368 research outputs found

    Multivariate Calibration for the Development of Vibrational Spectroscopic Methods

    Get PDF
    Vibrational spectroscopy, namely near infrared (NIR) and Raman spectroscopy, is based on the interaction between the electromagnetic radiation and matter. The technique is sensitive to chemical and physical properties and delivers a wide range of information about the analyzed sample, but in order to extract the information, multivariate calibration of the spectral data is required. The main goal of this work will be to present in detail the available multivariate calibration strategy for development of NIR and Raman spectroscopic methods, which was successfully applied in pharmaceutics

    Multivariate analysis and artificial neural network approaches of near infrared spectroscopic data for non-destructive quality attributes prediction of Mango (Mangifera indica L.)

    Get PDF
    There is a need for fast and reliable quality and authenticity control tools of pharmaceutical ingredients. Among others, hormone containing drugs and foods are subject to scrutiny. In this study, terahertz (THz) spectroscopy and THz imaging are applied for the first time to analyze melatonin and its pharmaceutical product Circadin. Melatonin is a hormone found naturally in the human body, which is responsible for the regulation of sleep-wake cycles. In the THz frequency region between 1.5 THz and 4.5 THz, characteristic melatonin spectral features at 3.21 THz, and a weaker one at 4.20 THz, are observed allowing for a quantitative analysis within the final products. Spectroscopic THz imaging of different concentrations of Circadin and melatonin as an active pharmaceutical ingredient in prepared pellets is also performed, which permits spatial recognition of these different substances. These results indicate that THz spectroscopy and imaging can be an indispensable tool, complementing Raman and Fourier transform infrared spectroscopies, in order to provide quality control of dietary supplements and other pharmaceutical products

    Signal and data processing for machine olfaction and chemical sensing: A review

    Get PDF
    Signal and data processing are essential elements in electronic noses as well as in most chemical sensing instruments. The multivariate responses obtained by chemical sensor arrays require signal and data processing to carry out the fundamental tasks of odor identification (classification), concentration estimation (regression), and grouping of similar odors (clustering). In the last decade, important advances have shown that proper processing can improve the robustness of the instruments against diverse perturbations, namely, environmental variables, background changes, drift, etc. This article reviews the advances made in recent years in signal and data processing for machine olfaction and chemical sensing

    Wavelet Transform-Based UV Spectroscopy for Pharmaceutical Analysis

    Get PDF
    In research and development laboratories, chemical or pharmaceutical analysis has been carried out by evaluating sample signals obtained from instruments. However, the qualitative and quantitative determination based on raw signals may not be always possible due to sample complexity. In such cases, there is a need for powerful signal processing methodologies that can effectively process raw signals to get correct results. Wavelet transform is one of the most indispensable and popular signal processing methods currently used for noise removal, background correction, differentiation, data smoothing and filtering, data compression and separation of overlapping signals etc. This review article describes the theoretical aspects of wavelet transform (i.e., discrete, continuous and fractional) and its characteristic applications in UV spectroscopic analysis of pharmaceuticals

    Remote Sensing for Precision Nitrogen Management

    Get PDF
    This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment

    SIMULATIONS-GUIDED DESIGN OF PROCESS ANALYTICAL SENSOR USING MOLECULAR FACTOR COMPUTING

    Get PDF
    Many areas of science now generate huge volumes of data that present visualization, modeling, and interpretation challenges. Methods for effectively representing the original data in a reduced coordinate space are therefore receiving much attention. The purpose of this research is to test the hypothesis that molecular computing of vectors for transformation matrices enables spectra to be represented in any arbitrary coordinate system. New coordinate systems are selected to reduce the dimensionality of the spectral hyperspace and simplify the mechanical/electrical/computational construction of a spectrometer. A novel integrated sensing and processing system, termed Molecular Factor Computing (MFC) based near infrared (NIR) spectrometer, is proposed in this dissertation. In an MFC -based NIR spectrometer, spectral features are encoded by the transmission spectrum of MFC filters which effectively compute the calibration function or the discriminant functions by weighing the signals received from a broad wavelength band. Compared with the conventional spectrometers, the novel NIR analyzer proposed in this work is orders of magnitude faster and more rugged than traditional spectroscopy instruments without sacrificing the accuracy that makes it an ideal analytical tool for process analysis. Two different MFC filter-generating algorithms are developed and tested for searching a near-infrared spectral library to select molecular filters for MFC-based spectroscopy. One using genetic algorithms coupled with predictive modeling methods to select MFC filters from a spectral library for quantitative prediction is firstly described. The second filter-generating algorithm designed to select MFC filters for qualitative classification purpose is then presented. The concept of molecular factor computing (MFC)-based predictive spectroscopy is demonstrated with quantitative analysis of ethanol-in-water mixtures in a MFC-based prototype instrument
    • …
    corecore