2,092 research outputs found

    Predicting Skin Permeability by means of Computational Approaches : Reliability and Caveats in Pharmaceutical Studies

    Get PDF
    © 2019 American Chemical Society.The skin is the main barrier between the internal body environment and the external one. The characteristics of this barrier and its properties are able to modify and affect drug delivery and chemical toxicity parameters. Therefore, it is not surprising that permeability of many different compounds has been measured through several in vitro and in vivo techniques. Moreover, many different in silico approaches have been used to identify the correlation between the structure of the permeants and their permeability, to reproduce the skin behavior, and to predict the ability of specific chemicals to permeate this barrier. A significant number of issues, like interlaboratory variability, experimental conditions, data set building rationales, and skin site of origin and hydration, still prevent us from obtaining a definitive predictive skin permeability model. This review wants to show the main advances and the principal approaches in computational methods used to predict this property, to enlighten the main issues that have arisen, and to address the challenges to develop in future research.Peer reviewedFinal Accepted Versio

    Current Mathematical Methods Used in QSAR/QSPR Studies

    Get PDF
    This paper gives an overview of the mathematical methods currently used in quantitative structure-activity/property relationship (QASR/QSPR) studies. Recently, the mathematical methods applied to the regression of QASR/QSPR models are developing very fast, and new methods, such as Gene Expression Programming (GEP), Project Pursuit Regression (PPR) and Local Lazy Regression (LLR) have appeared on the QASR/QSPR stage. At the same time, the earlier methods, including Multiple Linear Regression (MLR), Partial Least Squares (PLS), Neural Networks (NN), Support Vector Machine (SVM) and so on, are being upgraded to improve their performance in QASR/QSPR studies. These new and upgraded methods and algorithms are described in detail, and their advantages and disadvantages are evaluated and discussed, to show their application potential in QASR/QSPR studies in the future

    Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening

    Full text link
    This work introduces a number of algebraic topology approaches, such as multicomponent persistent homology, multi-level persistent homology and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. Multicomponent persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for chemical and biological problems. Extensive numerical experiments involving more than 4,000 protein-ligand complexes from the PDBBind database and near 100,000 ligands and decoys in the DUD database are performed to test respectively the scoring power and the virtual screening power of the proposed topological approaches. It is demonstrated that the present approaches outperform the modern machine learning based methods in protein-ligand binding affinity predictions and ligand-decoy discrimination

    Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications

    Get PDF
    [Abstract] Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure–Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron–Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2014/049Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; R2014/039Instituto de Salud Carlos III; PI13/0028

    Artificial intelligence in biological activity prediction

    Get PDF
    Artificial intelligence has become an indispensable resource in chemoinformatics. Numerous machine learning algorithms for activity prediction recently emerged, becoming an indispensable approach to mine chemical information from large compound datasets. These approaches enable the automation of compound discovery to find biologically active molecules with important properties. Here, we present a review of some of the main machine learning studies in biological activity prediction of compounds, in particular for sweetness prediction. We discuss some of the most used compound featurization techniques and the major databases of chemical compounds relevant to these tasks.This study was supported by the European Commission through project SHIKIFACTORY100 - Modular cell factories for the production of 100 compounds from the shikimate pathway (Reference 814408), and by the Portuguese FCT under the scope of the strategic funding of UID/BIO/04469/2019 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020.info:eu-repo/semantics/publishedVersio

    Artificial Intelligence in Materials Modeling and Design

    Get PDF
    In recent decades, the use of artificial intelligence (AI) techniques in the field of materials modeling has received significant attention owing to their excellent ability to analyze a vast amount of data and reveal correlations between several complex interrelated phenomena. In this review paper, we summarize recent advances in the applications of AI techniques for numerical modeling of different types of materials. AI techniques such as machine learning and deep learning show great advantages and potential for predicting important mechanical properties of materials and reveal how changes in certain principal parameters affect the overall behavior of engineering materials. Furthermore, in this review, we show that the application of AI techniques can significantly help to improve the design and optimize the properties of future advanced engineering materials. Finally, a perspective on the challenges and prospects of the applications of AI techniques for material modeling is presented

    Quantitative structure activity relationships in computer aided molecular design

    Get PDF
    The drug development process requires the complete evaluation and identification of the chosen substance as well as its properties. It involves extensive chemical examination to achieve the best therapeutic effects which demands huge expenditure both in terms of time and money. Computer aided molecular design (CAMD) allows the production of new substances with pre-decided properties. Additionally, in order to illustrate and determine the interrelationship between the chemical structure of a compound and its biological activity, Quantitative Structure Activity Relationship (QSAR) is applied by employing a mathematical model and arranging molecular descriptors. This paper presents review of CAMD and QSAR techniques. The most common chemometric techniques are also emphasized. CAMD and QSAR are considered to be extremely efficient instruments in molecular design and accelerate the initial steps of drug development process. Furthermore, they enhance the effectiveness and reduce the cost of newly developed drugs
    corecore