t
Õ œ [0, . . . , T ≠ 1] are indices that are used to compute the pair-wise

distance between the time-frames T of the representation. For the computation of the
pair-wise distances the time-frames T are considered instead of the features C. That is
because the goal here is to compute slowly time-varying representations and that can
be directly enforced by comparing time-frame vectors at various time instances within T .
Furthermore, Eq. (5.9) considers p = 1 for computing the distances. It should be denoted,
that only for, and prior to, the computation of the loss matrix M, the representation Am

is normalized so that the sum of the features at each time-frame t sum up to unity. More
formally, the normalized representation Ao

m
is computed as

Ao
m[c,t]

=
Am[c,t]q

c

(Am[c,t] + 1

C
)

.

This is done in order to treat Am as a probability simplex in which the computation of
the optimal transportation loss can be computed.

In Eq.(5.8), P⁄ œ RT ◊T

Ø0
is the transportation plan that is computed by solving the

following minimization problem

P⁄ = arg min
PœU(r,c)

ÈP, Â(Am)Í ≠ 1
⁄

H(P) . (5.10)

In the above minimization problem, ⁄ > 0 is a scalar the controls the strength of the
entropic regularization, and H(·) denotes the entropy function that is computed as

H(P) = ≠
T ≠1ÿ

t,tÕ=0

P[t,tÕ] log(P[t,tÕ]) .
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Algorithm 3 Computation of the transportation plan, using Sinkhorn-Knopp’s iterative
matrix scaling operation [148], [149]
Require: loss matrix M, entropic regularization scalar ⁄, dimensionality T , vector of

ones 1T , number of iterations iter, termination threshold ·

1: Initialize: K = exp(≠⁄M), u = 1T £ T , v = 1T £ T , Ku = diag(u) K
2: for all iter do
3: v Ω T £ (K€u)
4: u Ω 1 £ (Ku v)
5: o = ||diag(u) K diag(v)||1
6: if ||o ≠ (1T £ T )||2

1
< · then

7: stop iterating
8: end if
9: end for

10: P⁄ = diag(u) K diag(v)
11: return Transportation plan P⁄

In addition to this, U(r, c) is the set of non-negative matrices of size T ◊ T whose rows
and columns sum up to r and c, respectively. It is further assumed that r = c = 1. For
solving the minimization problem of Eq.(5.10) the proposed method for representation
learning employs the algorithm presented in [148] that is based on the Sinkhorn-Knopp
iterative matrix scaling operator [149] and is pseudo-algorithm is given in Algorithm 3.
In Algorithm 3, || · ||p is the p-th vector or matrix norm.

In Eq.(5.7) and Eq.(5.10) only the representation Am is used to compute the corre-
sponding loss functions. This is performed in order to enforce the encoder E(·) to yield
smooth representations on the most realistic corruption scenario. This scenario is the ad-
ditive generic multi-modal distribution-based noise x̃m that contains also the information
regarding the singing voice signal xv. Thus, the smoothness for the representation of the
singing voice is implicitly enforced.

5.3.2 The Decoder
The decoder D(·) takes as an input the representation Av and yields an approximation
of the clean singing voice signal xv, denoted as x̂v œ RN

[≠1,1]
. Specifically, D(·) models

the clean singing voice as a sum of C modulated sinusoidal components that overlap in
RN . The components are computed using transposed convolutions with strides of S and
another set of C kernels, wc œ RL, as

X̂v[l,t] =
C≠1ÿ

c=0

Av[c,t]wc[l] , (5.11)

where X̂v œ RL◊T is the matrix containing the modulated components that are used to
compute x̂v as

x̂v[n] =
ÿ

t

X̂v[n≠t S,t] ’n œ [0, 1, . . . , N ≠ 1]. (5.12)
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Eq. (5.12) is the overlap-add process (explained in Section 2.2 and Eq.(2.2)) applied for
recovering the entire signal of length N and follows the assumption that

X̂v[n≠t S,t] = 0 if (n ≠ t S) ”œ [0, 1, . . . , L ≠ 1].

Similar to the Sinc-Net [140] and it’s complex-valued extension for speech enhance-
ment [141], the proposed method does not allow each wc to be updated directly using
back-propagation. Instead, each wc is re-parameterized by amplitude modulated sinu-
soidal functions. The back-propagation is computed with respect to the corresponding
parameters of the modulated sinusoidal functions. More specifically, each wc is computed
using

wc[l] = cos(2fif
2

c
l + flc) bc[l] , (5.13)

where cos(·) is the cosine function and l = [0, . . . , L≠1] is the time index. The parameters
that are jointly learnt with the parameters of the encoder E(·), are the sampling-rate-
normalized carrier frequency fc, the phase flc (in radians), and the modulating signal
bc œ RL. The direct access to natural quantities like the above described, significantly
boosts the interpretability of the representation learning method. Additionally, wc can
be sorted according to the carrier frequency fc, promoting intuitive representations. The
non-linear squaring operation applied to fc is motivated by experimental results presented
in Section 5.5.1.

There are three reasons for using modulated cosine functions for decoding Av: a) cosine
functions promote interpretability [140], i.e. the representation Av is expected to convey
amplitude related information for driving a well established synthesis model based on
sinusoidal functions [7], b) the auto-encoding operation shares many similarities with the
STFT yet without having to deal directly with the phase information, for which supervised
based separation works remarkably well [100], [130], and c) amplitude modulations allow
an extra degree of freedom in reconstructing signals that cannot be described by pure
sinusoidal functions [7]. The latter statement is supported by the convolution theorem
which states that the element-wise product of two vectors can be expressed in the Fourier
domain as their corresponding convolution. Since in the proposed re-parameterization
scheme (i.e. Eq. (5.13)) one of the signals is a cosine function, then bc is expected to convey
timbre information regarding the signal xv that was used to compute the reconstruction
objective.

After the reconstruction of x̂v, the negative signal-to-noise ratio (neg-SNR) [150], is
computed as

Lneg-SNR(xv, x̂v) = ≠10 log
10

1 ||xv||2
2

||xv ≠ x̂v||2
2

2
, (5.14)

where || · ||2 is the ¸2 vector norm, and the negative sign is used to cast the logarithmic
SNR as a minimization objective. Then, the overall overall minimization objective for
E(·) and D(·) is computed using LTV(·), for baseline comparison, as

LA = Lneg-SNR(xv, x̂v) + Ê LTV(Am), (5.15)

or using LSK(·) as
LB = Lneg-SNR(xv, x̂v) + Ê LSK(Am), (5.16)

where Ê is a scalar that weights the impact of the representation objective (either LTV(·)
or LSK(·)) in the gradient (learning signal) used for optimizing E(·). In addition to this,
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LA and LB are scalar values that contain the overall loss that is used for optimizing the
encoder and the decoder. The decoder D(·) computes x̂v only from the signing voice
representation Av. That is because the signal xv is expected to be more appropriately
modelled by sinusoidal functions compared to xm and thus providing more meaningful
gradient information. That is because xm is expected to include transient signals that
cannot be easily modelled with sinusoidal functions. Consequently, and in the case that
xm is used as the target signal, the gradient information passed to the encoder might not
be useful for learning structured representations [1], [138], [140]. Furthermore, it is aimed
at learning general representations in an unsupervised and non discriminative fashion, i.e.,
repelling from mapping the mixture to the target source. To achieve that by means of the
DAE model [87], it is reasonably assumed that the distribution of the corruption process
is constant for all segments in the data-set [104]. This cannot be assumed for music
signal mixtures, as even the distribution of the accompaniment instruments can vary
dramatically from one segment to another. Consequently, by making such an assumption
it could lead to degenerate learning of representations. It should be stated however, that
using only xv as a target signal for optimization does not imply that after training the
decoding of Am leads to poor approximations of xm. According to the provided support
material, the reconstructions of xm via decoders that have been optimized with the above
criteria lead to reasonable reconstruction performance.

5.4 Experimental Procedure
5.4.1 Data-set
For training and testing the representation learning method the MUSDB18 data-set [A8]
is used. The data-set consists of 150 two-channel professionally produced multi-tracks,
i.e, the stereophonic signals of bass, drums, singing voice, and other music instruments,
that comprise a music mixture. Every signal is sampled at 44100 Hz. The multi-tracks
are split into training (100 multi-tracks) and testing (50 multi-tracks) subsets.

5.4.2 Initialization & Hyper-parameter Selection
Initialization

Before the training process, the kernels in the first convolutions are randomly initialized
with values drawn from a uniform distribution. The bounds of the uniform distribution
are (≠

Ò
3

C
,

Ò
3

C
), following the initialization strategy presented in [63]. For the decoder,

the phase values flc are initialized to zero, and all the elements of the modulating vectors
bc are initialized to the value of 1

C+L
. The initialization of the normalized frequencies fc

is inspired by [140] and is performed by first computing the center frequencies of the Mel
scale, denoted as fMel, in the range of fHz œ [30, . . . , 22050] Hz with a step-size equal to
C. Then, fMel is computed as

fMel = 2595 log
10

(1 + fHz

700)
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and the initial value for each component fc is computed as

fc = 700 10
fMel
2595 ≠ 1

44100 .

Hyper-parameter Selection

For selecting the hyper-parameters of the convolutional networks and the training pro-
cedure, a pilot experiment is conducted. During this experiment, 20 randomly selected
tracks from the training sub-set of MUSDB18 data-set were used. The objective of the
pilot experiment is to determine the learning rate and the batch size of the solving algo-
rithm, the standard deviation of the additive Gaussian noise for the corruption processes,
described in Section 5.3, and the convolutional hyper-parameters. To that aim, the pro-
posed method was trained without the representation objective, with the only objective
to reconstruct the singing voice signal from it’s corrupted version. The results from each
experimental run were assessed by means of informal listening tests, focusing on the sub-
jective quality of the reconstruction of the singing voice.

The results from the above described experimental procedure are the usage of the
adam algorithm [50], with a learning rate equal to 1e

≠4 and a batch size of 8. In ad-
dition to this, the following hyper-parameters for the convolutional layers: (number of
kernels) C = 800, (stride size) S = 256, (temporal length of each kernel in the first en-
coding layer) L = 2048, (temporal length of each kernel in the second encoding layer)
L

Õ = 5, and (dilation factor for the second encoding layer) D = 10 provided perceptu-
ally good reconstruction. Furthermore, it was observed that the method converges fast,
so for the complete experimental procedure the total number of iterations throughout
the whole data is set to 10. In similar vein, a standard deviation of 1e

≠4 for the ad-
ditive Gaussian noise was found to yield good and relatively fast results from a range
of values [1e

≠5
, 5e

≠5
, 1e

≠4
, 5e

≠4
, 1e

≠3
, 5e

≠3
, 1e

≠2]. Based on the available computational
resources4 each multi-track is partitioned in segments of N = 44100 samples (1 second
long) and the largest possible batch-size.

5.4.3 Training
During training, a set of four multi-tracks is sampled. For each multi-track the vocals
and all the other music instrument sources are used collectively. The accompaniment
source is computed by adding the bass, drums, and other music instrument sources.
Then, each sampled multi-track is down-mixed to a single channel and is partitioned
into overlapping segments of N = 44100 samples. The overlap is 22050 samples. The
segments for each source are independently and randomly shu�ed. Then, the singing
voice signal segments are corrupted using the shu�ed segments of the accompaniment
source. For the corruption by additive Gaussian noise, the standard deviation of the
noise remains constant and is independent from the amplitude of the singing voice signal.
For optimizing the parameters of the representation learning method, with respect to the
minimization of Eq. (5.15) or Eq. (5.16), the adam algorithm [50] is used. To compute
the Sinkhorn distance(s), Eq. (5.9) is applied to each Am contained within the batch, and

4An Nvidia GTX 1050Ti GPU with 6GB of memory.
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the average distance is computed across each batch, as typically performed in mini-batch-
based gradient descent [50].

5.4.4 Evaluation
For evaluating the usefulness of the representation that is learned by the proposed method,
the rest of the 50 tracks from the MUSDB18 data-set are used. Each track is down-mixed
and partitioned into non-overlapping segments of N = 44100 samples. Shu�ing and
random mixing are not performed at this stage. However, the silent segments in the
singing voice tracks are discarded. Discarding silent singing voice segments is based on:

lxv = 10log
10

(||xv||2
2

+ ‘)
I

xv : active, if lxv Ø ≠10
xv : silent, otherwise,

where lxv is the thresholding value for discarding a segment. The thresholding value is
empirically chosen by finding the minimum value, in the training sub-set of MUSDB18
for all segments, that can be used to preserve all active singing voice segments.

The representation is evaluated with respect to the three following criteria: i) re-
construction error of the proposed method to encode and decode the clean singing voice
signal using the previously described methodology, ii) reconstruction error of the separated
singing voice signal by binary masking, and iii) additivity of the representation. The first
and second criteria are objectively measured with respect to the clean singing voice signal
xv using the scale-invariant signal-to-distortion ratio (SI-SDR) [82]. The scale-invariant
signal-to-distortion ratio (SI-SDR), expressed in dB, is computed for each segment as

SI-SDR(xv, x̂v) = 10 log
10

1 ||–xv||2
2

||–xv ≠ x̂v||2
2

2
, for

– = x̃v
€xv

||xv||2
2

. (5.17)

Higher SI-SDR values indicate better reconstruction or separation performance. It should
be noted that the first criterion is used only to evaluate the reconstruction capabilities of
the proposed re-parameterization scheme and not the learning capabilities of the overall
method for learning representations. That is because this reconstruction criterion does not
support the claim of the proposed method to be unsupervised, since the reconstruction of
the singing voice has been used as an optimization objective; yet it serves as an informative
quality indicator for audio signals.

For performing the task of singing voice separation, informed binary masking is used.
That is because masking is an important operation in audio and music source separation,
and has been extensively used by deep learning based approaches and also representation
learning [143]. The focus is given on informed separation, i.e., masks are computed by
an oracle method using the information for all the mixture’s sources available in the
data-set. This is done in order to estimate the least-upper-bound performance of singing
voice separation, for a learned representation. This alleviates the biases on the prior
information that music source separation approaches have. Examples of biases include
the source’s structure and the existing neural architectures that are engineered for the
representations computed using the STFT. Finally, binary masking is used because it is
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an indicator of how disjoint (less overlap) two sources are, given a representation5. More
specifically, the oracle binary masking is computed by encoding three signals. The first
signal is the mixture xm, the second signal is the accompaniment source xac, and the
singing voice signal xv. The representations Am, Aac, and Av of the signals xm, xac, and
xv, respectively, are computed using the trained encoder E(·). The mask Gv œ RC◊T is
computed as

Gv = g(Av £ Aac) ,

where g(·) is defined as

g(x) =
I

1, if x Ø 0.5
0, otherwise

.

The approximation of the singing voice time-domain signal x̂v using the decoder D(·) and
by means of binary masking is computed as

x̂v = D(Am § Gv) .

The additivity of the sources is computed using the following objective metric

A(xm, xv, xac) = 1 ≠ ||E(xm) ≠ E(xv) ≠ E(xac)||1
||E(xm)||1 + Á

, (5.18)

where || · ||1 is the L1 matrix norm, Á = 1e ≠ 24 is a small term for ensuring numerical
stability, and xac is the time-domain signal of the accompaniment music source that
is computed by mixing the multi-tracks available in the testing subset. High values of
A(·) that are close to 1 indicate that the representation of the mixture signal consists
of additive sources (higher A(·) is better). The attribute of additivity is important for
the computation of optimal separation masks [70], and in the unsupervised separation of
music sources [33], [151].

5.4.5 Assessing Design Choices
Using the procedures that are described in Section 5.4.3 and Section 5.4.4, two additional
experiments are conducted. For both experiments every model is optimized three times
using di�erent initial random seeds. For the first experiment, the modulated cosine func-
tions (mod-cos) are examined for their applicability as synthesis model by measuring the
reconstruction performance, after being optimized for the denoising task. It should be
noted that for the first experiment the corruption process with the randomly shu�ed
segments of the accompaniment signal is not considered. Furthermore, an early stopping
mechanism is used to terminate the training procedure if the model under examination
has stopped decreasing the reconstruction objective (neg-SNR), expressed in Eq. (5.14),
on average with respect to the batches in the previous iteration. For comparison, various
modifications to the presented method for representation learning and decoding strate-
gies from related literature are considered in this experiment. Specifically, the squaring of
the normalized frequencies fc is examined, among other decoding strategies such as non-
modulated cosine functions (cos), and common one-dimensional convolutional networks

5For the detailed connection between disjointness and binary masking see Appendix C.

105



CHAPTER 5. LEARNING REPRESENTATIONS FOR SEPARATION

(conv) with and without the tanh non-linearity applied at the last stage of the decoding
process. In addition to this, Sinc-Net [140] (sinc) Sinc-Net is examined as the first en-
coding stage as proposed in [140]. For this experiment, C is adapted for each model so
that the same number of parameters is used by the models.

The best combination of the decoding and non-linear functions from the first experi-
ment are further investigated in the second experiment. In this experiment the following
values for the number of components C œ [400, 800, 1600] are examined. Furthermore, the
e�ect of the representation objective is examined with respect to the usage of informa-
tion either from the additive corruption by multi-modal noise or the additive corruption
by Gaussian noise, i.e., using either Av or Am. For this experiment, the (an-isotropic)
total-variation denoising (Eq. (5.7)) objective is used, as the Sinkhorn distances are com-
putationally very demanding and significantly slow-down the training procedure. For
comparison, the STFT is employed by performing the above described operations of anal-
ysis, masking, and synthesis. The STFT uses a hop-size of 256 samples, a window size of
2048 samples, and the hamming windowing function.

5.5 Results & Discussion
5.5.1 Results from Design Choices Evaluation
Table 5.1 demonstrates the median values of SI-SDR expressed in dB (the higher the
better) yielded by the first experiment, with additional information regarding the vari-
ous setups for the encoder E(·) and the decoder D(·), the number of parameters NP (in
millions M), the used number of components C, and the employed non-linearities. The
results in Table 5.1 highlight three trends. First, the application of the non-linearity to
the normalized frequencies fc results into better reconstruction performance compared to
the linear case. The observed improvement is of ≥ 3dB on average across experimental
configurations. Secondly, the modulated cosine functions serve as a good di�erentiable
synthesis model for singing voice signals, outperforming simple cosine functions by approx-
imately 8 dB on average, with respect to the two experimental configurations (with and
without frequency scaling of the normalized frequency), and by 1.4 dB the best configura-
tion of convolution based model (conv). Since SI-SDR is invariant to scale modifications
of the assessed signal, 1.4 dB is a significant improvement of signal quality and does not
imply a simple matching of the gain that the model based on modulated cosine functions
might have exploited. Thirdly, Sinc-Net [140] does not bring further improvements to the
proposed method.

Focusing on the separation performance of the obtained representations, Table 5.2
presents the median SI-SDR values of the binary masking separation scenario, for three
values for the hyper-parameter C and two strategies for computing the representation
objective. These strategies consider two di�erent signal representations that are either
the corrupted by Gaussian noise Av or the synthetic mixtures using the accompani-
ment signals Am. The obtained results are compared to the common convolutional en-
coder/decoder setup used in Table 5.1 and the STFT that has perfect reconstruction
properties and masking techniques work very well in practice [A9]. The results of Ta-
ble 5.2 mainly underline two experimental findings. The main finding is that using the
representation objective and information from the realistic corruption process Am, it can
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Table 5.1: Results reflecting the decoding performance, by means of SI-SDR. Bold-faced
numbers denote the best performance.

E(·)/D(·) Setup Non-linearity C SI-SDR NP

conv/cos N/A 952 20.83 6.483M
f

2

c
22.34

conv/conv N/A 800 31.25 6.476Mtanh(decoder) 30.50

conv/mod-cos N/A 800 28.72 6.478M
f

2

c
32.62

sinc/mod-cos f
2

c
952 26.82 6.487M

Table 5.2: SI-SDR for informed separation by binary masking (BM). Bold-faced numbers
denote the best performance.

E(·)/D(·) Setup C LTV(Am
/Av) SI-SDR SI-SDR-BM NP

conv/mod-cos

400 Av 30.46 3.66 2.439MAm 30.73 5.93

800 Av 32.28 4.39 6.478MAm 32.11 6.28

1600 Av 31.94 4.68 19.356MAm 31.54 6.68

conv/conv 800 Av 31.25 2.89 6.476MAm 31.13 4.95
STFT/iSTFT 1025 N/A N/A 8.80 N/A

be used to improve the reconstruction of the masked mixture signals without additional
supervision, as previous studies suggest [143]. This claim is supported by the observed
improvement of ≥ 2 dB, on average across models of various components C, when the
synthetic mixtures are used for the unsupervised representation objective. Furthermore,
the proposed re-parameterization scheme improves by approximately 1.6 dB the separa-
tion performance compared to typical convolutional networks. Nonetheless, there is much
room for improvements in order to obtain the quality of the STFT/iSTFT approach that
outperforms the best masked approximation of the proposed method by 2.12 dB.

5.5.2 Representation Learning Results
Table 5.3 presents the average and standard deviation values of the additivity measure
A(·), the SI-SDR for the reconstruction and the separation objective performance in dB,
and the values of the hyper-parameters Ê and ⁄ used to compute the two representation
objectives. The results in Table 5.3 are discussed according to the SI-SDR value (higher
is better), because SI-SDR assesses the reconstruction and separation performance.

There are two observable trends in Table 5.3. The first trend is that when using LB ,
i.e., Eq. (5.16), small values of ⁄ marginally improve the SI-SDR, compared to the best
SI-SDR when using LA (i.e., Eq. (5.15) for Ê = 0.5 and SI-SDR=31.49). Specifically,
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Table 5.3: Results from objectively evaluating the learned representations. Values in
boldface denote the best obtained performance.

Objective Ê ⁄ SI-SDR (dB) SI-SDR-BM (dB) A(·)

LA

0.5 N/A 31.49 (±2.98) 4.43 (±4.98) 0.76 (±0.10)
1.0 N/A 31.39 (±3.16) 4.66 (±4.92) 0.76 (±0.10)
1.5 N/A 31.01 (±3.13) 4.97 (±4.93) 0.75 (±0.10)
2.0 N/A 30.96 (±2.98) 4.65 (±4.90) 0.76 (±0.10)
4.0 N/A 31.40 (±2.83) 5.06 (±4.97) 0.76 (±0.10)

LB

1.0 0.1 31.28(±2.98) 5.40(±5.31) 0.76(±0.09)
1.0 0.5 31.61(±3.38) 5.63(±5.29) 0.77(±0.09)
1.0 1.0 31.29(±3.25) 4.33(±5.28) 0.86(±0.08)
1.0 1.5 29.98(±3.48) 0.06 (±6.43) 0.89(±0.08)
1.0 2.0 31.13(±3.66) -0.02(±6.44) 0.89(±0.08)

when using LB as the representation objective and for ⁄ = 0.5, the SI-SDR and SI-SDR-
BM are improved by 0.12 dB and 1.20 dB, respectively, compared to the case of using
LA and Ê = 0.5. Additionally, with the same ⁄ = 0.5 for LB , an improvement of 0.57
dB SI-SDR-BM can be observed, compared to the best obtained SI-SDR-BM using LA

with Ê = 4.0. This trend shows that when using the Sinkhorn distances as an objective
(i.e., LB) with a small entropic regularization weight, i.e., small values of ⁄, there is a
marginal improvement of the reconstruction performance for the singing voice (measured
with SI-SDR-BM), but also the learned representations yield better results for singing
voice separation (measured with SI-SDR).

The second trend observed in Table 5.3 is that when using LB and ⁄ > 1, specifically
for ⁄ œ [1.5, 2.0], the SI-SDR for binary masking drops by more than 5 dB, compared to LB

with ⁄ = 0.5. This indicates that the separation by binary masking fails, suggesting that
the singing voice and accompaniment are completely overlapping in the representation
of the mixture Am. That is expected since entropy expresses the uncertainty about the
representation of the mixture signal. This means that during training, all the components
of the representation are equally probable to be active when the mixture signal is encoded.
Interestingly enough, that uncertainty in the encoding process comes with the observed
e�ect that the sources become additive in the learned representation.

To further investigate the e�ect of entropic regularization with respect to the additiv-
ity metric, the impact of the weight Ê on LB is examined. To that aim, the best ⁄ = 1.5
from Table 5.3 is chosen as a fixed hyper-parameter and Ê is varied. The corresponding
results are given in Table 5.4 and are compared to the magnitude representation com-
puted using the STFT, that is the most commonly employed representation for music
source separation. The results from Table 5.4 suggest that by increasing the weight Ê

that a�ects the strength of the representation objective in the learning signal, the learned
mixture representations consist of two almost additive representations, i.e., the singing
voice and the accompaniment representations. This is observed for Ê = 4.0. Furthermore,
nearly all representations computed using the Sinkhorn distances and the entropic regu-
larization, outperform the magnitude of the STFT with respect to the objective measure
of additivity in an unsupervised fashion, i.e., additivity was not explicitly enforced using
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an optimization objective.

Table 5.4: Objective evaluation of the additivity of the learned representations.

Objective Ê ⁄ A(·)

LB

1.0 1.5 0.89 (±0.08)
1.5 1.5 0.90 (±0.07)
2.0 1.5 0.92 (±0.07)
4.0 1.5 0.93(±0.06)

STFT N/A N/A 0.86 (±0.06)

To qualitatively assess the representations for the extreme case observed in Table 5.4,
Figure 5.2 illustrates the learned representations for the mixture, singing voice, and the
accompaniment signal using either LA or LB . The signals were acquired from a single
multi-track segment contained in the testing sub-set of MUSDB18. For LB the focus is
given on two extreme cases of separation and additivity performance, that was observed in
Table 5.3 and Table 5.4. In particular, Figure 5.2 illustrates the representations obtained
for entropy values ⁄ = 1.5 and for ⁄ = 0.5, that resulted in the best performance of
additivity and masking, respectively. For comparison, the learned representations using
LA are displayed for Ê = 4.0, which yields the best separation performance according to
Table 5.3.

In Figure 5.2(a) it can be clearly observed that the usage of LA (employing the total-
variation denoising loss) leads to smooth representations. However, qualitatively the
representation of the mixture and of the sources seem somewhat blurry, without distinct
structure.
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(a) Learned representations for the singing voice (top-left), the accompaniment
(top-right), and the mixture (bottom-middle) signals using the E(·) optimized
with LA for LTV(·) with Ê = 4.0
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(b) Learned representations for the singing voice (top-left), the accompaniment
(top-right), and the mixture (bottom-middle) signals using the E(·) optimized
with LB for LSK(·) with Ê = 1.0, and ⁄ = 0.5

(c) Learned representations for the mixture (left), the singing voice (middle),
and the accompaniment (right) signals using the E(·) optimized with LB for
LSK(·) with Ê = 4.0, and ⁄ = 1.5

Figure 5.2: An illustration of the learned representations of a multi-track segment, by
three encoders E(·) optimized using various hyper-parameters for LA and LB .

111



CHAPTER 5. LEARNING REPRESENTATIONS FOR SEPARATION

Consequently, representations learned using LA might impose di�culties for source
separation methods that aim at capturing the structure of the target music source(s).
On the other hand, the employment of LB with the Sinkhorn distances and for ⁄ = 0.5,
leads to learned representations that at least for the singing voice signal a prominent
structure of horizontal activity is observed. The interesting part comes when the entropy
regularization weight is increased to ⁄ = 1.5. Values of entropic regularization higher
than 0.5, enable the learning of representations that for particular sources such as the
accompaniment, exhibit distinct structure, i.e., vertical activity (activity with respect to
C). Furthermore, the representation of the singing voice is characterized by horizontal
activity, i.e., a few components C are active and smoothly vary in time. The observed
representation structures could be useful for unsupervised separation or audio in-painting
methods, such as the deep audio prior [152] and the harmonic convolution(s) model [153].

On Representation Interpretability

An important attribute of the learned representation(s), by using the proposed method, is
the interpretability, i.e., the learned representations convey information about functions
whose parameters have physical quantities such as frequency for example. This is the
only guarantee for interpretability that the proposed method o�ers and it can be seen by
inspecting closer Figure 5.2, where each component C, i.e., each row of the spectrogram-
like illustration, has a carrier frequency that is expressed in Hz. This rationale can be seen
as an analogous to common representations such as STFT that has been extensively used
in audio signal processing. However, the are two main di�erences between the proposed
method and the STFT.

The first di�erence is that the encoding functions of the proposed method are not
forced to be symmetric to the decoding functions. This is in contrast to the DFT analysis
(encoding) basis functions, employed by the STFT, that are symmetric to the synthesis
(decoding) basis functions. This in turn, gives many more degrees of freedom to the
encoder of the proposed method, to yield representations that can be optimized with
specific objectives. As seen from Figure 5.2(c) the Sinkhorn distances, with some degree of
entropy, allow the computed representations of the accompaniment source to be distinctly
structured, something that would not be possible by using symmetric encoding functions.
That is because the usefulness of symmetric functions is the perfect reconstruction of a
signal after encoding and decoding and not the structure of the output of the encoding,
i.e., the representation [32], [36]. However, this might impose the necessity of devising
representation objectives for optimizing the encoder of the proposed method by using
domain knowledge from audio and music signal processing.

The second di�erence is that the decoding functions employed by the proposed method
are amplitude-modulated cosine functions as opposed to pure cosine functions that com-
mon (audio) transforms have. The main drawback in this case, is that the modulating
signal is directly updated by using back-propagation and it might be hard to interpret
after the training procedure. However, the di�culty in interpretation can be tackled by
recalling Eq. (5.13), in which the signal that is being modulated, i.e., the carrier signal,
is a cosine function. This in turn, makes the update rules, based on gradient descent, for
the modulating signal to be the linear combination of sinusoidal functions convolved with
some noise. That can be verified by evaluating the gradient of the reconstruction error
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with respect to the modulating signal, that results into a sinusoidal function. Particularly,
that function is the convolution of a sinusoid with the derivative of the reconstruction loss
with respect to the reconstructed signal. In addition to this, the modulating signal al-
lows an extra degree of freedom in reconstructing signals that cannot be described by
pure sinusoidal functions [7], especially when additional representation attributes, such as
non-negativity and smoothness, are intended to be learned.

To qualitatively assess the information that the modulating functions inherit from the
training procedure, Figure 5.3 illustrates the frequency response of the carrier and the
modulating signal for frequently used components wc that are in the lower carrier fre-
quency region. The frequency response is obtained by computing the magnitude of the
DFT for each corresponding signal. As it can be seen from Figure 5.3, the frequency
response of the modulating signal (orange line) consists of a combination of sinusoidal
components that have both harmonic structure, considering the position of the observed
spectral peaks, but also a stochastic spectral structure. The stochastic structure reassem-
bles formants and/or fricatives of the singing voice signal. This shows that the modu-
lating signal increases the flexibility of the decoder, by allowing the decoder to capture
information for formants and/or fricatives of the singing voice alongside the cosine func-
tions. Nonetheless, this means that signal operations in the computed representation, like
masking, will a�ect a greater proportion of the singing voice signal compared to typical
sinusoidal functions employed by the STFT. This in turn, might not be ideal in general
applications such as frequency equalization, where only the specific frequency regions have
to processed in a deterministic way.

5.5.3 Sinkhorn Distances Results
To complement the results from using LB that is computed using the Sinkhorn distances,
Figure 5.4 presents results from the objective evaluation of the learned for a greater range
of hyper-parameter values. Particularly, Figure 5.4 contains error plots for the following
range of entropic regularization weights ⁄ œ [0.1, 0.5, 1.0, 1.3, 1.5, 2.0, 5.0, 10.0] and for
Ê = 1.0. To justify the choice for p = 1 for computing the pair-wise distances matrix M,
used for computing the Sinkhorn distances, additional results for p = 1 and p = 2 are
illustrated in Figure 5.4. By observing Figure 5.4, two observations can be highlighted.
The first observation is that the computation of the loss matrix M (Eq. (5.9)) for p = 2
leads to marginally sub-optimal results, compared to p = 1, for nearly all ⁄ values and
with respect to all the evaluation metrics. Specifically, the reconstruction performance
for p = 1 is better than p = 2 by 1 dB on average across ⁄ values. Also, for p = 1
an improvement of 0.6 dB on average with respect to the performance of separation by
masking is observed in comparison to p = 2. For the additivity metric, p = 2 marginally
outperforms p = 1 for a negligible di�erence of 3e

≠3. These results indicate the reason
why the above presented results focus on p = 1.

Another observation from Figure 5.4 is that for ⁄ > 2 the observed separation per-
formance dip and additivity performance peak disappear in the area of ⁄ œ [1.3, 1.5, 2.0].
In this area the examined method performs similarly to the values of low entropy, with
respect to the examined metrics. This contradicts the expectations for the e�ect of en-
tropic regularization. The only explanation to this behavior is that for values ⁄ > 2, the
exponential function used in the computation of the Sinkhorn distances and is applied
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(a) Frequency response of a learned basis function, (left) carrier and modulating signal, (right)
result of the modulation

(b) Frequency response of a learned basis function, (left) carrier and modulating signal, (right)
result of the modulation, demonstrating a sinusoidal plus noise structure.

(c) Frequency response of a learned basis function, (left) carrier and modulating signal, (right)
result of the modulation, demonstrating a harmonic plus noise structure.

Figure 5.3: The frequency response of three frequently used basis functions that are
learned by the proposed method using LB with ⁄ = 1.5 and Ê = 4.0. The frequency re-
sponse is computed using the discrete Fourier transform, demonstrating a high-frequency
comb-like filter.
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Figure 5.4: Performance evaluation of the learned representations by LB that use the
Sinkhorn distances. (top-left) Reconstruction of singing voice in SI-SDR, (top-right) oracle
separation performance in SI-SDR, and (bottom) additivity objective measure. Horizontal
and vertical lines denote the average and the standard deviation of the performance,
respectively.

to M (see Algorithm 3), yields saturated values that bias the overall minimization. The
unexpected e�ect in the minimization of the computed loss values using the Sinkhorn
distances for various values of ⁄ is illustrated in Figure E.2 of Appendix E.

5.6 Summary
This chapter presented a method for learning representations of music signals that can be
particularly useful for the task of music source separation. The presented method is based
on the denoising autoencoder model [87] with modulated cosine functions for decoding
bases, inspired by the di�erential digital signal processing concept [139]. The benefits
of the proposed method are interpretability, due to the usage of the cosine functions
for decoding, non-negativity promoting energy-informative representations akin to the
magnitude of the STFT, and the fact that the proposed method can be trained in an
unsupervised fashion, enabling the usage of unlabeled and unpaired multi-track data.

Focusing on the important problem of singing voice separation, the proposed method
was investigated for its performance in separation, additivity of the sources’ represen-
tations, and the reconstruction of the singing voice signal. Furthermore, representation
objective functions were examined for improving the attributes and the performance of

115



CHAPTER 5. LEARNING REPRESENTATIONS FOR SEPARATION

the learned representations. Specifically, two objectives were examined, the (an-isotropic)
total-variation denoising loss [146], and the family of Sinkhorn distances with entropic
regularization [148]. The results from the experimental procedure, suggest that represen-
tations for music signals can be learned using unsupervised learning, leading representa-
tions that can be employed for the separation of singing voice by masking. In addition to
this, Sinkhorn distances as an e�cient computation for optimal-transportation distances,
allow a flexible learning of representations in an unsupervised way, with the entropic regu-
larization leading to sources’ representations that are distinctly structured and are almost
additive; attributes that are useful in music source separation.
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Chapter 6

Conclusions

6.1 Thesis Summary
This thesis addressed the problem of music source separation using deep learning methods.
The focus was given on learning (deep) models that are useful for separating music sources.
The problem at hand was examined from three angles, namely the signal processing, the
neural-architecture, and the signal representation angle. The presentation of the results
and research findings from each angle has been organized in five chapters.

Chapter 1 provided an introduction to the problem of music source separation in the
context of deep learning. This thesis categorized deep learning approaches to music source
separation as a domain informed way to separate the target music source(s). Subject to
a priori knowledge of the mixing process and the target source(s), domain informed ap-
proaches stand on the opposite side of the spectrum compared to blind or semi-blind
approaches, that exploit none or minimum information, respectively. In related litera-
ture [A9], [88], information used by deep learning approaches has been shown to bring
substantial improvements to the separation performance.

In Chapter 2, the focus was on the fundamental concepts that are commonly used
in deep learning-based music source separation research. With the main goal being the
introduction to concepts that were used throughout the thesis, this chapter started from
basic signal models and built up to artificial neural networks, showing how artificial neural
networks naturally emerge to tackle problems in audio signal processing. Specifically, it
was demonstrated that the framework of energy-based learning can be used to leverage the
design and the learning of signal representations, as well as the training of artificial neural
networks to solve a particular and well-defined problem. In addition to this, commonly
assumed mixing models were discussed and it was shown how the filtering operation can
be used to separate music sources.

Chapter 3 proceeded to discuss the signal processing angle of this thesis. Specifi-
cally, it aimed at demonstrating what (deep) neural networks learn when they are trained
to separate a music source. Furthermore, it investigated whether there is an analogous
digital signal processing operation, that can be used to evaluate their learning capabil-
ities. To do so, the focus was given to singing voice separation and to the estimation
of the target sources’ magnitude spectrogram, a strategy that has been employed by
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many music source separation approaches. The deep neural networks that are trained to
separate the target source signal from the mixture, were first grouped under the family
of the denoising autoencoder (DAE) model [86]. Then, an algorithm was presented for
computing the mapping function(s) of the DAE family models. The mapping function
expresses how the magnitude information from each frequency component is transformed,
by each model, to obtain the estimated magnitude information of the target source. The
proposed algorithm, denoted as the neural couplings algorithm (NCA), showed that the
source separation models learn data-driven filtering functions. By employing basic signal
processing knowledge it was also shown that the basic DAE model learned non-optimal
filters for singing voice separation. That observation explained why many music source
separation approaches rely on post-processing or post-enhancement techniques to yield
better estimates of the target source(s). It was also demonstrated that by allowing DAEs
to predict and optimize source-dependent filters, by the usage of skip-filtering connections,
it enforces the DAEs to learn richer inter-frequency dependencies, justifying experimental
results published in previous works [A10], [A11], [94], [96].

From the neural-architecture angle, Chapter 4 proposed a neural network architecture
denoted as the Masker-and-Denoiser (MaD). The development of the MaD architecture
was based on two concepts. The first concept was the skip-filtering connections, that al-
lows prediction of optimized target-source filters that are very useful in music source sepa-
ration in the time-frequency domain. The second concept was to treat the time-frequency
representations as sequences with structured temporal information. Based on the two
concepts, the developed architecture consisted of recurrent neural networks (RNNs) and
the skip-filtering connections combined with (back) propagation of reconstruction errors.
The latter were used to improve the performance of the MaD architecture. In addition to
that, extensions to the MaD architecture were presented and evaluated both objectively
and subjectively, by means of listening tests. The extensions were used for improving
both the learning but also the processing of the sequences of music signals’ spectrograms,
by the MaD architecture. From the conducted experiments, it was concluded that the
proposed architecture yielded a fair separation quality, and some of the discussed exten-
sions provided perceptually relevant improvements. Furthermore, the proposed architec-
ture provided competitive, yet sub-optimal, results compared to very recent approaches.
However, those approaches include data augmentation, post-processing, and enhancement
stages that were not considered by the MaD architecture.

Finally, Chapter 5 focused on the learning of music signal representations and provided
insights regarding the third angle examined in this thesis. Specifically, Chapter 5 pro-
posed a (signal) representation learning method that is based on the DAE model [86] and
the concept of di�erential digital signal processing [139]. The proposed method replaced
the decoding functions with amplitude modulated cosine functions, whose parameters are
learned from music signals. It was shown, that the replacement allowed the proposed
method to yield non-negative and interpretable signal representations, that promoted the
energy information with respect to frequency components, akin to commonly used trans-
forms in audio signal processing. In addition to that, it was shown that by penalizing
the proposed method using representation objectives, additional attributes were gained.
Specifically, it was shown that the usage of entropic regularized optimal transport (OT)
objectives enabled the proposed method to yield representations that were distinctly struc-
tured and almost additive, with respect to the target sources. The previously mentioned
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attributes are important in music source separation by filtering.

6.2 Outlook
The work presented in this thesis was built upon and contributed to the research field of
data-driven music source separation using deep learning. The methods that were analyzed,
developed, and presented herein had the goal of merging the e�ciency of deep learning
algorithms with the domain knowledge of audio signal processing, not using deep learning
as simply a powerful pre-processing step. That was performed with the long-term goal of
developing audio signal processing pipe-lines that are intelligent, i.e., adaptive according
to various high-level signal characteristics, and can be learned at a large scale.

To that aim, the thesis proposed an algorithm, the NCA in Chapter 3, for under-
standing what deep neural networks learn when they are optimized to separate music
sources. With the proposed algorithm and through the examination conducted in the
thesis, heuristic approaches in music source separation were validated. One of the main
weaknesses of the proposed algorithm is that it does not scale, in a straightforward man-
ner, to recently proposed architectures for music source separation. However, it should be
noted that in the context of the study, described in Chapter 3, it was of high importance
to understand and show what simpler architectures learn for the task of spectral-based
music source separation. In other words, regardless of the simplicity of extending sim-
ple architectures with additional and non-linear computational operations, for the sake
of improving objective scores, the understanding of the simple non-linearities is still an
emerging aspect in music source separation. In addition to this, the idea of manipulating,
by masking, the parameters of the deep neural networks, presented in Chapter 3, has
received a lot of interest in multi-task learning [114] and distillation [110], leaving open
directions for future research. For instance the core idea of the NCA could be further used
for distilling big neural network models into smaller ones, that could operate on low-cost
devices. Also, meta-learning for music source separation [137] could aim at predicting
network parameters masks, that are dependent on the target source.

Towards the development of neural architectures that are e�cient for music source
separation, the work presented in Chapter 4 solely focused on the usage of RNNs. That
was because the experimental evidence available during the development stages showed
that RNNs are powerful information processing systems for modelling sequences of mu-
sic signals. However, and as shown in Chapter 4, the usage of RNNs for processing
time-frequency sequences can be tricky and various techniques should be considered for
enforcing the RNNs to model long sequences. One of the employed techniques in this
thesis, denoted as the TwinNet [133], was shown to yield perceptually relevant improve-
ments to the overall separation quality of the singing voice. Furthermore, the necessary
recursions and the high number of parameters used by the RNNs are not always optimal
for separating music sources in the time-frequency domain, given the small publicly avail-
able data-set(s). One plausible direction for future research is the replacement of RNNs
by dilated convolutional neural networks (CNNs), that could decrease the number of the
employed parameters in deep models operating on audio and music signals [A23], [A25].

Finally, emerging topics in deep learning for audio and music signals are representa-
tion learning [138], interpretable deep learning [140], and di�erential digital signal pro-
cessing [139]. Being inspired by these works, Chapter 5 described a method for learning
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signal representations that are particularly useful for the stage of separation. The goal
that was achieved is to represent music signals in an informative way, while enforcing
some convenient attributes in the computed representation, such as non-negativity, ad-
ditivity, and distinct structure of the target sources. These attributes have been of high
importance in related music source separation works. With the proposed method for
learning representations, legacy approaches in music source separation can be revisited
but in a new signal domain. Furthermore, the results demonstrated in Chapter 5 serve
as the first step towards building music signal representations that are interpretable and
capture the structure of the music sources without the need of having annotated and
aligned multi-track audio data. One plausible direction for future research is to revisit
blind or semi-blind approaches to music source separation, by exploiting the convenient
structure and the attributes of the computed representations of the presented method.
An example of a separation approach is the usage of deep audio priors [152], [153] that is
an unsupervised method for audio source separation. Furthermore, exploring additional
re-parameterization schemes for the proposed method for learning representations, could
assist in problems such as voice conversion or timbre-morphing between two arbitrary
speech or audio signals. To this end, the distinct structure of the obtained representa-
tions could be beneficial in generative modelling with priors from convenient distributions.
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Appendix A
List of Used Sound Examples
List of sound files used to compute the illustrations of Chapter 2.

1. Clarinet
https://freesound.org/people/tootoos24/sounds/418272/

2. Snare drum
https://freesound.org/people/Theriavirra/sounds/270156/

3. Singing voice
https://freesound.org/people/afleetingspeck/sounds/256994/

4. Cello
https://freesound.org/people/xserra/sounds/242160/

5. Drums sound
https://freesound.org/people/Krishmeister/sounds/413240/

The sound file used to compute the representations illustrated in Fig. 5.2 of Chapter 5
is the track Al James - Schoolboy Fascination in the test sub-set of MUSDB18 [A8]. The
extracted one second segment corresponds to the 35th and 36th second of the audio file.
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Appendix B
Adam Algorithm

Algorithm 4 Adam algorithm for stochastic optimization, based on [50] and with default
values for the decay rates of the first and second order moment estimates —1 = 0.9 and
—2 = 0.999, respectively, learning rate ÷ = 1e

≠3, and ‘ = 10e
≠8.

Require: Gradient step u and the calculated gradient(s) Du at that step
1: if u = 1 then
2: Initialize: M0 Ω 0, V0 Ω 0
3: end if
4: Mu Ω —1 § Mu≠1 + (1 ≠ —1) § Du

5: Vu Ω —2 § Vu≠1 + (1 ≠ —2) § Du
§2

6: Store Mu and Vu, so that can be accessed at step u + 1
7: M̂u Ω Mu £ (1 ≠ —

u

1
)

8: V̂u Ω Vu £ (1 ≠ —
u

2
)

9: Dout Ω ÷ § M̂u £ (


V̂u + ‘)
10: return Updated gradient estimates Dout

Algorithm 4 presents a slightly modified version of the original algorithm presented
in [50]. The modifications a�ect only the clarity of the presented algorithm and are in-
troduced so that Adam can be directly plugged into the previously described iterative
schemes using pre-calculated gradients, e.g., Eq. (2.27), Eq. (2.28), and Algorithm 1. It
should be noted that the estimation of the initial gradients and the update of the parame-
ters is not included in Algorithm 4. It is assumed that the previously mentioned operations
are performed during the iterative optimization of the corresponding parameters.
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Appendix C
W-Disjointness Orthogonality

Let Yj œ CN◊T
Õ be the complex-valued representation of the source’s signal xj œ RT

[≠1,1]

computed using the STFT FSTFT(·), where N, T, and T
Õ are the number of frequency sub-

bands in the STFT, the number of time-domain samples, and the number of time-frames
respectively. Furthermore, assume that the STFT of the interfering source1 xjÕ œ RT

[≠1,1]

is provided and is denoted as YjÕ œ CN◊T
Õ . Then, the BM, MBM œ [0, 1]N◊T

Õ is computed
using the magnitude of the sources as

Mj
BM = g

1
|Yj | £ |YjÕ |

2
, and

g(y) =
I

1, if y Ø 0.5
0, otherwise

.

Then the W-DO measure is computed as

W-DO = PSR ≠ PSR
SIR , (C.1)

where PSR and SIR are the preserved-signal-ratio and the source-to-interference ratio
computed as

PSR =
||MBM

j
§ |Yj | ||2

1

|| |Yj | ||2
1

, SIR =
||MBM

j
§ |Yj | ||2

1

||MBM

j
§ |YjÕ | ||2

1

,

where || · ||1 is the unit matrix/vector norm. From the above expressions, it can be seen
that for a W-DO value of one the sources are entirely disjoint, meaning that there is not
overlap between the sources in the respective representation. In contrast, a W-DO value
of zero means that the sources completely overlapped and the separation of the j-th source
by binary masking is not possible. In the latter case, the inability of separating the j-th
source is also reflected by extremely low PSR values indicating a poor reconstruction of
the source after masking.

1The interfering source is the sum of all the sources in the mixture except the target source.
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Appendix D
Supplementary Results:
Masker-and-Denoiser
Architecture
The e�ect of the training objectives

The results from examining the e�ect of the training objectives in the performance of
accompaniment separation are given in Table D.1. Specifically, the median values for
the SDR, SIR, and SAR objective measures are reported for the MaD architecture that
was trained with the MSE-based objective E

MaD
MSE/L1

, the KL-based objective E
MaD
KL/L1

, and
the KL-based objective using the TwinNet E

MaD
KL/twin. For each objective two values of

Ê = 0 and 0.5 are reported. For E
MaD
KL/twin, the results are demonstrated only for Ê = 0.5,

as for the proposed architecture is identical to E
MaD
KL/L1

for Ê = 0.

Table D.1: The e�ect of various training objectives on the performance in accompaniment
separation, computed using the objective evaluation measures and the MUSDB18 data-
set. Values in boldface denote the best obtained performance.

Objective Ê SDR (dB) SIR (dB) SAR (dB)

E
MaD
KL/L1

0 10.01 12.61 12.89
0.5 10.03 12.60 12.91

E
MaD
MSE/L1

0 10.01 12.88 12.44
0.5 10.11 12.99 12.53

E
MaD
KL/twin 0.5 10.09 12.89 12.86

Table D.1 shows that there is a minimal e�ect of various training objectives on the
objective performance of accompaniment source separation. The notable di�erences are
that the penalty term computed using the L1 matrix norm (Eq. (4.8)) improves the SDR
and the SIR by 0.10 dB and by 0.11 dB, respectively, when the penalty term is combined
with the MSE-based reconstruction term. The TwinNet technique improves marginally
the SDR by 0.06 dB and the SIR by 0.29 dB in comparison to E

MaD
KL/L1

and for Ê = 0.5.
The laatter configuration yields higher SDR values compared to the case of Ê = 0. The
E

MaD
MSE/L1

for Ê = 0.5 surpasses all the other training objectives with respect to the SDR and
SIR metrics. From the above it can be concluded that if the target is the accompaniment
source, i.e., optimizing the MaD architecture for karaoke applications, the MSE-based
objective combined with the L1 penalty term provides relatively good results.
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Appendix E
Supplementary Results:
Learning Representations for
Separation

Total-variation complimentary results
In Figure E.1 complimentary results for Table 5.3 are presented. Figure E.1 illustrates the
obtained results using the (an-isotropic) total-variation denoising loss (LTV(·)), employed
in the computation of the loss termed as LA.

Figure E.1: LA using total-variation denoising (LTV(·)) for various values of Ê: (top-left)
Reconstruction of singing voice in SI-SDR, (top-right) oracle separation performance in
SI-SDR, and (bottom) additivity objective measure.
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Sinkhorn distances complimentary results
Figure E.2 illustrates the output loss values of the LSK(·) for the entropic regularization
values ⁄ = [1, 2, 5]. This figure serves as complimentary experimental results that show the
saturation of the computed loss values for ⁄ = [2, 5], aiming at explaining the unexpected
behavior of entropic regularization for high ⁄ values discussed in Section 5.5.3.

Figure E.2: The output values of LSK(·) with p = 1 and for various values for ⁄ that are
used to compute the loss LB . The number of gradient updates corresponds to ≥ 3 full
iterations throughout the whole training data-set. An eight-order quadratic smoothing
filter with a window of 61 gradient updates is applied to the results for clarity.
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