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1. Introduction

Grassland accounts for 25% of the world’s land area and has global significance for climate-
carbon feedback [1]. As one of the most widespread ecosystem types, grassland makes a large
contribution to carbon sequestration and plays a significant role in regional climates and the
global carbon cycle [2]. Grassland net primary productivity (NPP) refers to carbon accumula‐
tion (photosynthesis less respiration) in grassland per unit of time, and can be used as an
indicator of the capacity of the grassland ecosystem to accumulate carbon and to support
grazing animals. Studies of the NPP have contributed significantly to our understanding of
the pattern, process and dynamics of grassland ecosystems. Hence, the accurate estimation of
the NPP of grasslands is very important not only for scientifically guiding grassland manage‐
ment but also for understanding the global carbon cycle. Reliable long-term data on grassland
NPP are urgently needed to estimate carbon fluxes. Due to their time- and labor-intensive
nature, ground measurements of grassland NPP are very limited in temporal and spatial
coverage. The precision evaluation of NPP estimated in regional or global scales is always very
difficult. Direct measurement of grassland NPP is tedious and not practical for large areas, so
it is therefore appropriate to use computer models, calibrated with existing data, to study the
spatial and temporal variations of grassland NPP [3].

A number of different methods of modelling the dynamics of grassland NPP have been
reported. In climate-vegetation models, empirical relationships are developed, allowing NPP
to be estimated as a function of climate variables such as temperature, precipitation, and
evaporation [4-12]. Process models for estimating NPP simulate a series of plant physiological
processes and their response to changes in environmental factors, including photosynthesis,
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autotrophic respiration and transpiration [13, 14]. In spite of this, the body of knowledge of
basic biological mechanisms to simulate grassland NPP is still limited. Furthermore, process
models cannot be used in developing countries because long-term data required for the
parameters of the models is not available. Algorithms for estimating NPP by remote sensing
may be poorly parameterized if the ‘calibration’ estimates of NPP are based upon an inappro‐
priate method. In this respect, climate-vegetation models have been drawing much attention
and have been widely applied internationally, owing to their simplicity [4]. These models have
been shown to yield ‘reasonable estimates’ of regional or global NPP distribution [4, 9, 14-16].

Vegetative types and their distribution pattern can be related to certain climatic types in a
series of mathematical forms. Thus, the climate can be used to predict vegetative types and
their distribution, or the reverse [17]. A growing number of research efforts have demonstrated
the importance of climate-vegetation interaction in understanding climate sensitivity and
climate change [18]. However, current climate-vegetation classification models mostly
simulate the equilibrium state of vegetation types, and do not include NPP [19]. Furthermore,
at present there is no vegetation-climate model based on a classification system including the
NPP function. Therefore, development of climate-vegetation classification models coupled
with NPP is urgently needed in order to evaluate the possible impacts of global change on
terrestrial vegetation types [19]. So the focus of future research should be to master the link
between NPP and grassland class, and to develop pertinent NPP models under a consistent
classification system.

2. The classification indices-based model according to the Integrated
Orderly Classification System of Grassland (IOCSG)

A grassland classification system, named the Integrated Orderly Classification System of
Grassland (IOCSG), uses the factors Growing Degree Days (GDD), MAP (mean annual
precipitation) and the moisture index (K value) to classify grassland diversity [17]. The theory
behind the IOCSG has been developed in the last 60 years since it was first put forward in the
1950s, and it has achieved widespread use in China [17, 20]. Liang et al. [20] compared the
change in potential vegetation distributions from 1911 to 2000 between the IOCSG, the
Holdridge Life Zone [5] and BIOME4 [21]. Their results show that the IOCSG has the advantage
of being simple and operational in its simulation of grassland classes, making it by far the best
grassland classification system.

The Classification Indices-based Model, dubbed the Holdridge life-zone system [5], and the
IOCSG [17] were originally built using eco-physiological features and a regional evapotrans‐
piration model with the elimination of the common variable RDI (radioactive dryness index)
by the chain rule. It results in a value for NPP (Mg DM ha-1 yr-1) as a function of GDD and the
moisture index (K value). Its ecological base is the IOCSG [17, 20, 22-25]. The method of
integrating the classification indices of IOCSG to estimate the NPP is of the form:
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NPP =
0.1GDD ⋅ L 2(K )⋅ e − 13.55+3.17K −1−0.16K −2+0.0032K −3

⋅ (K 6 + L (K )K 3 + L 2(K ))
(K 6 + L 2(K ))⋅ (K 5 + L (K )K 2)

Where GDD is defined as the mean of positive unit-period temperatures with the substitution
of zero for all unit-period values below 0 °C. The K value is the ratio of MAP to GDD, which
provides an index of biological humidity conditions.

K =MAP / 0.1GDD, L (K )=0.58802K 3 + 0.50698K 2−0.0257081K + 0.0005163874

The Classification Indices-based Model not only has the advantage of being simple, opera‐
tional, and especially compatible with the IOCSG used to derive NPP from its class, it also
responds to dynamic vegetation-climate relationships.

3. Model validation and model inter-comparison

Model inter-comparison has been used as an alternative method for indirect validation and
identification of model weaknesses and inconsistencies where ground observations are lacking
[26]. However, a simultaneous comparison of these climate-vegetation models to estimate
grassland NPP, using a consistent classification system, has not been attempted on a regional,
China-wide or global scale.

The following three performance indicators were used as the model evaluation and perform‐
ance criteria: (1) the mean bias error (MBE) [24,27,28]; (2) the coefficient of variation of the root-
mean-square error (CVRMSE), which is defined as the RMSE normalized to the mean of the
observed values; and (3) the forecast efficiency, E [29]. The prediction is considered excellent
with the CVRMSE < 10%, good if 10-20%, fair if 20-30%, poor if >30% [30]. CVRMSE is the
relative difference between the simulated and observed data, while the Nash-Sutcliffe model
efficiency statistic (E) [29], regarded as a measure of the overall fit between observed and
predicted values, is the primary criterion.

For the purpose of comparison with model simulations, the observed or predicted NPP was
expressed in g C m-2 per year, where 1 g carbon is equivalent to 2.2 g oven-dried organic
matter [31-34].

3.1. Evaluation of seven methods to predict grassland net primary productivity along an
altitudinal gradient in the Alxa Rangeland, Western Inner Mongolia, China

China’s grasslands are mainly distributed in arid and semi-arid areas of West China [35]. The
main grassland classes within China are Temperate meadow-steppe, Steppe and Desert-steppe
[35, 36]. Helan Mountain (elevation 3556 m), located in an ecologically vulnerable area of the
northwestern part of China, further enriches the diversity of vertical grassland classes. The
rangeland classes change from the high to low elevation: Alpine meadow, Steppe, Desert
steppe, Steppe desert, and Desert. Thus, Helan Mountain provides an ideal target system to
validate the Classification Indices-based Model and test IOCSG theory, which can be done
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from plots to estimate landscape-scale effects, something that so far has proven to be a
challenge to ecologists worldwide [37].

This study continues our efforts to develop a robust estimation capability of NPP for grassland
and, specifically, verifies the grassland NPP estimates from the climate-vegetation models
along an altitudinal gradient on Helan Mountain and in the surrounding desert rangeland.
The specific research objectives are to: 1) compare field-measured NPP based on field-observed
data among different grassland classes along an altitudinal gradient in the Helan Mountain
range and the surrounding desert; 2) compare and evaluate NPP estimated from the Miami
Model [6], Thornthwaite Memorial Model [38], Schuur Model [15], Chikugo Model [8], Beijing
Model [12], Synthetic Model [10,11,39], and the Classification Indices-based Model
[22,24,25,27,28] with NPP derived from measurements at eight sites in the region; and 3)
evaluate the applicability and reliability of the seven models among these grassland classes.

3.1.1. Study area and methods

3.1.1.1. Study area and site descriptions

The study area is located along the northern slopes of the Helan Mountain and the surrounding
Alxa Desert (long. 105°32′ to 105°51′, lat. 38°39′ to 39°19′; alt. 3556 m to1360 m a.s.l.), in western
Inner Mongolia (Figure 1). Eight study sites were selected following annual rainfall gradient
variations with respect to grassland classes at three altitudes that represent the full range of
grassland vegetation, environmental, terrain and soil conditions (Figure 1). Based on the
historical meteorological data among the eight study sites, GDD and the moisture index (K
value) were calculated. According to the IOCSG, the grasslands at the eight sites were classified
into five classes: Alpine meadow (site 1), Cold temperate-humid montane meadow (site 2),
Cool temperate-sub-humid meadow steppe (site 3), Cool temperate-semiarid temperate
typical steppe (site 4) and Cool temperate-arid temperate zonal semi-desert (sites 5-8),
respectively (Figure 1).

3.1.1.2. Plots-based NPP collection

The total observed NPP dataset was the sum of above- and below-ground NPP, following
standard methods [3,40,41], and it was based on averages of five duplicated plots at each
sampling site from April to October once every month for three consecutive years (2003-2005).
One hundred and twenty plot-based NPP sets from the eight study sites were obtained [25].

3.1.2. Results

3.1.2.1. Descriptive statistics of observed NPP

The gradient distribution of grassland classes varied in different NPP values among the
study sites. With all data pooled together, the observed NPP values of the Cool temperate-
arid temperate zonal semi-desert has an extreme degree of variation, ranging from 72.60 to
242.02 g C m-2  per year, with a coefficient of variation of 28.38%. The mean NPP of the
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Cool temperate-arid temperate zonal semi-desert was the lowest (133.43 g C m-2 per year),
followed by that of Cool temperate-semiarid temperate typical steppe (160.57 g C m-2 per
year),  Cool  temperate-subhumid  meadow  steppe  (171.94  g  C  m-2  per  year)  and  Alpine
meadow (185.88  g  C  m-2  per  year).  The  mean  NPP of  Cold  temperate-humid  montane
meadow was the largest (192.54 g C m-2 per year).

3.1.2.2. Comparison of the seven models in terms model performance values

The performance of each of the seven models compared and evaluated in this study is also
shown graphically by plotting predicted NPP values as a function of measured values, as
presented in Figure 2. The biases that each model introduces are reflected at the relative
positions of the 1:1 line. Data points above the 1:1 line are over-predicted while those under
the 1:1 line are under-predicted. It can be seen that the Thornthwaite Memorial Model, Beijing
Model and Miami Model over-predicted grassland NPP while the Synthetic Model and Schuur
Model slightly under-predicted those quantities. Considering the slopes and intercepts for the
regression of predicted NPP by the Chikugo Model and Classification Indices-based Model
versus observed NPP, the regression of the Chikugo Model has a slope (0.9878) approximately
equal to that (0.9873) of the Classification Indices-based Model, but the intercept (11.13) of the

Figure 1. Location map of study area and study sites. Dark circles represent the study sites in elevation. Arabic numer‐
als denote the study site
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regression line of the Classification Indices-based Model is much closer to zero than that (17.13)
of the regression line of the Chikugo Model.

Figure 2. Predicted net primary productivity (NPP) versus Observed NPP from seven different models compared in this
study. Each data point represents average of five replicates. Arabic numeral denotes the study site No..
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Accordingly, the high values of E (0.67 and 0.87) in predicting NPP using the Chikugo Model
and the Classification Indices-based Model indicate that these models outperform the others.
The fitted linear regressions (intercepts are forced to zero) between the observed NPP and the
methods are: the predicted NPP by Chikugo Model=1.09×Observed NPP, the predicted NPP
by Classification Indices-based Model=1.05×Observed NPP, respectively. The results indicate
that predicted NPP by the Classification Indices-based Model has a closer correlation with the
observed NPP compared to the predicted NPP by the Chikugo Model. With E value of -0.27,
-0.45, -1.79 and -2.61 for predicting NPP, respectively, the Synthetic Model, Schuur Model,
Miami Model and Beijing Model ranked third, fourth, fifth and sixth. With E value of-113.16,
the Thornthwaite Memorial Model was the least suitable. Overall, comparison of the predicted
with the observed grassland NPP indicated that the CVRMSE value using the Classification
Indices-based Model was less than 10%, which denotes that the prediction suitability of the
Classification Indices-based Model is considered excellent, while the prediction of the Chikugo
Model is considered good with CVRMSE=14.29%. As the CVRMSE value using the Synthetic
Model is 28.19%, the prediction of the model is considered fair. Because of the CVRMSE values
beyond 30%, the prediction using the other models is considered poor (Table 1).

Model CVRMSE(%) E Ranked

Miami Model 41.84 -1.79 5

Thornthwaite Memorial Model 267.59 -113.16 7

Schuur Model 30.14 -0.45 4

Chikugo Model 14.29 0.67 2

Beijing Model 47.57 -2.61 6

Synthetic Model 28.19 -0.27 3

Classification Indices-based Model 8.98 0.87 1

Table 1. Comparison of the seven models in terms model performance values

3.1.3. Discussion

Seven  different  methods  were  compared  in  terms  of  their  performance  in  predicting
grassland NPP. The relatively high model efficiency in predicting grassland NPP using the
Classification  Indices-based  Model  and  Chikugo  Model  indicates  that  these  models
outperform the others.  The comparison of  models  involves  the input  data  requirements
from each model into account, as these factors affect the value of model efficiency (E), if
they are optimized to maximize E. Generally, models with a large number of input variables
and parameters would result in higher values of E than models with a small number of
input variables and parameters. When comparing the Chikugo Model with the Classifica‐
tion Indices-based Model,  it  is  evident  that  the  Chikugo Model  is  more  complicated in
structure and highly intensive in its data requirements. The Chikugo Model provides insight
into the relative importance of individual environmental variables in the evapotranspira‐
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tion process [7, 11, 42, 43]. The model is a mechanistic approach to estimate grassland NPP
and always slightly overestimated the actual NPP. Furthermore, the Classification Indices-
based Model  is  based on the IOCSG and used the classification indices  as  independent
variables.  It  not  only  takes  into  account  dynamic  grassland classes  [17],  but  also  simu‐
lates NPP of corresponding grassland classes [22, 24, 25, 27, 28]. Thus it can be very easy
to implement and understand. These factors support the Classification Indices-based model
as a more accurate prediction among grassland classes in this study. So the Classification
Indices-based Model was found to be the best choice for the given grassland classes. The
model is especially suitable for grassland NPP research and application in many developing/
undeveloped countries or regions that  generally lack the detailed and complex observa‐
tion data required by other models (i.e., BIOME4).

The results presented in this study were not only specific to this region, but more importantly,
were specific to the given grassland classes according to the IOCSG approach, which can be
scaled up from plots to estimate landscape-scale effects. The ascending order of grassland NPP
and its class may have significant implications for grassland succession in Chinese grassland
ecosystems with predicted changes in spatio-temporal patterns of precipitation under the
influence of global climate change. So there is a need to extrapolate in order to calculate the
grassland’s response to climate change (for instance changing temperature and rainfall).
Continued climate change is expected to result in changes in temperature and precipitation,
the same as the changes along the altitudinal gradient in this study area. The changing climate
will in turn affect the growth of plants, and result in changes to grassland classes and subse‐
quently NPP. The combined affect of precipitation and temperature, that is, the moisture index
(K), is to some extent most important to NPP spatial distribution. Thus, the Classification
Indices-based Model has the potential to evaluate the possible effects of climate change on
grassland classes and their NPP in the future, in order to improve the accuracy of NPP
prediction and reduce the evaluation uncertainty of the possible effects of climate change in
the future.

3.2. Model validation and modelling the potential net primary productivity of grassland in
China

China is located in the southeast monsoon climate of the Eurasian continent, and covers a
vast  territory,  with  complicated terrain  and distinctive  distribution patterns  of  tempera‐
ture and precipitation with different climatic zones, ranging from cold temperate to tropical
and  from  moist  to  extreme  drought.  In  addition,  the  ascent  of  the  Qinghai-Tibetan
Plateau(the so-called third polar region of the world) leads to a special plateau climate and
thus  forms  a  special  pattern  of  vegetation  distribution,  termed  as  ‘plateau  zonality  of
vegetation’  to  distinguish  horizontal  zonality  and  vertical  zonality  of  vegetation.  The
vegetation distribution of China can be characterized by the latitudinal zonality, longitudi‐
nal zonality,  vertical  zonality,  and plateau zonality [44].  Thus,  China's climate is  unique
and forms a special pattern of vegetation distribution. Grasslands account for 41.7% of land
area in China [17].  Traditionally,  China’s  grasslands have been economically productive
areas and have provided important natural resources for the nation, including meat, milk,
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wool and animal hides [35]. Grassland NPP can be used as an indicator of the capacity of
the grassland ecosystem to accumulate carbon and to support grazing animals. The ability
to accurately estimate grassland NPP is critical to our understanding of grassland dynam‐
ics [45].  But evaluation of the precision of grassland NPP estimates in China is difficult.
Since it is a developing country, some mechanistic models cannot be used because long-
term data required for the parameters of these models are not available in China [16]. But
the required data are available for NPP-climate models, and these models have been shown
to yield ‘reasonable estimates’ of global patterns of productivity [4, 9, 14, 16]. A growing
number of research efforts [18] are focused on developing NPP-climate relationships. The
Miami Model [38], the Schuur Model [15] and the Classification Indices-based Model [22,
24, 25, 27, 28] are examples of such efforts. But a simultaneous comparison using a consistent
classification system has not been attempted in China.

The purpose of this section is: 1) to compared NPP estimated using the Miami Model [38],
Schuur Model [15], and the Classification Indices-based Model [22,24,25,27,28] with NPP
derived from measurements at 3767 sites in China, to evaluate the applicability and reliability
of the Classification Indices-based Model; and 2) to simulate the spatial distribution patterns
and its NPP characteristics of China’s potential grassland under current climate scenarios
using the IOCSG approach and NPP-climate models.

3.2.1. Data acquisition and methods

3.2.1.1. Observed NPP database

A large reference data set (n = 3767) of observations of grassland NPP with paired climatic
variables was compiled for this study. This data set came from surveys conducted by the
National Animal Husbandry and Veterinary Service of the Ministry of Agriculture of the
People’s Republic of China from 2004 to 2005. Total observed NPP dataset from the 3767
sites was the sum of above- and belowground NPP following the standard methods [3, 40]
and it was based on the average of five duplicated plots at each sampling site. Locations
of 3767 sampling sites were plotted using their associated geographic coordinates, as shown
in Figure 3.

3.2.1.2. Climate data

Meteorological data for annual rainfall and GDD at 2348 meteorological stations, including
longitude, latitude and altitude data of each meteorological station, were obtained from a
database of the China Meteorological Data Sharing Service System from 1961 to 1990 (down‐
loaded from the website: http://cdc.cma.gov.cn). The locations of the 2348 meteorological
stations are shown in Figure 4. The Digital Elevation Model (DEM) was derived from the global
1km×1km DEM issued by the U.S. Geological Survey (USGS) (downloaded from the website:
http://edcdaac.usgs.gov/gtopo30/ README. asp#h17). Regional data were derived from a
database of 1:4 million Chinese regional data points, which was last updated in May 2004, and
were used to confirm the Chinese boundary.
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3.2.1.3. Estimating grassland NPP and its distribution patterns in China

Spatialization of GDD and K value was created by introduction into the interpolation analysis
of meteorological elements. The 1km×1km grid data of the moisture index averaged over years
was obtained by the Kriging interpolation method (Figure 5). The inverse distance squared
method (IDS) [46], modified by DEM in the smaller regions, was used to spatialize GDD data
and to improve the interpolation precision of GDD in China [47]. By mosaicking the grid data
of GDD on the actual ground of eight smaller areas and clipping the integrated interpolation
area by the Chinese regionalism, we finally obtained the 1km×1km grid data of GDD (Figure
6). The 1km×1km grid data of the moisture index and GDD were used to predict the potential
classes recognized by the IOCSG (Figure 7), and were then used to drive the Miami Model,
Schuur Model, and the Classification Indices-based Model, respectively. To more explicitly
reflect the spatial distribution patterns of potential biomes in China, and for ease of comparison
and application, we merged the 42 classes of IOCSG to Grassland and Forest categories. The
Grassland category consists of seven grassland super-class groups (biomes): Tundra and
alpine steppe, Frigid desert, Semi-desert, Steppe, Temperate humid grassland, Warm desert
and Savanna. The Forest category includes Temperate forest, Sub-tropical forest and Tropical
forest (Table 2). The summed NPP has a unit of g C for pixels or Tg C (1 Tg = 1012g) for each
grassland super-class group (biome) or Pg C (1 Pg = 1015g) for Grassland or Forest category in
China.

Figure 3. Locations of observation sites of grassland NPP in China.
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Figure 5. 1km x 1km grid map of China showing the moisture index (K value) obtained by Kriging interpolation. The
legends show the zones of K value.

Figure 4. Spatial distribution of 2348 meteorological observation stations used for plotting spatial distribution of GDD
and K value
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Figure 6. 1km x 1km grid map of China showing spatial distribution of GDD by DEM+ IDS interpolation method. DEM,
the Digital Elevation Model; IDS, the inverse distance squared method. The legends show the zones of GDD.

Name of super-class group (biome) Corresponding class codea

Tundra and alpine steppe I A 1,I B 8, I C 15,I D 22, I E 29, I F 36

Frigid desert II A 2, III A 3, IV A 4

Semi-desert II B 9, III B 10, IV B 11, V B 12

Steppe 16IIC,17IIIC,18IV,19VC,25IVD

Temperate humid grassland IID 23, IIID 24, IIE30

Warm desert VA 5, VIA 6, VIIA 7

Savanna VIB 13, VIIB 14, VIC 20, VIIC 21

Forest, including Temperate forest, Sub-tropical forest

and Tropical forest

VD 26, VID 27, VIID 28, IIIE 31, IVE 32, VE 33, VIE 34, VIIE 35, IIF

37, IIIF 38, IVF 39,V F40, VIF 41, VIIF 42

a The class name refers to Figure7. Explanation

Table 2. The relationships between super-classes (biomes) and classes according to IOCSG approach
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Explanation: IA 1 Frigid-extrarid frigid desert, alpine desert; IIA 2 Cold temperate-extrarid montane desert; IIIA 3 Cool
temperate-extrarid temperate zonal desert; IVA 4 Warm temperate-extrarid warm temperate zonal desert; VA 5
Warm-extrarid subtropical desert; VIA 6 Subtropical-extrarid subtropical desert; VIIA 7 Tropical-extrarid tropical des‐
ert; IB 8 Frigid-arid frigid zonal semidesert,alpine semidesert; IIB 9 Cold temperate-arid montane semidesert; IIIB 10
Cool temperate-arid temperate zonal semidesert; IVB 11 Warm temperate-arid warm temperate zonal semidesert; VB
12 Warm-arid warm subtropical semidesert; VIB 13 Subtropical arid subtropical desert brush; VIIB 14 Tropical arid
tropical desert brush; IC 15 Frigid-semiarid dry tundra,alpine steppe; IIC 16 Cold temperate-semiarid montane steppe;
IIIC 17 Cool temperate-semiarid temperate typical steppe; IVC 18 Warm temperate-semiarid warm temperate typical
steppe; VC 19 Warm-semiarid subtropical grasses-fruticous steppe; VIC 20 Subtropical-semiarid subtropical brush
steppe; VIIC 21 Tropical-semiarid savanna; ID 22 Frigid-subhumid moist tundra,alpine meadow steppe; IID 23 Cold
temperate subhumid montane meadow steppe; IIID 24 Cool temperate-subhumid meadow steppe; IVD 25 Warm
temperate-subhumid forest steppe; VD 26 Warm-subhumid deciduous broad leaved forest; VID 27 Subtropical-sub‐
humid sclerophyllous forest; VIID 28 Tropical-subhumid tropical xerophytic forest; IE 29 Frigid-humid tundra, alpine
meadow; IIE 30 Cold temperate-humid montane meadow; IIIE 31 Cool temperate-humid forest steppe, deciduous
broad leaved forest; IVE 32 Warm temperate-humid deciduous broad leaved forest; VE 33 Warm-humid evergreen-
deciduous broad leaved forest; VIE 34 Subtropical-humid evergreen broad leaved forest; VIIE 35 Tropical-humid sea‐
sonal rain forest; IF 36 Frigid perhumid rain tundra,alpine meadow; IIF 37 Cold temperate perhumid taiga forest; IIIF
38 Cool temperate perhumid mixed coniferous broad leaved forest; IVF 39 Warm temperate perhumid deciduous
broad leaved forest; VF 40 Warm-perhumid deciduous-evergreen broad leaved forest; VIF 41 Sub-tropical perhumid
evergreen broad leaved forest; VIIF 42 Tropical-perhumid rain forest. The legend above also applies to Table 2)

Figure 7. Map of China showing the spatial distribution of potential class recognized by the IOCSG.
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3.2.2. Results

3.2.2.1. Comparison between NPP observations and predictions

Figure 8. plots predicted grassland NPP versus observed NPP values. The results indicate that
the Schuur Model underestimated grassland NPP. The Miami Model overestimated the large
observations, while the Classification Indices-based Model overestimated as many data points
as it underestimated. Considering the slopes and intercepts of the regression of predicted NPP
by the Miami Model and Classification Indices-based Model versus observed NPP, the
regression of the Miami Model has a slope similar to that of the Classification Indices-based
Model (0.79 and 0.72, respectively), but the intercept of the regression line of the Classification
Indices-based Model (64.19) is much closer to zero than is that of the Miami Model (113.40).
The intercept differences suggest that the Miami Model overestimated the high values of
observed NPP, whereas the Classification Indices-based Model slightly underestimated the
high values.

Figure 8. Performance of the Miami, Schuur and Classification Indices-based Models expressed as scatter-plots of pre‐
dicted versus observed grassland NPP in China.

Comparison of the predicted with the observed grassland NPP indicated that the CVRMSE
value using the Classification Indices-based Model was <10%, demonstrating that the predic‐
tion of the Classification Indices-based Model is considered excellent, while the output of the
Miami Model is considered good, with CVRMSE 13.0%. As the CVRMSE value using the
Schuur Model is 23.9%, its predictive ability is considered fair. The results of linear regression
showed that the Classification Indices-based Model explained, on average, 65.3% (R2) of the
variation in observed NPP, while the Miami Model explained 63.0% (R2) of the variation. With
the highest E value, the Classification Indices-based Model ranked first for predicting NPP,
followed by the Miami and Schuur Models, respectively, indicating that the Classification
Indices-based Model can estimate grassland NPP more precisely (Table 3).

3.2.2.2. Distribution patterns of grassland NPP in China

Almost all classes (42 classes) occur in China, except for tropical-extra-arid tropical desert
(VIIA7) under current climate conditions (Figure 7). The spatial distribution of grassland
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biomes (Table 2) under current conditions is shown in Figure 9a. The Grassland category was
predicted to be distributed primarily in the arid and semi-arid regions of Northern China, the
Qinghai-Tibetan Plateau, and scattered throughout warm-temperate and tropical regions
(Figure 9a). From north to south, grassland biomes were predicted to be mainly distributed as
follows: Tundra and alpine steppe (accounting for 20.42% of Chinese land area); Cold desert
(13.1%); Semi-desert (8.1%); Steppe (8.0%); Temperate humid grassland (6.0%); Warm desert
(0.1%) and Savanna (0.1%) (Figure 9a and Table 4). These percentages correspond to the actual
grassland distribution.

Compared with the Classification Indices-based Model and Miami Model, the Schuur Model
estimated substantially lower TNPP, especially in Tundra and alpine steppe, Cold desert,
Semi-desert, Steppe, Temperate humid grassland and Savanna areas (Table 4), but the
simulated spatial pattern for grassland NPP is very similar (Figure 9b, c, d). Comparing the
NPP maps (Figure 9b, c, d) with the data in Table 4 shows highest TNPP of grassland biomes
in Tundra and alpine steppe, followed by Steppe and Temperate humid grassland, respec‐
tively. The Tundra and alpine steppe, which covers the largest area, was predicted to be mainly
distributed in the Tibet Autonomous Region (94.4 million hectares), Qinghai Province (49.1
million hectares) and Xinjiang Uygur Autonomous Region (32.1 million hectares). Although
Tundra and alpine steppe has lower NPP values than Temperate humid grassland on a unit
area basis, the TNPP for Tundra and alpine steppe, estimated by the Classification Indices-
based Model, was predicted to be nearly twice as large as that of Temperate humid grassland
because Tundra and alpine steppe was predicted to cover a greater area (Table 4). The total
area of Steppe and Temperate humid grassland was predicted to be 130.75 million hectares,
accounting for 25.0% of the total grassland area, with nearly half of distributed on the Inner
Mongolian Plateau. Savanna and Warm desert super-classes were predicted to cover less than
1.3 million hectares. Savanna was predicted to be located in southern China, particularly in
Hainan Province, and Warm desert was predicted to be located in the Tarim Basin in Xinjiang
Uygur Autonomous Region and the Qaidam Basin in Qinghai Province (Figure 9a). Warm
desert and Savanna were predicted to have the lowest TNPP, and Semi-desert and Cold desert
to have moderate TNPP values (Figure 9 and Table 4). The Semi-desert was predicted to be
mainly distributed in Xinjiang Uygur Autonomous Region (33.8 million hectares) and Inner
Mongolia Autonomous Region (26.4 million hectares). The Cold desert was predicted to be
mainly distributed in Xinjiang Uygur Autonomous Region (84.3 million hectares), the western
region of Inner Mongolia Autonomous Region (18.7million hectares) and Gansu Province (11.9
million hectares).

Model MBE CVRMSE (%) R2 E

Miami Model 102.0 13.0 0.630 0.72

Schuur Model 191.7 23.9 0.629 0.58

Classification Indices-based Model 58.7 9.5 0.653 0.77

Table 3. The mean bias error (MBE), coefficient of variation of the root mean square error (CVRMSE), coefficients of
determination (R2), and model efficiency (E) for the comparison of the predicted with the observed grassland NPP in
China.
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Figure 9. Spatial distribution of (a) potential grassland biomes (super-class group) and (b, c, d) geographical distribu‐
tion of grassland NPP evaluated by the Miami Model, Schuur Model and Classification Indices-based Model at current
climatic condition, respectively.
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In conclusion, under current climate conditions, the main parts of China’s grassland are
predicted to be the Tundra and alpine steppe and Steppe, and they account for 50.88% China’s
total grassland and 63.77-63.90% China’s grassland TNPP (Table 4).

3.2.3. Discussion

3.2.3.1. Model-data comparison

The performance of the different models can be compared on the basis of their error frequency
distributions. Figure 10 shows the distribution of errors for the three models. Even though the
pattern is to some extent controlled by the heterogeneous distribution of the validation points,
the direct influence of the different models on the error structure remains evident. In the Miami
Model, the error distribution (Figure 10a) shows a unimodal trend with a peak centered on a
negative value (average local error of about -48 g C m-2 per year) and an error range from -419
to 492 g C m-2 per year. The largest underestimated values occur with the Schuur model,
although a few overestimated predictions are also present in the same areas. In the histogram
of error frequency (Figure 10b), a large single maximum is clearly centered on values of
approximately 132 g C m-2 per year, indicating that grassland NPP is underestimated almost
everywhere within the test area (Figure 8). The fact that the Schuur Model produced a model

Biome

(super-class group)

Area

(million

hectares)

TNPP (Tg C)

Miami

Model

Schuur

Model

Classification

Indices-based

Model

Tundra and alpine steppe 191.47 329.63 184.42 250.70

Cold desert 123.21 52.11 29.15 36.09

Semi-desert 76.19 110.61 61.88 93.68

Steppe 74.99 265.34 148.45 211.65

Temperate humid grassland 55.76 167.86 93.91 124.70

Warm desert 0.80 0.14 0.08 0.04

Savanna 1.25 7.34 4.11 6.71

Forest, including Temperate forest,

Sub-tropical forest and Tropical forest
413.65 2529.04 1414.94 2227.83

Table 4. Total NPP (TNPP) of major China’s terrestrial biomes estimated by the Miami Model, Schuur Model and
Classification Indices-based Model under current climatic condition.
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efficiency value of 0.58 is an indication that any predictions arising from this model must be
treated cautiously. The Classification Indices-based and Miami models have more consistent
behavior throughout the validation points, and Figure 10c indicates that the results of the
Classification Indices-based Model are in good agreement with observed data (mean error 23
g C m-2 per year with a standard deviation of 105.6 g C m-2 per year) and the mean absolute
error is lower than that obtained from the Miami Model.

Figure 10. Frequency distribution of residuals for (a) the Miami, (b) the Schuur, and (c) the Classification Indices-based
Models. Residuals are expressed as the difference between observed and predicted NPP.

The Classification Indices-based Model performs slightly better than the Miami Model, with
a narrower error range and an error histogram that approximates a bell-shaped distribu‐
tion (Figure 10). In general, the distribution of residuals is homogeneous, although a few
larger  errors  occur  in  the  Classification Indices-based model,  which can compromise its
reliability. Comparing the Miami Model with the Classification Indices-based Model, the
Miami Model determines NPP for a particular location by comparing the minimum value
of either temperature or precipitation functions.  Hence,  it  only considers a single factor,
and  there  are  no  interactions  between  the  two  variables.  In  contrast,  the  Classification
Indices-based Model considers three meteorological measurements and their interactions in
its formulation. The reduction in errors produced by the Classification Indices-based Model
should lead to significant improvements in applications as a newer NPP-climate relation‐
ship model (Figure 10).

3.2.3.2. Grassland carbon budgets

The Classification Indices-based Model has two advantages: 1) it needs few input parameters;
and 2) remote sensing data can be incorporated easily. Consequently, the Classification
Indices-based Model is effective and practical for large-area application. But the simulated
NPP by the Classification Indices-based Model was ideally potential value and land-use
practices were not taken into account. The potential grassland, as a final state of succession
which achieves the balance with its habitat, is the most stable and mature climax grassland
class of the habitat without human interference, and is the trend of the regional grassland
development. The study of potential grassland can substantially reveal the impact of climate
on the changes of grassland patterns. It is the starting point of the vegetation-environmental
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classification and relationship study, as well as the key point of the global change and grassland
ecosystem study [27].

The Classification Indices-based Model estimate of China’s TNPP at 2.95 Pg C (Table 4) is close
to the estimates of 2.65 Pg C and 2.24 Pg C by the light-use efficiency model [48] and the BEPS
(Boreal Ecosystem Productivity Simulator) model [49] under current climate conditions,
respectively. The Classification Indices-based Model outputs suggest that potential TNPP of
grassland in China is 0.72 Pg C under current climate conditions (Table 4). China’s grassland
TNPP was estimated by Piao et al. [50] as 1.04 Pg C from 1980 to 1988, while Ni [51], using the
carbon density method, estimated the TNPP of China’s grasslands as 3.06 Pg C between 1949
and1978 and also between 1979 and 1990. This wide range in the reported potential TNPP
could be due to their use of different estimation methods, inconsistent classification systems,
and/or different time periods with changing grassland areas.

3.2.3.3. Human Appropriation of Net Primary Production (HANPP)

One of the central issues of sustainable development is the question of how to meet the globally
growing demand for biomass in an ecologically sound way. Land use activities, primarily for
agricultural expansion and economic growth, have transformed one-third to one-half of our
planet's land surface from forest or grassland clearance, agricultural practices and urban
expansion, which make profound impacts on ecosystem service, food production and the
environment [52]. China, occupying only 7% of the world’s total arable land, supports nearly
21% of the world’s total human population. Agriculture is the major sector of growth in the
Chinese economy and with 80% of Chinese living in villages, a large proportion of these people
are still dependent upon agriculture. However, with rapid industrialization, urbanization is
accelerating and leading to changes in grassland and forest land uses. With increasing scientific
and political interest in regional aspects of the global carbon cycle, there is a strong impetus
to better understand the carbon balance of China. This is not only because China is the largest
emitter of fossil-fuel CO2 into the atmosphere, but also because it has experienced regionally
distinct land-use histories and climate trends, which together control the carbon budget of its
ecosystems [53, 54]. Changes in terrestrial ecosystems through human land use and manage‐
ment are also important in land degradation and carbon balance studies. Environmental
degradation is a major concern for China and research aimed at understanding the linkages
between land use changes, socioeconomics and the biophysical variables governing environ‐
mental degradation is needed. Despite the vast amount of research conducted independently
on land use changes and social indicators in China, an integrated assessment combining them
to study the socioeconomic metabolic flows and their impact on land resources on a large
spatial scale is absent. In this context, the concept of HANPP (human appropriation of net
primary production) is an important tool for assessing the impact of anthropogenic forces
through land use changes on biomass.

HANPP is an indicator of the extent to which ecosystem processes are altered by human
activities. HANPP equates to the difference between the NPP of the potential natural vegeta‐
tion and the amount of NPP remaining in ecosystems. The notion of HANPP represents the
food supply for humans, providing the free energy for humans to sustain their metabolic
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activities and allowing them to perform physical work. For example, agriculture and forestry
harness biomass energy for socio-economic purposes and thereby reduce the amount of NPP
remaining in ecological food chains [52, 55-58]. HANPP alters the composition of the atmos‐
phere, levels of biodiversity, energy flows within food webs and the provision of important
ecosystem services [59-61]. This removal of carbon naturally comes at a cost in that increased
intensities of human appropriation should directly result in less vegetative growth compared
to its natural state, if all other factors are held constant, such as nutrient availability. In this
study, we present a comprehensive assessment of Chinese HANPP based on vegetation
modelling using our model, agricultural and forestry statistics, and geographical information
systems data on land use, land cover, and soil degradation that localizes human impact on
ecosystems. We find, overall, that the HANPP values suggest that more than 43.2% of the
available NPP has already been modified and exploited in China. This value is comparatively
higher than the range of global estimates of 20% to 40% for HANPP [62, 63]. Furthermore,
compared with HANPP estimates cited for Austria [57, 59], where HANPP declined from 1980
to 1995, HANPP has increased in China. Increases in HANPP may lead to carbon fluxes from
biota to the atmosphere, they may contribute to biodiversity loss, and they may result in
diminished resilience of ecosystems [62]. As Chinese human population grows and with
mounting political interest in increasing GDP, there is likely to be an increased requirement
for more agricultural areas and further increases in HANPP over the present value. These
analyses suggest policy options for slowing future growth of HANPP. It also offers a means
to aid people in using the aforementioned carbon sinks to fulfill China’s commitment of
reducing greenhouse gases.

3.3. Model-data comparison and modelling the potential net primary productivity of global
grassland

Grassland biomes account for 25% of the world’s land area and have global significance for
climate-carbon feedback [1], containing approximately 30% of global soil carbon stocks [64].
Ranging from the savannas of Africa to the North American prairies and the converted
grasslands of Latin America and Southeast Asia, grassland ecosystems support the majority
of the world’s livestock and large mammals [65], besides playing a very important role in
regulating the global carbon cycle and providing meat and milk for human beings.

As one of the most widespread ecosystem types, natural grassland plays a significant but
poorly recognized role in the global carbon cycle [1, 2]. In order to effectively manage grassland
ecosystems and maintain their sustainability, large-scale analysis and modelling of grassland
NPP are needed to develop a better grasp of the spatial distribution of grasslands and their
productivity [3, 4, 13, 20, 66]. Continuous monitoring of global grassland productivity has
never been possible because of technological limitations. So it is necessary to use computer
models, calibrated with existing data, to study the spatial and temporal variations of grassland
NPP [3]. Recently, climate-vegetation models have been drawing much attention and have
been widely applied internationally [4, 9, 18], having been shown to yield ‘reasonable esti‐
mates’ of global patterns of productivity [4, 9, 14, 16]. The Miami Model [38], Schuur Model
[15] and Classification Indices-based Model [22, 24, 25, 27, 28] are examples of these climate-
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vegetation models. But model inter-comparison under a consistent classification system
simultaneously has not been attempted. In particular, the quantitative and spatial descriptions
of global grassland classes and their NPP values have not been reported.

The purpose of this section is: 1) to compare NPP estimated from the Miami Model [38], Schuur
Model [15], and the Classification Indices-based Model [22,24,25,27,28] with NPP derived from
measurements at 37 sites around the world, to evaluate the applicability and reliability of the
Classification Indices-based Model; and 2) to simulate the spatial distribution patterns and
associated NPP characteristics of global potential grassland under recent past climate scenario
using the IOCSG approach and NPP-climate models.

3.3.1. Data acquisition and methods

3.3.1.1. Observed NPP database

A reference data set (n = 113) of grassland NPP field observations with paired climatic variables
was compiled for this study. Total observed NPP data were gathered from the Oak Ridge
National Laboratories (ORNL) Net Primary Production database (http://www-eos‐
dis.ornl.gov/NPP/npp_home. html), and were the sum of aboveground and belowground NPP
following standard methods [9]. The grasslands including the Tundra and alpine steppe, Cold
desert, Semi-desert, Steppe, Temperate humid grassland, Warm desert and Savanna, or other
intensively managed sites were omitted from this study. Locations of sampling sites were
plotted using their associated geographic coordinates, as shown in Figure 11.

Figure 11. Spatial distribution of grassland NPP observations collected from the ORNL DAAC NPP database (http://
www-eosdis.ornl.gov/NPP/npp_home.html).

3.3.1.2. Monthly precipitation and mean temperature grid data

The monthly precipitation and mean temperature grid data, with spatial resolution of 30 arc
seconds (i.e., about 1 km), for global land areas excluding Antarctica over 50 years from 1950
to 2000, were generated using the software package ANUSPLIN Version 4.3 (Australian
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National University, Canberra, ACT, Australia) [67,68]. We chose this data set because the
method that created it has been used in other global studies [69, 70], and it has performed well
in comparison with the other multiple interpolation techniques [68, 71].

3.3.1.3. IOCSG approach and NPP-climate model operation

A common approach to extrapolating grassland NPP to the biosphere is to use vegetation maps
together with models of plant productivity at a biome level. The IOCSG potential biome maps
and its NPP were created and processed by the ArcGIS software (Esri Inc., Redlands, CA, USA)
under current climate (1950-2000). In the IOCSG biome (super-class group) classification map,
lake water, permanent snow and ice were excluded by using the Moderate Resolution Imaging
Spectroradiometer-International Geosphere Biosphere Program (MODIS-IGBP) land-cover
classification dataset in 2001, found at http://wist.echo.nasa.gov. The MODIS-IGBP land-cover
classification dataset was used to calculate the area of potential grassland biome. The simulated
NPP was an ideal potential value, and land-use practices were not taken into account. The total
NPP has a unit of Tg C (1 Tg = 1012g) for biome or Pg C (1 Pg = 1015g) for world.

3.3.2. Results

3.3.2.1. Comparison between NPP observations and predictions

Figure 12 plots predicted grassland NPP versus observed NPP values. Data results indicate
that the Schuur Model over-predicted grassland NPP. The Miami Model over-predicted the
large observations while the Classification Indices-based Model achieved a better balance
between over-predicted and under-predicted data points. A 1:1 line fits almost throughout the
entire cloud of data points of the Classification Indices-based Model. Considering the slopes
and intercepts for the regression of predicted NPP by the three models versus observed NPP,
the regression of the Miami Model has a slope (0.77) similar to that (0.70) of the Classification
Indices-based Model, but the intercept of the regression line (151.41) of the Classification
Indices-based Model is much closer to zero than the regression line (232.52) of the Miami
Model. The intercept differences suggested that the Miami Model overestimated the high
values of observed NPP, whereas the Classification Indices-based Model slightly underesti‐
mated the high values.

Comparison of the predicted with the observed grassland NPP indicated that the CVRMSE
value using the Classification Indices-based Model was less than 30%, demonstrating that the
prediction suitability of the Classification Indices-based Model is considered fair, while the
prediction suitability of the Miami model is considered poor, with the CVRMSE=34.12%. As
the CVRMSE value using the Schuur Model is 42.13%, its predictive ability is considered the
poorest. The results of linear regression showed that the Classification Indices-based Model
explained, on average, a variation of 65.86% (R2) in observed NPP, while the Miami Model
showed the explanations of 59.46% (R2). With the highest E value, the Classification Indices-
based Model ranked first for predicting NPP, indicating that the model can estimate the
grassland NPP more precisely (Table 5).
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Model MBE CVRMSE (%) R2 E

Miami Model -162.93 34.12 0.5946 -0.11

Schuur Model -211.46 42.13 0.6116 -0.07

Classification Indices-based Model -94.92 23.12 0.6586 0.10

Table 5. The MBE, CVRMSE, coefficients of determination (R2), and model efficiency (E) for the comparison of the
predicted with the observed grassland NPP in World.

3.3.2.2. Spatial distribution patterns and characters of grassland biomes over 1950-2000

The spatial distribution of grassland biomes during the period of 1950-2000 is shown in Figure
13a. From Figure 13a, the potential grassland is characterized by a significant distribution
pattern in latitudinal and altitudinal directions. From the Equator to the North Pole, grassland
biomes were mainly distributed in sequence as follows: (1) Savanna as the largest terrestrial
biome, mainly distributed in the east and middle of Africa, Central America and Oceania; (2)
Warm desert, mainly distributed in North Africa, North America and the largest part in Asia;
(3) Semi-desert and Cold desert, and mixed with Steppe in central Eurasia Continent and
southwest of North America, as well as Tundra and alpine steppe in the Tibetan Plateau; (4)
Temperate humid grassland, distributed over the entire Eurasian continent, and extending
from the east of North America to the west coast with the Pacific Ocean; and (5) Tundra and
alpine steppe, mainly distributed in the north of North America, Greenland and the most
northerly part of Eurasia. In the Southern Hemisphere, from the Equator to the southernmost
edge of Oceania, there are two major zones, including (1) dominated by Savanna, and mixed
with a little bit of Steppe, and Warm desert, mainly distributed in the south and middle of
Africa, the north and middle of South America, and the south of Southeast Asia and the north
of Oceania; (2) dominated by Semi-desert, mainly distributed in southernmost South America,
Africa and Oceania. Probably affected by interactions among topography, climate and
vegetation, there are more grassland biomes distributed in the east of South American (Figure

Figure 12. Performance of the Miami, Schuur and Classification Indices-based Models expressed as scatter-plots of
predicted versus observed grassland NPP in World.
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13a). Results of statistical analysis indicated that Grassland and Forest covers 55.76% and
44.24% of global land area, respectively (Table 6). Grassland biomes were mainly distributed
as follows: Savanna (accounting for 17.19% of global land area); Warm desert (16.29%); Tundra
and alpine steppe (6.32%); Semi-desert (6.03%); Steppe (4.83%); Temperate humid grassland
(3.86%) and Cold desert (1.25%) (Table 6). These percentages correspond to the actual grass‐
land distribution.

Biome

(super-class group)

Area

(million hectares)

TNPP(Tg C)

Miami Model Schuur Model
Classification Indices-based

Model

Tundra and alpine steppe 827.96 1884.82 2269.96 2492.34

Frigid desert 163.57 120.65 23.87 92.18

Semi-desert 789.81 1576.73 1177.32 1365.04

Steppe 633.15 1706.27 4705.38 1371.51

Temperate humid

grassland
505.43 1049.52 7515.71 841.33

Warm desert 2134.27 1516.60 3138.55 1111.00

Savanna 2251.42 8616.21 2536.42 8103.96

Forest, including

Temperate forest, Sub-

tropical forest and

Tropical forest

5795.39 38904.59 40147.86 39128.38

Table 6. Total NPP (TNPP) of major global terrestrial biomes estimated by Miami, Schuur and Classification Indices-
based Models in recent past (1950- 2000)

Comparisons with the Classification Indices-based Model and Miami Model, Schuur Model
estimated substantially higher TNPP, especially for Temperate humid grassland, Steppe and
Warm desert (Table 6), but the simulated spatial pattern for global NPP is very similar (Figure
13bcd). The NPP increases from the South and North poles toward the Equator, corresponding
to changes in precipitation and temperature. Comparing the NPP maps (Figure 13bcd) with
the Table 6 shows highest TNPP of grassland in Savanna, followed by Tundra and alpine
grassland and Steppe, respectively. Although Warm desert grassland covers the second
greatest area among grassland super-classes, TNPP for Warm desert grassland is still lower
due to lower NPP.

In conclusion, under recent past climate conditions, the main parts of global grassland are the
Savanna and Tundra and alpine grassland, which together account for 42.15% of total global
grassland area and 63.76-68.91% of global grassland TNPP (Table 6).
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Note: (a) Potential biome (super-class group) classification map; (b, c, d) global pattern of grassland NPP evaluated by
the Miami Model, Schuur Model and Classification Indices-based Model.

Figure 13. Global spatial pattern of the potential biome and the grassland NPP for recent past (1950-2000)
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3.3.3. Discussion

3.3.3.1. Model-data comparison

GDD, MAP and the moisture index (K value) are used as criteria to determine the class in the
IOCSG. The Classification Indices-based Model connected with the IOCSG by using the
classification indices as independent variables and considers three meteorological measure‐
ments and their interactions in its formulation. The use of these variables allows the Classifi‐
cation Indices-based Model to more accurately predict changes of NPP among grassland
classes or super-classes [17, 22, 24, 25, 27, 28]. The model’s relative simplicity and ability to
make reasonable estimates of the patterns of NPP in global grasslands is attractive. Despite
being a newer NPP-climate relationship model, the Classification Indices-based Model
provides more accurate conclusions and may also reduce the uncertainty of climate change
impacts on grasslands on a global scale. Furthermore, it has the potential to rapidly advance
grassland NPP research and application in developing/undeveloped regions or countries that
generally lack the detailed and complex data required by other models (i.e., BIOME4).

3.3.3.2. Grassland carbon budgets

The Classification Indices-based Model estimates global TNPP at 54.51 Pg C compared to 55.38
Pg C and 61.52 Pg C using the Miami model and the Schuur Model under recent past climate
conditions (Table 6). The Classification Indices-based Model estimate is closer to the estimates
of 46 Pg C, 48 Pg C and 55 Pg C by the National Center for Ecological Analysis and Synthesis
(NCEAS) model [4], the Carnegie-Ames-Stanford approach (CASA) Biosphere model [72], and
the MODIS NPP [73], respectively. This wide range in the reported potential global TNPP
could be due to their use of different estimation methods, inconsistent classification systems,
and/or different time periods [74]. The potential carbon accumulated in plants was calculated
based on simulated NPP. This calculation does not account for the potential impacts from
human disturbances, but assumes that the full potential NPP is reached in the grassland. The
Classification Indices-based Model estimates global grassland TNPP at 15.38 Pg C compared
to 16.47 Pg C and 21.37 Pg C using the Miami model and the Schuur Model under recent past
climate conditions (Table 6). Our global-scale NPP estimates can be used to improve under‐
standing of environmental controls on global-scale NPP, help understand how NPP might
have been altered by land use [75] and assess the human appropriation of net primary
productivity.

4. Grassland in response to climate change

4.1. Introduction

Global climate change will seriously affect terrestrial ecosystems. In global climate change
research,  modelling  is  a  key  method  for  the  study  of  climate-vegetation,  which  is  an
important component in the area of global change research. The current period of climate
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change and high CO2  concentrations in recent years has resulted in warm summers and
longer growing seasons, to a change in vegetation patterns can be expected. This change
would cause changes in vegetation classes and their NPP. For example, the dominance of
some cold-season C3 grasses would decrease, while that of warm season C4 grasses could
be expected to increase. Global warming also causes changes in precipitation patterns and
the total  amount  of  precipitation.  The far-reaching consequences  of  climatic  phenomena
such as  La Niña and El  Niño receive  widespread attention and appear  to  be  occurring
more frequently in recent decades.  Zhang et  al.  [26]  recently showed that  global  warm‐
ing is already affecting the world’s rainfall patterns, bringing more precipitation to northern
Europe, Canada and northern Russia, but less to sub-Saharan Africa, southern India and
Southeast Asia. They explained that human activity is causing alterations to the water cycle,
moving  more  water  vapor  away  from  the  warmest  parts  of  the  planet  and  pushing  it
toward the poles.  As a result,  wet areas are becoming wetter and dry areas are becom‐
ing  drier.  Thus,  there  has  been  an  increase  in  the  demand  by  the  broader  scientific
community and policymakers  for  better  projections of  regional  impacts  of  future green‐
house-gas-induced  climatic  change.  Global  environmental  change,  signified  by  ‘global
warming’ and its  possible effects on ecosystems have been drawing increasing attention
from the scientists and governments of every country and from all circles of the world [9,
13, 76]. Study of responses of terrestrial NPP to climate changes will help us understand
the feedback between climate systems and terrestrial ecosystems and the mechanisms of
increased NPP in the northern, middle and high latitudes [77]. NPP is not only used for
assessing the carbon balance on regional and global scales, it also plays an important role
in demonstrating compliance with the Kyoto Protocol on greenhouse gas reduction [11].
So,  accurate  estimates  of  NPP  are  very  important  not  only  for  scientifically  guiding
ecosystem management  but  also  for  the  study of  global  climate  change [53].  Therefore,
study of NPP and its response to global change is one of the key focuses for the global
scientific community [9, 78].

Climate  change  has  been  identified  as  having  far-reaching  implications  for  the  world’s
grasslands  [16,  79-83].  Therefore,  understanding  the  sensitivity  of  grassland  to  climate
change and the effect of these changes on grassland ecosystems is a key issue in global
carbon cycling. NPP in grassland is a key variable in our understanding of carbon exchange
between the biosphere and atmosphere, both currently and under climate change condi‐
tions [3, 4, 13, 84]. The mechanisms and modelling of responses in grassland NPP to global
change will  enhance understanding of how grassland ecosystems will  respond to global
change and the projection of grassland NPP to global change. This will enable the develop‐
ment of countermeasures to maximize the grassland NPP under conditions of global change,
especially to provide sustainable development of pasturing in arid and semiarid areas, by
using these theoretical and technological methods. The IPCC report [85] states that climate
change will present challenges for future grassland use by livestock and other grazers, and
for the resulting public policy designed to manage grasslands. Given their vast area and
diversity of classes, China’s grasslands play an important role in both regional and global
carbon cycling [33]. In order to effectively manage grassland ecosystems and maintain their
sustainability, a deeper understanding of how these ecosystems will respond to growing
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pressures is needed. Large-scale analysis and modelling is needed to develop a better grasp
of  the  spatial  distribution  of  grasslands,  their  productivity,  and  potential  variations  in
response to climate changes [3, 4, 13, 20, 23, 66].

Climate change will have profound effects on the class level, which in turn will influence
vegetation  types  and their  NPP.  Clearly,  this  requires  improved projections  of  regional
climate and understanding of how vegetation types will respond to climate change. Climate
is a major driver of variation in NPP, but a clear understanding of the impact of climate
change  on  NPP is  lacking  [13].  Not  only  are  grassland  researchers  concerned  with  the
performance of NPP simulation models under contemporary climate, but also they want
to  know  the  behavior  of  these  models  under  extrapolated  future  environmental  condi‐
tions [3, 4, 13]. A growing number of research efforts have demonstrated the importance
of climate-vegetation interaction in understanding climate sensitivity and climate change
[18].  The  study  of  climate-vegetation  interaction  is  the  basis  for  research  on  terrestrial
ecosystems’  responses  to  global  change  and  mainly  comprises  two  important  compo‐
nents:  climate vegetation classification and NPP of natural vegetation. From the view of
generic  relationships among all  the vegetation types,  the IOCSG can be used to predict
climate-linked spatial or temporal succession from an original class to a new class as these
climatic  factors  change.  Hence,  there  is  potential  to  develop  future  scenarios  based  on
possible changes in vegetation type and its NPP in response to climate change in coming
years. The IOCSG is a suitable tool to incorporate the effects of both climate change and
vegetation management measures on plant growth activity into NPP estimation at the same
resolution as satellite data. The Classification Indices-based Model connects with the IOCSG
by using the classification indices as independent variables. The use of these variables allows
the Classification Indices-based Model to project changes of NPP among grassland classes
or super-classes more accurately [17, 22, 24, 25, 27, 28]. The section on Model Validation
and  Model  Inter-comparison  has  shown  that  the  Classification  Indices-based  Model  is
suitable  to  predict  grassland  NPP at  regional,  Chinese  or  global  scale.  In  addition,  the
Classification  Indices-based  Model  presented  the  closest  values  to  the  observed  in  situ
meteorological  variables.  Furthermore,  its  relative  simplicity  and  ability  to  generate
reasonable patterns of NPP is attractive. Also, GDD and the moisture index (K value) are
used as proxies to represent the water and thermal properties of the growing season, and
are effective drivers for modelling NPP. The Classification Indices-based Model not only
takes into account dynamical classes [17], it also simulates NPP of corresponding classes.
As a new NPP-climate relationship model, the Classification Indices-based Model has the
potential to evaluate the possible effects of climate change by improving the accuracy of
the NPP prediction and reducing the evaluation uncertainty of the possible effects of climate
change [22, 24, 25, 27, 28].

In order to effectively model climate change impacts on global grassland distributions and
associated  NPP,  it  is  important  to  understand  climate  dynamics  in  the  recent  past
(1950-2000) as well as climatic projections for the future (2001-2050). Hence, in this section
we: (1) simulate the spatial distribution patterns and associated NPP characteristics of the
world’s and China’s potential grassland under a future climate scenario using the IOCSG
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approach  and  the  Classification  Indices-based  Model;  and  (2)  estimate  future  trends  in
response to climate change in the first  half  of  the 21st  century by comparing the varia‐
tion in distribution of NPP with the potential total NPP (TNPP) of grassland between the
recent  past  and  the  projected  future  climate  scenario.  Such  findings  should  improve
knowledge about changes in global grassland primary productivity under global warming.

4.2. Data acquisition and methods of analysis

4.2.1. Climate data

Two different global climatic datasets were used in this study. The first was the monthly
precipitation and mean temperature  grid datasets  over  50  years  from 1950-2000,  descri‐
bed at section of 3.3.1.2. The second dataset was the global monthly precipitation and mean
temperature prediction data set (also with 30 arc-second resolution) excluding Antarctica
from 2001 to 2050 under the A2a scenario (see below), which was simulated by Austral‐
ia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) and is available
through the website http://www.worldclim.org /futdown.htm [86]. The A2a scenario takes
into consideration the following land-use changes: (1) high rate of population growth; (2)
slow technological change; and (3) increased energy use, and describes a highly heteroge‐
neous future world in light of regionally-oriented economies. The gridded baseline climate
(recent past) and gridded future (2000-2050) A2a climate scenarios were used to estimate
changes in mean annual temperature (MAT), growing degree-days (GDD) and mean annual
precipitation (MAP).

4.2.2. IOCSG approach and NPP simulation

The IOCSG potential super-class group (biome) maps and its NPP were created and processed
by the ArcGIS software (ESRI Inc., Redlands, CA, USA) under the baseline climate (1950-2000)
and future climate A2a scenario (2000-2050) on average level. In the IOCSG biome (super-class
group) classification map, lake water, permanent snow and ice were excluded by using the
Moderate Resolution Imaging Spectroradiometer-International Geosphere Biosphere Pro‐
gram (MODIS-IGBP) land-cover classification dataset in year 2001, found at http://earthda‐
ta.nasa.gov. The MODIS-IGBP land-cover classification dataset was used to calculate the area
of potential grassland biome. The simulated NPP by the Classification Indices-based Model
was an ideal potential value and land-use practices were not taken into account. The recent
past map was chosen as a baseline and was used for comparison with projected future climate
to estimate trends in changes of class or grassland biome distribution and grassland NPP
distribution in response to climate change. Both the IOCSG and the Classification Indices-
based Model were applied to analyze the changes in grassland biomes and to measure the
change in TNPP of grassland biomes from the recent past (1950-2000) to the future A2a scenario
(2001-2050). The total NPP has a unit of Tg C (1 Tg = 1012g) for biome or Pg C (1 Pg = 1015g) for
China or the world.
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4.3. Modelling global-scale potential grassland changes in spatio-temporal patterns to
global climate change

4.3.1. Characteristics of potential grassland over 2001-2050 under A2a scenario

In the A2a scenario, the Savanna, Warm desert, Semi-desert, Tundra and alpine steppe, Steppe,
Temperate humid grassland and Cold desert occupy 17.68%, 16.06%, 5.97%, 5.91%, 4.83%,
4.30% and 1.24% of global land area, respectively (Table 7). Table 7 shows the highest TNPP
of grassland biomes in the Savanna, followed by Steppe and Semi-desert.

In conclusion, the main grassland biomes found in the world were the Savanna, Steppe and
Semi-desert, occupying 50.86% of total global grassland areas and 78.06% of global grassland
TNPP under future A2a scenario (Table 7).

Biome (super-class group)
Area

(million hectares)
total net primary productivity (TNPP)(Tg C)

Tundra and alpine steppe 774.70 1313.62

Cold desert 162.80 84.76

Semi-desert 782.41 1440.56

Steppe 633.15 1854.16

Temperate humid grassland 563.89 1157.55

Warm desert 2104.30 1235.21

Savanna 2316.12 10197.64

Forest, including Temperate forest, Sub-

tropical forest and Tropical forest
5766.10 40389.90

Table 7. TNPP of major global terrestrial biomes estimated by Classification Indices-based Model in future
(2001-2050) A2a scenario

4.3.2. Numerical simulations of potential grassland dynamics

Both the IOCSG approach and the Classification Indices-based Model were applied to analyze
the succession of classes and super-classes and to measure the change of super-class TNPP
from recent past (1950-2000) to future A2a scenario (2001-2050).

4.3.2.1. Change of class and super-class area

The class called Frigid-extrarid frigid desert, alpine desert (IA1), mainly distributed in America
and Asia, continuously decreased from recent past to A2a scenario and the rate of decrease
per decade was 4.72%. If decreasing rates persist, Frigid-extrarid frigid desert, alpine desert
(IA1) could potentially disappear by the second half of this century, while the class called Cold
temperate subhumid montane meadow steppe (II D23), mainly distributed in Asia and
America, continuously increased from recent past to A2a scenario, by 18.40%.
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Climate change also influences the spatial distribution of super-classes. The distribution area
for various super-classes in these two time periods shows differing dynamic characteristics
from recent past (1950-2000) to future A2a scenario (2001-2050) (Tables 6 and 7). The area of
Tundra and alpine steppe will decrease by 53.26 million hectares compared with its size during
1950-2000. Likewise, Warm desert will decrease by 29.97 million hectares. However, trends
show that Savanna and Temperate humid grassland will strongly increase, to nearly 123.16
million hectares. Overall, the Forest category will decrease by 29.29 million hectares (Tables
6 and 7).

4.3.2.2. Shift trend of super-classes

The A2a scenario predicts changes in global temperature and rainfall patterns, making wet
areas wetter, and dry areas drier (Figure 14), resulting in class conversions from an original
class to a new class due to changes in climate conditions. For example, the Frigid perhumid
rain tundra, alpine meadow (IF36) class will change to Cold temperate-humid montane
meadow (IIE30) with climate warming, or Cold temperate perhumid taiga forest (IIF37) with
climate drying. The conversion of classes from recent past to future A2a scenario will result in
changes in area and TNPP distribution patterns among biomes (Table 8 and Figure 15a). For
example, in the super-class of Tundra and alpine steppe, an area of 656.09 million hectares will
be converted to Forest (Legend 18 in Figure 15a and Table 8) in this long-run sequence, which
will mainly take place in Asia (accounting for 58.96%) and America (32.21%), while another
182.92 million hectares will be converted to Temperate humid grassland (Legend 15 in Figure
15a and Table 8), a change that will mainly take place in Asia (65.90%). An area of 590.06 million
hectares of Forest under recent past climate conditions will be converted into the Temperate
humid grassland under A2a scenario (Legend 85 in Figure 15a and Table 8), mainly taking
place in Asia (51.14%), the Americas (26.22%) and Europe (22.58%). An area of 389.29 million
hectares of Forest will be converted into Savanna (Legend 87 in Figure 15a and Table 8), mainly
taking place in the Americas (49.62%) and Africa (35.52%). An area of 253.28 million hectares
of Temperate humid grassland under recent past climate conditions will be converted into
Steppe under the A2a scenario (Legend 54 in Figure 15a and Table 8), mainly taking place in
Asia (48.76%), the Americas (28.89%) and Europe (22.22%). An area of 243.37 million hectares
of Steppe will be converted into Semi-desert (Legend 43 in Figure 15a and Table 8), mainly
taking place in Asia (49.72%) (Table 8).

An area of 856.54 million hectares of Grassland category will be converted to Forest category
and an area of 1089.77 million hectares of Forest category will be converted into Grassland
category (Figure 15b. and Table 8). There is a clear increasing trend in the Grassland category.
As a whole, areas of Grassland category will increase by 31.76 million hectares, while areas of
Forest category will decrease by 29.29 million hectares. The relative area of Grassland category
will increase by 0.43% over this period (1950-2050), whereas the relative area of Forest category
will decrease by 0.51% over the same period (Tables 6 and 7).
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Figure 14. Maps of anomalies in future A2a climatic scenario (relative to the average for 1950-2000) for (a) mean an‐
nual temperature (MAT), (b) growing degree-days (GDD) and (c) mean annual precipitation (MAP).
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Code World Oceania America Asia Africa Europe

11 774.7 0.06 492.08 305.36 0.01 25.75

12 3.94 - 1.33 2.61 - -

13 19.89 - 3.20 16.69 - -

14 13.68 - 1.69 11.98 - -

15 182.92 - 62.38 120.54 - -

18 656.09 0.26 211.34 386.85 0.01 57.63

22 108.13 - 12.91 95.21 0.01 -

26 102.80 - 8.26 93.78 0.76 -

32 57.91 - 13.03 44.87 0.01 -

33 502.10 4.51 154.74 299.02 14.40 29.42

34 0.01 - 0.01 - - -

36 39.93 0.64 7.80 26.45 5.03 -

37 193.86 43.51 51.26 44.29 38.44 16.35

43 243.37 4.17 65.53 121.01 3.77 48.89

44 70.67 2.27 31.85 28.68 1.94 5.92

47 69.29 6.22 25.44 7.23 13.10 17.30

48 0.20 - 0.07 - 0.13 -

53 29.17 - 2.96 21.38 - 4.83

54 253.28 0.07 73.16 123.50 0.28 56.27

55 290.36 0.11 116.84 158.83 0.01 14.56

58 159.59 0.92 26.57 29.96 0.63 101.51

66 1871.47 168.27 60.84 523.87 1118.23 0.27

67 31.94 25.78 0.21 0.93 5.01 -

76 102.28 20.06 14.40 20.87 46.91 0.03

77 2209.36 427.04 472.40 305.72 993.60 10.61

78 40.66 1.75 0.43 1.90 36.57 -

83 4.18 - 1.93 0.03 0.02 2.20

84 106.24 5.54 18.10 21.51 6.41 54.68

85 590.06 0.18 154.71 301.77 0.18 133.23

87 389.29 7.38 193.16 42.58 138.27 7.90

88 4255.05 84.89 1895.38 1204.96 578.05 491.76

Note: the two digits in the code represents the biome conversion, where the first number depicts the biome under
recent past climatic conditions and the second number is under A2a scenario; numbers 1-8 represent Tundra and al‐
pine steppe, cold desert, Semi-desert, Steppe, Temperate humid grassland, Warm desert, Savanna, and Forest, respec‐
tively. For example, Code 18 means Tundra and alpine Steppe under recent past climatic conditions would convert
into forest in A2a scenario. The number in table is the area of conversion in unit of million hectares.

Table 8. The global biomes conversion matrix from recent past (1950-2000) to future (2001-2050) A2a scenario
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Note: (a) biomes shift. In the legend, the two digits represent the biomes conversion, where the first number depicts
the biome under recent past climatic conditions and the second number is under A2a scenario. The numbers 1-8 rep‐
resent Tundra and alpine steppe, Cold desert, Semi-desert, Steppe, Temperate humid grassland, Warm desert, Savan‐
na, and Forest, respectively. For example, Legend 54 means Temperate humid grassland under the recent past climatic
conditions would convert into Steppe under the A2a scenario. (b) Grassland (including Tundra and alpine steppe, Cold
desert, Semi-desert, Steppe, Temperate humid grassland, Warm desert, and Savanna) and Forest (including Temper‐
ate forest, Sub-tropical forest, and Tropical forest) categories change: Grassland–forest means Grassland category
would be converted into the Forest category, Forest-grassland means the Forest category would be converted into the
Grassland category; the others are no change.

Figure 15. Spatial distribution dynamics of global potential biomes from recent past to future A2a scenario.
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4.3.2.3. Change of TNPP

The Classification Indices-based Model shows NPP either neutral or increasing for most global
grid cells during the periods from recent past to A2a scenario (Figure 16).

Note: The legends show the differentiated NPP and negative values indicate C loss for NPP.

Figure 16. Trends in global NPP anomalies from 1950 to 2050 computed by the Classification Indices-based Model.

At the class level, the largest increases are in Tropical-humid seasonal rain forest (VIIE 35),
Tropical arid tropical desert brush (VIIB14), Tropical-subhumid tropical xerophytic forest
(VIID28) and Tropical-semiarid savanna (VIIC 21), as a result of increased MAT and MAP
in Africa and the Americas, while TNPP of Frigid perhumid rain tundra, alpine meadow
(IF 36),  Cold temperate perhumid taiga forest  (IIF 37),  Sub-tropical  perhumid evergreen
broad leaved forest (VIF 41), Warm-perhumid deciduous-evergreen broad leaved forest (VF
40), Warm temperate perhumid deciduous broad leaved forest (IVF 39), and Subtropical-
subhumid  sclerophyllous  forest  (VID27)  decrease  sharply.  The  TNPP  of  Subtropical-
semiarid  subtropical  brush  steppe  (VIC20)  in  Africa  shows  a  marked  decrease  due  to
decreased precipitation (Table 9).

At the super-class level, the TNPP of Savanna shows the largest increase, followed by Steppe,
Temperate humid grassland, Warm desert and Semi-desert. These increases in TNPP are
2093.68 Tg C, 482.65 Tg C, 316.22 Tg C, 124.21 Tg C and 75.52 Tg C, respectively. The TNPP of
Tundra and alpine steppe shows the largest decrease. The simulated TNPP of Tundra and
alpine steppe will decrease by 1178.72 Tg C compared with its size during 1950-2000. The
decrease of TNPP for Cold desert will be 7.42 Tg C (Table 9).

At the category level, the TNPP of Grassland category will increase 12.40% to 1906.14 Tg C
over this period (1950-2050) (Tables 6, 7 and 9).
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Tundra and

alpine steppe

IA1 0.02 0.96 0.01 0.23 - 0.07 - 0.05 0.01 0.46 - 0.15

IB8 5.47 6.82 4.35 6.38 - - - - 1.12 0.44 - -

IC15 4.77 5.58 4.04 4.46 - - - - 0.74 1.13 - -

ID22 7.10 12.38 6.15 5.95 - - - - 0.95 6.44 - -

IE29 38.79 70.51 27.49 34.69 - - - - 11.30 35.83 - -

IF36 2436.19 1217.36 1249.53 433.86 215.92 71.70 0.12 0.04 967.04 710.92 3.58 0.84

Frigid desert

IIA2 2.51 1.77 1.81 1.06 - - - - 0.70 0.71 - -

IIIA3 23.32 15.78 21.16 12.20 - - - - 2.16 3.58 - -

IVA4 66.35 67.21 60.71 59.96 - - 0.54 0.01 5.10 7.24 - -

Semi-desert

IIB9 26.13 21.89 19.38 18.90 - - - - 6.75 3.00 - -

IIIB10 357.26 276.52 263.64 214.83 1.75 3.90 - - 91.88 57.78 - -

IVB11 470.08 762.99 218.25 400.46 56.49 134.40 35.45 3.53 158.16 224.59 1.73 -

VB12 511.56 379.16 88.41 104.32 37.32 56.06 98.73 41.67 161.61 151.16 125.50 25.94

Steppe

IIC16 27.93 26.26 22.02 21.05 - - - - 5.91 5.20 - -

IIIC17 363.16 312.94 203.41 194.63 33.32 9.36 0.07 - 126.35 108.94 0.01 -

IVC18 308.63 611.41 85.69 162.77 111.39 284.52 17.09 5.38 84.42 156.78 10.04 1.97

VC19 271.69 235.16 16.99 60.69 62.59 65.19 52.30 27.77 103.17 53.83 36.64 27.69

IVD25 400.10 668.39 96.81 105.43 178.71 423.78 23.22 6.62 75.78 119.67 25.59 12.90

Temperate

humid

grassland

IID23 53.99 101.44 43.96 60.01 - - - - 10.03 41.44 - -

IIID24 460.59 573.19 193.04 342.42 90.80 64.68 0.67 0.02 175.48 166.03 0.60 0.05

IIE30 326.75 482.92 218.82 338.35 0.25 - - - 107.68 144.57 - -

Warm desert

VA5 56.55 52.91 42.65 44.25 - - 7.83 1.50 6.07 7.17 - -

VIA6 351.22 265.31 97.70 109.45 0.25 0.22 96.29 56.62 24.16 31.20 132.82 67.82

VIIA7 703.24 916.99 212.04 248.00 - 0.03 336.03 420.98 9.29 32.51 145.87 215.47

Savanna

VIB13 1367.24 1337.50 77.23 140.47 19.07 106.51 566.23 342.92 288.82 408.11 415.89 339.49

VIIB14 3357.22 4848.10 487.68 655.00 - 1.38 1685.12 2316.33 476.02 780.40 708.40 1094.98

VIC20 714.88 573.17 16.79 75.25 18.77 74.33 372.22 167.42 215.48 204.94 91.63 51.23

VIIC21 2664.61 3438.87 533.02 629.19 - 0.11 1355.63 1592.66 581.57 973.80 194.40 243.12

Forest,

including

temperate

forest, Sub-

tropical forest

and tropical

forest

VD26 275.02 252.60 65.16 46.27 30.99 70.36 52.70 20.71 99.26 78.71 26.91 36.56

VID27 768.75 569.52 32.99 136.59 7.98 23.34 438.75 157.32 260.74 229.46 28.30 22.82

VID28 2991.91 4141.40 668.94 674.43 - - 1187.64 1629.08 973.51 1643.08 161.82 194.82

IIIE31 846.52 1313.47 232.00 549.65 433.70 411.61 2.20 0.63 175.74 350.61 2.88 0.96

IVE32 628.69 860.05 125.12 116.91 257.76 383.06 27.15 8.52 160.99 319.82 57.68 31.74

VE33 475.38 488.95 211.14 79.74 19.27 63.57 45.45 20.42 176.58 293.46 22.94 31.75

VIE34 1876.90 1763.09 279.98 419.33 2.34 7.47 785.68 310.50 780.53 993.43 28.38 32.35

VIIE35 6155.32 7697.00 912.79 1054.92 - - 2556.00 3506.24 2617.13 3036.96 69.40 98.88

IIF37 3558.44 2714.89 1447.30 1357.99 658.84 320.88 1.54 0.27 1424.26 1022.19 26.50 13.56

IIIF38 2575.79 2967.37 466.08 798.74 1064.25 868.80 9.44 4.09 946.25 1233.80 89.76 61.93
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IVF39 1611.53 1384.49 475.71 356.44 172.41 242.06 44.36 13.16 784.34 634.75 134.71 138.09

VF40 1094.95 565.79 526.52 298.72 7.25 36.75 73.45 28.14 466.20 168.82 21.53 33.35

VIF41 2723.58 1889.94 1288.70 1161.66 - 4.23 294.95 194.80 1109.11 511.00 30.82 18.25

VIIF42 13545.59 13781.35 4329.50 5041.14 - - 1507.98 1158.16 7621.36 7475.14 86.74 106.92

Note: The class name refers to Figure 7 Explanation.Unit of TNPP is TgC.

Table 9. Comparison of TNPP of biomes and classes estimated by the Classification Indices-based Model under the
baseline climate (recent past (1950-2000)) and those under future (2000-2050) climatic scenario (A2a)

4.3.3. Discussion

4.3.3.1. Biome conversions

The changing climate will affect the growth of plants, alter the species composition of plant
communities and ultimately change community structure [87]. Under these conditions, the
classes will  shift  [3,5]  and result  in biome conversions [3,5].  Our analysis  indicated that
Steppe will experience the largest variation in biome conversions. The result is the same as
the conclusion of Liu et al. [88], who confirmed that under climate warming, the temper‐
ate steppe in the arid and semiarid regions of northern China will act as a net C source.
The Savanna and Temperate humid grassland will have the highest percentage of growth.
The Tundra and alpine steppe biome will have the greatest change in total area, followed
by Forest (Tables 6, 7 and 9).

4.3.3.2. Trends in grassland NPP in response to climate change

The Classification Indices-based Model estimates global potential grassland TNPP at 16.47 Pg
C and global TNPP at 57.67 Pg C under future climatic A2a scenario (Table 7). Climate change
is expected to affect the TNPP of grassland. Understanding climate and NPP feedback cycles
in grasslands requires knowledge of the changes in spatial patterns on the NPP of grasslands.
The dynamic change characteristics of potential biomes (Table 8 and Figure 15) reflect further
evidence of increasing global warming since the early 1980s (Intergovernmental Panel on
Climate Change, 2007). The Classification Indices-based Model estimated an increase of 1.09
Pg C in TNPP for global potential grassland from recent past to future A2a scenario (Tables
6, 7 and 9). It will bring an increase of 3.91 Pg in annual sequestration of CO2 and 2.88 Pg of
annual contribution to the atmospheric O2 cycle respectively (1.63 g of CO2 is absorbed and 1.2
g of O2 is released to generate 1 g of DM according to photosynthesis stoichiometry; [89]),
which will impose a new issue for future grassland research to support sustainable develop‐
ment and to provide relevant knowledge to meet the challenge of climate change [90].
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4.4. Spatio-temporal dynamics on the distribution, extent and NPP of potential grassland
in response to climate changes in China

4.4.1. Characters of potential grassland over 2001-2050 under A2a scenario

In the A2a scenario, the Tundra and alpine steppe, Cold desert, Semi-desert, Steppe, Temperate
humid grassland, Warm desert, and Savanna were projected to occupy 8.9%, 8.8%, 11.1%,
12.0%, 5.9%, 6.2%, and 1.8% of land area of China, respectively (Table 10). Under scenario A2a,
the Classification Indices-based Model projected the highest TNPP to be in the Forest category.
Table 10 shows that the highest TNPP values of grassland biomes were projected to be in the
Steppe, followed by Semi-desert, Tundra and alpine steppe, and Temperate humid grassland,
respectively. In conclusion, it was projected that the two main grassland biomes found in China
will be in the Steppe and Semi-desert, and they will occupy 42.2% of China’s total grassland
areas and 58.3% of China’s Grassland TNPP in the future climatic A2a scenario (Table 10).

4.4.2. Comparing the area and TNPP of China’s major terrestrial biomes of 1950-2000 with those of
2001-2050 under the A2a scenario

Climate change was projected to influence the spatial distribution of grassland biomes, with
a combined distribution ranging from the northeastern plain adjacent to Mongolia to the
southern Tibetan Plateau, with warm desert showing the greatest discrepancies. The distri‐
bution of the area for various grassland biomes in these two time periods was projected to
change considerably from the recent past (1950-2000) (Table 4) to the future (2001-2050) in the
A2a scenario (Table 10). The area of Tundra and alpine steppe was projected to decrease by
107.9 m ha compared with its size during 1950-2000. The TNPP of Tundra and alpine steppe
was projected to change from 250.7 to114.0 Tg C. This is a huge reduction of 54.5% due to global
climate change. Likewise, the areas of the Cold desert and Temperate humid grassland were
projected to decrease by 40.9 and 0.5 m ha, respectively, while the TNPPs of the Cold desert
and Temperate humid grassland were projected to decrease by 1.4 Tg C and 14.1 Tg C,
respectively. The Warm desert and Savanna super-class groups were projected to increase the
most. The area of Warm desert, Steppe, Semi-desert, and Savanna were projected to increase
considerably, by nearly 138.2 m ha (Tables 4 and 10).

4.4.3. Numerical simulations on potential grassland dynamics

4.4.3.1. Changes in class

The changing climate is likely to affect the growth of plants, alter the species composition of
plant communities, and ultimately change plant community structure [87]. It is anticipated
that the classes will shift [3, 5] and will result in biome conversions. Under the A2a scenario,
a new class (sub-tropical-extra-arid sub-tropical desert, VIA6) was projected to appear in
conjunction with climate warming and drying, and this would be distributed in the Xinjiang
Uygur Autonomous Region. The class called Frigid per-humid rain tundra, alpine meadow
(IF 36), mainly distributed in the Tibetan Plateau, is projected to decrease continuously under
the A2a scenario, with a rate of decrease per decade of 6.8%. If such rates persist, Frigid per-
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humid rain tundra, alpine meadow (IF 36) could potentially disappear by the end of the
century.

4.4.3.2. Trends in super-classes

The A2a scenario projects changes in China’s temperature and rainfall patterns, making wet
areas wetter and dry areas drier (Figure 17), resulting in class succession from an original class
to a new class if one just considers changes in climate conditions. The model outputs suggest
that the conversion of classes from the recent past to the A2a scenario would result in changes
in distribution patterns of the area and TNPP among biomes. Table 11 showed the projected
results of the changes in areas of biome conversions between the recent past and the future
climatic A2a scenario. For example, in this long time sequence, an area of 58.0 million hectares
of Tundra and alpine steppe would be converted to Forest (Legend 18 in Figure 18a and Table
11), which would take place mainly in the Tibet Autonomous Region (accounting for 40.1% of
the change) and Qinghai Province (35.9% of change), while another 28.9 million hectares would
change to Temperate humid grassland (Legend 15 in Figure 18a and Table 11), and this change
would mainly take place in the Tibet Autonomous Region (78.1%). Likewise, an area of 56.9
million hectares of Cold desert under recent climate conditions would be converted into Warm
desert under the A2a scenario (Legend 26 in Figure 18a and Table 11), mainly taking place in
the Xinjiang Uygur Autonomous Region (99.1%). An area of 43.7 million hectares of Temperate
humid grassland would be converted into Steppe (Legend 54 in Figure 18a and Table 11),
mainly taking place in the Inner Mongolia Autonomous Region (42.5%). An area of 36.3 million
hectares of Forest under recent climate conditions would be converted into Temperate humid
grassland under the A2a scenario (Legend 85 in Figure 18a and Table 11), mainly taking place
in both Heilongjiang Province (38.9%) and Inner Mongolia Autonomous Region (29.3%),
respectively. There would be an area of 28.5 million hectares of Steppe changing to Semi-desert

Biome(super-class group) Area(million hectares)
TNPP (Tg C)

Classification Indices-based Model

Tundra and alpine steppe 83.54 114.02

Cold desert 82.36 34.68

Semi-desert 103.66 163.53

Steppe 112.38 318.95

Temperate humid grassland 55.23 110.58

Warm desert 58.41 11.03

Savanna 16.97 75.49

Forest, including Temperate forest, Sub-

tropical forest and Tropical forest
424.97 2455.82

Table 10. TNPP of major China’s terrestrial biomes estimated by the Classification Indices-based Model from 2001 to
2050 under A2a scenario
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(Legend 43 in Figure 18a and Table 11), mainly taking place at the Inner Mongolia Autonomous
Region (44.8%).

Figure 17. Maps of changes under the future climatic A2a scenario (1950-2000) relative to the average for 1950-2000
for (a) mean annual temperature (MAT) and (b) mean annual precipitation (MAP) in China.
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Figure 18. Spatial distribution dynamics of potential biomes in China from the recent past to the future (2001-2050)
in the A2a scenario.
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Code China

Inner Mongolia

Autonomous

Region

Tibet

Autonomous

Region

Gansu

Province

Qinghai

Province

Xinjiang Uygur

Autonomous

Region

Heilongjiang

Province

11 83.54 - 39.62 1.29 24.41 18.76 -

12 2.60 - 0.91 0.01 0.03 1.65 -

13 12.95 - 5.66 0.37 1.49 5.44 -

14 8.46 - 5.70 0.32 0.81 1.62 -

15 28.90 - 22.56 0.70 2.31 3.33 -

18 58.02 0.01 23.26 1.67 20.82 2.22 -

22 66.61 18.72 - 11.40 8.41 28.09 -

26 56.94 - - 0.49 - 56.45 -

32 13.48 3.52 0.30 2.37 0.71 6.57 -

33 62.17 22.95 0.16 4.47 3.98 26.51 -

36 0.81 - - - - 0.81 -

37 0.06 - - 0.01 - - -

43 28.53 12.77 0.07 1.73 0.44 3.35 -

44 18.81 8.33 0.01 0.38 0.48 0.58 0.12

47 4.64 - - 0.08 - - -

53 0.76 - 0.03 0.03 - 0.71 -

54 43.72 18.49 0.55 3.06 1.07 3.34 3.45

55 33.00 12.15 3.86 1.04 2.16 1.59 6.76

58 23.36 0.20 0.72 2.66 0.02 0.07 8.77

66 0.80 - - - - 0.80 -

77 1.25 - - - - - -

78 0.09 - - - - - -

84 18.26 - 0.03 1.52 - - -

85 36.31 10.62 2.95 1.36 2.08 1.32 14.10

87 12.64 - - 0.13 - - -

88 329.27 6.93 14.33 5.50 2.52 0.46 12.02

Note: The symbols are defined in the same way as in Table 8.

Table 11. Projected changes in area(million hectares) of biome conversions from 1950 to 2050

An area of 81.5 million hectares of the Grassland category would be converted to the Forest

category and 67.2 million hectares of the Forest category would be converted into the Grassland
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category (Figure 18b and Tables 4, 10, 11). There is a clear trend for a decrease in the area of
the Grassland category by 11.1 million hectares, whereas areas of the Forest category would
increase by 11.3 million hectares (Tables 4, 10 and 11). The relative area of the Forest category
would increase by 2.7% over this period (1950-2050), whereas the relative area of the Grassland
category would decrease by 2.1% over the same period.

4.4.3.3. Change in TNPP

The Classification Indices-based Model shows NPP either neutral or increasing for most
Chinese grid cells during the periods from the recent past through the A2a scenario (Figure
19). At the class level, the largest increases would be in Subtropical-humid evergreen broad-
leaved forest (VIE 34), Tropical-per-humid rain forest (VIIF 42), Subtropical per-humid
evergreen broad-leaved forest (VIF 41), Subtropical-subhumid sclerophyllous forest (VID 27),
and Tropical-humid seasonal rain forest (VIIE 35), as a result of increased MAT and MAP in
southern China. The TNPP of Warm temperate-semi-arid warm temperate typical steppe (IVC,
18) in the north-east of the Inner Mongolia Plateau and the Plain of Northern China would
increase by 71.69 Tg C year-1 because of increased precipitation in these regions. Warmer
temperatures would be primarily responsible for increases in NPP in the Tibet Autonomous
Region, i.e., the TNPP of Warm temperate-arid warm temperate zonal semi-desert (IVB 11),
Cold temperate per-humid taiga forest (IIF 37), and Cold temperate-humid montane meadow
(IIE 30) would increase, whereas the TNPP of Frigid per-humid rain tundra, alpine meadow
(IF 36) would decrease sharply. The TNPP of Cool temperate-arid temperate zonal semi-desert
(IIIB 10) in both the middle of the Xinjiang Uygur Autonomous Region and the northern area
of the Inner Mongolia Autonomous Region would show a marked decrease due to decreased
precipitation (Table 12).

Biome

(super-class

group)

Class-ID

China

Inner Mongolia

Autonomous

Region

Tibet

Autonomous

Region

Gansu Province
Qinghai

Province

Xinjiang Uygur

Autonomous

Region

Recent

past
A2a

Recent

past
A2a

Recent

past
A2a

Recent

past
A2a

Recent

past
A2a

Recent

past
A2a

Tundra and

alpine steppe

IA1 0.10 2.44 - - - 0.24 - - - - 0.10 0.11

IB8 37.93 57.01 - - 9.45 30.04 0.14 0.05 0.90 0.13 22.65 26.78

IC15 31.53 39.20 - - 11.32 19.66 0.18 0.12 0.66 0.74 14.28 18.69

ID22 41.24 46.78 - - 20.36 27.82 0.21 0.34 0.59 2.04 14.62 16.58

IE29 91.93 106.91 - - 55.21 77.19 0.33 2.16 1.00 8.34 24.73 19.23

IF36 2304.27 887.90 0.25 - 1032.10 321.61 3.49 17.82 45.98 420.81 164.80 76.11

Frigid desert

IIA2 18.12 10.75 - - - 3.70 0.38 0.12 10.33 0.70 7.41 6.22

IIIA3 128.53 57.75 44.26 0.01 - - 36.31 11.83 9.62 27.20 38.33 18.71

IVA4 214.23 278.30 38.47 110.28 - - 12.36 52.25 - - 163.40 115.77

Semi-desert
IIB9 54.70 110.24 0.04 - 2.30 41.86 6.38 5.88 17.71 17.79 28.28 44.70

IIIB10 691.68 463.69 313.17 271.30 - 0.01 60.47 22.08 19.65 44.18 266.21 124.96
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Biome

(super-class

group)

Class-ID

China

Inner Mongolia

Autonomous

Region

Tibet

Autonomous

Region

Gansu Province
Qinghai

Province

Xinjiang Uygur

Autonomous

Region

Recent

past
A2a

Recent

past
A2a

Recent

past
A2a

Recent

past
A2a

Recent

past
A2a

Recent

past
A2a

IVB11 188.23 793.74 38.62 318.08 - - 8.51 71.95 - 0.30 92.40 276.57

VB12 2.14 267.67 - - - - 0.17 0.08 - - - 0.71

Steppe

IIC16 40.90 110.53 3.26 - 0.68 66.13 3.37 4.21 7.00 11.72 26.59 28.47

IIIC17 597.23 483.52 414.72 342.19 - 8.80 35.78 17.42 5.90 22.27 31.95 51.72

IVC18 519.03 1235.92 2.49 279.73 0.31 4.67 4.37 107.37 - 6.05 - 10.31

VC19 117.75 509.91 - - - 0.62 1.56 19.49 - - - -

IVD25 841.62 849.66 - 6.07 0.72 16.09 61.37 119.16 - 0.58 - 2.12

Temperate

humid

grassland

IID23 62.18 187.51 14.37 0.05 4.53 138.15 4.05 4.80 9.43 18.23 29.68 26.27

IIID24 976.28 594.58 397.16 263.99 9.38 59.84 63.01 25.79 10.86 31.26 15.83 30.75

IIE30 208.57 323.66 75.29 0.17 55.82 233.95 10.61 8.16 24.67 43.97 40.26 37.40

Warm desert
VA5 0.39 109.54 - - - - - 0.28 - - 0.39 109.26

VIA6 - 0.74 - - - - - 0.74

Savanna

VIB13 1.47 117.36 - - - - - 1.32 - - - -

VIIB14 3.85 7.68 - - - - - - - - - -

VIC20 31.08 568.06 - - - - 0.02 8.37 - - - -

VIIC21 30.73 61.80 - - - - - - - - - -

Forest, including

Temperate

forest, Sub-

tropical forest

and Tropical

forest

VD26 583.92 393.29 - - - 0.35 2.50 20.88 - - - -

VID27 219.17 1299.22 - - - - - 1.80 - - - -

VIID28 90.26 189.93 - - - - - - - - - -

IIIE31 1247.72 1240.25 209.53 322.60 24.87 62.07 104.06 36.77 11.71 36.23 6.52 23.37

IVE32 1118.61 925.41 - - 1.64 54.73 48.60 47.17 - - - -

VE33 2050.76 755.60 - - - 4.75 - 0.69 - - - -

VIE34 1911.89 3859.07 - - - 0.20 - - - - - -

VIIE35 622.82 1623.86 - - - - - - - - - -

IIF37 1502.54 1879.78 388.80 81.96 229.04 611.51 96.39 75.86 95.61 546.35 33.71 49.97

IIIF38 1827.77 1456.20 34.63 105.08 96.09 177.73 56.28 70.14 0.53 31.00 0.18 8.03

IVF39 1904.99 1027.94 - - 119.58 71.14 0.82 2.83 - - - -

VF40 3402.34 1221.15 - - 99.21 75.22 - - - - - -

VIF41 5166.77 6509.44 - - 229.74 231.03 - - - - - -

VIIF42 628.69 2177.01 - - 54.25 203.87 - - - - - -

Note: The class name refers to Fig.7. Explanation

Table 12. Comparison of the total net primary productivity (1011 g C) of biomes and classes of 1950-2000(recent past)
with those of 2000-2050 under A2a scenario

CO2 Sequestration and Valorization214



Figure 19. Trend of Changes in net primary productivity (NPP) from the recent past to the future (2001-2050) in the
A2a scenario. The changes show the differentiated NPP, and negative values indicate C loss for NPP.

At the grassland biome level, the TNPP of Steppe would show the largest increase, followed
by Semi-desert, Savanna and Warm desert. These increases in TNPP are 107.3, 69.9, 68.8 and
11.0 Tg C, respectively. The TNPP of Tundra and alpine steppe would show the largest
decrease, followed by Temperate humid grassland and Cold desert. The simulated TNPP of
Tundra and alpine steppe would decrease by 136.7 Tg C compared with its size during
1950-2000. The decrease of TNPP for Temperate humid grassland and Cold desert would be
14.1 Tg C and 1.4 Tg C, respectively (Tables 4, 10 and 12).

At the category level, the TNPP of Grassland category would increase by 14.5% to 104.7 Tg C
over this period (1950-2050), whereas the TNPP of Forest category would increase by 10.2% to
228.0 Tg C (Tables 4, 10 and 12).

4.4.4. Discussion

4.4.4.1. Grassland carbon budgets

The Classification Indices-based Model projects China’s TNPP at 3.28 Pg C (Table 10) under
the future climatic A2a scenario and is close to the projections of 3.33 and 3.34 Pg C by the
Vegetation Interaction Model (AVIM) [91] and the CEVSA (Carbon Exchange between
Vegetation, Soil, and Atmosphere) model [92], both derived by using long-term annual average
data (1980-2005). The results could potentially favor China’s position in supporting its effort
to reduce global warming gas as outlined in the Kyoto Protocol. The model outputs suggest
that the potential TNPP of grasslands in China is 0.83 Pg C in the A2a scenario (Table 10).
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Climate change is expected to affect the TNPP of grassland. Understanding climate and NPP
feedback cycles in grasslands requires knowledge of the changes in spatial patterns on the NPP
of grasslands. The dynamic change characteristics of potential biomes (Table 12 and Figure
18) highlights the risk that China’s grassland faces with a climate that is ‘already hot, dry and
variable’ [85] under global warming. The Classification Indices-based Model estimated an
increase of 104.71Tg C in TNPP for potential grasslands from recent past to the future A2a
scenario. The increase in TNPP for grasslands at northern latitudes was mainly driven by
increased temperature and, in lower latitudes, by changes in precipitation (Figure 17 and
Figure 19). The increase in TNPP for grasslands will bring an increase of 375.5 Tg of annual
sequestration of CO2 and 276.4 Tg of annual contribution to the atmospheric O2 cycle respec‐
tively (1.63g of CO2 are absorbed and 1.2 g of O2 are released to generate 1g of dry matter
according to photosynthesis stoichiometry) [89].

4.4.4.2. ‘Safe’ livestock carrying capacity

The goal of sustainable livestock husbandry is to balance the consumption of forage by
livestock with the annual production of the grassland, so that future grassland production is
not diminished. The concept of a ‘safe’ livestock carrying capacity was developed to estimate
the capacity of the grassland resource to sustainably carry livestock (and other herbivores) in
the long term (>30 years) [83]. Predictions of NPP give a good estimate of the annual production
of the grasslands, and therefore NPP can be used to balance the food demands of different
kinds of livestock, allowing a calculation of the maximum carrying capacity of livestock that
can be supported on the grassland. This maximum carrying capacity of the grassland should
be used to develop appropriate policies of grazing control to preserve sustainable production
on the grassland [16]. The implication of climate change projections for ‘safe’ livestock carrying
capacity remains an open question. Global warming causes changes in temperature and
precipitation patterns, resulting in fluctuations in the NPP of grasslands. Several researchers
have predicted that increases in temperature will cause a shift in the ratio of C4 to C3 grasses,
with C4 increasing [17, 93]. This may decrease carrying capacity, since C4 grasses are generally
considered to be of lower nutritive value to grazing animals than C3 species [94]. Moreover,
increasing temperature and declining precipitation are also considered to decrease dietary
crude protein, protein availability, and digestible organic matter [93]. In situations where
climates become warmer and drier, grazing livestock are likely to encounter a protein-limited
diet. The future declines in forage quality would also produce greater methane production
from ruminant livestock [93]. Thus, it is important to assess climate change projections in terms
of their implications for future ‘safe’ livestock carrying capacity and the risk of resource
degradation [83]. However, the questions of what the ‘safe’ livestock carrying capacity is and
of how best to integrate a wide range of factors, such as grassland classes, climatic variability
and animal nutrition, are unresolved. So further research and development is needed to
identify the regional trends for the ‘safe’ livestock carrying capacity to maintain sustainable
resource condition and reduce the risk of resource degradation. This important task remains
a challenge for all grassland scientists and practitioners.
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