40,813 research outputs found

    Quantitative non-destructive evaluation of composite materials based on ultrasonic wave propagation

    Get PDF
    The size, shape, and orientation of damage correlates well between the polar backscatter technique and the deply technique. There is good quantitative correlation between the areas of damage indicated by the two techniques. These results suggest that the polar backscatter technique is sensitive to specific orientations of damage. The polar backscatter technique provides a good qualitative image of the size and shape of the largest zone of damage in each of the principal orientations. A quantitative estimate of the extent of these largest damage zones is obtained from the polar backscatter technique. The selective sensitivity of polar backscatter provides a useful tool for further studies of the mechanisms of impact damage in graphite fiber reinforced composite laminates

    Computer Tomograph Measurements in Shear and Gravity Particle Flows

    Get PDF
    The paper reports the recent results obtained on the applicability of cross-sectional digital imaging method to study particle flow characteristics in 3D particle beds forced to move by gravity or shear. X-ray CT imaging technique is widely used in medical diagnostics and, during the last decades, its spatial and temporal resolution has been improved significantly. In this study, an attempt was made to use this technique for engineering purposes. Two experimental set-ups with different types of particle flows were investigated using Siemens Somatom Plus type CT equipment. A series of trials were carried out in a small model hopper with flat bottom and almost cylindrical side wall slightly deviating from verticality. Non steady-state flow was studied during the outflow of particulate material from this vessel, through a central hole at the bottom. Further investigation was fulfilled in a modified Cuette-type shearing device to study steady-state shear flow. This equipment consisted of an almost cylindrical vessel identical to that used for gravity flow measurements, and a smaller inner cylinder rotating within this vessel concentrically, around its vertical axis. The surface of the inner cylinder was notched vertically, i.e. perpendicularly to the direction of rotation to increase wall friction between the particles and the cylinder. Almost spherical sucrose granules, also used for gravity flow measurements, were filled into the gap between the rotating cylinder and the outer wall of the equipment. Movement of particles took place due to shear, generated within the particle bed. By using X-ray CT technique, cross-sectional digital images were obtained in every two seconds for both types of particle flows. For this, the cross-sectional variation of the local Hounsfield density values were measured in a matrix of 0.1x0.1x2.0 mm space elements. It was proved that the applied non-invasive crosssectional imaging technique was suitable to distinguish the stationary and moving particle regions, and by this, to estimate the location of the boundary zone between them

    Two-dimensional flow of foam around a circular obstacle: local measurements of elasticity, plasticity and flow

    Full text link
    We investigate the two-dimensional flow of a liquid foam around circular obstacles by measuring all the local fields necessary to describe this flow: velocity, pressure, bubble deformations and rearrangements. We show how our experimental setup, a quasi-2D "liquid pool" system, is adapted to the determination of these fields: the velocity and bubble deformations are easy to measure from 2D movies, and the pressure can be measured by exploiting a specific feature of this system, a 2D effective compressibility. To describe accurately bubble rearrangements, we propose a new, tensorial descriptor. All these quantities are evaluated via an averaging procedure that we justify showing that the fluctuations of the fields are essentially random. The flow is extensively studied in a reference experimental case; the velocity presents an overshoot in the wake of the obstacle, the pressure is maximum at the leading side and minimal at the trailing side. The study of the elastic deformations and of the velocity gradients shows that the transition between plug flow and yielded regions is smooth. Our tensorial description of T1s highlight their correlation both with the bubble deformations and the velocity gradients. A salient feature of the flow, notably on the velocity and T1 repartition, is a marked asymmetry upstream/downstream, signature of the elastic behaviour of the foam. We show that the results do not change qualitatively when various control parameters vary, identifying a robust quasistatic regime. These results are discussed in the frame of the actual foam rheology literature, and we argue that they constitute a severe test for existing rheological models, since they capture both the elastic, plastic and fluid behaviour of the foam.Comment: 41 pages, 25 figures, submitted to Journal of Fluid Mechanics (but not in JFM style), short version of the abstrac

    Experimental Investigation of Plastic Deformations Before Granular Avalanche

    Full text link
    We present an experimental study of the deformation inside a granular material that is progressively tilted. We investigate the deformation before the avalanche with a spatially resolved Diffusive Wave Spectroscopy setup. At the beginning of the inclination process, we first observe localized and isolated events in the bulk, with a density which decreases with the depth. As the angle of inclination increases, series of micro-failures occur periodically in the bulk, and finally a granular avalanche takes place. The micro-failures are observed only when the tilt angles are larger than a threshold angle much smaller than the granular avalanche angle. We have characterized the density of reorganizations and the localization of micro-failures. We have also explored the effect of the nature of the grains, the relative humidity conditions and the packing fraction of the sample. We discuss those observations in the framework of the plasticity of granular matter. Micro-failures may then be viewed as the result of the accumulation of numerous plastic events

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Internet and gaming addiction: a systematic literature review of neuroimaging studies

    Get PDF
    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches
    corecore