11,702 research outputs found

    Quantifying the PR interval pattern during dynamic exercise and recovery.

    Get PDF
    International audienceWe present a novel analysis tool for time delay estimation in electrocardiographic signal processing. This tool enhances PR interval estimation (index of the atrioventricular conduction time) by limiting the distortion effect of the T wave overlapping the P wave at high heart rates. Our approach consists of modeling the T wave, cancelling its influence, and finally estimating the PR intervals during exercise and recovery with the proposed generalized Woody method. Different models of the T wave are presented and compared in a statistical summary that quantitatively justifies the improvements introduced by this study. Among the different models tested, we found that a piecewise linear function significantly reduces the T wave-induced bias in the estimation process. Combining this modeling with the proposed time delay estimation method leads to accurate PR interval estimation. Using this method on real ECGs recorded during exercise and its recovery, we found: 1) that the slopes of PR interval series in the early recovery phase are dependent on the subjects' training status (average of the slopes for sedentary men = 0.11 ms/s, and for athlete men = 0.28 ms/s), and 2) an hysteresis phenomenon exists in the relation PR/RR intervals when data from exercise and recovery are compared

    Multivariate ensemble classification for the prediction of symptoms in patients with Brugada syndrome

    Get PDF
    Identification of asymptomatic patients at higher risk for suffering cardiac events remains controversial and challenging in Brugada syndrome (BS). In this work, we proposed an ECG-based classifier to predict BS-related symptoms, by merging the most predictive electrophysiological features derived from the ventricular depolarization and repolarization periods, along with autonomic-related markers. The initial feature space included local and dynamic ECG markers, assessed during a physical exercise test performed in 110 BS patients (25 symptomatic). Morphological, temporal and spatial properties quantifying the ECG dynamic response to exercise and recovery were considered. Our model was obtained by proposing a two-stage feature selection process that combined a resampled-based regularization approach with a wrapper model assessment for balancing, simplicity and performance. For the classification step, an ensemble was constructed by several logistic regression base classifiers, whose outputs were fused using a performance-based weighted average. The most relevant predictors corresponded to the repolarization interval, followed by two autonomic markers and two other makers of depolarization dynamics. Our classifier allowed for the identification of novel symptom-related markers from autonomic and dynamic ECG responses during exercise testing, suggesting the need for multifactorial risk stratification approaches in order to predict future cardiac events in asymptomatic BS patients. Graphical abstract Pipeline for feature selection and predictive modeling of symptoms in Brugada syndrome.Peer ReviewedPostprint (author's final draft

    Fatigue Induced Changes in Muscle Strength and Gait Following Two Different Intensity, Energy Expenditure Matched Runs

    Get PDF
    Purpose: To investigate changes in hip and knee strength, kinematics, and running variability following two energy expenditure matched training runs; a medium intensity continuous run (MICR) and a high intensity interval training session (HIIT). Methods: Twenty (10F, 10M) healthy master class runners were recruited. Each participant completed the HIIT consisting of six repetitions of 800 meters with a 1:1 work: rest ratio. The MICR duration was set to match energy expenditure of the HIIT session. Hip and knee muscular strength were examined pre and post both HIIT and MICR. Kinematics and running variability for hip and knee, along with spatiotemporal parameters were assessed at start and end of each run-type. Changes in variables were examined using both 2 x 2 ANOVAs with repeated measures and on an individual level when the change in a variable exceeded the minimum detectable change (MDC). Results: All strength measures exhibited significant reductions at the hip and knee (P < .05) with time for both run-types; 12% following HIIT, 10.6% post MICR. Hip frontal plane kinematics increased post run for both maximum angle (P < 0.001) and range of motion (P = 0.003). Runners exhibited increased running variability for nearly all variables, with the HIIT having a greater effect. Individual assessment revealed that not all runners were effected post run and that following HIIT more runners had reduced muscular strength, altered kinematics and increased running variability. Conclusion: Runners exhibited fatigue induced changes following typical training runs, which could potentially increase risk of injury development. Group and individual assessment revealed different findings where the use of MDC is recommended over that of P values

    Analysis of Vehicle Use Patterns during Military Field Exercises to Identify Potential Roads

    Get PDF
    Military training is an intensive land use and can cause negative environmental effects. Many studies conducted under Integrated Training Area Management (ITAM) for quantifying the impact resulted from the military training exercise found that off-road vehicular activities during training exercises cause the major impact to the training land. Vehicle land use patterns at a certain location affect the impact severity: concentrated and repeated traffic create more serious damage to the land compared to the dispersed offroad vehicle movements. Those areas heavily disturbed by off-road traffic may require a longer period of time or special treatments for the land to return to its pre-disturbed status. Based on the impact severity and the shape of the disturbed area, some areas can be considered as potential roads, defined as the roads newly formed by concentrated offroad traffic during the military training exercises, or the roads currently exist but have not been mapped. Potential roads need to be rehabilitated, have traffic dispersed to return the land to its natural status, or to be included in the established road construction and maintenance programs. As Global Positioning System (GPS) has been used for monitoring vehicles\u27 activities during military training exercises; it enables the analysis of vehicle movement patterns. The vehicle movement patterns are characterized as the percentage of vehicle travel every day, vehicles\u27 on and off road travel, the frequencies of vehicle\u27s off-road velocity and turning radius. GPS vehicle tracking data collected during an eight-day reconnaissance training exercises in Yakima Training Center (YTC) in October 2001 were analyzed for vehicle movement patterns. Comparison of the on-road and off-road movement patterns indicates that potential roads may exist on the locations where the concentrated traffic or a high speed movement occurred. Based on the analysis of the movement patterns, factors were extracted to characterize the special movement patterns that indicate the vehicles moved on a potential road. The YTC was divided into small study units, and a multicriteria method was developed to determine if a study unit is a portion of a potential road. The multicriteria method was evaluated by comparing the predictions to the site visit results on 34 selected road segments that met different criteria levels. Results show that locations met higher criteria levels have higher possibilities to be roads: the location met all five criteria has an approximately 91% possibility for road existence; those met four criteria has an approximately 55% possibility; and for those met criteria level two or three, there is an approximately 14% probability for road existence. The analysis of updated off-road shows the percentage of vehicle off-road movement drops from 20.0% to 15.8% after excluding the potential road moving data. As an alternative method, a neural network approach for identifying the potential roads was introduced and compared to the multicriteria method. The neural network method obtained an approximately 85% accuracy when tested by on-road grids, successfully identified the high-way segment as road, and predicted approximately 31% off-road grids as potential road grids. Results show that the neural network method, although emphasized in factors different from the multicriteria method, has approximately 78% accuracy for identifying the potential road locations. The prediction from the neural network method was found highly correlated to the one of the criterion: vehicles travel in different directions. Simplified methods were also developed to identify potential roads by investigating the GPS point density, vehicle velocity, and the number of passes within a study unit. A simple linear relationship was found between the number of passes and the possibility for road existence. Although using vehicle velocity for identifying the potential roads may not be the best choose, velocity is still considered as one of the most important features to characterize vehicle movements and to locate special movement patterns. Considering the discrete situation in the predicted potential road areas, a kernel smoothing technique was introduced and applied to smooth the results to improve the continuity of the potential roads. The application found the kernel smoothing technique was able to obtain continuous potential road grids by selecting reasonable bandwidth

    Physiological modeling of isoprene dynamics in exhaled breath

    Full text link
    Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far to a sound analysis of the quantitative relationships between breath levels and the underlying systemic concentrations. This paper is devoted to a thorough modeling study of the end-tidal breath dynamics associated with isoprene, which serves as a paradigmatic example for the class of low-soluble, blood-borne VOCs. Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes of isoprene output in response to variations in ventilation and perfusion. Here, a valid compartmental description of these profiles is developed. By comparison with experimental data it is inferred that the major part of breath isoprene variability during exercise conditions can be attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue source of isoprene are presented. Our model is a first step towards new guidelines for the breath gas analysis of isoprene and is expected to aid further investigations regarding the exhalation, storage, transport and biotransformation processes associated with this important compound.Comment: 14 page

    Physiological modeling of isoprene dynamics in exhaled breath

    Full text link
    Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far to a sound analysis of the quantitative relationships between breath levels and the underlying systemic concentrations. This paper is devoted to a thorough modeling study of the end-tidal breath dynamics associated with isoprene, which serves as a paradigmatic example for the class of low-soluble, blood-borne VOCs. Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes of isoprene output in response to variations in ventilation and perfusion. Here, a valid compartmental description of these profiles is developed. By comparison with experimental data it is inferred that the major part of breath isoprene variability during exercise conditions can be attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue source of isoprene are presented. Our model is a first step towards new guidelines for the breath gas analysis of isoprene and is expected to aid further investigations regarding the exhalation, storage, transport and biotransformation processes associated with this important compound.Comment: 14 page

    Quantifying training load and its relationship to heart rate recovery

    Get PDF
    Includes bibliographical references (p. 197-218).Scientific research is playing an increasingly important role in the development of optimal exercise training programmes that meet specific goals within specified times. Improving the accuracy of training prescription first involves quantifying what the athlete is currently doing. Secondly, it needs to be established whether or not the athlete is adapting favourably to the training programme. This thesis investigated current methods of quantifying training load, and proposed the use of heart rate recovery to monitor the physiological response to training. The quantification of exercise training may involve athletes self-reporting their exercise

    Computational neurorehabilitation: modeling plasticity and learning to predict recovery

    Get PDF
    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling – regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity
    • 

    corecore