106 research outputs found

    On Colorful Bin Packing Games

    Full text link
    We consider colorful bin packing games in which selfish players control a set of items which are to be packed into a minimum number of unit capacity bins. Each item has one of m2m\geq 2 colors and cannot be packed next to an item of the same color. All bins have the same unitary cost which is shared among the items it contains, so that players are interested in selecting a bin of minimum shared cost. We adopt two standard cost sharing functions: the egalitarian cost function which equally shares the cost of a bin among the items it contains, and the proportional cost function which shares the cost of a bin among the items it contains proportionally to their sizes. Although, under both cost functions, colorful bin packing games do not converge in general to a (pure) Nash equilibrium, we show that Nash equilibria are guaranteed to exist and we design an algorithm for computing a Nash equilibrium whose running time is polynomial under the egalitarian cost function and pseudo-polynomial for a constant number of colors under the proportional one. We also provide a complete characterization of the efficiency of Nash equilibria under both cost functions for general games, by showing that the prices of anarchy and stability are unbounded when m3m\geq 3 while they are equal to 3 for black and white games, where m=2m=2. We finally focus on games with uniform sizes (i.e., all items have the same size) for which the two cost functions coincide. We show again a tight characterization of the efficiency of Nash equilibria and design an algorithm which returns Nash equilibria with best achievable performance

    Packing, Scheduling and Covering Problems in a Game-Theoretic Perspective

    Full text link
    Many packing, scheduling and covering problems that were previously considered by computer science literature in the context of various transportation and production problems, appear also suitable for describing and modeling various fundamental aspects in networks optimization such as routing, resource allocation, congestion control, etc. Various combinatorial problems were already studied from the game theoretic standpoint, and we attempt to complement to this body of research. Specifically, we consider the bin packing problem both in the classic and parametric versions, the job scheduling problem and the machine covering problem in various machine models. We suggest new interpretations of such problems in the context of modern networks and study these problems from a game theoretic perspective by modeling them as games, and then concerning various game theoretic concepts in these games by combining tools from game theory and the traditional combinatorial optimization. In the framework of this research we introduce and study models that were not considered before, and also improve upon previously known results.Comment: PhD thesi

    Approximation algorithms for distributed and selfish agents

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005.Includes bibliographical references (p. 157-165).Many real-world systems involve distributed and selfish agents who optimize their own objective function. In these systems, we need to design efficient mechanisms so that system-wide objective is optimized despite agents acting in their own self interest. In this thesis, we develop approximation algorithms and decentralized mechanisms for various combinatorial optimization problems in such systems. First, we investigate the distributed caching and a general set of assignment problems. We develop an almost tight LP-based ... approximation algorithm and a local search ... approximation algorithm for these problems. We also design efficient decentralized mechanisms for these problems and study the convergence of the corresponding games. In the following chapters, we study the speed of convergence to high quality solutions on (random) best-response paths of players. First, we study the average social value on best response paths in basic-utility, market sharing, and cut games. Then, we introduce the sink equilibrium as a new equilibrium concept. We argue that, unlike Nash equilibria, the selfish behavior of players converges to sink equilibria and all strategic games have a sink equilibrium. To illustrate the use of this new concept, we study the social value of sink equilibria in weighted selfish routing (or weighted congestion) games and valid-utility (or submodular-utility) games. In these games, we bound the average social value on random best-response paths for sink equilibria.. Finally, we study cross-monotonic cost sharings and group-strategyproof mechanisms.(cont.) We study the limitations imposed by the cross-monotonicity property on cost-sharing schemes for several combinatorial optimization games including set cover and metric facility location. We develop a novel technique based on the probabilistic method for proving upper bounds on the budget-balance factor of cross-monotonic cost sharing schemes, deriving tight or nearly-tight bounds for these games. At the end, we extend some of these results to group-strategyproof mechanisms.by Vahab S. Mirrokni.Ph.D

    The convergence time for selfish bin packing

    Get PDF
    In classic bin packing, the objective is to partition a set of n items with positive rational sizes in (0, 1] into a minimum number of subsets called bins, such that the total size of the items of each bin at most 1. We study a bin packing game where the cost of each bin is 1, and given a valid packing of the items, each item has a cost associated with it, such that the items that are packed into a bin share its cost equally. We find tight bounds on the exact worst-case number of steps in processes of convergence to pure Nash equilibria. Those are processes that are given an arbitrary packing as an initial packing. As long as there exists an item that can reduce its cost by moving from its bin to another bin, in each step, a controller selects such an item and instructs it to perform such a beneficial move. The process converges when no further beneficial moves exist. The tight function of n that we find is in Θ(n 3/2 ). This improves the previous bound of Ma et al. [14], who showed an upper bound of O(n 2)

    Acta Cybernetica : Volume 23. Number 3.

    Get PDF

    A Study of Problems Modelled as Network Equilibrium Flows

    Get PDF
    This thesis presents an investigation into selfish routing games from three main perspectives. These three areas are tied together by a common thread that runs through the main text of this thesis, namely selfish routing games and network equilibrium flows. First, it investigates methods and models for nonatomic selfish routing and then develops algorithms for solving atomic selfish routing games. A number of algorithms are introduced for the atomic selfish routing problem, including dynamic programming for a parallel network and a metaheuristic tabu search. A piece-wise mixed-integer linear programming problem is also presented which allows standard solvers to solve the atomic selfish routing problem. The connection between the atomic selfish routing problem, mixed-integer linear programming and the multicommodity flow problem is explored when constrained by unsplittable flows or flows that are restricted to a number of paths. Additionally, some novel probabilistic online learning algorithms are presented and compared with the equilibrium solution given by the potential function of the nonatomic selfish routing game. Second, it considers multi-criteria extensions of selfish routing and the inefficiency of the equilibrium solutions when compared with social cost. Models are presented that allow exploration of the Pareto set of solutions for a weighted sum model (akin to the social cost) and the equilibrium solution. A means by which these solutions can be measured based on the Price of Anarchy for selfish routing games is also presented. Third, it considers the importance and criticality of components of the network (edges, vertices or a collection of both) within a selfish routing game and the impact of their removal. Existing network science measures and demand-based measures are analysed to assess the change in total travel time and issues highlighted. A new measure which solves these issues is presented and the need for such a measure is evaluated. Most of the new findings have been disseminated through conference talks and journal articles, while others represent the subject of papers currently in preparation

    Signalisierte Netzwerkflüsse - Optimierung von Lichtsignalanlagen und Vorwegweisern und daraus resultierende Netzwerkflussprobleme

    Get PDF
    Guideposts and traffic signals are important devices for controlling inner-city traffic and their optimized operation is essential for efficient traffic flow without congestion. In this thesis, we develop a mathematical model for guideposts and traffic signals in the context of network flow theory. Guideposts lead to confluent flows where each node in the network may have at most one outgoing flow-carrying arc. The complexity of finding maximum confluent flows is studied and several polynomial time algorithms for special graph classes are developed. For traffic signal optimization, a cyclically time-expanded model is suggested which provides the possibility of the simultaneous optimization of offsets and traffic assignment. Thus, the influence of offsets on travel times can be accounted directly. The potential of the presented approach is demonstrated by simulation of real-world instances.Vorwegweiser und Lichtsignalanlagen sind wichtige Elemente zur Steuerung innerstädtischen Verkehrs und ihre optimale Nutzung ist von entscheidender Bedeutung für einen staufreien Verkehrsfluss. In dieser Arbeit werden Vorwegweiser und Lichtsignalanlagen mittels der Netzwerkflusstheorie mathematisch modelliert. Vorwegweiser führen dabei zu konfluenten Flüssen, bei denen Fluss einen Knoten des Netzwerks nur gebündelt auf einer einzigen Kante verlassen darf. Diese konfluenten Flüsse werden hinsichtlich ihrer Komplexität untersucht und es werden Polynomialzeitalgorithmen für das Finden maximaler Flüsse auf ausgewählten Graphenklassen vorgestellt. Für die Versatzzeitoptimierung von Lichtsignalanlagen wird ein zyklisch zeitexpandiertes Modell entwickelt, das die gleichzeitige Optimierung der Verkehrsumlegung ermöglicht. So kann der Einfluss geänderter Versatzzeiten auf die Fahrzeiten direkt berücksichtigt werden. Die Leistungsfähigkeit dieses Ansatzes wird mit Hilfe von Simulationen realistischer Szenarien nachgewiesen
    corecore