319 research outputs found

    Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century

    Get PDF
    During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed with regional decision-makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia’s role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large-scale water withdrawals, land use, and governance change) and potentially restrict or provide new opportunities for future human activities. Therefore, we propose that integrated assessment models are needed as the final stage of global change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts

    Full Carbon Account for Russia.

    Get PDF
    The Forestry Project (FOR) at IIASA has produced a full carbon account (FCA) for Russia for 1990, together with scenarios for 2010. Currently, there are rather big question marks regarding the existing carbon accounts for Russia, and Russia is critical to the global carbon balance due to its size. IIASA is in a position to perform solid analysis of Russia because of the databases that the Institute has built over the years. FOR based this work on a comprehensive geographic information system comprising georeferenced descriptions of the environment and land of Russia, which in turn are based on a number of thematic, digitized maps and databases. For the Russian energy sector and other industrial sectors (except the forest industry), the project used emissions estimates from the recent IIASA study "Global Energy Perspectives" (1998). The project carried out a separate substudy for the Russian forest industry sector. According to FOR's estimate, the total fluxes (including energy and industry sectors) in Russia were a net source of 527 teragrams of carbon (Tg C) in 1990. To illustrate the possible development of the carbon pools and fluxes over the next 10 years, FOR developed three different scenarios for the period 1990-2010, reflecting different assumptions regarding Russia's GDP growth. According to these scenarios, Russia will continue to be a net source of carbon to the atmosphere with 156-385 Tg C in 2010, including the emissions from energy and other industrial sectors. However, analysis of the FCA also shows considerable uncertainties involved in the carbon accounting. These uncertainties exceed the calculated changes in the full flux balance for the period 1990-2010. At present, this raises grave questions regarding the reliability of any accounting system used to measure terrestrial ecosystems for compliance with the Kyoto Protocol.

    Preface: Impacts of extreme climate events and disturbances on carbon dynamics

    Get PDF
    The impacts of extreme climate events and disturbances (ECE&D) on the carbon cycle have received growing attention in recent years. This special issue showcases a collection of recent advances in understanding the impacts of ECE&D on carbon cycling. Notable advances include quantifying how harvesting activities impact forest structure, carbon pool dynamics, and recovery processes; observed drastic increases of the concentrations of dissolved organic carbon and dissolved methane in thermokarst lakes in western Siberia during a summer warming event; disentangling the roles of herbivores and fire on forest carbon dioxide flux; direct and indirect impacts of fire on the global carbon balance; and improved atmospheric inversion of regional carbon sources and sinks by incorporating disturbances. Combined, studies herein indicate several major research needs. First, disturbances and extreme events can interact with one another, and it is important to understand their overall impacts and also disentangle their effects on the carbon cycle. Second, current ecosystem models are not skillful enough to correctly simulate the underlying processes and impacts of ECE&D (e.g., tree mortality and carbon consequences). Third, benchmark data characterizing the timing, location, type, and magnitude of disturbances must be systematically created to improve our ability to quantify carbon dynamics over large areas. Finally, improving the representation of ECE&D in regional climate/earth system models and accounting for the resulting feedbacks to climate are essential for understanding the interactions between climate and ecosystem dynamics

    Recovery of carbon stocks after wildfires in boreal forests : a synthesis

    Get PDF
    Book of abstracts Cool forests at risk? The Critical Role of Boreal and Mountain Ecosystems for People, Bioeconomy, and ClimatePeer reviewe

    The Role of Russia's Terrestrial Biosphere in Bottom-up/Top-down Emissions Accounting

    Get PDF
    International accords such as the Kyoto Protocol that seek to regulate greenhouse gas emissions on a global scale necessitate methods sufficiently robust to account for uncertainties in emissions data. Any detection of changes in carbon emissions must account for such uncertainties to conclusively determine when emissions reductions have occurred. When used in combination, ground-based (bottom-up) assessments of carbon emissions and atmospheric inversion models (top-down) are powerful tools for reducing uncertainties and verifying flux estimates. Because top-down methods cannot differentiate between different ecological processes or human-induced fluxes, it is important that emissions accounting consider carbon fluxes "in toto" to properly verify flux estimates. This study compares two such comprehensive bottom-up evaluations - the Russian Full Carbon Accounting (FCA) and SIBERIA-II full greenhouse gas accounting projects. Carbon flux estimates from the terrestrial biosphere are compared in terms of mean values and uncertainties. The Russian FCA and SIBERIA-II estimates are found to be internally consistent, with a few exceptions. Top-down data may be used to further reduce uncertainties and verify flux estimates

    Northern Eurasia Future Initiative (NEFI): Facing the Challenges and Pathways of Global Change in the Twenty-first Century

    Get PDF
    During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies codesigned with regional decision-makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia’s role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large-scale water withdrawals, land use, and governance change) and potentially restrict or provide new opportunities for future human activities. Therefore, we propose that integrated assessment models are needed as the final stage of global change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts

    Full Carbon Account for Russia [Revised 18 December 2000]

    Get PDF
    The Forestry Project (FOR) at IIASA has produced a full carbon account (FCA) for Russia for 1990, together with scenarios for 2010. Currently, there are rather big question marks regarding the existing carbon accounts for Russia, and Russia is critical to the global carbon balance due to its size. IIASA is in a position to perform solid analysis of Russia because of the databases that the Institute has built over the years. FOR based this work on a comprehensive geographic information system comprising georeferenced descriptions of the environment and land of Russia, which in turn are based on a number of thematic, digitized maps and databases. For the Russian energy sector and other industrial sectors (except the forest industry), the project used emissions estimates from the recent IIASA study "Global Energy Perspectives" (1998). The project carried out a separate substudy for the Russian forest industry sector. According to FOR's estimate, the total fluxes (including energy and industry sectors) in Russia were a net source of 527 teragrams of carbon (Tg C) in 1990. To illustrate the possible development of the carbon pools and fluxes over the next 10 years, FOR developed three different scenarios for the period 1990-2010, reflecting different assumptions regarding Russia's GDP growth. According to these scenarios, Russia will continue to be a net source of carbon to the atmosphere with 156-385 Tg C in 2010, including the emissions from energy and other industrial sectors. However, analysis of the FCA also shows considerable uncertainties involved in the carbon accounting. These uncertainties exceed the calculated changes in the full flux balance for the period 1990-2010. At present, this raises grave questions regarding the reliability of any accounting system used to measure terrestrial ecosystems for compliance with the Kyoto Protocol
    corecore