67,570 research outputs found

    Total skin self-examination at home for people treated for cutaneous melanoma : development and pilot of a digital intervention

    Get PDF
    This work was funded by the RCUK Digital Economy award to the dot.rural Digital Economy Hub, University of Aberdeen; award reference: EP/G066051/1. The Experience Laboratory event was supported in part by a separate award from the University of Aberdeen Knowledge Exchange and Transfer Fund; award reference: GP057 UZZ0101.Peer reviewedPublisher PD

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870

    Evaluation of the HARDMAN comparability methodology for manpower, personnel and training

    Get PDF
    The methodology evaluation and recommendation are part of an effort to improve Hardware versus Manpower (HARDMAN) methodology for projecting manpower, personnel, and training (MPT) to support new acquisition. Several different validity tests are employed to evaluate the methodology. The methodology conforms fairly well with both the MPT user needs and other accepted manpower modeling techniques. Audits of three completed HARDMAN applications reveal only a small number of potential problem areas compared to the total number of issues investigated. The reliability study results conform well with the problem areas uncovered through the audits. The results of the accuracy studies suggest that the manpower life-cycle cost component is only marginally sensitive to changes in other related cost variables. Even with some minor problems, the methodology seem sound and has good near term utility to the Army. Recommendations are provided to firm up the problem areas revealed through the evaluation

    Liquidity crises on different time scales

    Get PDF
    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales

    Ionization Electron Signal Processing in Single Phase LArTPCs I. Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation

    Full text link
    We describe the concept and procedure of drifted-charge extraction developed in the MicroBooNE experiment, a single-phase liquid argon time projection chamber (LArTPC). This technique converts the raw digitized TPC waveform to the number of ionization electrons passing through a wire plane at a given time. A robust recovery of the number of ionization electrons from both induction and collection anode wire planes will augment the 3D reconstruction, and is particularly important for tomographic reconstruction algorithms. A number of building blocks of the overall procedure are described. The performance of the signal processing is quantitatively evaluated by comparing extracted charge with the true charge through a detailed TPC detector simulation taking into account position-dependent induced current inside a single wire region and across multiple wires. Some areas for further improvement of the performance of the charge extraction procedure are also discussed.Comment: 60 pages, 36 figures. The second part of this work can be found at arXiv:1804.0258
    • …
    corecore