
When Nash met Markov:

Novel results for pure Nash equilibria

and the switch Markov chain

Pieter Kleer

Promotores: Prof.dr. Guido Schäfer
Prof.dr. Alexander Schrijver

Other members: Prof.dr. Leen Stougie (chair)
Prof.dr. Catherine Greenhill
Dr. Evdokia Nikolova
Prof.dr. Britta Peis
Prof.dr. Marc Uetz

This research has been carried out in the Networks and Optimization group
at the Centrum Wiskunde & Informatica in Amsterdam, supported by NWO
Gravitation Project Networks, Grant Number 024.002.003.

Printed and bound by Ipskamp Printing

ISBN 978-94-028-1601-3

Copyright c© 2019 by Pieter Sybrand Kleer

VRIJE UNIVERSITEIT

When Nash met Markov:

Novel results for pure Nash equilibria

and the switch Markov chain

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor
aan de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus
prof.dr. V. Subramaniam,

in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de School of Business and Economics

op maandag 9 september 2019 om 15.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

Pieter Sybrand Kleer

geboren te ’s-Gravenhage

promotoren: prof.dr. G. Schäfer
prof.dr. A. Schrijver

Acknowledgements

First of all, I would like to thank my supervisor Guido for his guidance and
support throughout my time at CWI. I have very much enjoyed all our talks,
writing papers together, and having you as my supervisor. You have taught
me many valuable lessons and your door was always open. Many thanks for
everything! For their willingness to read and approve this thesis, I want to thank
Britta, Catherine, Evdokia, Leen and Marc, and, in particular, Catherine for her
extensive feedback on Chapter 4. I also want to thank Lex for being my second
promotor.

It has been a great pleasure to carry out this research in the Networks project.
It inspired me to think about, and work on, problems outside of algorithmic game
theory. A special thanks goes to Yorgos Amanatidis and Jacobien Carstens for
letting me meet with various Markov Chain Monte Carlo approaches for the
generation of graphs with given degrees, and for working with me on the results
presented in Chapter 4 of this thesis. I also want to thank all the other students
and staff of the Networks project for the many nice project events.

I want to thank Tim Roughgarden for hosting me for two months at Columbia
University in the City of New York, and the Networks project for funding this
visit. Many thanks for this great opportunity and sharing your extensive knowl-
edge on all kinds of topics in theoretical computer science! Also, I want to thank
Vaggos Chatziafratis for many nice discussions and informal chats, and, finally,
everybody at the Data Science Institute and department of Computer Science of
Columbia for the many nice lunches and dinners.

There have been many people at CWI over the years that have made working
there very enjoyable; I would like to thank all of you! Special mention goes to
Sander who has been around since the first year of university in Delft, and with
whom I have discussed lots of research and have played many ping-pong matches.
A special thanks also goes to Bart, Carla, Daniel, Ilan, Irving (for letting me
borrow your bat more or less permanently), Isabella, Makrand, Mathé, Monique,
Neil, Nikhil, Ruben (for getting us the first place in the CWI doubles ping-pong
tournament), Sophie (for never complaining about me walking in with yet another
smoothed analysis question), Susanne, Sven, Viresh, Yllka, and Yorgos. Finally,
thanks to all colleagues I have had the pleasure to play with, and against, in the
activity room over the years! Also a shout-out to the PhD activity committee

v

for organizing many cool events over the years.
Moreover, I also want to thank all the people that I have met over the years

at conferences, visits and workshops. Thanks for all the nice games, dinners and
beers. Special thanks to Veerle, Tim, and the many Germans I have had the
pleasure to meet; and to Britta and Veerle for letting me spend a nice week in
Aachen!

Finally, I would like to thank all my friends and family for getting my mind
off of research every now and then. Pap en mam, bedankt voor al jullie hulp en
steun met vele niet werkgerelateerde zaken in het leven. Dank dat jullie altijd
voor me klaar staan!

Contents

Acknowledgements v

1 Introduction 1
1.1 About this thesis . 4
1.2 Strategic games . 5

1.2.1 Existence . 6
1.2.2 Computation . 7
1.2.3 Inefficiency . 8

1.3 Congestion models . 9
1.4 Sampling and counting . 11

1.4.1 Perfect matchings . 11
1.4.2 Markov Chain Monte Carlo method 15

1.5 Overview and publications . 16

2 Worst-case latency deviations in non-atomic routing games 19
2.1 Introduction . 19

2.1.1 Our contributions . 21
2.1.2 Related work . 23
2.1.3 Outline . 25

2.2 Preliminaries . 25
2.2.1 Non-atomic network routing games 25
2.2.2 Bounded deviation model 27
2.2.3 Inefficiency measures . 29

2.3 Upper bounds on the deviation ratio 29
2.3.1 Characterization of θ-inducible flows 31
2.3.2 Existence of alternating path tree 35
2.3.3 Proofs of Theorem 2.5 and Corollary 2.6 36

2.4 Lower bounds on the deviation ratio 39
2.4.1 Single-commodity instances 39
2.4.2 Common-source instances 40
2.4.3 Multi-commodity instances 42

2.5 Biased price of anarchy . 45
2.6 Heterogeneous populations . 48

vii

2.7 Applications . 54
2.7.1 Price of risk aversion . 54
2.7.2 Stability of Nash flows under small perturbations 55

2.8 Conclusion . 56

3 On pure Nash equilibria in Rosenthal congestion games 59
3.1 Introduction . 59

3.1.1 Our contributions . 62
3.1.2 Related work . 64
3.1.3 Outline . 66

3.2 Preliminaries . 66
3.2.1 Inefficiency measures and smoothness parameter 67
3.2.2 Polytopes . 68
3.2.3 Matroids . 70

3.3 Polytopal congestion games . 71
3.3.1 Price of stability . 73
3.3.2 Minimizing Rosenthal’s potential 78
3.3.3 Applications . 81
3.3.4 Bottleneck congestion games 84

3.4 Perception-parameterized congestion games 87
3.4.1 Price of anarchy . 89
3.4.2 Price of stability . 100
3.4.3 Applications . 105

3.5 Conclusion . 108

4 New results for the switch Markov chain 111
4.1 Introduction . 111

4.1.1 Our contributions . 115
4.1.2 Related work . 117
4.1.3 Outline . 119

4.2 Preliminaries . 120
4.2.1 Graphical degree sequences and the switch chain 121
4.2.2 JDM model and the restricted switch chain 123
4.2.3 PAM model and the hinge flip chain 124
4.2.4 Bipartite degree sequences and the curveball chain 127
4.2.5 Johnson graphs . 129

4.3 Switch chain for strongly stable sequences 130
4.3.1 Flow for the Jerrum-Sinclair chain 132
4.3.2 Flow transformation . 139

4.4 Switch chain for 2-class JDM instances 142
4.4.1 Rapid mixing of the hinge flip chain 144
4.4.2 Strong stability of 2-class JDM instances 157
4.4.3 Rapid mixing of the switch chain 160

4.5 Curveball chain . 161
4.5.1 Comparison framework . 162

4.5.2 Comparing the switch and curveball chain 165
4.5.3 Parallelism in the curveball chain 170

4.6 Conclusion . 172

Summary 175

References 177

A Combinatorial SDD of matroid congestion games 191
A.1 Symmetric difference decomposition 191
A.2 Local search algorithm . 193
A.3 Example . 195

B Omitted material from Section 3.3.4 197

Chapter 1

Introduction

Figure 1.1: The A4 highway goes
from Amsterdam to the town of
Ossendrecht near the Belgium bor-
der, with a break around Rotter-
dam. The extended stretch connect-
ing Delft and Schiedam is the low-
est part of the upper blue trajectory
(source: www.wegenwiki.nl).

Traffic congestion. On December 18,
2015, the first motorists were allowed on
an extended stretch of the A4 highway
in the Netherlands, that provides a new
connection between the cities of Delft and
Schiedam [149]. One of the main reasons
for this extended stretch was to alleviate
the traffic congestion on the nearby A13
highway. Indeed, one might be inclined
to believe that extending the road net-
work will always improve the traffic sit-
uation. After all, there is more area of
road available for the same amount of mo-
torists. This reasoning is mostly true if
there would be a centralized entity, say,
the Dutch government, that has the power
to prescribe the route every motorist has
to take in order to get to its destination.
The government could assign routes in
such a way that the traffic is nicely spread
out over all roads, minimizing the total
traffic congestion.

Unfortunately, real-life is far from this
ideal situation. Every motorist is free
to take any route, and, most likely, will
choose the fastest one available at the mo-
ment of departure (which is easy to obtain nowadays using, e.g., Google Maps).
That is, motorists tend to be selfish: Their objective is to get to their destination
as quickly as possible, not caring about the travel time of other motorists using
the road network. Selfish behavior has turned out to be very important in the

1

2 Chapter 1. Introduction

analysis of traffic congestion. In particular, because of selfishness, building more
roads is not always the solution to traffic congestion. Equivalently, closing down
road sections can sometimes improve the traffic situation in the presence of self-
ish players! This phenomenon is called the Braess paradox, named after Dietrich
Braess, who gave the first mathematical description of it in 1969 [18].

Selfish behavior is one of the main aspects studied in the field of algorithmic game
theory, that lies at the intersection of (theoretical) computer science, economics
and mathematics. Algorithmic game theory is concerned with designing and
analyzing algorithms in strategic settings, and has received considerable attention
especially since the rise of the Internet at the end of the last century. An excellent
book on many topics in algorithmic game theory is [140].

A fundamental problem in algorithmic game theory is to quantify the ineffi-
ciency of selfish behavior. For example, in the traffic example above we would
like to know how much higher the traffic congestion is, as a result of selfish be-
havior, compared to the traffic congestion in the ideal situation in which we are
allowed to assign routes to motorists. If the inefficiency is significant, there is
a need to come up with mechanisms that alleviate the problem. In the case of
traffic congestion, such a mechanism could be a tolling scheme for busy road
sections.

A large part of this thesis is concerned with quantifying the inefficiency of
selfish behavior in two congestion models: Wardrop’s routing model [175] and
Rosenthal’s congestion model [150].

Darwin’s finches. Apart from the analysis of congestion models, this thesis also
focuses on a different topic at the intersection of theoretical computer science and
mathematics, that of uniformly sampling (bipartite) graphs with given degrees.
We will illustrate this problem, as well as its relevance, with an example from
the field of ecology.

In the nineteenth century, Darwin travelled to the Galápagos islands and ob-
served the presence of many different species of finches on different islands (see
Figure 1.2). In particular, these species showed significant differences in their
beaks, both in form and function.1 A question of great interest concerning Dar-
win’s finch data is formulated in the following quote from [158]:

“Birds with differing beaks may live side by side because they can eat different
things, whereas similarly endowed animals may not occupy the same territory
because they compete with one another for the same kinds of food. Ecologists
have long debated whether such competition between similar species controls their
distribution on island groups or whether the patterns found simply reflect chance
events in the distant past.”

1We refer the interested reader to [30] for more details.

3

Figure 1.2: Darwin’s finch data (source: screenshot of Table 1 in [30].)

In order to address the question of whether or not such patterns can be
explained by chance events, we can use the statistical tool of hypothesis testing
that we briefly explain next (see [30] for more details). The idea is to generate (or
sample) many random 0-1 tables2 with similar characteristics as the observed
data in Figure 1.2, and, based on these random samples, determine how likely it
is that finches with different types of beaks appear on the same island. What do
we mean by similar characteristics? In our setting the characteristics of interest
are the row and column sums of the observed data in Figure 1.2. These so-called
marginals reflect the fact that certain islands can accommodate more species
than others, as well as that certain species appear more often than others. Thus,
we are interested in the problem of generating tables with the same marginals as
the observed data, and, perhaps most importantly, we would like to be able to
do this efficiently for practical purposes. The reason that we have to resort to
sampling is that computing all possible tables with the same marginals is often
not possible as there might be a tremendous amount of them.

One prominent line of work to obtain such random samples is the Markov
Chain Monte Carlo method that roughly works as follows. We start with the
observed 0-1 table and repeatedly make small random changes to it, according to
some probabilistic procedure, while preserving the marginals. The idea is that if
one makes sufficiently many random changes, then the resulting table corresponds
to a random sample from the set of all possible tables with the same marginals.
Perhaps one of the most natural examples of such a probabilistic procedure is to
repeatedly switch (or swap) two 1-entries uniformly at random while preserving
the marginals.

We illustrate such a switch operation with an example; see Figure 1.3. We
perform a switch operation on 1-entries (1, 1) and (3, 3) as follows. If entries (1, 3)
and (3, 1) contain a zero: interchange the 1-entries in (1, 1) and (3, 3) with the
0-entries from (1, 3) and (3, 1). Note that this operation preserves the marginals.

A fundamental question that arises here is the following: How many of these

2A 0-1 table can naturally be interpreted as the adjacency matrix of a bipartite graph.

4 Chapter 1. Introduction

 1 0 0
1 1 0

0 1 1

 →

 0 0 1
1 1 0

1 1 0


Figure 1.3: Example of switch operation.

switches do we have to perform before our table is close to a random sample?
This is one of the problems we study in Chapter 4.

1.1 About this thesis

This thesis is the result of four years of research carried out as a Ph.D. student in
the Networks and Optimization group at CWI in Amsterdam, the Netherlands.
The Ph.D. position has been a part of the Networks project, a 10-year program
(2014–2024) funded by the Dutch Ministry of Education, Culture and Science
through the Netherlands Organization for Scientific Research. The project fo-
cuses on network-related research in many different fields in mathematics and
theoretical computer science, ranging from random graph theory to quantum
computing, and more.

As described above, this thesis focuses on two areas at the intersection of
theoretical computer science and mathematics. As these two areas do not have
any direct overlap, we continue this chapter with some general background in-
formation for both. In Section 1.2 we discuss (finite) strategic games and some
of the fundamental aspects of interest that have been studied in the last twenty
years. The model in Chapter 3 is such a strategic game. The model in Chapter 2
can roughly be seen as a strategic game with an infinite number (or continuum)
of players, which is explained in Section 1.3. In Section 1.4 we present some
background on the topic of (uniformly) sampling finite objects and its relation to
counting finite objects. We illustrate all concepts using the problem of sampling
perfect matchings from a given undirected graph, which is a generalization of the
problem of sampling graphs with given degrees that we consider in Chapter 4.
Results for which no proof or reference are given can be found in most standard
textbooks on the area of discussion. For an overview of the contributions in this
thesis, see Section 1.5.

Sections 1.2, 1.3 and 1.4 are not meant to be a complete overview of
their respective area, but rather a gentle introduction for readers who
are unfamiliar with them. We do not give technical definitions of all
notions discussed (e.g., we do not formally define complexity classes).

1.2. Strategic games 5

1.2 Strategic games

A basic concept in (algorithmic) game theory is the notion of a strategic game
(or non-cooperative game).

Definition 1.1. A strategic game is a tuple Γ = (N, (Si)i∈N , (Ci)i∈N) where
N = {1, . . . , n} is a finite set of players,3 Si a finite set of strategies for i ∈ N ,
and Ci : ×j∈NSj → R a cost function for i ∈ N . A vector s = (s1, . . . , sn) ∈ ×iSi
is called a strategy profile.

We write s−i = (s1, . . . , si−1, si+1, . . . , sn) for the vector of length n − 1 in
which the strategy of player i ∈ N is left out of the strategy profile s. We use
(s−i, s

′
i) to denote the strategy profile in which all players play their strategy in

s, except for player i, that plays strategy s′i ∈ Si.4

A cost minimization game is a finite strategic game in which the objective
of every player is to choose a strategy from her set of strategies that minimizes
her cost (where randomization over strategies is allowed). Note that her cost not
only depends on the strategy she chooses, but also on the chosen strategies of
the other players. We assume that our cost minimization game is a so-called one
shot game, meaning that all players have to declare a strategy simultaneously.
Furthermore, players have full information meaning that they know the strategy
sets and cost functions of all the other players.

We present an example of a finite strategic game that is a special case of the
congestion model studied in Chapter 3.

Example 1.2. An atomic network congestion game is a strategic game on a
directed graph G = (V,A). For every player i ∈ N her set of strategies Si
consists of all (oi, di)-paths in the graph G for some oi, di ∈ V . Moreover, every
arc a ∈ A is equipped with a cost function ca : N→ R so that for a given strategy
profile s = (s1, . . . , sn) and i ∈ N , we have

Ci(s) =
∑
a∈si

ca(xa),

where xa is the number of players using arc a in the profile s. That is, every
player controls one unit of flow that has to be routed through the network, and
the goal is to choose an (oi, di)-path that minimizes her total cost through the
network. The game is called symmetric if all players have the same origin o and
destination d.

The notion of a cost minimization game gives rise to the following question:
which strategy profiles can we expect to see as an outcome? Intuitively, we might
expect the outcome of the game to satisfy some form of ‘stability’ in the sense
that no player, in retrospect, would like to have chosen a different strategy. This

3Throughout this thesis, we often use the notation [n] = {1, . . . , n} for n ∈ N.
4For functions f : ×iSi → R we slightly abuse notation and write f(s−i, s′i) for the evaluation

of f in the strategy profile (s−i, s′i), instead of f((s−i, s′i)).

6 Chapter 1. Introduction

can be formalized by means of a solution concept as a prediction for the outcome
of a game. We give two such examples, named after John Forbes Nash jr., but
many more exist in the literature (see, e.g., [140]).

Definition 1.3. Let Γ = (N, (Si)i∈N , (Ci)i∈N) be a strategic game. A pure Nash
equilibrium is a strategy profile s = (s1, . . . , sn) ∈ ×iSi with the property that
for every i ∈ N , we have

Ci(s) ≤ Ci(s−i, s′i) (1.1)

for all s′i ∈ Si.

A pure Nash equilibrium is a strategy profile in which no player has an in-
centive to unilaterally deviate to another strategy, i.e., no player can strictly
decrease her cost by switching to another strategy.

As mentioned before, players may also be allowed to randomize over strategies,
which we now formalize. A mixed strategy of player i is a probability distribution
over Si. A collection of mixed strategies σ = (σ1, . . . , σn) is called a mixed strategy
profile, where σi is the mixed strategy of player i that is independent of the mixed
strategies of the other players. We use Et∼σ[Ci(t)] to denote the expected cost of
the random variable Ci(t) under strategy profile t = (t1, . . . , tn) where ti ∼ σi for
i ∈ N .5 Also, we use Es−i∼σ−i [Ci(s−i, s′i)] to denote the expected cost of player
i when choosing the strategy s′i with probability one (where the expectation is
taken with respect to the random choices of the other players).

Definition 1.4. Let Γ = (N, (Si)i∈N , (Ci)i∈N) be a strategic game. A mixed
Nash equilibrium is a mixed strategy profile σ with the property that for every
i ∈ N , we have

Es∼σ[Ci(s)] ≤ Es−i∼σ−i [Ci(s−i, s′i)]
for all s′i ∈ Si,

A pure Nash equilibrium is a mixed Nash equilibrium where each player
chooses precisely one strategy with probability one, and all her other strate-
gies with probability zero. We next focus on three fundamental aspects of Nash
equilibria: existence, computation and inefficiency. In particular, the computa-
tion and inefficiency aspects are two of the main topics of interest in algorithmic
game theory (as opposed to classical game theory).

1.2.1 Existence

The following fundamental theorem in game theory is due to Nash [137]. Its
proof relies on a fixed-point theorem argument.

Theorem 1.5 ([137]). Every finite strategic game has a mixed Nash equilibrium.

Unfortunately, this result does not hold true for pure Nash equilibria, as
can been seen from the classical matching pennies game given in Example 1.6.
Moreover, in general, mixed Nash equilibria do not have to be unique.

5Here t ∼ σ indicates that t is a random variable with distribution σ.

1.2. Strategic games 7

Example 1.6 (Matching pennies). The matching pennies game is played be-
tween two players 1 and 2. Both players have the strategy set {H,T} corre-
sponding to heads (H) and tails (T). The cost functions of the players are de-
scribed in the matrix in Table 1.1. For example, if we consider the strategy
profile s = (H,T) then C1(s) = 0 and C2(s) = 1. It is not hard to see that the

H
HHHH1

2
H T

H
HH

HHH1
0 HH

HHH0
1

T
HH

HHH0
1 HH

HHH1
0

Table 1.1: Costs for the game of matching pennies.

game does not possess a pure Nash equilibrium. Player 1 would like to choose
a strategy different from that of player 2, whereas player 2 prefers to choose
the same strategy as player 1. On the other hand, a mixed Nash equilibrium is
given by the mixed strategy profile in which both players randomize (with equal
probability) over both strategies.

Although a pure Nash equilibrium is in general not guaranteed to exist, many
special classes of games do have a pure equilibrium. Very often, existence is
shown by proving that a strategic game is a so-called potential game.

Definition 1.7. A finite strategic game Γ = (N, (Si)i∈N , (Ci)i∈N) is an (exact)
potential game if there exists a potential function Φ : ×iSi → R with the property
that

Ci(s)− Ci(s−i, s′i) = Φ(s)− Φ(s−i, s
′
i)

for every strategy profile s ∈ ×iSi and every unilateral deviation s′i ∈ Si for every
i ∈ N .

It is not hard to see that every potential game possesses a pure Nash equi-
librium: with every unilateral deviation that improves the cost of some player,
the potential function decreases in value. As there are only finitely many strat-
egy profiles, there must exist some strategy profile satisfying the definition of
a pure Nash equilibrium. Such a sequence of unilateral deviations is called a
best response sequence if every player deviates to a strategy that improves her
cost as much as possible. The congestion games considered in Chapter 3 are
exact potential games. The reverse is also true: every exact potential game is
‘isomorphic’ to such a congestion game, see [134].

1.2.2 Computation

Given the existence of a mixed Nash equilibrium, can we compute one efficiently,
i.e., in polynomial time? In general, the answer to this question is believed to
be negative. In particular, computing a mixed Nash equilibrium is a complete

8 Chapter 1. Introduction

problem for the complexity class PPAD. Note that the problem cannot be NP-
complete as NP is a class of decision problems. Theorem 1.5 tells us that a mixed
equilibrium always exists, so the decision problem always has the answer YES.
We refer the reader to, e.g., [140] for details and further references.

For the computation of a pure Nash equilibrium in potential games there is
also bad news, when interpreted as a so-called local search problem. The existence
of a potential function naturally gives rise to the following algorithm for finding
a pure Nash equilibrium: choose some initial strategy profile, and, as long as
there is some player that can improve its cost by unilaterally deviating to some
other strategy, let this player deviate. We know that this process terminates as
the potential function decreases in every step of this procedure. This puts the
computation of a pure Nash equilibrium, in exact potential games, in the com-
plexity class PLS of polynomial local search problems. The problem of finding a
pure Nash equilibrium is known to be complete for this class.

Remark 1.8. Although computing both pure and mixed Nash equilibria are be-
lieved to be hard problems in their respective complexity classes, many positive
results are known for special games. In particular, we give some unifying results
in Chapter 3 for the polynomial time computation of pure Nash equilibria in
congestion games with some combinatorial structure.

1.2.3 Inefficiency

How ‘inefficient’ are Nash equilibria with respect to some ‘centralized outcome’
of a strategic game? In order to quantify this question we need the notion of a
social cost function C : ×iSi → R≥0 assigning a real value to every strategy pro-
file. A (socially) optimal outcome is a strategy profile minimizing the social cost
function. Note that computing an optimal outcome is just a discrete optimization
problem (without any strategic aspects).

How much worse can the social cost of a Nash equilibrium be compared to that
of a socially optimal outcome? Two popular notions to quantify this inefficiency,
and which have been studied extensively since their introduction, are the price of
anarchy [117] and the price of stability [7]. We define these notions for pure Nash
equilibria, but their definitions naturally extend to, e.g., mixed Nash equilibria.
The price of anarchy (PoA) and the price of stability (PoS) of a finite strategic
game Γ are defined as

PoA(Γ) =
maxs∈NE(Γ) C(s)

mins∗∈×iSi C(s∗)
and PoS(Γ) =

mins∈NE(Γ) C(s)

mins∗∈×iSi C(s∗)
,

where NE(Γ) denotes the set of all pure Nash equilibria of the game Γ. That is,
the price of anarchy compares the worst Nash equilibrium to an optimal outcome,
whereas the price of stability compares the best Nash equilibrium to an optimal
outcome. Furthermore, for a class (or collection) of games H we define

PoA(H) = sup
Γ∈H

PoA(Γ) and PoS(H) = sup
Γ∈H

PoS(Γ).

1.3. Congestion models 9

Note that both the price of anarchy and price of stability are worst-case notions
for a class of games.

A powerful tool when studying the inefficiency of equilibria is the smoothness
framework formalized by Roughgarden [155].

Definition 1.9 ([155]). Let Γ = (N, (Si)i∈N , (Ci)i∈N) be a finite strategic game
and C a social cost function. For λ ≥ 0 and µ < 1, we say that Γ is (λ, µ)-smooth
with respect to C if for all s, s∗ ∈ ×iSi, we have∑

i∈N
Ci(s−i, s

∗
i) ≤ µC(s) + λC(s∗). (1.2)

Now, suppose that the social cost C is defined as C(s) =
∑
i∈N Ci(s). If s

is a pure Nash equilibrium and s∗ a socially optimal outcome with respect to C,
then it follows that (see [155])

C(s) =
∑
i∈N

Ci(s) ≤
∑
i∈N

Ci(s−i, s
∗
i) ≤ µC(s) + λC(s∗).

Here we use the Nash conditions in (1.1) for the first inequality, and (1.2) in the
second inequality. Rewriting gives

C(s)

C(s∗)
≤ λ

1− µ
. (1.3)

Showing the existence of a feasible combination of λ and µ is called a smooth-
ness argument. Note that, as the bound of λ/(1 − µ) applies to any pure Nash
equilibrium, we obtain a bound on the price of anarchy.

The main feature of this approach is that the bound of λ/(1−µ) on the price
of anarchy for pure Nash equilibria automatically extends to a bound on the price
of anarchy for mixed Nash equilibria, as well for more general solution concepts
like (coarse) correlated equilibria (see, e.g., [140] for a definition). Many price of
anarchy analyses in the literature can be cast in the form of a smoothness argu-
ment [155]. In particular, these arguments often provide tight price of anarchy
bounds for classes of finite strategic games (although not always [155]).

1.3 Congestion models

We informally describe various congestion models in order to provide some con-
text for the models we study in Chapters 2 and 3. A congestion model is defined
by a tuple (N,E, (Si)i∈N , (ce)e∈E , (di)i∈N), where N is a set of players, E a
ground set of resources, and Si ⊆ 2E for all i ∈ N , i.e., every strategy is a subset
of resources. Resources are equipped with a cost function ce : R≥0 → R≥0, and,
finally, the quantity di ∈ N for i ∈ N is the demand of player i.

The goal of player i is to spread out her demand over the available strategies
in Si. Let dei be the total demand of player i assigned to strategies that contain

10 Chapter 1. Introduction

resource e. The cost of player i in strategy profile s is then defined as

Ci(s) =
∑
e∈E

dei ce(xe),

where xe =
∑n
i=1 d

e
i is the total demand assigned to resource e by all players.

The main difference between the models described below, is the way in which
players are allowed to ‘spread out’ their demand over different strategies, as well
as whether or not they have a finite or infinitesimally small demand (for the
latter setting we need a slightly different definition of a congestion model). We
will address for all models the question of whether or not a game is guaranteed
to possess a pure Nash equilibrium, that is, under the natural definition of a pure
Nash equilibrium for the respective model.

• Finite unsplittable demand. Here every player i ∈ N has to assign her
full demand di ∈ N to one of her strategies in Si. These games are also
known as unsplittable atomic congestion games. There are two important
cases in the literature, depending on the demands of the players.

– Weighted case. For general demands di, a description of this model
can be found in, e.g., [132], where it is also shown that in general a
pure Nash equilibrium is not guaranteed to exist. For certain special
classes, with some additional (combinatorial) structure on the strategy
sets, a pure Nash equilibrium does exist, see, e.g., [2].

– Unweighted case. If all players have unit demand, i.e., di = 1 for all
i ∈ N , we obtain the model in [150], which is studied in Chapter 3 of
this thesis. As mentioned earlier, these games are so-called potential
games, and therefore a pure Nash equilibrium is always guaranteed to
exist [150].

Both these models can be seen as strategic games as in Definition 1.1.

• Finite splittable demand. Here every player i ∈ N is allowed to divide
her demand over multiple strategies. There are three important special
cases in the literature, depending on the way in which the demand may be
spread out over different paths.

– Integer-splittable case. Here player i ∈ N can divide her demand di
over multiple strategies, under the restriction that every strategy gets
assigned an integral amount of demand, see, e.g., [151]. In general a
pure Nash equilibrium is not guaranteed to exist [151], although there
exist special classes of games where this is the case, see, e.g., [169, 100]
and references therein.

– Atomic splittable case. Here every player i ∈ N is allowed to divide her
demand di over multiple strategies in an arbitrary way, non-integral
[143]. A pure Nash equilibrium is guaranteed to exist, e.g., when the

1.4. Sampling and counting 11

cost functions are continuous and convex: this follows from a fixed
point theorem of Kakutani [112].

– k-splittable case. Here every player i ∈ N is allowed to divide her de-
mand di over at most k strategies, see, e.g., [24]. This model serves as
an interpolating version of unsplittable and splittable atomic conges-
tion games, for respectively k = 1 and k sufficiently large. In general,
a pure Nash equilibrium is not guaranteed to exist, as the case k = 1
corresponds to the unsplittable weighted case given above.

• Infinitesimally small demand. Here, instead of a finite set of players
N , we are given a finite number of commodities j = 1, . . . , q and every
commodity j contains a continuum of players represented by the interval
[0, pj] where pj > 0 is the size of the continuum of commodity j. The players
of commodity j have finite strategy set Sj ⊆ 2E for j = 1, . . . , q. A strategy
profile f here is a collection of non-negative functions fj : Sj → R≥0

with the property that
∑
s∈Sj fj(s) = pj for j = 1, . . . q. A pure Nash

equilibrium is guaranteed to exist under some mild assumptions on the
cost functions, see, e.g., [159]. When the strategy sets represent paths in a
given directed network, we obtain Wardrop’s routing model that we study
in Chapter 2.6

1.4 Sampling and counting

We will illustrate the notion of sampling7 and counting using the example of
a perfect matching in a graph. We choose this example for multiple reasons.
Sampling and counting perfect matchings is a generalization of the problem of
sampling and counting graphs with given degrees, which will be explained later
on. Furthermore, it is a classical example in the field of sampling and count-
ing. Finally, in Chapter 4 we rely on various ideas introduced in the context of
sampling perfect matchings.

1.4.1 Perfect matchings

Given an undirected graph G = (V,E) with |V | = n, a perfect matching M ⊆ E
is a set of edges such that every node in V is adjacent to precisely one edge in M ,
i.e., for every v ∈ V it holds that {v} ∩ {x, y} 6= ∅ for precisely one {x, y} ∈ M .
The set of all perfect matchings of the graph G is denoted by PG.

Four fundamental problems, in non-decreasing order of difficulty,8 concerning

6Interestingly, this model can also been seen as the limiting case of an atomic (splittable)
congestion game, see, e.g., [101].

7In this thesis (approximate) sampling always refers to (approximately) uniform sampling,
i.e., generating an element from a finite set according to the uniform distribution over the set.

8The only non-trivial claim here is the fact that counting is not easier than sampling. For
a standard reduction in the case of perfect matchings, see [111]. For general finite objects
it is believed that counting is more difficult than sampling. Evidence for this claim follows,

12 Chapter 1. Introduction

perfect matchings in a given graph G are the following.

• Existence: Is PG 6= ∅?

• Construction: Can we compute a perfect matching H ∈ PG, or decide that
PG = ∅, in polynomial time?

• Sampling : Can we generate in polynomial time a perfect matching uni-
formly at random from PG?

• Counting : Can we compute the number |PG| in polynomial time?

The first two problems are well-understood in mathematics and computer science:
Edmond’s blossom algorithm [63] can be used to compute a perfect matching in
polynomial time, or decide that no perfect matching exists. However, it is not
known what the answers to the sampling and counting problems are. In par-
ticular, the problem of exactly computing the number of perfect matchings is a
complete problem in the (counting) complexity class #P [172]. Exact counting
is therefore believed to be a hard problem, and, thus, attention has shifted to
approximate counting. More precisely, we are interested in a so-called fully poly-
nomial randomized approximation scheme for computing the number of perfect
matchings in a given graph.

Definition 1.10. Let G be an undirected graph on n nodes. A fully polynomial
randomized approximation scheme (FPRAS) for counting the number of perfect
matchings in G is a randomized algorithm that, for every ε, δ > 0, outputs the
number of perfect matchings up to a multiplicative factor (1±ε) with probability
at least 1− δ, in time polynomial in n, 1/ε and log(1/δ).

It is well-known that for perfect matchings, and more generally for so-called
self-reducible problems, see, e.g., [111], the existence of an FPRAS is equivalent
to the existence of an approximate sampler, or so-called fully polynomial almost
uniform sampler. Roughly speaking, an approximate sampler for the (approxi-
mate) uniform sampling of perfect matchings of a given graph G is a randomized
algorithm that outputs every perfect matching M ∈ PG with probability close
to 1/|PG|. That is, the output distribution of the algorithm should be close to
the uniform distribution over PG. In order to quantify this notion of closeness,
the total variation distance is used as a measure for the distance between two
probability distributions.9 The total variation distance between two probability
distributions q, q′ over PG is given by

dTV (q, q′) =
1

2

∑
M∈PG

|q(M)− q′(M)|.

e.g., from a comparison between (a corollary of) Toda’s theorem [168] and results of Bellare,
Goldreich and Petrank [13].

9There exist many choices to quantify the distance between two probability distributions,
see, e.g., the survey of Gibbs and Su [91]. “Closeness” in total variation distance implies
closeness in many other distance metrics.

1.4. Sampling and counting 13

Definition 1.11. A fully polynomial almost uniform sampler (FPAUS) for per-
fect matchings is a randomized algorithm that, with probability at least 1− δ in
time polynomial in n, log(1/ε) and log(1/δ) outputs a perfect matching from the
set of all perfect matchings PG according to a distribution ũ with total variation
distance at most ε from the uniform distribution u over PG.

It is interesting to note that the existence of an FPAUS/FPRAS for the prob-
lem of approximate sampling/counting perfect matchings in a general undirected
graph G is still an open problem. For bipartite graphs the existence has been
shown by Jerrum, Sinclair and Vigoda [110] in their work on the approximation
of the permanent10 of a non-negative matrix. Remember that an undirected
graph G = (V,E) is bipartite if there exists a partition V = A ∪B so that every
e = {a, b} ∈ E has one endpoint in A and one endpoint in B, i.e., A ∩ e 6= ∅ and
B ∩ e 6= ∅.

Remark 1.12 (Tutte’s construction [171]). The problem of sampling graphs with
given degrees, that we consider in Chapter 4, is a special case of sampling perfect
matchings in a general undirected graph. Here we are given a sequence of non-
negative integers d = (d1, . . . , dn) and the goal is to sample a simple undirected
labelled graph G with degree sequence d from the set G(d) of all such graphs G.

The fact that this problem is a special case of the problem of sampling perfect
matchings in a given undirected graph follows from a reduction due to Tutte
[171] that we describe next. Let d = (d1, . . . , dn) be a sequence of non-negative
integers. We construct the auxiliary graph T (d) = (V,E) as follows. We let

V = {(i, j) : i, j ∈ [n], i 6= j} ∪
(
∪i∈[n] Vi

)
,

where Vi = {v1
i , . . . , v

di
i }. Moreover, we have

E =

{
{(i, j), (j, i)} : i, j ∈ [n], i 6= j

}
∪
(
∪i∈[n] Ei}

)
,

where Ei = {{vki , (i, j)} : j ∈ [n] \ {i}, k = 1, . . . , di}. It then follows that every
perfect matching in T (d) corresponds to a graph G with degree sequence d, where
{a, b} is an edge in G if and only if {(a, b), (b, a)} is not an edge in the perfect
matching. An example is given in Figure 1.4.

In particular, for every graph G there are precisely Πidi! perfect matchings
in T (d) corresponding to it. This can be seen as follows. Let i ∈ [n] and subset
J ⊆ [n] \ {i} be given. If there is a perfect matching M in T (d) corresponding
to a graphical realization G, that in particular forms a perfect matching between
the nodes in Vi and {(i, j) : j ∈ J}, then any other perfect matching M ′ obtained

10The permanent of an n× n-matrix A is defined as per(A) =
∑
π∈Sn Πni=1aiπ(i) where Sn

denotes the set of all permutations π of {1, . . . , n}. If A is a matrix with only entries in {0, 1}
then the permanent corresponds to the number of perfect matchings in the bipartite graph with
adjacency matrix A.

14 Chapter 1. Introduction

v1
1 v2

1

v1
4 v2

4

v1
2

v1
3

1

2

4

3

Figure 1.4: Tutte’s construction T (d) for d = (2, 1, 1, 2) where the square contains
all nodes corresponding to the pairs (i, j) for 1 ≤ i 6= j ≤ 4 in the natural (matrix)
way: the left bottom corner point corresponds to (4, 1) and the right top corner
point to (1, 4). On the right we see the graphical realization G (solid black edges)
corresponding to the (red) perfect matching in Tutte’s construction. Note that
the dashed red edges in the square correspond to the edges in the complement of
G.

by taking a different (perfect) matching between Vi and {(i, j) : j ∈ J} in M
corresponds to the same graphical realization G. For example, in Figure 1.4, if
we replace the edges {v1

1 , (1, 3)} and {v2
1 , (1, 4)} with {v1

1 , (1, 4)} and {v2
1 , (1, 3)},

then the resulting perfect matching in T (d) still corresponds to the graphical
realization G in Figure 1.4 on the right. This implies that, with G(d) denoting
the set of all graphical realizations of the sequence d,

Πidi! · |G(d)| = |PT (d)|.

These observations are sufficient to argue that, in order to (approximately) uni-
formly sample a graph with degree sequence d, it suffices to (approximately)
uniformly sample a perfect matching from T (d). To see this, note that the prob-
ability of obtaining a perfect matching corresponding to a given graph G ∈ G(d)
is Πidi!/|PT (d)|, which is independent of G (as all graphical realizations have
degree sequence d). Moreover, note that the size of Tutte’s construction T (d) is
quadratic in n. A similar relation holds for the counting problem.11

Remark 1.13 (Exact matching). A generalization of the perfect matching problem
is the exact matching problem [144]. Here we are given an undirected graph
with every edge colored red or blue, and we are interested in perfect matchings
with exactly k red edges for k ∈ N. A randomized polynomial time algorithm

11Note that ln(|PT (d)|) is at most a polynomial factor larger than ln(|G(d)|), which is also
necessary for the reduction to be valid.

1.4. Sampling and counting 15

is known for the construction problem [136], but it remains an open problem
if a deterministic polynomial time algorithm exists. We refer to [15] for some
sampling and counting results regarding exact matchings. Some of the techniques
developed in [15] are used in Chapter 4.

1.4.2 Markov Chain Monte Carlo method

One of the most successful approaches for designing an approximate sampler for
the sampling of finite objects is the Markov Chain Monte Carlo (MCMC) method.

A Markov chain M = (Ω, P) is a process that moves between the states of
a (finite) set Ω, called the state space, where the probability of transitioning to
state y, given that the chain is in state x, is given by P (x, y).12 A Markov chain is
called irreducible if for every pair of states x and y, it is possible to reach y from x
with strictly positive probability in a finite number of transitions inM; it is called
aperiodic if the greatest common divisor of the set T (x) = {t ≥ 1 : P t(x, x) > 0}
equals one for all x ∈ Ω. Moreover, the chainM is called reversible with respect to
a probability distribution π if the detailed balanced equations in (1.4) are satisfied:

π(x)P (x, y) = π(y)P (y, x), ∀x, y ∈ Ω. (1.4)

It is well-known that if an irreducible, aperiodic Markov chain M is reversible
with respect to distribution π, then (the row vector) π is its (unique) stationary
distribution, i.e.,

π = πP. (1.5)

Roughly speaking, if we simulate the Markov chain for a (very) large number
of steps, then π(x) is the probability that the chain will be in state x ∈ Ω
independent of where the process started.

The idea of the MCMC method is to design an irreducible Markov chain on the
set of all finite objects of interest in such a way that the stationary distribution is
precisely the uniform distribution over the set of objects. This is usually done by
designing a symmetric Markov chain for which P (x, y) = P (y, x) for all x, y ∈ Ω.
The detailed balance equations then directly imply that the chain is reversible
with respect to the uniform distribution, as desired. The goal is to show that
the Markov chain mixes rapidly, meaning that we only have to simulate it for
a polynomial number of steps in order to get an output that is ‘close’ to the
(stationary) uniform distribution. Full details are given in Chapter 4, here our
objective is to only explain the idea.

Often, the state space Ω is augmented to a set Ω′ consisting of Ω and a set
of auxiliary states, as it is sometimes easier to design a Markov chain on an
augmented set Ω′ than it is on Ω directly. For example, in the case of perfect
matchings, the state space is usually augmented with the set of all near-perfect
matchings, which are matchings of size n/2−1. In order to get a sample from Ω,
we can then use rejection sampling : repeatedly compute samples from Ω′ until

12For formal definitions, see, e.g., [118].

16 Chapter 1. Introduction

one obtains a sample that lies in Ω. Roughly speaking, we only need a polynomial
number of samples for this procedure if Ω′ is at most a polynomial factor larger
than Ω.13

The MCMC method has been successfully applied for the design of an FPAUS
(which is in turned used for the design of an FPRAS) for many finite objects, such
as perfect matchings in dense undirected graphs [108] and general bipartite graphs
[110]; Hamilton cycles in dense undirected graphs [59]; 0-1 knapsack solutions
[135]; and contingency tables with a constant number of rows [47]. We refer the
reader to the respective references for a description of these problems. Moreover,
for some of these problems there also exist approaches not using the Markov
Chain Monte Carlo method in order to obtain an FPRAS.

1.5 Overview and publications

This thesis continues with three chapters. All chapters have a similar structure.
We start with an introduction of the problem and the model under consideration,
followed by all the necessary technical preliminaries.14 Then, in the subsequent
sections the main results are presented. For the reader interested in only obtain-
ing an overview of the results, it should be sufficient to read the introductory
parts (assuming familiarity with the model and problems under discussion).

We next give an overview of the publications, either in journals or (peer-
reviewed) conference proceedings, that the Chapters 2, 3 and 4 are based on,
together with a short description.

In Chapter 2 we study the effect of deviations (or perturbations) on the latency
functions in non-atomic network routing games [175]. In particular, we are inter-
ested in how these perturbations affect the quality of a Nash equilibrium. The
main result of this section is a tight analysis of this quality deterioration for rout-
ing games on common-source multi-commodity network topologies. This builds
on, and extends, the work of Nikolova and Stier-Moses [139] who study risk aver-
sion in non-atomic network routing games. Chapter 2 is based on the following
two publications.

• Pieter Kleer and Guido Schäfer: The impact of worst-case deviations in
non-atomic network routing games. Theory of Computing Systems, 63(1):
54–89, 2019.

• Pieter Kleer and Guido Schäfer. Path deviations outperform approximate
stability in heterogeneous congestion games. Lecture Notes in Computer

13There are ways to overcome this issue when there is no polynomial relation between Ω and
Ω′. For example, this is one of the crucial points in the work of Jerrum, Sinclair and Vigoda
[110] on sampling perfect matchings in bipartite graphs.

14There is sometimes minor overlap with the content discussed in the current chapter, for
self-containment.

1.5. Overview and publications 17

Science (LNCS), 10504:212–224, 2017. Proceedings of SAGT 2017.

In Chapter 3 we focus on Rosenthal’s congestion game model [150]. We provide
a unified framework for the polynomial time computation of good pure Nash
equilibria for games in which the strategy sets have some combinatorial structure.
That is, we show that a Nash equilibrium can be computed with an inefficiency
guarantee that is strictly better than that of an arbitrary Nash equilibrium (in
the form of a tight price of stability bound). We also provide a unified framework
for various extensions of Rosenthal’s model that have been proposed in recent
years. Chapter 3 is based on the following two publications.

• Pieter Kleer and Guido Schäfer. Tight inefficiency bounds for perception-
parameterized affine congestion games. Theoretical Computer Science, 754:
65-87, 2019.

• Pieter Kleer and Guido Schäfer. Potential function minimizers of com-
binatorial congestion games: Efficiency and computation. Proceedings of
the 18th ACM Conference on Economics and Computation, pages 223–240,
2017.

In Chapter 4 we study the switch Markov chain for the approximately uniform
sampling of graphs with given degrees. We provide a novel proof technique for
showing rapid mixing of the switch Markov chain that unifies many results in the
literature. We also use this novel proof idea to make some progress on a related
sampling problem. Chapter 4 is based on the following two publications.

• Georgios Amanatidis and Pieter Kleer. Rapid mixing of the switch Markov
chain for strongly stable degree sequences and 2-class joint degree matri-
ces. Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 966–985, 2019.

• Corrie Jacobien Carstens and Pieter Kleer. Speeding up switch Markov
chains for sampling bipartite graphs with given degree sequence. Leib-
niz International Proceedings in Informatics (LIPIcs), 116(36):1–18, 2018.
Proceedings of APPROX-RANDOM 2018.

Chapter 2

Worst-case latency deviations in
non-atomic routing games

2.1 Introduction

In 1952, Wardrop [175] introduced a simple model to study outcomes of selfish
route choices in traffic networks which are affected by congestion. In this model,
there is a continuum of non-atomic players, each controlling an infinitesimally
small amount of flow, whose goal is to choose a path in a given network to min-
imize their own travel time. The latency (or delay) of each edge is prescribed by
a non-negative, non-decreasing latency function which depends on the total flow
on that edge. Ever since its introduction, Wardrop’s model has been used exten-
sively, in operations research, algorithmic game theory, and traffic engineering
studies, to investigate various aspects of selfish routing in networks.

An important topic of interest concerns the inefficiency of selfish outcomes,
so-called Wardrop (or Nash) flows. These are equilibrium situations in which no
player has an incentive to deviate to a different path. A popular approach for
quantifying the inefficiency is by means of the price of anarchy, that compares the
total latency of all players in a Nash flow to that of a socially optimal outcome.
The latter is a flow that minimizes the total latency of all players over all feasible
flows in the network. In a seminal work, Roughgarden and Tardos [156] show
that for non-negative affine1 latency functions the total latency of a Wardrop
flow can exceed that of a socially optimal flow by a multiplicative factor of at
most 4

3 . This bound is tight already for the well-known Pigou network consisting
of two parallel edges between two nodes, essentially showing that the price of
anarchy is independent of the network topology. That is, there exists an upper
bound that holds for all instances with affine latency functions, and it is attained
already on the smallest non-trivial network topology. The result of [156] was
later extended to more general classes of functions [152, 46] in terms of a so-called

1A function l : R→ R is affine if l(x) = ax+ b for some a, b ∈ R.

19

20 Chapter 2. Worst-case latency deviations in non-atomic routing games

smoothness parameter, as in the approach sketched in Section 1.2.3.2 Given the
possible inefficiency of Wardrop flows, a natural question that arises is how this
phenomenon might be alleviated. One way to do this is by means of network
design.

In the network design problem the goal is to find a subgraph of the given
network for which the common3 total latency of all Wardrop flows is minimal.
This problem is inspired by the Braess paradox [18], that shows that removing
an arc from a network can improve the quality of the resulting Wardrop flow.
Roughgarden [154] shows that the trivial algorithm, which simply returns the
original network, gives an bn/2c-approximation algorithm for single-commodity
networks and that this is best possible, unless P = NP. In order to show tight-
ness of the approximation guarantee, Roughgarden [154] introduces the class of
generalized Braess graphs that play an important role in this work. This class
forms a generalization of the Braess graph, originally used by Braess to illustrate
the Braess paradox.

More recently, Wardrop’s classical model has been extended in various ways to
capture more complex player behaviors. Examples include the incorporation
of uncertainty attitudes (e.g., risk-aversion, risk-seeking), cost alterations (e.g.,
latency perturbations, road pricing), other-regarding dispositions (e.g., altruism,
spite) and player biases (e.g., responsiveness, bounded rationality). Several of
these extensions can be viewed as defining some modified cost for each path
which combines the original latency with some ‘deviation’ (or perturbation) along
that path. The player objective then becomes to minimize the combined cost of
latency and deviation along a path. The deviations might be given explicitly, e.g.,
as in the altruism model of Chen et al. [28]; or be defined implicitly, e.g., as in
the risk-aversion model of Nikolova and Stier-Moses [139]. Furthermore, players
might perceive these deviations differently, i.e., players might be heterogeneous
with respect to the deviations.

The main purpose of this work is to study how much the quality of a deviated
(or perturbed) Nash flow deteriorates in the worst case under bounded deviations
of the latency functions. There are two natural choices two quantify this ineffi-
ciency. One can again compare the deviated Nash flow to a socially optimal flow,
as is done, e.g., in the behavioral bias model of Meir and Parkes [129]. This quan-
tity corresponds to the biased price of anarchy [129]. Secondly, one can compare
the deviated Nash flow to a classical Nash flow in which there are no deviations,
as is done in, e.g., the non-atomic risk aversion model of Nikolova and Stier-Moses
[138, 139]. This quantity is called the price of risk aversion (PRA). In turns out
that both these quantities can be characterized in completely different ways. For
the biased price of anarchy one can generalize the proof techniques for the anal-

2When bounding the inefficiency of a Nash flow with respect to an optimal outcome, some
assumptions on the latency functions have to be made. In general the ratio can be unbounded
already on the Pigou network.

3It is a well-known fact that all Wardrop flows have the same total latency, see, e.g., [140].

2.1. Introduction 21

ysis of the price of anarchy [156, 152, 46], and provide bounds characterized by
the latency functions, again showing that this quantity is essentially independent
of the network topology. On the other hand, the price of risk aversion heavily
depends on the network topology, and can be characterized independent of the
latency functions [139, 120].

In this work we introduce and quantify the deviation ratio (DR) that compares
a perturbed Nash flow to an unperturbed Nash flow. This notion is inspired by,
and builds on, the price of risk aversion of Nikolova and Stier-Moses [139]. From
a technical point of view these notions are roughly the same. The reason for
introducing a new ratio, is that the ideas introduced in [139] for the analysis of
the price of risk aversion are not inherent to the notion of risk aversion, but can
be applied more broadly. We next introduce some notation in order to explain
our contributions. Formal definitions can be found in Section 2.2.

Given an instance of a selfish routing game with latency functions (la)a∈A on
the arcs, we define the deviation ratio (DR) as the worst case ratio C(fδ)/C(f0)
of the social cost of a Nash flow fδ with respect to deviated latency functions
(la + δa)a∈A, where (δa)a∈A are arbitrary deviation functions from a feasible set
of bounded deviations, and the social cost of a Nash flow f0 with respect to the
unaltered latency functions (la)a∈A. Here the social cost function C refers to the
total average latency (without the deviations). Our motivation for studying this
social cost function is that a central designer usually cares about the long-term
performance of the system accounting for the average latency (or pollution). On
the other hand, the players typically do not know the exact latencies and use
estimates or include ‘safety margins’ in their planning. Similar viewpoints are
adopted in [129, 139].

2.1.1 Our contributions

In order to model bounded deviations, we extend an idea previously put forward
by Bonifaci, Salek and Schäfer [17] in the context of the restricted network toll
problem: We assume that for every arc a ∈ A we are given (flow-dependent) lower
and upper bound restrictions θmin

a and θmax
a , respectively, and call a deviation

δa feasible if θmin
a (x) ≤ δa(x) ≤ θmax

a (x) for all x ≥ 0. Our contributions
mostly apply to a specific class of deviations, which we term (α, β)-deviations.
Here the latency restrictions are of the form θmin

a = αla and θmax
a = βla with

−1 < α ≤ 0 ≤ β.

1. In Section 2.3, we show that for (α, β)-deviations the deviation ratio is at
most

1 +
β − α
1 + α

⌈
n− 1

2

⌉
r, (2.1)

where n is the number of nodes of the network and r is the sum of the
demands of the commodities (Theorem 2.5). In particular, this reveals that

22 Chapter 2. Worst-case latency deviations in non-atomic routing games

the deviation ratio depends linearly on the size of the underlying network
(among other parameters).

In order to prove this bound, we first generalize a result by Bonifaci
et al. [17], characterizing the inducibility of a fixed flow by δ-deviations,
to multi-commodity networks with a common source (Theorem 2.7). This
characterization naturally gives rise to the concept of an alternating path,
which also plays a crucial role in the work by Nikolova and Stier-Moses
[139]. By using this result, we obtain a bound on the price of risk aversion
(Theorem 2.27) which generalizes the one in [139] (see Section 2.7.1 for
a description of their model). Our bound generalizes their result in two
ways: (i) it holds for multi-commodity networks with a common source,
and (ii) it also holds for negative risk-aversion parameters (capturing risk-
taking players). Further, we show that our result can be used to bound
the relative error in social cost of Nash flows incurred by small latency
perturbations (Theorem 2.28), which is of independent interest.

2. In Section 2.4, we prove that our bound on the deviation ratio for (α, β)-
deviations is best possible for multi-commodity networks with a common
source. We also show that it does not extend to general multi-commodity
networks. To be more precise, we show the following.

• For single-commodity networks we show that our bound is tight in all
its parameters. Our lower bound construction holds for arbitrary n ∈
N and is based on the generalized Braess graph [154] (Example 2.13).
In particular, this also complements a result by Lianeas, Nikolova and
Stier-Moses [119] who show that the upper bound on the price of risk
aversion in [139] is tight for single-commodity networks with n = 2j

nodes for all j ∈ N.

• For multi-commodity networks with a common source we show that
our bound is tight in all parameters if n is odd, while a small gap
remains if n is even (Theorem 2.14).

• For general multi-commodity networks we establish a lower bound
showing that the deviation ratio can be exponential in n (Theorem
2.16). In particular, this shows that there is an exponential gap be-
tween the cases of multi-commodity networks with and without a com-
mon source. In our proof, we adapt a graph structure used by Lin et
al. [122] in their lower bound construction for the network design prob-
lem on multi-commodity networks.

3. In Section 2.5, we improve (and slightly generalize) smoothness bounds on
the price of risk aversion given by Meir and Parkes [129] and, indepen-
dently, by Lianeas et al. [119]. In particular, we derive tight bounds for
the biased price of anarchy (BPoA) [129] for arbitrary (0, β)-deviations
(Theorem 2.19). We show that the biased price of anarchy is at most

1 + β

1− µ̂(L, β)

2.1. Introduction 23

for latency functions in class L, where µ̂ is a so-called smoothness parameter
that naturally generalizes that of [45]; see Section 2.5 for details. In par-
ticular, for instances with affine latency functions, we obtain a tight bound
of

4(1 + β)2

3 + 4β

that naturally generalizes the 4
3 bound in [156] for β = 0. Note that the

biased price of anarchy always yields an upper bound on the deviation ratio
(and price of risk aversion).

4. Finally, in Section 2.6, we also study a more general type of path deviations,
that are not necessarily formed by the aggregation of arc deviations, but
rather defined as a general real-valued function on the set of all feasible flows
in the instance. We provide tight inefficiency bounds for single-commodity
instances on series-parallel graphs for the deviation ratio with a hetero-
geneous player population. That is, the population is split into h classes,
each with demand rj > 0 for j ∈ [h] with

∑
j∈[h] rj = 1. Every class j ∈ [h]

in the population has its own sensitivity parameter γj > 0 representing
to what extent players in a class take into account the deviations. We
show that for single-commodity non-atomic network routing games on a
series-parallel graph, the deviation ratio is upper bounded by

1 + β ·max
j∈[h]

{
γj

(h∑
p=j

rp

)}
,

assuming, without loss of generality, that γ1 < γ2 < · · · < γh. This bound
is tight for arbitrary demand vectors r and sensitivity distributions γ.

Our first two results answer a question posed by Nikolova and Stier-Moses in [139]
regarding possible relations between their risk aversion model, the restricted net-
work toll problem [17], and the network design problem [154]. In particular, our
results show that the analysis in [139] is not inherent to the used variance func-
tion, but rather depends on the restrictions imposed on the feasible deviations.

2.1.2 Related work

The routing model of Wardrop [175] has been studied extensively since its intro-
duction. Basic properties are derived by Beckmann, McGuire and Winsten [12];
see also [153] for more references.

In particular, in [12] it is shown that the social optimum under latencies
(la)a∈A is a Nash flow with respect to the latency functions (xla(x))′ = la(x) +
xl′a(x) for a ∈ A, assuming that xla(x) is differentiable. The terms xl′a(x) for
a ∈ A are referred to as marginal tolls. As the tolls might become arbitrarily
large, Bonifaci et al. [17] introduce the restricted network toll problem, to which

24 Chapter 2. Worst-case latency deviations in non-atomic routing games

our model is conceptually related, in which the problem is to compute non-
negative tolls that have to obey some upper bound restrictions (θa)a∈A such that
the cost of the resulting Nash flow is minimized. This is tantamount to computing
best-case deviations in our model with θmin

a = 0 and θmax
a = θa. The problem is

known to be NP-complete, as was shown in a special setting by Hoefer, Olbrich
and Skopalik [103], where every arc has θmax

a ∈ {0,∞}. In [103], the authors also
present a polynomial time algorithm for parallel arc networks, which Bonifaci et
al. [17] improved to a polynomial time algorithm for computing the best tolls for
networks consisting of parallel arcs. The authors of [17] also present a specific set
of toll functions, a scaled version of the marginal tolls described above, and bound
the resulting inefficiency of these tolls compared to a socially optimal outcome.
See also the work of Fotakis, Kalimeris and Lianeas [81]. These results are also
related to price of stability bounds for approximate Wardrop equilibria given by
Christodoulou, Koutsoupias and Spirakis [35].

Furthermore, as also mentioned earlier, Roughgarden [154] studies the net-
work design problem of finding a subnetwork that minimizes the latency of all
flow-carrying paths of the resulting Nash flow. He introduces the Braess ratio
which relates the common latency of a Nash flow in the original graph to the
common latency of a Nash flow in an (optimal) subgraph. He shows that the
trivial algorithm (which simply returns the original network) gives an bn/2c-
approximation algorithm for single-commodity networks and that this is best
possible, unless P = NP. Later, Lin et al. [122] show that this algorithm can be
exponentially bad for multi-commodity networks. The instances that we use in
our lower bound constructions are based on the ones used in [154, 122].

The modeling and study of uncertainties in routing games has received a lot of
attention in recent years. An extensive survey on this topic is given by Cominetti
[40].

Englert, Franke and Olbrich [66] study the sensitivity of Nash flows in non-
atomic network routing games. They investigate the relative change in social
cost with respect to two alterations: (i) when the demand is perturbed by an
additive constant ε > 0, and (ii) when an edge with only an ε-fraction of flow is
removed. For single-commodity instances with polynomial latency functions of
degree at most p, they show that the ratio of the social cost of a Nash flow in the
original instance and the social cost of a Nash flow in the instance with demand
increased by ε > 0, is at most (1 + ε)p. They also show that this bound is tight.

Finally, Cole, Lianeas and Nikolova [38] investigate whether diversity, i.e., a
heterogeneous population with respect to deviations, can improve the outcome
of selfish routing games (compared to an averaged homogeneous population).
In their model, they take into account the deviations in the social cost func-
tion. Therefore, although conceptually related, their results do not apply to our
setting. Chen et al. [28] study heterogeneous populations in the context of altru-
ism. They derive price of anarchy bounds on instances with parallel-arc network
topologies.

2.2. Preliminaries 25

Some recent directions in the study of non-atomic routing games concern the
quantification of the price of anarchy on a fixed instance as the demand grows
large [39], and the computation of Wardrop equilibria for instances with piece-
wise linear functions, parameterized by the demand [116].

2.1.3 Outline

In Section 2.2 we present all the necessary preliminaries. We then continue in
Section 2.3 with our upper bounds on the deviation ratio, and provide com-
plementing lower bounds in Section 2.4. Tight bounds for the biased price of
anarchy are discussed in Section 2.5. In Section 2.6 we provide our bounds for
heterogeneous populations. Finally, in Section 2.7 we provide applications of our
results, in particular, we discuss the implications for the price of risk aversion
[139].

2.2 Preliminaries

In this section, we introduce our bounded deviation model for non-atomic network
routing games, we define the deviation ratio, and elaborate on some related
notions. We also derive some preliminary results that are used later.

2.2.1 Non-atomic network routing games

An instance of a non-atomic network routing game is given by a tuple I = (G =
(V,A), (la)a∈A, (si, ti)i∈[k], (ri)i∈[k]). Here, G = (V,A) is a directed graph with
node set V and arc set A ⊆ V ×V , where each arc a ∈ A has a non-negative, non-
decreasing and continuous latency function la : R≥0 → R≥0. Each commodity
i ∈ [k] is associated with a source-destination pair (si, ti) and has a demand of
ri ∈ R>0. We assume without loss of generality that ti 6= tj if i 6= j for i, j ∈ [k].
If all commodities share a common source node, i.e., si = sj = s for all i, j ∈ [k],
we call I a common source multi-commodity instance (with source s). We assume
without loss of generality that 1 = r1 ≤ r2 ≤ · · · ≤ rk and define r =

∑
i∈[k] ri.

We denote by Pi the set of all simple (si, ti)-paths of commodity i ∈ [k]
in G, and we define P = ∪i∈[k]Pi. An outcome of the game is a feasible flow
f : P → R≥0 such that

∑
P∈Pi fP = ri for every i ∈ [k]. The set of all feasible

flows f is denoted by F . Given a flow f = (f i)i∈[k], we use f ia to denote the total
flow on arc a ∈ A of commodity i ∈ [k], i.e., f ia =

∑
P∈Pi:a∈P fP . The total flow

on arc a ∈ A is defined as fa =
∑
i∈[k] f

i
a. The latency of a path P ∈ P with

respect to f is defined as lP (f) :=
∑
a∈P la(fa).4 The social cost C(f) of a flow

f is given by its total latency, i.e.,

C(f) =
∑
P∈P

fP lP (f) =
∑
a∈A

fala(fa).

4For different objectives, such as `p-norms, see, e.g., [37].

26 Chapter 2. Worst-case latency deviations in non-atomic routing games

A flow that minimizes C(·) is called (socially) optimal. We use A+
i = {a ∈

A : f ia > 0} to refer to the support of f i for commodity i ∈ [k] and define
A+ = ∪i∈[k]A

+
i as the support of f . We say that f is a Nash flow (or Wardrop

flow) if
∀i ∈ [k],∀P ∈ Pi, fP > 0 : lP (f) ≤ lP ′(f) ∀P ′ ∈ Pi. (2.2)

More general, for ε ≥ 0, we say that f is an ε-approximate Nash flow if

∀i ∈ [k],∀P ∈ Pi, fP > 0 : lP (f) ≤ (1 + ε)lP ′(f) ∀P ′ ∈ Pi. (2.3)

Remark 2.1. If the population is heterogeneous (with respect to deviations as
defined later on), then each commodity i ∈ [k] is further partitioned in hi sen-
sitivity classes, where class j ∈ [hi] has demand rij such that ri =

∑
j∈[hi]

rij .
Given a path P ∈ Pi, we use fP,j to refer to the amount of flow on path P of
sensitivity class j (so that

∑
j∈[hi]

fP,j = fP).

Existence of equilibria is guaranteed for (heterogeneous) non-atomic conges-
tion games under the assumptions made on the latency functions above, see, e.g.,
[159].

2.2.1.1 Price of anarchy

The (ε-approximate) price of anarchy of an instance I is defined as

ε-PoA(I) = sup

{
C(f)

C(f∗)
: f is ε-appproximate Nash flow

}
where f∗ denotes a socially optimal flow. For a class of instances H, the (ε-
approximate) price of anarchy is defined as

ε-PoA(H) = sup
I∈H

ε-PoA(I).

When ε = 0 we simply refer to this quantity the price of anarchy (of either an
instance or a class of instances).

In [45] it is shown that, for latency functions in a class D, the price of anarchy
of an instance is at most

ρ(D) := (1− β(D))−1, where β(D) = sup
d∈D

sup
x,y∈R:x≥y>0

y(d(x)− d(y))

xd(x)
. (2.4)

The value of ρ(D) is well-understood for many important classes of latency func-
tions. For example, let

Dd = {g : R≥0 → R≥0 : g(µx) ≥ µdg(x) ∀µ ∈ [0, 1]}.

In particular, Dd contains all polynomial latency functions with non-negative
coefficients and maximum degree d. We have

ρ(Dd) =

(
1− d

(d+ 1)(d+1)/d

)−1

.

2.2. Preliminaries 27

2.2.2 Bounded deviation model

In its most general form, we have for every path P ∈ P a continuous deviation (or
perturbation) function δP : F → R. For a heterogeneous population we introduce
a sensitivity parameter γij ≥ 0 for every sensitivity class j ∈ [hi] for every
commodity i ∈ [k]. The deviated latency along a path P under flow f for a player
in commodity i with sensitivity γij is then given by qjP (f) = `P (f) + γijδP (f).
We say that f is δ-inducible if and only if it is a Wardrop flow (or Nash flow)
with respect to q, i.e.,

∀i ∈ [k],∀j ∈ [hi],∀P ∈ Pi, fP,j > 0 : qjP (f) ≤ qjP ′(f) ∀P ′ ∈ Pi. (2.5)

Note that under a Nash flow f all flow-carrying paths P ∈ Pi of sensitivity class j
in commodity i ∈ [k] have the same deviated latency. If f is δ-inducible, we also
write f = fδ. Also note that a Nash flow f for the unaltered latencies (la)a∈A is
0-inducible, i.e., f = f0. We define

∆(θ) = {(δP)P∈P : ∀P ∈ P : θmin
P (f) ≤ δP (f) ≤ θmax

P (f) for all f ∈ F},

for given threshold functions θmin
P and θmax

P for all P ∈ P. For −1 < α ≤ 0 ≤ β,
we call δ ∈ ∆(θ) an (α, β)-deviation if θmin = αl and θmax = βl, and also write
θ = (α, β). We then say that for δ ∈ ∆(θ), the flow fδ is an (α, β)-deviated Nash
flow. If α = 0, we often write β-deviated Nash flow.

There is a close relation to the notion of an approximate Nash flow. In
particular for (0, β)-deviated flows, the Nash condition in (2.5) implies that

∀i ∈ [k],∀j ∈ [hi],∀P ∈ Pi, fP,j > 0 : ljP (f) ≤ (1 + εij)l
j
P ′(f) ∀P ′ ∈ Pi,

(2.6)
where εij = βγij for all pairs (i, j).5 The statement in (2.6) is the definition of f
being a (heterogeneous) ε-approximate Nash flow for ε = βγ.

We are often interested in a more special type of path deviations, namely those
induced as an aggregation of arc deviations. We describe this model next for
homogeneous populations. We use similar notation and terminology but it will
always be clear if we consider general path deviations, or those induced by arc
deviations.

Additive path deviations. For every arc a ∈ A, we have a continuous function
δa : R≥0 → R modeling the deviation on arc a, and we write δ = (δa)a∈A. Note
that the deviation δa on arc a can be positive or negative. We define the deviation
of a path P ∈ P as δP (f) =

∑
a∈P δa(fa). The deviated latency on arc a ∈ A is

given by la(fa) + δa(fa); similarly, the deviated latency on path P ∈ P is given
by lP (f) + δP (f).

Let θmin = (θmin
a)a∈A and θmax = (θmax

a)a∈A be given threshold functions,
where for every a ∈ A, θmin

a : R≥0 → R is a continuous, non-increasing function

5This follows directly by applying the threshold functions as bounds for δP in (2.5).

28 Chapter 2. Worst-case latency deviations in non-atomic routing games

and θmax
a : R≥0 → R is a continuous, non-decreasing function. Further, we

assume that θmin
a (x) ≤ 0 ≤ θmax

a (x) for all x ≥ 0 and a ∈ A, and let θ =
(θmin, θmax). We define

∆(θ) = {(δa)a∈A : ∀a ∈ A : θmin
a (x) ≤ δa(x) ≤ θmax

a (x), ∀x ≥ 0}

as the set of feasible deviations. Note that 0 ∈ ∆(θ) for all threshold functions
θmin and θmax. We say that δ ∈ ∆(θ) is a θ-deviation. Furthermore, f is θ-
inducible if there exists a δ ∈ ∆(θ) such that f is δ-inducible. For −1 < α ≤
0 ≤ β, we call δ ∈ ∆(θ) an (α, β)-deviation if θmin = αl and θmax = βl, and also
write θ = (α, β).

We make the following assumption:

Assumption 2.2. We assume that the function la + θmin
a is non-negative and

non-decreasing for every arc a ∈ A.

Intuitively, the non-negativity property ensures that the deviated latencies l + δ
remain non-negative for all feasible deviations δ ∈ ∆(θ). The non-decreasingness
property is exploited in our upper bound proof on the deviation ratio. Note that
(α, β)-deviations naturally satisfy this assumption.

Throughout this chapter, we (implicitly) only consider deviations δ for which
a Nash flow exists. The existence of such flows is always guaranteed under some
mild conditions on the threshold functions. As an example, we elaborate on the
existence when θmin

a = 0 and θmax
a is non-negative, non-decreasing and continuous

for all a ∈ A. It is not hard to see that for a deviated Nash flow fδ with δ ∈ ∆(θ)
there exists some 0 ≤ λa ≤ 1 for every arc a ∈ A such that δa(fδa) = λaθ

max
a (fδa).

In particular, this means that the deviations δ′ defined as δ′a = λaθ
max
a satisfies

δ′ ∈ ∆(θ) and also induces fδ. Therefore it is sufficient to consider deviations of
the form δa = λaθ

max
a , where 0 ≤ λa ≤ 1 for all a ∈ A. For such deviations, the

deviated latency function la + δa is non-negative, non-decreasing and continuous
for every a ∈ A. It is well-known that for these types of functions, the existence
of a Nash flow is guaranteed, see, e.g., [140].

The following lemma shows an equivalence between (α, β)-deviations with
−1 < α ≤ 0 ≤ β and (0, β−α1+α)-deviations. In particular, it allows us to assume
without loss of generality that α = 0.

Lemma 2.3. Let −1 < α ≤ 0 ≤ β be fixed. Then f is inducible with an (α, β)-
deviation if and only if it is inducible with a (0, β−α1+α)-deviation.

Proof. Let f be δ-inducible for some αl ≤ δ ≤ βl, and for a ∈ A, write δa(fa) =
dala(fa). Without loss of generality we may assume that δa(x) = dala(x) (since
by definition dala(x) also induces f). From the equilibrium conditions (2.5), we
know that

∀i ∈ [k],∀P ∈ Pi, fP > 0 :
∑
a∈P

la(fa) + δa(fa) ≤
∑
a∈P ′

la(fa) + δa(fa) ∀P ′ ∈ Pi.

2.3. Upper bounds on the deviation ratio 29

This is equivalent to ∀i ∈ [k],∀P ∈ Pi, fP > 0 :∑
a∈P

(
1 +

da − α
1 + α

)
la(fa) ≤

∑
a∈P ′

(
1 +

da − α
1 + α

)
la(fa) ∀P ′ ∈ Pi

which can be seen by writing

la(fa) + δa(fa) = (1 + da)la(fa) = (1 + α+ da − α)la(fa),

and then dividing the inequality by 1 + α > 0. We then see that δ′, defined by
δ′a(x) = da−α

1+α la(x) for all a ∈ A and x ≥ 0, also induces f since

αla(x) ≤ dala(x) ≤ βla(x) ⇔ 0 ≤ da − α
1 + α

la(x) ≤ β − α
1 + α

la(x).

This reduction does not work for heterogeneous populations, but a similar
statement is true for general path deviations under a homogeneous population.

2.2.3 Inefficiency measures

Given an instance I and threshold functions θ = (θmin, θmax), we define the
deviation ratio as the worst-case ratio of the cost of a θ-inducible flow and the
cost of a 0-inducible flow; more formally,

DR(I, θ) = sup
δ∈∆(θ)

{
C(fδ)

C(f0)

∣∣∣∣ fδ is δ-inducible

}
.

This definition applies to both general path deviations as well as additive path
deviations. Intuitively, DR(I, θ) measures the worst-case deterioration of the
social cost of a Nash flow due to (feasible) latency deviations. In case of (α, β)-
deviations, we sometimes write (α, β)-DR(I). Note that for a fixed deviation
δ ∈ ∆(θ), there might be multiple Nash flows that are δ-inducible. Unless stated
otherwise, we adopt the convention that C(fδ) refers to the social cost of the
worst Nash flow that is δ-inducible.

We introduce a similar notion for ε-approximate Nash flows. We define the
ε-stability ratio as

ε-SR(I) = sup
fε

{
C(f ε)

C(f0)

∣∣∣∣ f ε is an ε-approximate Nash flow

}
.

2.3 Upper bounds on the deviation ratio

In this section we derive an upper bound on the deviation ratio for additive
path deviations, in particular, for (α, β)-deviations. All results hold for multi-
commodity instances with a common source. The following notion of alternating

30 Chapter 2. Worst-case latency deviations in non-atomic routing games

paths turns out to be crucial. It was first introduced by Lin et al. [122] in the
context of the network design problem, see [154], and is also used by Nikolova
and Stier-Moses [139].

Definition 2.4 (Alternating path [122, 139]). Let x and z be feasible flows.
We partition A = X ∪ Z, where Z = {a ∈ A : za ≥ xa and za > 0} and
X = {a ∈ A : za < xa or za = xa = 0}. We say that πi = (a1, . . . , ar) is an
alternating (s, ti)-path if the arcs in πi∩Z are oriented in the direction of ti, and
the arcs in πi ∩X are oriented in the direction of s.

An alternating path tree π is a tree, rooted at the common source s, which
contains an alternating (s, ti)-path πi for every commodity i. We show below
that an alternating path tree always exists for multi-commodity networks with a
common source.

The main theorem which we prove in this section is as follows.

Theorem 2.5. Let x be θ-inducible and let z be 0-inducible. Further, let A =
X ∪ Z be a partition of A as in Definition 2.4. Let π be an alternating path
tree, where πi denotes the alternating (s, ti)-path in π. Suppose θ = (θmin, θmax).
Let Xi be a flow-carrying path of commodity i ∈ [k] maximizing lP (x) over all
P ∈ Pi.6 Then

C(x) ≤ C(z) +
∑
i∈[k]

ri

(∑
a∈Z∩πi

θmax
a (za)−

∑
a∈X∩πi

θmin
a (za)−

∑
a∈Xi

θmin
a (xa)

)
.

We give some interpretation: Theorem 2.5 relates the social cost of a θ-
inducible Nash flow x to the social cost of an original Nash flow z. More specifi-
cally, it shows that C(x)− C(z) is at most

∑
i∈[k]

ri

(∑
a∈Z∩πi

θmax
a (za)−

∑
a∈X∩πi

θmin
a (za)−

∑
a∈Xi

θmin
a (xa)

)
,

where Xi is a flow-carrying (s, ti)-path with respect to x and πi is an alternating
(s, ti)-path for commodity i. Intuitively, the contribution of commodity i to the
above term can be seen as the total θ-cost of sending ri units of flow along the
directed cycle Ci which we obtain from πi and Xi by reversing all arcs in X ∩ πi
and Xi. Here the θ-cost is defined as θmax

a (za) for a forward arc a ∈ Z ∩ πi,
−θmin

a (za) for a reversed arc a ∈ X∩πi, and −θmin
a (xa) for a reversed arc a ∈ Xi.

If we can bound the total θ-cost by λC(z)−µC(x) with λ ≥ 0 and µ > −1, then
we obtain an upper bound of (1 + λ)/(1 + µ) on the deviation ratio.

In particular, for (α, β)-deviations the θ-cost can naturally be related to the
latencies. In this case, we obtain the bound stated below.

6Note that the values lP (x) + δP (x) are the same for all flow-carrying paths, but this is not
necessarily true for the values lP (x).

2.3. Upper bounds on the deviation ratio 31

Corollary 2.6. Let x be θ-inducible and let z be 0-inducible. Further, let A =
X ∪Z be a partition of A as in Definition 2.4. Let π be an alternating path tree,
where πi denotes the alternating (s, ti)-path in π.

Suppose θ = (α, β) with −1 < α ≤ 0 ≤ β. Let ηi be the number of disjoint
segments of consecutive arcs in Z on the alternating (s, ti)-path πi for i ∈ [k].7

Then

C(x) ≤
(

1 +
β − α
1 + α

∑
i∈[k]

riηi

)
C(z) ≤

(
1 +

β − α
1 + α

·
⌈
n− 1

2

⌉
r

)
C(z).

In order to prove Theorem 2.5 we proceed as follows: We first derive a character-
ization of when a given flow f is θ-inducible (Theorem 2.7). As it turns out, this
reduces to a non-negative cycle condition in a suitably defined auxiliary graph
Ĝ(f) with cost function c. In particular, this non-negative cycle condition allows
us to relate the cost of a flow-carrying path Fi of f to arbitrary (s, ti)-paths and
(ti, s)-paths in the auxiliary graph Ĝ(f) (Lemma 2.9). We then turn to relating
the social cost of a θ-inducible flow x to that of a 0-inducible flow z. We show that
an alternating path tree π with respect to x and z always exists (Lemma 2.11).
With the help of this alternating tree we can then relate the costs of (carefully
chosen) flow-carrying paths under x and z for each commodity. Basically, for
each commodity i we bound the cost of a flow-carrying path Xi of x by the cost
of the alternating path πi (by applying Lemma 2.9 to Xi and πi). The latter in
turn can then be bounded by the cost of a flow-carrying path Zi of z (by applying
Lemma 2.9 to Zi and πi).

2.3.1 Characterization of θ-inducible flows

We provide a characterization of the inducibility of a given flow. Let f be a
feasible flow. We define an auxiliary graph Ĝ = Ĝ(f) = (V, Â) with Â = A ∪ Ā,
where Ā = {(v, u) : a = (u, v) ∈ A+}, i.e., Â consists of the set of arcs in A,
which we call forward arcs, and the set Ā of arcs (v, u) with (u, v) ∈ A+, which
we call reversed arcs. Further, we define a cost function c : Â→ R as follows:

ca =

{
l(u,v)(f(u,v)) + θmax

(u,v)(f(u,v)) if (u, v) ∈ A
−l(u,v)(f(u,v))− θmin

(u,v)(f(u,v)) if (v, u) ∈ Ā.
(2.7)

Theorem 2.7 below generalizes a characterization result for single-commodity
networks in [17] to multi-commodity networks with a common source.

Theorem 2.7. Let f be a feasible flow. f is θ-inducible if and only if Ĝ = Ĝ(f)
does not contain a cycle of negative cost with respect to c.

7Note that ηi ≤ d(n− 1)/2e.

32 Chapter 2. Worst-case latency deviations in non-atomic routing games

s b1

b2 b3

b4

b5b6

P4

P1

P6

Figure 2.1: The dashed arcs are the reversed arcs in Ĝ. The black bold arcs in-
dicate the cycle B. We have (h0, h1, h2, h3) = (1, 4, 6, 1). Note that, for example,
it could be the case that P1 = P6 ∪ (b6, b1).

Proof. Suppose that f is an inducible flow and let δ be a vector of deviations that
induce f . Throughout the proof all latency, deviation and threshold functions
are evaluated with respect to f . For notational convenience, we omit the explicit
reference to f .

Let B̂ be a directed cycle in Ĝ. If B̂ only consists of forward arcs, then∑
a∈B̂(la+θmax

a) ≥
∑
a∈B̂(la+θmin

a) ≥ 0, where the last inequality holds because

of Assumption 2.2. Next, suppose that there is a reversed arc a = (v, u) ∈ B̂∩ Ā.
Then (u, v) ∈ A+

i for some commodity i ∈ [k]. Let B = (b1, . . . , bq, b1) be the

cycle that we obtain from B̂ if all arcs (v, u) ∈ B̂∩ Ā are replaced by a = (u, v) ∈
A+ (note that B is contained in G and that it is not a directed cycle). For every
arc b = (bl, bl+1) ∈ B ∩A+, there is a flow-carrying path Pl from s to bl for some
commodity i (here we use the fact that all commodities share the same source).8

Intuitively, the proof is as follows. For all nodes b ∈ V (B) with two incoming
arcs of B, we can can find two paths Q1 and Q2 leading to that node, using the
paths Pl and the cycle B (see also Figure 2.1). Furthermore, one of those paths
is flow-carrying by construction. We then apply the Nash conditions to those
flow-carrying paths (exploiting the common source) and add up the resulting
inequalities. The contributions of the paths Pl cancel out in the aggregated
inequality, leading to the desired result. We now give a formal proof.

Without loss of generality, we may assume that (b1, b2) ∈ A+. Let h1 ∈
{2, . . . , q + 1} be the smallest index for which (bh1 , bh1+1) ∈ A+ (here we take
bq+1 := b1 and Pq+1 := P1). Note that the concatenation of the path Ph1 and

8Note that the paths Pl can overlap, use parts of B, or even be subpaths of each other.

2.3. Upper bounds on the deviation ratio 33

(bh1 , bh1−1, . . . , b2) is a directed path from s to b2. Then we have

l(b1,b2) + δ(b1,b2) +
∑
a∈P1

(la + δa) ≤
h1∑
j=3

(l(bj ,bj−1) + δ(bj ,bj−1)) +
∑
a∈Ph1

(la + δa).

This follows by using the fact that a subpath (s, . . . , u) of a shortest (s, ti)-path
(s, . . . , u, . . . , ti) is a shortest (s, u)-path if G does not contain negative cost cycles
under the cost function l + δ (which is true because of Assumption 2.2).

We can now repeat this procedure by letting h2 ∈ {h1 + 1, . . . , q + 1} be the
smallest index for which (bh2

, bh2+1) ∈ A+. We then have

l(bh1 ,bh1+1) + δ(bh1 ,bh1+1) +
∑
a∈Ph1

(la + δa)

≤
h2∑

j=h1+2

(l(bj ,bj−1) + δ(bj ,bj−1)) +
∑
a∈Ph2

(la + δa).

Continuing this procedure, we find a sequence 1 = h0 < h1 < · · · < hp = q + 1
such that, for every 0 ≤ w ≤ p− 1,

l(bhw ,bhw+1) + δ(bhw ,bhw+1) +
∑

a∈Phw

(la + δa)

≤
hw+1∑

j=hw+2

(l(bj ,bj−1) + δ(bj ,bj−1)) +
∑

a∈Phw+1

(la + δa). (2.8)

Note that p is the number of reversed arcs on the cycle B̂.
Summing up these inequalities for 0 ≤ w ≤ p− 1, we obtain∑

(v,u)∈B̂∩Ā

(l(u,v) + δ(u,v)) ≤
∑

a∈B̂∩A

(la + δa),

since all the contributions of the path Pl cancel out. Now using the definition of
a θ-deviation, we find∑

a∈B̂∩A

(la + θmax
a)−

∑
(v,u)∈B̂∩Ā

(l(u,v) + θmin
(u,v))

≥
∑

a∈B̂∩A

(la + δa)−
∑

(v,u)∈B̂∩Ā

(l(u,v) + δ(u,v)) ≥ 0.

We have shown that B̂ has non-negative cost. Note that B̂ has zero cost if all
the arcs on the cycle are reversed.

For the other direction of the proof, consider the setH(θ) of θ-deviations δ ∈ ∆(θ)
that induce f = (f ia)i∈[k],a∈A (see also [122, 154]):

H(θ) = { (δa)a∈A
∣∣ πi,v − πi,u ≤ la + δa ∀a = (u, v) ∈ A,∀i ∈ [k]

34 Chapter 2. Worst-case latency deviations in non-atomic routing games

πi,v − πi,u = la + δa ∀a = (u, v) ∈ A+
i ,∀i ∈ [k]

δa ≥ θmin
a ∀a ∈ A

δa ≤ θmax
a ∀a ∈ A }. (2.9)

That is, f is θ-inducible if and only if the linear system defining H(θ) in (2.9)
has a feasible solution. Now suppose that Ĝ does not contain a cycle of negative
cost. Then we can determine the shortest path distance πu from s to every
node u ∈ V . We define πi,u := πu for all u ∈ V and i ∈ [k]. Furthermore, for
a = (u, v) ∈ A, we define δa := max{θmin

a , πv − πu − la}. We will now show
that δ induces f by showing that we have constructed a feasible solution for
(2.9). First of all, for all i ∈ [k] and a ∈ A \ A+

i , we have δa ≥ πv − πu − la,
which is equivalent to πi,v − πi,u ≤ la + δa. Secondly, if a = (u, v) ∈ A+

i , then
πu − πv ≤ −la − θmin

a (which we derive using the reversed arc (v, u)). But this is
equivalent to πi,v − πi,u − la ≥ θmin

a . We can conclude that δa = πi,v − πi,u − la.
Furthermore, we clearly have δa ≥ θmin

a . Lastly, for all a = (u, v) ∈ A we have
πv − πu ≤ la + θmax

a which is equivalent to πv − πu − la ≤ θmax
a . Combining this

with the trivial inequality θmin
a ≤ θmax

a we can conclude that δa ≤ θmax
a . This

completes the proof.

The characterization of Theorem 2.7 applies if all commodities share a com-
mon source. In fact, in Example 2.8 we show that this characterization does not
hold if this assumption is dropped.

Example 2.8. Consider the graph G = (V,A) in Figure 2.2 and suppose that
r1 = r2 = 1. Then the flow f that routes one unit of flow over both paths
(s1, v1, 1, 2, t1) and (s2, v2, 3, 4, t2) is feasible and inducible (take δ = 0). However,
looking at the graph Ĝ(f), we obtain a negative cost cycle (1, 4, 3, 2, 1) (by using
the reversed arcs of (1, 2) and (3, 4)).

s1 v1 1 2 t1

t2 4 3 v2 s2

la = 1

la = 3

θmax
a = 2 θmax

a = 1

Figure 2.2: All the values of la, θ
min
a and θmax

a that are not explicitly stated are
zero.

By exploiting the non-negative cycle condition of Theorem 2.7, we can now estab-
lish the following bounds on the cost of a flow-carrying path Fi of a θ-inducible
flow f .

2.3. Upper bounds on the deviation ratio 35

Lemma 2.9. Let f be θ-inducible and let Fi be a flow-carrying (s, ti)-path for
commodity i ∈ [k] in G. Let χ and ψ be any (s, ti)-path and (ti, s)-path in Ĝ(f),
respectively. Then∑

a∈Fi

la(fa) + θmin
a (fa) ≤

∑
a∈χ∩A

la(fa) + θmax
a (fa)−

∑
a∈χ∩Ā

la(fa) + θmin
a (fa)

∑
a∈Fi

la(fa) + θmax
a (fa) ≥

∑
a∈ψ∩Ā

la(fa) + θmin
a (fa)−

∑
a∈ψ∩A

la(fa) + θmax
a (fa).

We need the following proposition to prove Lemma 2.9.

Proposition 2.10. Let G = (V,A) be a non-empty, directed multigraph with the
property that δ−(v) = δ+(v) for all v ∈ V .9 Then G is the union of arc-disjoint
directed (simple) cycles C1, . . . , Cl for some l such that ∪lj=1V (Cj) = V and

∪lj=1A(Cj) = A.

Proof. If G is non-empty then we can find a (simple) directed cycle C in G.
Removing the arcs of this cycle leads to the graph G \ C := (V,A \ A(C)) that
also satisfies δ−(v) = δ+(v) for all v ∈ V (note that if there are multiple arcs
between two nodes, we only remove the copy on the cycle). By repeating this
procedure until G becomes empty, we decompose G into a series of arc-disjoint
directed (simple) cycles C1, . . . , Cl as claimed.

Proof of Lemma 2.9. Since Fi is a flow-carrying path, we know that for every
a = (u, v) ∈ Fi we have a reversed arc (v, u) ∈ Â in Ĝ. Let F̄i denote the
reversed path of Fi. Define Ĥ as the graph consisting of the (ti, s)-path F̄i and
the (s, ti)-path χ, where we add a copy of an arc if it is used in both paths (i.e.,
Ĥ can be a multigraph). Note that Ĥ satisfies the conditions of Proposition 2.10.
Thus, Ĥ can be decomposed into arc-disjoint directed cycles C1, . . . , Cl for some
l. By Theorem 2.7, each such cycle Cj has non-negative cost with respect to c
(as defined in (2.7)). Thus, we have

c(Cj) =
∑

a∈A∩Cj

(la(xa) + θmax
a (xa))−

∑
a∈Ā∩Cj

(la(xa) + θmin
a (xa)) ≥ 0.

By adding these inequalities for all j = 1, . . . , l and rearranging terms, we obtain
the first inequality.

The second inequality is proven analogously (applying the same arguments
to the graph Ĥ consisting of paths Fi and ψ).

2.3.2 Existence of alternating path tree

Let x and z be feasible flows. Recall the definition of an alternating (s, ti)-path πi
(Definition 2.4). The following lemma establishes the existence of an alternating

9We use the standard notation δ−(v) and δ+(v) to refer to the set of outgoing and incoming
edges of a node v, respectively.

36 Chapter 2. Worst-case latency deviations in non-atomic routing games

path tree π, rooted at the common source s, which contains an alternating (s, ti)-
path πi for every commodity i ∈ [k]. It is a direct generalization of Lemma 4.6
in [122] and Lemma 4.5 in [139].

Lemma 2.11. Let x and z be feasible flows and let A = X ∪Z be a partition of
A as in Definition 2.4. Then there exists an alternating path tree.

Proof. Let G′ = (V ′, A′) be the graph defined by V = V ∪ {t} and A′ = A ∪
{(ti, t) : i ∈ [k]}. Let x′, z′ be the flows defined by

x′a =

{
xa for a = (u, v) ∈ A
ri for a = (ti, t) with i ∈ [k],

z′a =

{
za for a = (u, v) ∈ A
ri for a = (ti, t) with i ∈ [k].

Then x′ and z′ are feasible (s, t)-flows in G′. We can write A = Z ′ ∪ X ′ with
Z ′ = Z ∪ {(ti, t) : i ∈ [k]} and X ′ having the same properties as Z and X in G
(which follows from x′a = z′a = ri > 0 for all a = (ti, t)).

We can now apply the same argument as in the proof of Lemma 4.5 in [139]
of which we will give a short summary (for sake of completeness). For any s-t cut
defined by S∪V ′ with s ∈ S we claim that we can cross S with an arc in Z ′, or a
reversed arc in X ′. Suppose that this would not be the case, i.e., all arcs into S
are in the set Z ′ and all the outgoing arcs of S are in X ′. Let xZ′ and zZ′ be the
total incoming flows from S, and xX′ and zX′ the total outgoing flows from S (for
flows x and z, respectively). From the definition of Z ′ it follows that xZ′ ≤ zZ′ .
From conservation of flow it follows that xX′ − xZ′ = zX′ − zZ′ . Combining
these two observations, we find that xX′ ≤ zX′ . However, by definition of X ′,
we have xX′ > zX′ (since we removed all arcs a with za = xa = 0). We find a
contradiction.

Having proved the claim that we can always cross with an arc in Z ′ or a
reversed arc in X ′, we can now easily construct a spanning tree π′ consisting of
alternating paths, by starting with the cut (S,G \ S) given by S = {s}.

Note that t cannot be an interior point of π′, since t is only adjacent to
incoming arcs of the set Z ′. This means that if we remove (tj , t) from π′ (where
j is the index for which (tj , t) is in the tree π′), we have found an alternating
path tree π for the graph G, under the flows x and z.

2.3.3 Proofs of Theorem 2.5 and Corollary 2.6

We now have all the ingredients to prove Theorem 2.5. Throughout this section,
let x be a θ-inducible flow and let z be a 0-inducible flow. Let π be an alternating
path tree (which exists by Lemma 2.11). Without loss of generality we may
remove all arcs with za = xa = 0 (as they do not contribute to the social cost).
Note that if along the alternating (s, ti)-path πi we reverse the arcs of Z then
the resulting path is a directed (ti, s)-path in Ĝ(z) (which we call the s-oriented
version of πi); similarly, if we reverse the arcs of X then the resulting path is an

2.3. Upper bounds on the deviation ratio 37

(s, ti)-path in Ĝ(x) (which we call the ti-oriented version of πi). We start with
the proof of Theorem 2.5.

Proof of Theorem 2.5. Let Xi be a flow-carrying path of commodity i ∈ [k] max-
imizing lP (x) over all P ∈ Pi. Note that by our choice of Xi, we have

C(x) =
∑
i∈[k]

∑
P∈Pi

xiP lP (x) ≤
∑
i∈[k]

ri
∑
a∈Xi

la(xa).

Let Zi be an arbitrary flow-carrying path of commodity i ∈ [k] with respect
to z. We have

C(z) =
∑
i∈[k]

ri
∑
a∈Zi

la(za).

By applying the first inequality of Lemma 2.9 to the flow x in the graph Ĝ(x),
where we choose χ to be the ti-oriented version of πi, we obtain∑
a∈Xi

la(xa) + θmin
a (xa) ≤

∑
a∈Z∩πi

la(xa) + θmax
a (xa)−

∑
a∈X∩πi

la(xa) + θmin
a (xa).

(2.10)
By applying the second inequality of Lemma 2.9 to the flow z in the graph

Ĝ(z) with θmax = θmin = 0, where we choose ψ to be the s-oriented version of
πi, we obtain ∑

a∈Zi

la(za) ≥
∑

a∈Z∩πi

la(za)−
∑

a∈X∩πi

la(za). (2.11)

By combining these inequalities, we obtain∑
a∈Xi

la(xa) + θmin
a (xa) ≤

∑
a∈Z∩πi

la(xa) + θmax
a (xa)−

∑
a∈X∩πi

la(xa) + θmin
a (xa)

≤
∑

a∈Z∩πi

la(za) + θmax
a (za)−

∑
a∈X∩πi

la(za) + θmin
a (za)

≤
∑
a∈Zi

la(za) +
∑

a∈Z∩πi

θmax
a (za)−

∑
a∈X∩πi

θmin
a (za).

Here the first inequality follows from (2.10). The second inequality holds because
of the definition of X and Z and the non-decreasingness of la+θmax

a and la+θmin
a

(Assumption 2.2) for every a ∈ A. The last inequality holds because of (2.11).
The claim now follows by multiplying the above inequality with ri and sum-

ming over all commodities i ∈ [k].

We need the following proposition for the proof of Theorem 2.6.

Proposition 2.12. Let z = f0 be a Nash flow for a multi-commodity instance
with a common source. Let v ∈ V and let i, j ∈ [k] be two commodities for which
there exist flow-carrying (s, v)-paths P1 ∈ Pi and P2 ∈ Pj, respectively. Then
there exists a feasible Nash flow z̄ with z̄a = za for all a ∈ A such that both paths
P1, P2 are flow-carrying for commodity i, and both paths P1, P2 are flow-carrying
for commodity j, i.e., we have z̄iP1

, z̄iP2
, z̄jP1

, z̄jP2
> 0.

38 Chapter 2. Worst-case latency deviations in non-atomic routing games

Proof. Intuitively, we shift an ε amount of flow of commodity i to path P2 and
an ε amount of flow of commodity j to path P1. Formally, choose ε > 0 small
enough such that ziP1

− ε, zjP2
− ε > 0. We define

z̄lP =


ziP1
− ε if P = P1 and l = i

zjP1
+ ε if P = P1 and l = j

ziP2
+ ε if P = P2 and l = i

zjP2
− ε if P = P2 and l = j

and let all the other flow-carrying paths remain unchanged. It then immediately
follows that za = z̄a for all a ∈ A, and in the resulting feasible flow z̄, both
commodities i and j are flow-carrying for both paths P1 and P2. The feasibility
of z̄ follows because both commodities have the same source. Moreover, the
common source also implies that if z is a Nash flow, then z̄ is also a Nash flow
(since commodity i implies that lP1

(z) ≤ lP2
(z), and commodity j implies that

lP2
(z) ≤ lP1

(z)).

We now give the proof of Corollary 2.6.

Proof of Corollary 2.6. By Lemma 2.3 we can assume without loss of generality
that for every arc a ∈ A:

θmin
a = 0 and θmax

a =
β − α
1 + α

la.

Fix a commodity i and consider the alternating (s, ti)-path πi. Let a segment
of π be a maximal sequence of consecutive arcs on πi which belong to Z. Suppose
π consists of ηi segments. Let Aij denote the j-th segment of πi.

Using Theorem 2.5 and the definition of Aij , we obtain

C(x) ≤ C(z) +
β − α
1 + α

∑
i∈[k]

ri
∑

a∈Z∩πi

la(za)

≤ C(z) +
β − α
1 + α

∑
i∈[k]

ri

(
ηi · max

j=1,...,ηi

∑
a∈Aij

la(za)

)

Note that the claim follows if we can prove that
∑
a∈Aij la(za) ≤ C(z) for all

j = 1, . . . , ηi and i ∈ [k].
Fix a segment Aij . Below we argue that there always exists a commodity

w ∈ [k] (possibly w 6= i) such that every a ∈ Aij is flow-carrying for commodity
w, i.e., zwa > 0 for every a ∈ Aij . By choosing a suitable path decomposition of z
for commodity w, we can thus assume that Aij is contained in some flow-carrying
path P ∈ Pw and thus

∑
a∈Aij la(za) ≤ lP (z). Recall that C(z) =

∑
i∈[k] rilZi(z),

where Zi ∈ Pi is an arbitrary flow-carrying path for commodity i ∈ [k]. By
exploiting that ri ≥ 1 for every i ∈ [k], we obtain∑

a∈Aij

la(za) ≤ lP (z) ≤
∑
i∈[k]

rilZi(z) = C(z).

2.4. Lower bounds on the deviation ratio 39

We now prove that there always exists a commodity w as claimed above.
Suppose there are two consecutive edges a1 = (u, v) and a2 = (v, w) in Aij that
are flow-carrying for commodities w1 and w2 in z, respectively. Then there are
two (s, v)-paths W1 and W2 which are flow-carrying with respect to commodities
w1 and w2, respectively. The existence of W1 is clear. The existence of W2

follows from flow-conservation applied to commodity w2 (because some positive
amount of flow leaves node v). But then, by Proposition 2.12, we may assume
that a1 is also flow-carrying for commodity w2. By applying this argument
repeatedly, starting with the last two arcs on Aij and proceeding towards the
front, we can show that there is a commodity for which the whole segment Aij
is flow-carrying.

2.4 Lower bounds on the deviation ratio

In this section, we give lower bounds on the deviation ratio for (α, β)-deviations.
We first consider single-commodity instances and prove that the bound given in
Theorem 2.5 is tight in all its parameters. We then extend this result to instances
with a common source. In contrast, for general multi-commodity instances the
situation is much worse. In particular, we establish an exponential lower bound
on the deviation ratio.

2.4.1 Single-commodity instances

Our instance is based on the generalized Braess graph [154]. The m-th Braess
graph Gm = (V m, Am) is defined by V m = {s, v1, . . . , vm−1, w1, . . . , wm−1, t} and
Am as the union of three sets: Em1 = {(s, vj), (vj , wj), (wj , t) : 1 ≤ j ≤ m − 1},
Em2 = {(vj , wj−1) : 2 ≤ j ≤ m} and Em3 = {(v1, t) ∪ {(s, wm−1}}. See Figure 2.3
for an example.

The rough idea behind the lower bound construction is that in the unaltered
Nash flow all players spread out evenly over the m paths not involving the arcs
of the form (vi, wi). However, as a result of introducing deviations on the arcs
of the form (vi, wi−1) the players switch to the paths involving the arcs (vi, wi),
but this increases the latencies on all arcs adjacent to s and t.

Example 2.13. By Lemma 2.3, we can assume without loss of generality that
α = 0. Let β ≥ 0 be a fixed constant and let n = 2m ≥ 4 ∈ N.10 Let Gm be
the m-th Braess graph. Furthermore, let ym : R≥0 → R≥0 be a non-decreasing,

10Note that the value d(n−1)/2e is the same for n ∈ {2m, 2m+1} with m ∈ N. The example
shows tightness for n = 2m. The tightness for n = 2m + 1 then follows trivially by adding a
dummy node.

40 Chapter 2. Worst-case latency deviations in non-atomic routing games

s v3

v4

v2

v1

w4

w3

w2

w1

t

(1,
β)

(ym
(x), 0

)

(2ym(x), 0)

(3ym(x), 0)

(4y
m (x), 0)

(1
, 0

)

(1, β)

(1,
0)

(1, β)

(1,
0)

(1, β)

(1,
0)

(4ym (x), 0)

(3ym(x), 0)

(2ym(x), 0)

(ym
(x), 0

)

(1,
β)

Figure 2.3: The fifth Braess graph with (l5a, δ
5
a) on the arcs as defined in Example

2.13. The bold arcs indicate the alternating path π1.

continuous function11 with ym(1/m) = 0 and ym(1/(m− 1)) = β. We define

lma (g) =

 (m− j) · ym(g) for a ∈ {(s, vj) : 1 ≤ j ≤ m− 1}
j · ym(g) for a ∈ {(wj , t) : 1 ≤ j ≤ m− 1}
1 otherwise.

Furthermore, we define δma (g) = β for a ∈ Em2 , and δma (g) = 0 otherwise. Note
that 0 ≤ δma (g) ≤ βlma (g) for all a ∈ A and g ≥ 0 (see Figure 2.3).

A Nash flow z = f0 is given by routing 1/m units of flow over the paths
(s, wm−1, t), (s, v1, t) and the paths in {(s, vj , wj−1, t) : 2 ≤ j ≤ m−1}. Note that
all these paths have latency one, and the path (s, vj , wj , t), for some 1 ≤ m ≤ j,
also has latency one. We conclude that C(z) = 1.

A Nash flow x = fδ, with δ as defined above, is given by routing 1/(m − 1)
units of flow over the paths in {(s, vj , wj , t) : 1 ≤ j ≤ m− 1}. Each such path P
then has a latency of lP (x) = 1 + βm. It follows that C(x) = 1 + βm. Note that
the deviated latency of path P is qP (x) = 1+βm because all deviations along this
path are zero. Each path P ′ = (s, vj , wj−1, t), for 2 ≤ j ≤ m− 1, has a deviated
latency of qP ′(x) = 1 + β+ (m− 1)ym(1/(m− 1)) = 1 + β+ (m− 1)β = 1 + βm.
The same argument holds for the paths (s, wm−1, t) and (s, v1, t). We conclude
that x is δ-inducible. It follows that C(x)/C(z) = 1 + βm = 1 + βn/2.

2.4.2 Common-source instances

By adapting the construction in Example 2.13, we obtain the following result.

11For example ym(g) = m(m − 1)βmax{0,
(
g − 1

m

)
}. That is, we define ym to be zero for

0 ≤ g ≤ 1/m and we let it increase with constant rate to β in 1/(m− 1).

2.4. Lower bounds on the deviation ratio 41

Theorem 2.14. There exist common source two-commodity instances I such
that

DR(I, (α, β)) ≥


1 +

β − α
1 + α

· n− 1

2
r for n = 2m+ 1 ∈ N≥5

1 +
β − α
1 + α

·
[(

n

2
− 1

)
r + 1

]
for n = 2m ∈ N≥4.

Proof. We first prove the claim for n odd. Let r ∈ R≥1 and n = 2m+ 1 ∈ N≥5.
We modify the graph Gm by adding one extra node t2 (the node t will be referred
to as t1 from here on). We add the arcs (s, t2) and (t2, t1) (see the dotted arcs in
Figure 2.3). We take one commodity with sink t1 and r1 = 1, and one commodity
with sink t2 and demand r2 = r − 1. Note that the latter commodity only has
one (s, t2)-path.

The pairs (lma (g), δma (g)), for all a except (s, t2) and (t2, t1), are defined as
in Example 2.13, but with y a non-decreasing, non-negative, continuous func-
tion satisfying ym(1/m) = 0 and ym((1 − εm)/(m − 1)) = β, where we choose
0 < εm < 1/m so that 1/m < (1 − εm)/(m − 1). For a = (s, t2), we take
(lma (g), δma (g)) = (y∗m(x′), 0), where y∗ is a non-decreasing, non-negative, contin-
uous function satisfying y∗m(r − 1) = 0 and y∗m(r − 1 + εm) = β. For a = (t2, t1)
we take (lma (g), δma (g)) = (1, 0). See Figure 2.4 for an example.

s v3

v4

v2

v1

w4

w3

w2

w1

t1

t2

(1,
β)

(ym
(x), 0

)

(2ym(x), 0)

(3ym(x), 0)

(4y
m (x), 0)

(1
, 0

)

(1, β)

(1,
0)

(1, β)

(1,
0)

(1, β)

(1,
0)

(4ym (x), 0)

(3ym(x), 0)

(2ym(x), 0)

(ym
(x), 0

)

(1,
β)

(5y ∗
m (x), 0) (1

, 0
)

Figure 2.4: The fifth (odd) Braess graph with (l5a, δ
5
a) on the arcs as defined

above, where t = t1. The thick edges indicate the alternating path π1.

A Nash flow z for this instance is given by routing 1/m units of flow over
the paths (s, wm−1, t1), (s, v1, t1) and the paths in {(s, vj , wj−1, t1) : 2 ≤ j ≤
m− 1} for the first commodity, and r− 1 units of flow over (s, t2) for the second

42 Chapter 2. Worst-case latency deviations in non-atomic routing games

commodity. This claim is true since all the paths for the first commodity have
latency one, as well as the paths (s, vj , wj , t), for 1 ≤ m ≤ j. This is also true for
(s, t2, t1). The latency for the other commodity is zero. We may conclude that
C(z) = 1.

A Nash flow x under deviation δ, as defined here, is given by, for the first
commodity, routing (1−εm)/(m−1) units of flow over the paths in {(s, vj , wj , t) :
1 ≤ j ≤ m − 1}, and εm units of flow over the path (s, t2, t1). Note that the
perceived latency on all these paths p is qP (x) = 1 + βm (which is also the true
latency, since all the deviations are zero on the arcs of these paths). Using the
same reasoning as in Example 2.13 it can be seen that the perceived latency on
the paths P ′ = (s, vj , wj−1, t), for 2 ≤ j ≤ m − 1, is also qP ′(x) = 1 + βm,
from which we may conclude that x is indeed a Nash flow under the deviation δ.
We have C(x) = 1 + βm + (r − 1)βm = 1 + βrm, since for the first commodity
the (true) latency along every path is 1 + βm, and for the other commodity the
latency along (s, t2) is βm.

We next prove the claim for n even. Let r ∈ R≥1 and n = 2m ∈ N≥4. We use
the same Braess graphs as in Example 2.13, without modifications. We introduce
another commodity with demand r2 = r − 1, for which we choose t2 = v1. We
replace the pair ((m − 1)ym(x′), 0) on a = (s, v1) by the pair ((m − 1)y′m(g), 0)
where y′m satisfies y′m(1/m + r − 1) = 0 and y′m(1/(m − 1) + r − 1) = β. Note
that the flows x and z, as defined in Example 2.13 with the extension that the
second commodity uses the arc (s, v1) in both cases, still form feasible Nash flows
for their respective deviations. We obtain

C(x) =
∑
i

∑
q∈Pi

xiqlq(x) = 1 + βm+ (r − 1)(m− 1)β

= 1 + βm+ β(r − 1)(m− 1) = (1 + βrm)− β(r − 1).

This completes the proof.

Remark 2.15. For two-commodity instances with n even, we can actually improve
the upper bound in Theorem 2.5 to the lower bound stated in Theorem 2.14:
Suppose the upper bound of Theorem 2.5 is tight. Then we need to have η1 =
η2 = n/2. This means that the alternating path tree is actually a path, in the
sense that all nodes are adjacent to at most two arcs of the alternating path tree,
that alternates between arcs in X and Z, starting and ending with an arc in Z
(see Figure 2.3). However, because t1 6= t2 this means that at least one of the
two commodities has no more than n/2− 1 arcs in Z, which is a contradiction.

2.4.3 Multi-commodity instances

For general multi-commodity instances we establish the following exponential
lower bound on the deviation ratio. In particular, this proves that there is an ex-
ponential gap between the cases of multi-commodity networks with and without
a common source.

2.4. Lower bounds on the deviation ratio 43

Theorem 2.16. For every p = 2q+1 ∈ N, there exists a two-commodity instance
I whose size is polynomially bounded in p such that

DR(I, (0, β)) ≥ 1 + βFp+1 ≈ 1 + 0.45 · β · φp+1,

where Fp is the p-th Fibonacci number and φ ≈ 1.618 is the golden ratio.

The instance used in the proof of Theorem 2.16 is based on the following
graph introduced in [122].

s1 e w1 v1 v2 v3 v4 v5 v6 v7 t1

w2

w3

w4

w5

w6

w7

t2

w0

s2

(1, β)

βg1
δ βg3

δ βg5
δ

β
g

1 δ
β
g

2 δ
β
g

4 δ
β
g

6 δ

1

Figure 2.5: The graph Gp for p = 7 (this is a reproduction of Figure 4 in [122]).
The arc a = (s1, e) has δa = β, whereas all the other arcs have δa = 0.

Definition 2.17 ([122]). For p = 2q+1 ∈ N, the graph Gp = (V p, Ap) is defined
by

V p = {s1, s2, t1, t2, e, w0, . . . , wp, v1, . . . , vp},

44 Chapter 2. Worst-case latency deviations in non-atomic routing games

and Ap = A(P p1) ∪A(P p2) ∪Ap1 ∪A
p
2 ∪ {s1, w0} where

P p1 = (s1, e, w1, v1, v2, . . . , vp, t1) and P p2 = (s2, w0, w1, . . . , wp, t2)

are the horizontal (s1, t1)-path and vertical (s2, t2)-path, respectively; see Figure
2.5. Further,

Ap1 = {(s2, vi) : i = 1, 3, 5, 7, . . . , p− 2} ∪ {(e, wi) : i = 2, 4, 6, 8, . . . , p− 1}

and

Ap2 = {(wi, vi) : i = 3, 5, 7, . . . , p} ∪ {(vi, wi) : i = 2, 4, 6, 8, . . . , p− 1}.

Lastly, the paths Ti are denoted by

Ti =

 (s1, w0, w1, v1, . . . , vp, t1) i = 0
(s1, e, wi, wi+1, vi+1, . . . , vp, t1) i = 2, 4, 6, . . . , p− 1
(s2, v1, vi+1, wi+1, . . . , wp, t2) i = 1, 3, 5, . . . , p

These paths can be seen as ‘shortcuts’ for the paths P1 and P2.

Proof of Theorem 2.16. We consider instances (Gp, lp, δp, rp)p=1,3,5,7,... with Gp

as in Definition 2.17. It is not hard to see that |V p|, |Ap| ∈ O(p). The latency
functions lp are given as follows:

lpa(x′) =


βgiδ(x

′) for a ∈ {(vi, vi+1) : i = 1, 3, 5, . . . , p− 2}
βgiδ(x

′) for a ∈ {(wi, wi+1) : i = 0, 2, 4, 6, . . . , p− 1}
1 for a ∈ {(s1, e), (s1, w0)}
0 otherwise.

Here

giδ(x
′) =

 0 x′ ≤ 1
hiδ(x

′) 1 ≤ x′ ≤ 1 + δ
Fi x′ ≥ 1 + δ,

where Fi is the i-th Fibonacci number, and hiδ(x
′) is some non-decreasing, non-

negative, continuous function satisfying hiδ(1) = 0 and hiδ(1 + δ) = Fi (so that
giδ(x

′) is also non-decreasing, non-negative and continuous). Furthermore, we
take δa = β for a = (s1, e) and δa = 0 for all a ∈ A \ {(s1, e)}. Finally, we have
rp1 = rp2 = 1.

Let z be defined by sending one unit of flow over the paths P1 and P2. We
claim that z is a Nash flow with respect to the latencies lp, and that C(z) = 1.
By construction, the latency along the path P1 is lP1

(z) = 1. It is not hard to see
that any (s1, t1)-path has latency greater or equal than one (because every path
for commodity 1 uses either (s1, e) or (s1, w0)). For commodity 2 the latency
along P2 is lP2

(z) = 0, which is clearly a shortest path. This proves that z is a
Nash flow. Further, C(z) = 1.

We use Lemma 2.18 (given below) to describe a Nash flow x with respect to the
deviated latencies lp+δp. It follows that C(x) = C(x)/C(z) ≥ 1+βFp−1+βFp =
1 + βFp+1. This concludes the proof (since Fp ≈ c · φp where c ≈ 0.4472 and
φ ≈ 1.618).

2.5. Biased price of anarchy 45

The following lemma is similar to Lemma 5.4, Lemma 5.5 and Lemma 5.6 in
[122].

Lemma 2.18. There exists a δ > 0 and a feasible flow x satisfying the following
properties:

1. xa ≥ 1 + δ for all a ∈ {(vi, vi+1) : i = 1, 3, 5, . . . , p− 2} ∪ {(wi, wi+1) : i =
0, 2, 4, 6, . . . , p− 1}.

2. lP (x) ≥ 1 + βFp−1 for all P ∈ P1, with equality if and only if P = Ti for
some i = 2, 4, 6, . . . , p− 1.

3. lP (x) ≥ βFp for all P ∈ P2, with equality if and only if P = Ti for some
i = 1, 3, 5, . . . , p.

4. x is a Nash flow under the perceived latencies lp + δp.

Proof. The statements (i)–(iii) follow from Lemma 5.4, Lemma 5.5 and Lemma
5.6 in [122]. The last statement is clearly true for commodity 2 (since this com-
modity is not affected by the deviation on arc (s1, e)). For commodity 1, all the
flow-carrying paths Ti have a perceived latency of QTi(x) = 1+β(Fp+1), and the
perceived latency along any other (s1, t1)-path is greater or equal than that. The
actual latencies along these paths are lTi(x) = 1 +βFp−1 for i = 2, 4, 6, . . . , p−1,
and lT0

(x) = 1 + β(Fp−1 + 1).

2.5 Biased price of anarchy

In this section we consider the biased price of anarchy (BPoA) introduced by
Meir and Parkes [129]. Adapted to our setting, given an instance I and threshold
functions θ, the biased price of anarchy is defined as

BPoA(I, θ) = sup
δ∈∆(θ)

C(fδ)/C(f∗),

where f∗ is a socially optimal flow. Note that because C(f∗) ≤ C(f) for every
feasible flow f , we have DR(I, θ) ≤ BPoA(I, θ).

In this section we derive tight smoothness bounds on the biased price of
anarchy for (0, β)-deviations. Our approach is a generalization of the framework
of Correa, Schulz and Stier-Moses [46], which we now first give. For a class of
latency functions L and l ∈ L we define

µ(l) = sup
x,z≥0

{
z[l(x)− l(z)]

xl(x)

}
and µ = µ(L) = sup

l∈L
µ(l).

In [46] it is shown that the price of anarchy is upper bounded by 1/(1− µ), and
that this bounds tight. Meir and Parkes [129] and independently Lianeas et al.
[119] show (implicitly) that for non-atomic network routing games with latency

46 Chapter 2. Worst-case latency deviations in non-atomic routing games

functions in L it holds that BPoA ≤ (1+β)/(1−µ).12 However, this bound is not
tight in general. Here we improve the result of [129] by obtaining a tight bound
on the biased price of anarchy. Instead of providing a bound in terms of the
original smoothness parameter µ, we include the parameter β in the definition.

Let L be a given set of latency functions and β ≥ 0 fixed. For l ∈ L, define

µ̂(l, β) = sup
x,z≥0

{
z[l(x)− (1 + β)l(z)]

xl(x)

}
and µ̂(L, β) = sup

l∈L
µ̂(l, β). (2.12)

Generalizing the approach in [46], we obtain the following result.

Theorem 2.19. Let L be a set of non-negative, non-decreasing and continuous
functions. Let I be a general multi-commodity instance with (la)a∈A ∈ LA. Let x
be δ-inducible for some (0, β)-deviation δ and let z be an arbitrary feasible flow.
If µ̂(L, β) < 1, then

C(x) ≤ 1 + β

1− µ̂(L, β)
C(z).

Moreover, this bound is tight if L contains all constant functions and is closed
under scalar multiplication, i.e., for every l ∈ L and γ ≥ 0, γl ∈ L.

Proof. Since x is a deviated Nash flow with respect to l+ δ, the following varia-
tional inequality holds:∑

a∈A
xa(la(xa) + δa(xa)) ≤

∑
a∈A

za(la(xa) + δa(xa)).

We have

C(x) =
∑
a∈A

xala(xa) ≤
∑
a∈A

zala(xa) + (za − xa)δa(xa)

≤
∑
xa>za

zala(xa) +
∑
za≥xa

za(la(xa) + δa(xa))

≤
∑
xa>za

zala(xa) + (1 + β)
∑
za≥xa

zala(xa)

≤
∑
xa>za

zala(xa) + (1 + β)
∑
za≥xa

zala(za),

where the third inequality holds because δ is a (0, β)-deviation and the last in-
equality holds because the latency functions are non-decreasing. We then obtain

C(x) ≤
∑
xa>za

zala(xa) + (1 + β)
∑
za≥xa

zala(za)

=
∑
xa>za

za[la(xa)− (1 + β)la(za) + (1 + β)la(za)] + (1 + β)
∑
za≥xa

zala(za)

12This upper bound in particular holds for the deviation ratio and price of risk aversion as
well.

2.5. Biased price of anarchy 47

= (1 + β)C(z) +
∑
xa>za

za[la(xa)− (1 + β)la(za)]

≤ (1 + β)C(z) + µ̂(L, β)
∑
xa>za

xala(xa)

≤ (1 + β)C(z) + µ̂(L, β)C(x).

Thus, for µ̂(L, β) < 1, we obtain C(x) ≤ (1 + β)/(1− µ̂(L, β))C(z).
We will now prove the tightness of the obtained bound if L contains all con-

stant functions and is closed under scalar multiplication. For arbitrary c ∈ L
and demand r, consider the parallel-arc instance in Figure 3.2. Clearly, a devi-

s t(
1
r , β

1
r

)

(
(1 + β) c(y)

rc(r) , 0
)

Figure 2.6: Example used in the proof of Theorem 2.19. The arcs are labeled by
their respective (la, δa) functions. Note that δ ∈ ∆(0, β).

ated Nash flow is given by x = (x1, x2) = (r, 0), since then l1(x1) + δ1(x1) =
l2(x2) + δ2(x2) = (1 + β)/r. We have C(x) = (1 + β).

For a feasbile flow z = (ε, r − ε). We have

C(z) =
(1 + β)εc(ε) + (r − ε)c(r)

rc(r)
=
rc(r)− ε[c(r)− (1 + β)c(ε)]

rc(r)

which implies that, with z∗ a socially optimal flow,

C(x)

C(z∗)
≥ C(x)

C(z)
= (1 + β)

(
1− ε[c(r)− (1 + β)c(ε)]

r · c(r)

)−1

In order to claim tightness we can choose c ∈ L, and r ≥ ε ≥ 0, arbitrary close
to µ̂(L, β).

To see that our result improves the bound of (1 + β)/(1− µ), note that

µ̂(L, β) ≤ µ̂(L, 0) ≤ µ.

We exemplify the increased strength of our general smoothness bound by deriving
a closed form expression on the biased price of anarchy for affine latency functions.

Theorem 2.20. Let I be a general multi-commodity instance with affine latency
functions (la)a∈A. Then

BPoA(I, β) ≤ (1 + β)2

3
4 + β

.

48 Chapter 2. Worst-case latency deviations in non-atomic routing games

Note that the upper bound of 4(1 + β)/3 on the biased price of anarchy for
affine latency functions given in [129, 119] is inferior to our bound.

Proof of Theorem 2.20. Let L be the set of all affine latency functions with non-
negative coefficients. The claim follows from Theorem 2.19 by showing that
µ̂(L, β) = 1

4(1+β) .

Let la(y) = cay + da be an arbitrary affine latency function with ca, da ≥ 0.
We need to show that

za[caxa + da − (1 + β)(caza + da)] ≤ 1

4(1 + β)
xa[caxa + da],

or, equivalently,

ca[zaxa − (1 + β)z2
a] + da[za − za(1 + β)] ≤ ca

[
1

4(1 + β)
x2
a

]
+ da

[
1

4(1 + β)
xa

]
.

It suffices to show that

zaxa − (1 + β)z2
a ≤

1

4(1 + β)
x2
a and za − za(1 + β) ≤ 1

4(1 + β)
xa.

The second inequality is always true, using the non-negativity of za, xa and β.
For the first inequality, we have

0 ≤
(xa

2
− (1 + β)za

)2

= (1 + β)2z2
a +

x2
a

4
− (1 + β)xaza,

which implies that

[1 + β]
(
xaza − (1 + β)z2

a

)
≤ x2

a

4
.

Dividing this inequality by (1 + β) gives the desired result. Further, we have
tightness for (xa, za) = (1, 1

2(1+β)).

2.6 Heterogeneous populations

We provide tight bounds on the deviation ratio for general (0, β)-path devia-
tions for instances on (single-commodity) series-parallel graphs and heteroge-
neous player populations. We first give the definition of a series-parallel graph.

Definition 2.21 (Series-parallel graph). Let Gi(Vi, Ai) with source si ∈ Vi and
target ti ∈ Vi for i = 1, 2 be two graphs. The series-composition of G1 and
G2 is the graph G = (V1 ∪ V2, A1 ∪ A2) in which we identify t1 with s2. The
parallel-composition of G1 and G2 is the graph G = (V1 ∪ V2, A1 ∪ A2) in which
we identify s1 with s2, and also t1 with t2. A graph H is series-parallel if (i) it
consists of a single edge; or (ii) it is a composition, either in series or parallel, of
two series-parallel graphs.

2.6. Heterogeneous populations 49

We next present the main result of this section.

Theorem 2.22. Let I be a single-commodity non-atomic network routing game
on a series-parallel graph with heterogeneous players, demand distribution r =
(ri)i∈[h] with

∑
j∈[h] ri = 1, and sensitivity distribution γ = (γi)i∈[h], with γ1 <

γ2 < · · · < γh. For β ≥ 0 fixed, the β-deviation ratio is bounded by

DR(I, (0, β)) ≤ 1 + β ·max
j∈[h]

{
γj

(h∑
p=j

rp

)}
. (2.13)

This bound is tight for all distributions r and γ.

For the homogeneous case, this bound reduces to 1 +β, which corresponds to
the result in Corollary 2.6. To see this, note that for a series-parallel graph we
always have η1 = 1.13

Our bound on the deviation ratio also yields tight bounds on the price of
risk aversion for series-parallel graphs and arbitrary heterogeneous risk-averse
populations, both for the mean-var objective and mean-std objective as given in
Section 2.7.1. We need the following technical lemma for the proof of the bound
on the deviation ratio.

Lemma 2.23. Let 0 ≤ τk−1 ≤ · · · ≤ τ1 ≤ τ0 and ci ≥ 0 for i = 1, . . . , k be given.

We have c1τ0 +
∑k−1
i=1 (ci+1 − ci)τi ≤ τ0 ·maxi=1,...,k{ci}.

Proof. The statement is clearly true for k = 1. Now suppose the statement is
true for some k ∈ N. We will prove the statement for k + 1.

First suppose ck+1 − ck ≤ 0. Then we have

c1τ0 +

k∑
i=1

(ci+1 − ci)τi ≤ c1τ0 +

k−1∑
i=1

(ci+1 − ci)τi (using τk ≥ 0)

≤ τ0 · max
i=1,...,k

{ci} (using induction hypothesis)

≤ τ0 · max
i=1,...,k+1

{ci} (using non-negativity of τ0).

Secondly, suppose ck+1 − ck > 0. Using τk ≤ τk−1, we have

c1τ0 +

k∑
i=1

(ci+1 − ci)τi = c1τ0 +

[k−1∑
i=1

(ci+1 − ci)τi
]

+ (ck+1 − ck)τk

≤ c1τ0 +

[k−1∑
i=1

(ci+1 − ci)τi
]

+ (ck+1 − ck)τk−1

= c1τ0 +

[k−2∑
i=1

(ci+1 − ci)τi
]

+ (ck+1 − ck−1)τk−1

13If there would exist an alternating path with η1 > 1, then the graph would have a minor
corresponding to the (second) Braess graph G2 on four nodes.

50 Chapter 2. Worst-case latency deviations in non-atomic routing games

≤ τ0 · max
i=1,...,k−2,k−1,k+1

{ci} (induction hypothesis)

≤ τ0 · max
i=1,...,k+1

{ci} (non-negativity of τ0).

Note that we apply the induction hypothesis with the set {c1, . . . , ck−1, ck+1} of
size k.

We now continue with the proof of Theorem 2.22.

Proof of Theorem 2.22. Let x = fβ be a β-deviated Nash flow with path devia-
tions (δP)P∈S ∈ ∆(β) and let z = f0 be an original Nash flow. Let X = {a ∈
A : xa > za} and Z = {a ∈ A : za ≥ xa and za > 0} (arcs with xa = za = 0 may
be removed without loss of generality).

In order to analyze the ratio C(x)/C(z) we first argue that we can assume
without loss of generality that the latency function la(y) is constant for values
y ≥ xa for all arcs a ∈ Z. To see this, note that we can replace the function la(·)
with the function l̂a defined by l̂a(y) = la(xa) for all y ≥ xa and l̂a(y) = la(y)
for y ≤ xa. In particular, this implies that the flow x is still a β-deviated Nash
flow for the same path deviations as before. This holds since for any path P the
latency lP (x) remains unchanged if we replace the function la by l̂a.

By definition of arcs in Z, we have xa ≤ za and therefore l̂a(za) = la(xa) ≤
la(za). Let z′ be an original Nash flow for the instance with la replaced by l̂a.
Then we have C(z′) ≤ C(z) using the fact that series-parallel graphs are immune
to the Braess paradox, see Milchtaich [133, Lemma 4]. Note that, in particular,
we find C(x)/C(z) ≤ C(x)/C(z′). By repeating this argument, we may without
loss of generality assume that all latency functions la are constant between xa
and za for a ∈ Z. Afterwards, we can even replace the function l̂a by a function
that has the constant value of la(xa) everywhere.

In the remainder of the proof, we will denote Pj as a flow-carrying arc for
sensitivity class j ∈ [h] that maximizes the path latency amongst all flow-carrying
path for sensitivity class j ∈ [h], i.e., Pj = argmaxP∈P:xP,j>0{lP (x)}. Moreover,
there also exists a path P0 with the property that za ≥ xa and za > 0 for all arcs
a ∈ P0 (see, e.g., Lemma 2 [133]).

For fixed a < b ∈ {1, . . . , h}, the Nash conditions imply that (these steps are
of a similar nature as Lemma 1 [78])

lPa(x) + γa · δPa(x) ≤ lPb(x) + γa · δPb(x)

lPb(x) + γb · δPb(x) ≤ lPa(x) + γb · δPa(x).

Adding up these inequalities implies that (γb−γa)δPb(x) ≤ (γb−γa)δPa(x), which
in turn yields that δPb(x) ≤ δPa(x) (using that γa < γb if a < b). Furthermore,
we also have

lP1(x) + γ1δP1(x) ≤ lP0(x) + γ1δP0(x), (2.14)

and lP0(x) = lP0(z) ≤ lP1(z) ≤ lP1(x), which can be seen as follows. The equality
follows from the fact that la is constant for all a ∈ Z and, by choice, P0 only

2.6. Heterogeneous populations 51

consists of arcs in Z. The first inequality follows from the Nash conditions of the
original Nash flow z, since there exists a flow-decomposition in which the path
P0 is used (since the flow on all arcs of P0 is strictly positive in z). The second
inequality follows from the fact that∑

e∈P1

le(ze) =
∑

e∈P1∩X
le(ze) +

∑
e∈P1∩Z

le(ze) ≤
∑

e∈P1∩X
le(xe) +

∑
e∈P1∩Z

le(xe)

using that ze ≤ xe for e ∈ X and the fact that latency functions for e ∈ Z are
constant. In particular, we find that lP0

(x) ≤ lP1
(x). Adding this inequality

to (2.14), we obtain γ1δP1(x) ≤ γ1δP0(x) and therefore δP1(x) ≤ δP0(x). Thus
δPh(x) ≤ δPh−1

(x) ≤ · · · ≤ δP1(x) ≤ δP0(x). Moreover, by using induction it can
be shown that

lPj (x) ≤ lP0
(x) + γ1δP0

(x) +

[j−1∑
g=1

(γg+1 − γg)δPg (x)

]
− γjδPj (x). (2.15)

The case j = 1 is precisely (2.14). Now suppose it holds for some j, then we have

lPj+1(x) ≤ lPj (x) + γj+1δPj (x)− γj+1δPj+1(x) (Nash condition for Pj+1)

≤ lP0(x) + γ1δP0(x) +

[j−1∑
g=1

(γg+1 − γg)δPg (x)

]
− γjδPj (x)

+ γj+1δPj (x)− γj+1δPj+1
(x) (induction hypothesis)

= lP0
(x) + γ1δP0

(x) +

[j∑
g=1

(γg+1 − γg)δPg (x)

]
− γj+1δPj+1

(x),

which shows the result for j + 1. Using (2.15), we then have

C(x) ≤
h∑
j=1

rj lPj (x) (by choice of the paths Pj)

≤
h∑
j=1

rj

(
lP0

(x) + γ1δP0
(x) +

[j−1∑
g=1

(γg+1 − γg)δPg (x)

]
− γjδPj (x)

)

= lP0
(x) + γ1δP0

(x) +

h∑
j=1

(rj+1 + · · ·+ rh)(γj+1 − γj)δPj (x)− rjγjδPj (x)

≤ lP0
(x) + γ1δP0

(x)

+

h−1∑
j=1

[
(rj+1 + · · ·+ rh)γj+1 − (rj + rj+1 + · · ·+ rh)γj

]
δPj (x).

In the last inequality, we leave out the last negative term −rhγhδPh(x). Note
that γ1 = (r1 + · · · + rh)γ1 since we have normalized the demand to 1. We can

52 Chapter 2. Worst-case latency deviations in non-atomic routing games

then apply Lemma 2.23 with τi = δPi(x) for i = 0, . . . , h−1 and ci = γi ·
∑h
p=i rp

for i = 1, . . . , k. Continuing the estimate, we get

C(x) ≤ lP0
(x) + max

j∈[h]

{
γj ·

h∑
p=j

rp

}
· δP0

(x) ≤
[
1 + β ·max

j∈[h]

{
γj

(h∑
p=j

rp

)}]
C(z)

where for the second inequality we use that δP0(x) ≤ βlP0(x), which holds by
definition, and lP0

(x) = lP0
(z) = C(z), which holds because z is an original Nash

flow and all arcs in P0 have strictly positive flow in z (and because of the fact
that all arcs in P0 have constant latency functions).

To prove tightness, fix j ∈ [h] and consider the following instance on two arcs.
We take (l1(y), δ1(y)) = (1, β) and (l2(y), δ2(y)) with δ2(y) = 0 and l2(y) a strictly
increasing function satisfying l2(0) = 1 + ε and l2(rj + rj+1 + · · ·+ rh) = 1 + γjβ,
where ε < γjβ. The (unique) original Nash flow is given by z = (z1, z2) = (1, 0)
with C(z) = 1. The (unique) β-deviated Nash flow x is given by x = (x1, x2) =
(r1 + r2 + · · ·+ rj−1, rj + rj+1 + · · ·+ rh) with C(x) = 1 + β · γj(rj + · · ·+ rh).
Since this construction holds for all j ∈ [h], we find the desired lower bound.

Connection to approximate Nash flows. In this part we investigate further the
relation between inducible Nash flows and approximate Nash flows. In case the
population is homogeneous, i.e., when γij = 1 for all pairs (i, j), the result in
Theorem 2.22 actually extends to hold for the ε-stability ratio. This turns out
to be no surprise, as flows induced by general path deviations can be shown
to correspond to approximate Nash flows in a certain sense. That is, every β-
approximate Nash flow can be induced by some δ ∈ ∆(0, β). This is shown in
Proposition 2.24.

Proposition 2.24. Let I be a single-commodity non-atomic network routing
game with homogeneous players. Then f is a β-approximate Nash flow if and
only if f is a β-deviated Nash flow.

Proof. Let f be a β-deviated Nash flow for some set of path deviations δ ∈
∆(0, β). For P ∈ S, we have

lP (f) ≤ lP + δP (f) ≤ lP ′(f) + γδP ′(f) ≤ (1 + β)lP ′(f)

where we use the non-negativity of δP (f) in the first inequality, the Nash con-
dition for f in the second inequality, and the fact that δP ′(f) ≤ βlP ′(f) in the
third inequality. By definition, it now holds that f is also a β-approximate Nash
flow.

Reversely, let f be a β-approximate Nash flow. We show that there exist
(0, β)-path deviations δP such that f is inducible with respect to these path
deviations. Let P1, . . . , Pk be the set of flow-carrying paths under f , and assume
without loss of generality that lP1(f) ≤ lP2(f) ≤ · · · ≤ lPk(f). We define δPi(f) =

2.6. Heterogeneous populations 53

lPk(f) − lPi(f) for i = 1, . . . , k. Using the Nash condition for the path Pk, we
find

δPi(f) = lPk(f)− lPi(f) ≤ (1 + β)lPi(f)− lPi(f) = βlPi(f)

which shows that these path deviations are feasible. Moreover, we take δQ(f) =
βlQ(f) for all the paths Q ∈ P \ {P1, . . . , Pk} which are not flow-carrying under
f . Now, let i ∈ {1, . . . , k} be fixed. Then for any j ∈ {1, . . . , k}, we have

lPi(f) + δPi(f) = lPk(f) = lPj (f) + δPj (f)

and for any Q ∈ P \ {P1, . . . , Pk}, we have

lPi(f) + δPi(f) = lPk(f) ≤ (1 + β)lQ(f) = lQ(f) + δQ(f),

using the Nash condition for the path Pk and the definition of δQ(f). This shows
that f is indeed a β-deviated Nash flow.

We show that this correspondence is not true for heterogeneous populations
by providing tight bounds on the ε-stability ratio for heterogeneous populations
on instances with a series-parallel network topology. For sake of comparison we
write ε = βγ for some given β ≥ 0.

Theorem 2.25. Let I be a single-commodity non-atomic network routing game
on a series-parallel graph with heterogeneous players, demand distribution r =
(ri)i∈[h] with

∑
j∈[h] ri = 1, and sensitivity distribution γ = (γi)i∈[h], with γ1 <

γ2 < · · · < γh. For β ≥ 0 fixed, write ε = βγ. Then the ε-stability ratio is
bounded by

ε-SR(I) ≤ 1 + β

h∑
j=1

rjγj . (2.16)

This bound is tight for all distributions r and γ.

Proof. For j ∈ [k], let P̄j be a path maximizing lP (x) over all flow-carrying paths
P ∈ P of type j. Moreover, there exists a path π such that xa ≤ za and za > 0
for all a ∈ π (see, e.g., Milchtaich [133]). We then have (this is also reminiscent
of an argument by Lianeas et al. [120]):

lP̄j (x) ≤ (1 + βγj)lπ(x) = (1 + βγj)
∑
a∈π

la(xa).

Note that, by definition of the alternating path π, we have xa ≤ za for all a ∈ π.
Continuing with the estimate, we find lP̄j (x) ≤ (1 + βγj)

∑
a∈π la(za) and thus

C(x) ≤
∑
j∈[h]

rj lP̄j (x) ≤
∑
j∈[h]

rj(1 + βγj)
∑
a∈π

la(za) = C(z)

(∑
j∈[h]

rj(1 + βγj)

)
.

54 Chapter 2. Worst-case latency deviations in non-atomic routing games

Since
∑
j∈[h] rj = 1, we get the desired result. Note that we use C(z) =∑

a∈π la(za), which is true because there exists a flow-decomposition of z in
which π is flow-carrying (here we use za > 0 for all a ∈ π).

Tightness follows by considering an instance with arc set {0, 1, . . . , h} where
the zeroth arc has latency l0(y) = 1 and the arcs j ∈ {1, . . . , h} have latency
lj(y) = 1 + βγj . An original Nash flow is given by f0 = (z0, z1, . . . , zh) =
(1, 0, . . . , 0), and an ε-approximate Nash flow is given by f ε = (x0, x1, . . . , xh) =
(0, r1, r2, . . . , rh).

It is not hard to see that the bound on the β-deviation ratio is always smaller
or equal than the bound on the ε-stability ratio, under the correspondence ε =
βγ.14

Remark 2.26. We remark that in general other relations between approximate
and inducible Nash flows could still hold. We only consider the natural correspon-
dence ε = βγ arising from (2.6). For example, is it possible that for some given
ε under a heterogeneous population, every ε-approximate Nash flow is inducible
a (0, β′)-deviation for some β′ = β′(ε) large enough?

2.7 Applications

We use our results on the deviation ratio and the biased price of anarchy obtained
in the previous sections to derive several new results below.

2.7.1 Price of risk aversion

Nikolova and Stier-Moses [139] (see also [119, 138]) consider non-atomic network
routing games with uncertain latencies. Here the deviations correspond to vari-
ances (va)a∈A of some random variable ζa (with expectation zero). The perceived
latency of a path P ∈ P with respect to a flow f is then defined as

qγP (f) = lP (f) + γvP (f),

where γ ≥ 0 is a parameter representing the risk-aversion of the players. They
consider two different objectives as to how the deviation vP (f) of a path P is
defined:

1. mean-var objective: vP (f) =
∑
a∈P va(fa)

2. mean-std objective: vP (f) = (
∑
a∈P va(fa))

1
2 .

Note that for the mean-var objective there is an equivalent arc-based definition,
where the perceived latency of every arc a ∈ A is defined as qγa(fa) = la(fa) +
γva(fa). They define the price of risk aversion [139] as the worst-case ratio

14This follows from Markov’s inequality: for a random variable Y and t ≥ 0, we have P (Y ≥
t) ≤ E(Y)/t.

2.7. Applications 55

C(x)/C(z), where x is a risk-averse Nash flow with respect to qγ = l + γv and
z is a risk-neutral Nash flow with respect to l.15 In their analysis, it is assumed
that the variance-to-mean-ratio of every arc a ∈ A under the risk-averse flow x
is bounded by some constant κ ≥ 0, i.e., va(xa) ≤ κla(xa) for all a ∈ A. Under
this assumption, they prove that the price of risk aversion PRA(I, γ, κ) of single-
commodity instances I with non-negative and non-decreasing latency functions
is at most 1 + γκd(n− 1)/2e, where n is the number of nodes.

We now elaborate on the relation to our deviation ratio. The main technical
difference is that in [139] the variance-to-mean ratio is only considered for the
respective flow values xa. Note however that if we write for every a ∈ A, va(xa) =
λala(xa) for some 0 ≤ λa ≤ κ, then the deviation function δa(y) = γλala(y) has
the property that x = fδ is δ-inducible with δ ∈ ∆(0, γκ). It follows that for
every instance I and parameters γ, κ, PRA(I, γ, κ) ≤ DR(I, (0, γκ)).

We obtain the following bound on the price of risk aversion for multi-
commodity networks with a common source.

Theorem 2.27. The price of risk aversion for a common source multi-
commodity instance I with non-negative and non-decreasing latency functions,
variance-to-mean-ratio κ > 0 and risk-aversion parameter γ ≥ −1/κ is at most

PRA(I, γ, κ) ≤

{
1− γκ/(1 + γκ)d(n− 1)/2er for −1/κ < γ ≤ 0

1 + γκd(n− 1)/2er for γ ≥ 0.

Moreover, these bounds are tight in all its parameters if n = 2m+ 1 and almost
tight if n = 2m. In particular, for single-commodity instances we obtain tightness
for all n ∈ N.

Note that Theorem 2.27 generalizes the result in [139] to multi-commodity
networks with a common source and to negative risk-aversion parameters. Fur-
ther, it establishes that the bound is tight in all its parameters.

Proof of Theorem 2.27. Recall that the deviations δa = γva can be interpreted
as θ-deviations with

θmin
a =

{
0 if γ ≥ 0
γκla if − 1/κ < γ ≤ 0

and θmax
a =

{
γκla if γ ≥ 0
0 if − 1/κ < γ ≤ 0.

Here, the restriction γ > −1/κ is necessary to satisfy Assumption 2.2. The
theorem now follows directly from Theorem 2.5, Example 2.13 and Theorem
2.14.

2.7.2 Stability of Nash flows under small perturbations

We next show that our results can be used to bound the relative error in social
cost incurred by small latency perturbations.

15The existence of a risk-averse Nash flow is proven in [138].

56 Chapter 2. Worst-case latency deviations in non-atomic routing games

We introduce some more notation. We say that (l̃a)a∈A are ε-perturbed latency
functions with respect to (la)a∈A if

sup
a∈A, x≥0

∣∣∣∣ la(x)− l̃a(x)

la(x)

∣∣∣∣ ≤ ε
for some small ε > 0. We are interested in bounding the relative error in social
cost due to ε-perturbations of the latency functions. More precisely, the relative
error in social cost is defined as the ratio

C(f̃)− C(f)

C(f)
,

where f is a Nash flow with respect to (la)a∈A and f̃ is a Nash flow with respect
to ε-perturbed latency functions (l̃a)a∈A. To the best of our knowledge, this
notion has not been studied in the literature before.

The theorem below establishes an upper bound on the relative error in social
cost. In particular, for small ε-perturbations the theorem implies that the relative
error is asymptotically O(εrn).

Theorem 2.28. Let I be a common source multi-commodity instance with non-
negative and non-decreasing latency functions (la)a∈A. Let f be a Nash flow with
respect to (la)a∈A and let f̃ be a Nash flow with respect to ε-perturbed latency
functions (l̃a)a∈A for some 0 < ε < 1. Then the relative error in social cost
satisfies

C(f̃)− C(f)

C(f)
≤ 2ε

1− ε
·
⌈
n− 1

2

⌉
r.

Proof. Note that the ε-perturbation l− l̃ can be seen as a (−ε, ε)-deviation. Using
Theorem 2.5, we obtain

C(f̃)

C(f)
≤ 1 +

2ε

1− ε
·
⌈
n− 1

2

⌉
r.

The claim follows.

2.8 Conclusion

We introduced a unifying model to study the impact of (bounded) worst-case
latency deviations in non-atomic selfish routing games. We demonstrated that
the deviation ratio is a useful measure to assess the cost deterioration caused
by such deviations. Among potentially other applications, we showed that the
deviation ratio provides bounds on the price of risk aversion and the relative error
in social cost if the latency functions are subject to small perturbations. In turns
out that, e.g., risk averse behavior can cause a serious deterioration in the quality

2.8. Conclusion 57

of Nash flows, not only in single commodity instances [139]. In particular, the
results for single-commodity instances in [139] can be generalized to common-
source multi-commodity instances; for general multi-commodity instances the
deterioration is even more severe.

Our bounds reveal a (mostly) linear dependence on model parameters for
common-source multi-commodity instances (when all other parameters are kept
fixed). Overall, these bounds, and already the work in [139], seem to provide an
interesting complementary view to more traditional approaches for quantifying
the inefficiency of (deviated) Nash flows. Most importantly, the deviation ratio
is not independent of the network topology. We conjecture this remains to hold
true, even when considering specific classes of latency functions as is done for the
biased price of anarchy in Section 2.5.

For future research, studying the impact of (bounded) worst-case deviations
on the input data of more general classes of games (e.g., in other congestion
models as given in Section 1.3) is an interesting and challenging direction for
future work. Moreover, it would also be interesting to obtain tight bounds on
the deviation ratio for specific classes of latency functions. The biased price of
anarchy always yields an upper bound on the deviation ratio, but in general
these bounds are not tight. Can one give a tight bound, e.g., for the deviation
ratio under affine latency functions? Some preliminary insights suggest that this
question only seems interesting for small values of β. We next elaborate on this
shortly. For large β, the bound we obtained in Theorem 2.20 is approximately
equal to 1 + β. Moreover, it is not hard to show a lower bound of 1 + β on the
deviation ratio with affine latency functions. The latter can be established using
the Pigou network topology consisting of two parallel arcs. However, for small
values of β, one can obtain better lower bounds than 1+β for the deviation ratio
when considering instances with affine latencies (using generalized Braess graph
topologies).16

Another interesting open question is to determine (tight) upper bounds on the
deviation ratio (or price of risk aversion) for general multi-commodity instances.
We already know, because of the lower bound construction in Section 2.4, that
an exponential dependence on the size of the network is the best we can hope for.
Moreover, can one go beyond series-parallel network topologies when considering
heterogeneous populations, either for additive path deviations or general path
deviations?

16This is established in personal notes of the author. In particular, it can be shown that no
K > 0 exists so that 1 +Kβ is an upper bound, on the deviation ratio for instances with affine
latency functions, for all β > 0.

Chapter 3

On pure Nash equilibria in
Rosenthal congestion games

3.1 Introduction

Congestion games constitute an important class of non-cooperative games which
have been studied intensively since their introduction by Rosenthal [150]. In a
congestion game there is a (finite) set of players that compete over a (finite) set
of resources. Each resource is associated with a non-negative and non-decreasing
cost (or delay) function which specifies its cost depending on the total number of
players using it. Every player chooses a subset of resources from a set of available
resource subsets (corresponding to the player’s strategies) and experiences a cost
equal to the sum of the costs of the chosen resources. The goal of each player is to
minimize her individual cost. Congestion games are both theoretically appealing
and practically relevant. For example, they find their applications in network
routing, resource allocation and scheduling problems.

In a seminal paper, Rosenthal [150] establishes the existence of pure Nash
equilibria in (unweighted) congestion games. He proves this result through the
use of an exact potential function which assigns a value to each strategy profile
such that the difference in potential value of any two strategy profiles corre-
sponding to a unilateral deviation of a player is equal to the difference in cost
experienced by that player. Rosenthal proves that every congestion game admits
an exact potential function, also known as Rosenthal’s potential. As a conse-
quence, every best response sequence must converge to a pure Nash equilibrium
because the game is finite. Further, this shows that the set of pure Nash equilib-
ria corresponds to the set of local1 minima of Rosenthal’s potential. Especially
this correspondence has helped to shed light on several important aspects of
congestion games in recent years.

Computational complexity of pure Nash equilibria. One of the most predominant

1Here, we mean the natural locality induced by unilateral player deviations.

59

60 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

aspects that has been studied intensively in recent years is the computational
complexity of finding a pure Nash equilibrium. In a seminal paper, Fabrikant
et al. [75] show that the problem of finding a pure Nash equilibrium is PLS-
complete, both for symmetric congestion games, where all players have the same
strategy set, and non-symmetric network congestion games, see Example 1.2. In
particular, this suggests that a polynomial time algorithm for finding a pure Nash
equilibrium is unlikely to exist for these games. In their proof they construct in-
stances of non-symmetric network congestion games where any best response
sequence has exponential length. Ackermann et al. [1] strengthen this result by
exhibiting instances of symmetric network congestion games for which every best
response sequence (from certain initial configurations) has exponential length.
On the positive side, they prove that best response dynamics converge in poly-
nomial time for non-symmetric matroid congestion games, where the available
resource subsets of the players correspond to bases of a given matroid (see Sec-
tion 3.3.3). The authors also show that, in some sense, this is the only class of
congestion games for which this property holds true.

Most previous works in this context focus on the analysis of decentralized
dynamics to reach a pure Nash equilibrium (see, e.g., [1, 36, 31, 74, 75, 80, 106]);
said differently, these works focus on finding a local minimum of Rosenthal’s
potential. Much less is known about the problem of computing a pure Nash
equilibrium that corresponds to a global minimum. Fabrikant et al. [75] show
that a pure Nash equilibrium can be computed in polynomial time for symmet-
ric network congestion games. The authors observe that in this case a global
minimum of Rosenthal’s potential can be computed by a reduction to a min-cost
flow problem (if all cost functions are non-decreasing). Note that this is in stark
contrast with the fact that best response dynamics might need exponential time
in this case [1].

Only very recently, Del Pia et al. [54] make further progress along these lines.
The authors consider congestion games where the strategy sets of the players
are given implicitly by a polyhedral description (see also [27]). More precisely,
for each player i the incidence vectors of the strategies are defined as the binary
vectors in a polytope Pi = {x : Aix ≤ bi}, where Ai is an integral matrix and bi is
an integral vector. They (mostly) focus on the case where the matrix Ai is totally
unimodular (see below for formal definitions) and thus the describing polytope Pi
is integral (i.e., all its extreme points are integral); they term these games totally
unimodular (TU) congestion games. For symmetric TU congestion games (when
all Ai, bi are identical), they devise an aggregation/decomposition framework
that reduces the problem of finding a global minimum of Rosenthal’s potential to
an integer linear programming problem. Using this framework, they show that
pure Nash equilibria can be computed efficiently for symmetric TU congestion
games. The authors also show that this problem is PLS-complete for various
non-symmetric TU congestion games. Further, they show that their framework
can be adapted to the case of non-symmetric matroid congestion games.

Inefficiency of pure Nash equilibria. Another important aspect that has has been

3.1. Introduction 61

the subject of intensive research in recent years is the inefficiency of pure Nash
equilibria in congestion games (see, e.g., [4, 8, 21, 34, 32, 53, 52, 80, 84, 77, 117,
123, 155]). Here the goal is to assess the social cost, defined as the sum of the
costs of the players, of a pure Nash equilibrium relative to an optimal outcome (as
explained in Section 1.2.3). Koutsoupias and Papadimitriou [117] introduce the
price of anarchy as the ratio between the worst social cost of a Nash equilibrium
and the social cost of an optimum. Anshelevich et al. [7] define the price of
stability as the ratio between the best social cost of a Nash equilibrium and the
social cost of an optimum.

Fotakis [80] reveals an intriguing connection between the price of stability of
symmetric network congestion games and the price of anarchy of their non-atomic
counterparts. More specifically, he shows that for symmetric network congestion
games the ratio between the social cost of a global minimum of Rosenthal’s
potential and the social cost of a social optimum is at most ρ(D), where ρ(D) is
a tight bound on the price of anarchy for non-atomic network congestion games
with latency functions in class D introduced by Correa et al. [45], see also
Section 2.2.1.1. In particular, this implies that the price of stability of symmetric
network congestion games with cost functions in D is at most ρ(D). For example,
this parameter equals 4/3 for the class of affine functions and (27 + 6

√
3)/23 ≈

1.63 for quadratic functions. These type of bounds fall within Roughgarden’s
smoothness framework [155]. Further, Fotakis [80] also shows that for symmetric
network congestion games on extension-parallel graphs, every Nash equilibrium
is a Rosenthal minimizer and thus the upper bound of ρ(D) even holds for the
price of anarchy of these games.

More recently, Feldman et al. [77] study the price of anarchy in large games.
Basically, they show that the smoothness parameter introduced in [155] also
provides an upper bound on the price of anarchy of many games (or mechanisms)
when the number of involved players grows large.

Extensions and variations of Rosenthal’s model. Moreover, in recent years, sev-
eral extensions of Rosenthal’s congestion game were proposed to incorporate
aspects which are not captured by the standard model. For example, these ex-
tensions include risk sensitivity of players in uncertainty settings [146], altruistic
player behavior [23, 28] and congestion games with taxes [22]. We elaborate
in more detail on these extensions in Section 3.4.3. These games were studied
intensively with the goal to obtain a precise understanding of the price of anarchy.

We introduce a new model, which we term perception-parameterized conges-
tion games, that capture various extensions of Rosenthal’s congestion game model
introduced recently. The key idea here is to parameterize both the perceived cost
of each player and the social cost function. Intuitively, each player perceives the
load induced by the other players by an extent of ρ ≥ 0, while the system designer
estimates that each player perceives the load of all others by an extent of σ ≥ 0.

We illustrate our model by means of a simple example; formal definitions of
our perception-parameterized congestion games are given in Section 3.4. Suppose
we are given a set of m resources and that every player has to choose precisely

62 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

one of these resources. The cost of a resource e is given by a cost function ce
that maps the load on e to a real value. In the classical setting, the load of
a resource e is defined as the total number of players xe using e. That is, the
cost that player i experiences when choosing resource e is ce(xe). In contrast, in
our setting players have different perceptions of the load induced by the other
players. More precisely, the perceived load of player i choosing resource e is
1 + ρ(xe− 1), where ρ ≥ 0 is some parameter.2 Consequently, the perceived cost
of player i for choosing e is ce(1 + ρ(xe − 1)). Note that as ρ increases players
care more about the presence of other players. In addition, we introduce a similar
parameter σ ≥ 0 for the social cost objective, i.e., the social cost is defined as∑
e ce(1 + σ(xe − 1))xe. Intuitively, this can be seen as the system designer’s

estimate of how each player perceives the load of the other players.

3.1.1 Our contributions

In order to explain our contributions for the classical Rosenthal model [150],
we first introduce some terminology. We consider polytopal congestion games in
which the incidence vectors of the strategies of player i are given by the binary
vectors in a polytope Pi = {x : Ax ≤ bi}, where A is an integral matrix and bi is
an integral vector. Given the polytopes of all players, a strategy profile naturally
corresponds to an integral vector in the aggregation polytope PN =

∑
i Pi. We

identify two general properties of the aggregation polytope PN which are sufficient
for our results to go through, namely the integer decomposition property (IDP)
and the box-totally dual integrality property (box-TDI) (formal definitions are
given below). The integer decomposition property is needed to decompose a
load profile in PN to a respective strategy profile of the players. Intuitively, the
box-TDI property ensures that the intersection of a polytope with an arbitrary
integer box is an integral polytope. This property is mostly needed for technical
reasons.

Our main contributions for polytopal congestion games are as follows:

1. We show that the price of stability of polytopal congestion games satisfy-
ing IDP and box-TDI is bounded by ρ(D) (Section 3.3.1). To this aim, we
introduce a novel structural property (which we term the symmetric dif-
ference decomposition property) and show that it is satisfied by our games.
By exploiting this property, we can generalize the bound of Fotakis [80] for
symmetric network congestion games to the (much) larger class of poly-
topal congestion games satisfying IDP and box-TDI. We also prove that
our bound is tight.

2. We derive an efficient algorithm for computing a feasible load profile mini-
mizing Rosenthal’s potential for polytopal congestion games satisfying IDP
and box-TDI (Section 3.3.2). The time complexity of this algorithm is
polynomial in the number of players and resources, the encoding length of

2In general, the perception parameter ρ might be player-specific.

3.1. Introduction 63

∑
i bi and the complexity of a separation oracle for the aggregation poly-

tope. This generalizes the framework of [54] for symmetric TU congestion
games and non-symmetric matroid congestion games, both being special
cases of our polytopal congestion games.

3. We give several examples of polytopal congestion games satisfying IDP
and box-TDI (Section 3.3.3). These examples include symmetric TU con-
gestion games, common source network congestion games, non-symmetric
matroid congestion games and certain symmetric matroid intersection con-
gestion games (in particular, r-arborescences and strongly base-orderable
matroids).

4. We show that our techniques can be used to extend some results on the
computation and inefficiency of strong equilibria of the ‘bottleneck variant’
of our polytopal congestion games (Section 3.3.4). In particular, we show
that strong equilibria can be computed in polynomial time for polytopal
bottleneck congestion games satisfying IDP and box-TDI (see below for
definitions). This generalizes a result by Harks et al. [99].

For perception-parameterized congestion games with affine cost functions, we
give unifying price of anarchy bounds, as well as novel price of stability bounds.
Applications can be found in Section 3.4.3; see also Table 3.1 for a comparison
with existing work.

1. We prove that the price of anarchy can be upper bounded by

max

{
ρ+ 1,

2ρ(1 + σ) + 1

ρ+ 1

}
(3.1)

for a certain range of pairs ρ and σ ≥ 1/2 (see Theorems 3.25 and 3.26 for
details on these ranges). We prove that this bound is tight in general. For
the special case of symmetric network congestion games we show that the
bound of (2ρ(1 + σ) + 1)/(ρ+ 1) for the price of anarchy is asymptotically
tight, for the range of ρ and σ where the maximum attains this value (see
Figure 3.1).

2. We show that the price of stability can be upper bounded by√
σ(σ + 2) + σ√

σ(σ + 2) + ρ− σ
(3.2)

for a certain range of ρ and σ (Theorem 3.30). We also show that this
bound is asymptotically tight in general. The tightness does not hold for
symmetric network congestion games, in contrast to the price of anarchy
bound. This follows from [80], where (as also mentioned in the introduction)
it is shown that the price of stability for symmetric network congestion
games with affine cost functions is 4/3 (when ρ = σ = 1). This is strictly
smaller than the bound of 1 + 1/

√
3 for general games with affine cost

functions [21].

64 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

σ0 1
2 1

1

ρ

ρ = σ

ρ = 2σ

ρ = h(σ)

ρ+ 1

2ρ(1 + σ) + 1

ρ+ 1

?

Figure 3.1: The bound ρ+1 holds for ρ ≥ 2σ ≥ 1. The bound (2ρ(1+σ)+1)/(1+
ρ) holds for σ ≤ ρ ≤ 2σ. Basically, this bound also holds for h(σ) ≤ ρ ≤ σ, but
our proof of Theorem 3.26 only works for a discretized range of σ (hence the
vertical dotted lines in this area). The function h is given in Theorem 3.26.

Remark 3.1. The inefficiency bounds that we present here for our so-called per-
ception parameterized congestion games can be cast in the form of a smoothness
argument (see Section 1.2.3). We do not do this explicitly, as this is closely
related to, e.g., the work in [28] where this is done for congestion games with
altruistic players.

3.1.2 Related work

We provide some additional related work that is not given in the introduction.
The inefficiency of pure Nash equilibria in congestion games is fairly well

understood, in particular for polynomial cost functions. Awerbuch, Azar and
Epstein [8], as well as Christodoulou and Koutsoupias [34], show that the price
of anarchy of congestion games with affine cost functions is upper bounded by
5/2, and that this bound is tight in general. Correa et al. [44] show that tightness
remains true for the special class of symmetric network congestion games. Aland
et al. [4] provide a tight bound on the price of anarchy of congestion games
where the cost functions are polynomials of degree at most d. Their bound
roughly grows as dΘ(d).3 For the price of stability in congestion games with
affine cost functions, Caragiannis et al. [21] give an upper bound of 1 + 1/

√
3,

which is tight by a lower bound construction of Christodoulou and Koutsoupias
[33]. Christodoulou and Gairing [32] provide tight bounds for the price of stability
for congestion games where the cost functions are polynomials of degree at most
d. Their bound grows roughly as d + 1, which is much better than the bound

3For real-valued functions f : R → R, we write f = Θ(g) if there exist constants c1 and c2
such that c1g(x) ≤ f(x) ≤ c2g(x) for all x ∈ R≥0.

3.1. Introduction 65

for the price of anarchy in games with polynomial cost functions as mentioned
earlier.

Our inefficiency results for perception-parameterized congestion games with
affine cost functions unify many price of anarchy results in the literature concern-
ing extensions and variations of Rosenthal’s model. An overview (also including
our novel price of stability results) is given in Table 3.1. We informally discuss

Model Parameters PoA Ref. PoS Ref.

Classical ρ = σ = 1 5
2 [34] 1.577 [22]

Altruism (1) σ = 1,
1 ≤ ρ ≤ 2

4ρ+1
1+ρ [23, 28]

√
3+1√

3+ρ−1
[∗]

Altruism (2) σ = 1,
2 ≤ ρ ≤ ∞

ρ+ 1 [28] – –

Risk neutral σ = ρ = 1
2

5
3 [146] 1.447 [∗]

Wald’s minimax σ = 1
2 , ρ = 1 2 [20, 146] 1 [∗]

Universal taxes σ = 1,
ρ = h(1)

2.155 [22] 2.013 [∗]

Uniform affine CG − ∞ [∗] 2 [∗]

Table 3.1: An overview of our (tight) price of anarchy and price of stability results
for certain values of ρ and σ. Here h(1) ≈ 0.625 (see Theorem 3.26 for a formal
definition). The respective references where these bounds were established first
are given in the column “Ref.”; an asterisk indicates that this result is new.

two models that are mentioned in Table 3.1 in order to provide some background.
Formal descriptions of all models, and an explanation of why they correspond to
the respective values of ρ and σ as given in Table 3.1, are given in Section 3.3.3.

We first discuss the incorporation of altruistic behavior [23, 28]. Instead of
players being completely selfish, it is assumed they also care about the overall
player population to some extent. This can be modeled by defining the altruistic
player cost to be a convex combination of the player cost, in the classical selfish
setting, and the social cost. That is, for α ∈ [0, 1], an α-altruistic player wants
to minimize the cost function

Cαi (s) = (1− α)Ci(s) + αC(s),

where Ci is the original cost of player i, and C(s) the social cost. Roughly
speaking, the parameter α models to what extent players take into account the
social cost in their altruistic player cost.

The second model we consider is that in [146], where congestion games with
a (randomized) scheduling policy are studied. After every player has chosen a
subset of resources to which they send a (unit weight) job each, a scheduler de-
termines for every resource, using a randomized scheduling policy, in which order

66 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

the players’ jobs are processed. The randomization in the scheduling policy gives
rise to uncertainty in the player costs. How do players deal with this uncer-
tainty? Various player attitudes towards this uncertainty, and their effect on the
inefficiency of pure Nash equilibria, are studied. Roughly speaking, interpreted
in our setting, the parameter ρ models how risk-taking or risk-averse players are.
That is, are they feeling lucky and expect to be scheduled relatively early on all
the resources to which they have sent jobs (corresponding to a low value of ρ);
or are they pessimistic and expect to be scheduled relatively late (corresponding
to a high value of ρ)? The authors of [146] essentially provide price of anarchy
bounds for two specific values of ρ (with σ = 1/2).4

3.1.3 Outline

In Section 3.2 we first give all the necessary preliminaries regarding Rosenthal’s
congestion game model, as well as some polytopal preliminaries. In Section 3.3
we then present our results for polytopal congestion games. In particular, in
Section 3.3.4 we discuss the implications for bottleneck congestion games. In
Section 3.4 we provide a description of our perception-parameterized congestion
games, and our unifying inefficiency bounds.

3.2 Preliminaries

A congestion game Γ is given by a tuple (N,E, (Si)i∈N , (ce)e∈E), where N = [n]
is a finite set of players, E = [m] is a finite set of resources (or facilities), Si ⊆ 2E

is a set of strategies of player i ∈ N , and ce : R≥0 → R is a cost function of
resource e ∈ E. Unless stated otherwise, the cost functions are assumed to be
non-negative and non-decreasing.

For a strategy profile s = (s1, . . . , sn) ∈ ×iSi, we define xe(s) as the number
of players using resource e, i.e., xe(s) = |{i ∈ N : e ∈ si}|. We call x(s) =
(xe(s))e∈E the load profile corresponding to strategy profile s. More generally, we
say that y ∈ Nm is a fesible load profile for the tuple (N,E, (Si)) if there is some
strategy profile s such that y = x(s).

The cost of player i ∈ N under a strategy profile s = (s1, . . . , sn) ∈ ×iSi is
given by Ci(s) =

∑
e∈si ce(xe(s)). If Si = Sj for all i, j ∈ N , the game is called

symmetric. The social cost C(s) of a strategy profile refers to the sum of the
players’ individual costs, i.e.,

C(s) =
∑
i∈N

Ci(s) =
∑
e∈E

xe(s)ce(xe(s)).

We say that Φ : ×iSi → R is an exact potential function for a congestion
game Γ if for every strategy profile s ∈ ×iSi, for every player i ∈ N and every

4The parameter ρ (or an analogue for that matter) does not appear in [146], but is used
here to illustrate how the results in [146] can be interpreted, more general, in our model.

3.2. Preliminaries 67

unilateral deviation s′i ∈ Si of i it holds:

Φ(s)− Φ(s−i, s
′
i) = Ci(s)− Ci(s−i, s′i).

Rosenthal [150] shows that

Φ(s) =
∑
e∈E

xe(s)∑
k=1

ce(k) (3.3)

is an exact potential function. Subsequently, we refer to this potential function
simply as Rosenthal’s potential. Further, a strategy profile minimizing Rosen-
thal’s potential is said to be a Rosenthal minimizer.

3.2.1 Inefficiency measures and smoothness parameter

A strategy profile s is a pure Nash equilibrium if for every player i ∈ N it holds
that Ci(s) ≤ Ci(s

′
i, s−i) for all s′i ∈ Si. Further, a strategy profile s is a strong

equilibrium if for every group of players I ⊆ N and every deviation s′I ∈ ×i∈ISi
of the players in I, it holds that Ci(s) ≤ Ci(s′I , s−I) for some i ∈ I.

The price of anarchy (PoA) and the price of stability (PoS) of a game Γ are
defined as

PoA(Γ) =
maxs∈NE(Γ) C(s)

mins∗∈×iSi C(s∗)
and PoS(Γ) =

mins∈NE(Γ) C(s)

mins∗∈×iSi C(s∗)
,

where NE(Γ) denotes the set of all pure Nash equilibria of Γ. For a collection of
games H we define

PoA(H) = sup
Γ∈H

PoA(Γ) and PoS(H) = sup
Γ∈H

PoS(Γ).

These notions naturally generalize to the solution concept of strong equilibria.

Correa et al. [45] show that for non-atomic network congestion games (see also
Section 2.2) with cost functions in class D the price of anarchy of an instance is
at most

ρ(D) := (1− β(D))−1, where β(D) = sup
d∈D

sup
x≥y>0

y(d(x)− d(y))

xd(x)
. (3.4)

The value of ρ(D) is well-understood for many important classes of cost functions.
For example, let

Dd = {g : R≥0 → R≥0 : g(µx) ≥ µdg(x) ∀µ ∈ [0, 1]}.

In particular, Dd contains all polynomial cost functions with non-negative coef-
ficients and maximum degree d. We have

ρ(Dd) =

(
1− d

(d+ 1)(d+1)/d

)−1

.

68 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

The parameter ρ(D) plays a crucial role in bounding the price of stability of our
congestion games.

We say that a class of cost functions D is closed under dilations if for every
d ∈ D and for every γ ∈ R≥0, dγ ∈ D, where dγ(x) = d(γx) for all x ≥ 0.

3.2.2 Polytopes

We review some basic definitions and results from polyhedral combinatorics which
are used in this chapter (see, e.g., [160] for a more detailed exposition).

A polytope P ⊂ Rm is the convex hull of a finite set {q1, . . . , qs} ⊂ Qm, or,
alternatively, P = {x : Ax ≤ b} is a bounded set described by a system of rational
inequalities.5 For a non-zero vector c with δ = max{cTx : Ax ≤ b}, the affine
hyperplane {x : cTx = δ} is called a supporting hyperplane of P . A subset F of
P is called a face if F is the intersection of P with some supporting hyperplane
of P , or F = P . The minimal faces of P , i.e., faces not contained in another
face, are the vertices (or extreme points) of P . Moreover, an edge of P is a one-
dimensional face of P (which is the line-segment between two vertices). We say
that P is integral if all its extreme points are integral vectors. P is said to be
box-integral if the intersection of P with any integral box, i.e., P ∩{x : c ≤ x ≤ d}
for arbitrary integral c and d, yields an integral polytope.

A matrix A ∈ {0,±1}r×m is totally unimodular (TUM) if the determinant of
each square submatrix of A is in {0,±1}. If A is totally unimodular and b ∈ Zm
is an integer vector, then the polyhedron P = {x : Ax ≤ b} is integral [160,
Theorem 19.1].

The work [65] introduced the powerful notion of total dual integrality. A
rational system Ax ≤ b with A ∈ Qr×m and b ∈ Qr is totally dual integral (TDI)
if for every integral c ∈ Zm, the dual of minimizing cTx over Ax ≤ b, i.e.,

max{yTb : y ≥ 0, yTA = cT}, (3.5)

has an integer optimum solution y, if it is finite. If Ax ≤ b is a TDI-system and
b is integral, then the polyhedron P = {x : Ax ≤ b} is integral [160, Corollary
22.1c]. Note that TDI is a weaker sufficient condition for the integrality of P
than TUM.

The system Ax ≤ b is box-totally dual integral (box-TDI) if the system Ax ≤
b, l ≤ x ≤ u is TDI for all rational vectors l and u. We say that a polytope P
is box-TDI, if it can be described by a box-TDI system. If P has some box-TDI
describing system, then every TDI-system describing P is also box-TDI [160,
Theorem 22.8]. We will use the following properties of box-TDI descriptions:

Proposition 3.2. [160, Section 22.5] The following statements are equivalent:
(i) The system Ax ≤ b, x ≥ 0 is box-TDI.

(ii) The system Ax+ µ = b, µ ≥ 0, x ≥ 0 is box-TDI.
(iii) The system Ax ≤ αb, x ≥ 0 is box-TDI for all α ≥ 0.

5An inequality aTx ≤ b is rational if a ∈ Qm and b ∈ Q.

3.2. Preliminaries 69

(iv) The system aζ0 +Ax ≤ b is box-TDI, where a is a column of A and ζ0 is a
new variable.

Moreover, if a polytope P is box-integral, then every edge of P is in the direction
of a {0,±1}-vector.6

Finally, consider a finite collection of integral polytopes (Pi)i∈N , where Pi ⊆
Rm for every i ∈ N = [n], with a common constraint matrix but possibly different
right-hand side vectors, i.e., there exists a matrix A such that

Pi = {x : Ax ≤ bi} ⊆ Rm.

We define the aggregation polytope PN induced by (Pi)i∈N as

PN =

{
y : Ay ≤

∑
i∈N

bi

}
⊆ Rm.

The aggregation polytope is said to have the integer decomposition property (IDP)
if every integral z ∈ PN can be written as

z =

n∑
i=1

zi, where zi ∈ Pi ∩ Zm for all i = 1, . . . , n.

Note that in the symmetric case bi = bj for all i, j ∈ N this definition reduces
to the integer decomposition property for a polytope PN = nP as introduced in
[10]. Moreover, if PN has the IDP, then indeed PN =

∑
i Pi, where the latter

summation is the Minkowski sum of polytopes.

Optimization over polytopes

We discuss some classical results regarding the problem of optimizing a linear
function over a polytope, i.e., we consider the problem

min cTx s.t. x ∈ P (3.6)

for some c ∈ Qm and polytope P ⊂ Rm. We first introduce some additional
(computational) notions [97].

The encoding length of an integer z ∈ Z, i.e., the space needed to represent z
in binary representation, is

〈z〉 = 1 + dlog2(z + 1)e.

The encoding length of a rational number p/q ∈ Q is 1+ dlog2(p+1)e+ dlog2(q+
1)e. The encoding length of a vector a ∈ Qm is 〈a〉 =

∑m
i=1〈ai〉, and the encoding

length of an inequality aTx ≤ b is 〈a〉+ 〈b〉, for a ∈ Qm and b ∈ Q.

6That is, the edge is of the form {a+ λb : 0 ≤ λ ≤ 1} for vertices a, a+ b of P where b is a
{0,±1}-vector.

70 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

For a positive integer φ, we say that polytope P has facet-complexity at most
φ if there exists a system of inequalities with rational coefficients describing P
such that every inequality has encoding length at most φ. A triple (P ;m,φ) is
called a well-described polytope if the polytope P ⊂ Rm has facet-complexity at
most φ.

Finally, a (strong) separation oracle for P is an algorithm that, given a vector
y ∈ Qm, decides whether y ∈ P or not, and in the latter case returns a vector
a ∈ Qm such that aTx < aTy for all x ∈ P . If a separation oracle is used as a
subroutine in an algorithm, this is referred to as a call to the oracle.

The following theorem summarizes a fundamental result in [97, 82]. We give
a formulation in terms of polytopes based on Theorem 6.6.5 in [97].

Theorem 3.3. There exists an algorithm that, for any well-described polytope
(P ;m,φ) specified by a strong separation oracle, and for given c ∈ Qm,

(i) solves (3.6), and
(ii) finds an optimum vertex solution of (3.6) if one exists.

The number of elementary arithmetic operations7 and calls of the separation or-
acle executed by the algorithm is bounded by a polynomial in φ. All arithmetic
operations are performed on numbers whose encoding length is bounded by a poly-
nomial in φ+ 〈c〉.

We give two remarks related to Theorem 3.3.

Remark 3.4. For notational convenience, we use poly(·) to denote a function that
is polynomial in all its arguments. The algorithm of Theorem 3.3 is said to run
in strongly polynomial time (for a class of problems) if the facet-complexity φ can
be upper bounded by a polynomial in m, i.e., φ = poly(m).

Remark 3.5. We do not always explicitly mention that all arithmetic operations
are performed on numbers whose encoding length is bounded by a polynomial in
φ+ 〈c〉. In all subsequent computational statements relying on Theorem 3.3, we
implicitly assume that this property holds.

3.2.3 Matroids

We introduce some general terminology and facts for matroids; a more extensive
treaty of matroids can be found, e.g., in [161]. Let E = [m] be a finite set of
elements and I ⊆ 2E be a collection of subsets of E (called independent sets).
The pair M = (E, I) is a matroid if the following three properties hold:

(i) ∅ ∈ I,
(ii) if A ∈ I and B ⊆ A, then B ∈ I,
(iii) if A,B ∈ I and |A| > |B|, then there exists an a ∈ A\B such that B+a ∈ I.
An independent set B ∈ I of maximum size is called a basis. We use B to denote
the set of all bases of M. The matroid M also has a rank function r : 2E → [m]

7Here by elementary arithmetic operations we mean addition, substraction, multiplication,
division and comparison.

3.3. Polytopal congestion games 71

which maps every subset A ⊆ E to the cardinality of the largest independent set
contained in A.

The base matroid polytope is given by

PM = {x : x(A) ≤ r(A) ∀A ⊂ E, x(E) = r(E), x ≥ 0},

where x(A) =
∑
a∈A xa for all A ⊆ E. It is the convex hull of the incidence

vectors of the bases in B [161]. If in the description above the equality x(E) =
r(E) is replaced by x(E) ≤ r(E), we obtain the independent set polytope which
is the convex hull of the incidence vectors of the independent sets.

We assume that the matroid is given by an independence oracle that takes as
input a subset A ⊆ 2E and returns whether or not A ∈ I. Given an independence
oracle, we can determine in time polynomial in |E| and the complexity of the
oracle, whether a set is a basis and what the rank of a set is. Further, there exists a
separation oracle for PM that runs in time polynomial in |E| and the complexity
of an independence oracle. This follows from the fact that the most violated
inequality problem can be solved in time polynomial in |E| and the complexity of
an independence oracle. The most violated inequality problem takes as input a
vector x ∈ Qm and returns whether or not x ∈ P , and if not, it returns a subset
A for which r(A)− x(A) is minimized, see, e.g., [161, Section 40.3].

Given two matroids M1 and M2 on a common ground set E, the polytope

PM1,M2 = {x : x(A) ≤ ri(A)∀A ⊂ E, x(E) = ri(E) for i = 1, 2, x ≥ 0} (3.7)

is the convex hull of the common bases of matroids M1 and M2, see, e.g., [161,
Corollary 41.12d]. It follows directly that PM1,M2 also has a separation oracle
which runs in time polynomial in |E| and the complexity of the independence
oracles for M1 and M2.

3.3 Polytopal congestion games

We consider polytopal congestion games Γ = (N,E, (Si)i∈N , (ce)e∈E) with N =
[n] and E = [m], where the set of strategies Si of each player i ∈ N is given
implicitly by a polytopal representation. More precisely, let Xi be the finite set
of all incidence vectors of the strategies of player i, i.e., for every i ∈ N ,

Xi = {χi ∈ {0, 1}m : χie = 1 iff e ∈ si for si ∈ Si}.

The polytope Pi representing the strategies of player i is defined as the convex
hull of Xi, i.e., Pi = conv(Xi) ⊆ [0, 1]m. We assume that Pi is given by

Pi = {x : Ax ≤ bi} ⊆ [0, 1]m,

where A ∈ Zr×m is an integral r ×m-matrix and bi ∈ Zr is an integral vector.
Note that Xi = Pi ∩{0, 1}m. For notational convenience, we subsequently use Si
also to refer to the set of incidence vectors Xi; no confusion shall arise.

72 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

As defined above, the aggregation polytope induced by (Pi)i∈N is

PN =

{
y : Ay ≤

∑
i∈N

bi

}
⊆ [0, n]m.

We say that (N,E, (Si)i∈N) is the polytopal tuple given by (Pi)i∈N , where
Si = Pi ∩ {0, 1}m. If bi = bj = b for all i, j ∈ N , the tuple is called symmetric
and denoted by (N,E,S) where S = P ∩ {0, 1}m, with P = {x : Ax ≤ b}.
If additionally we equip the tuple with cost functions (ce)e∈E , we call Γ =
(N,E, (Si)i∈N , (ce)e∈E) the polytopal congestion game given by (Pi)i∈N . For
notational convenience, we often omit the explicit reference of the domain of the
indices.

Two crucial properties: IDP and box-TDI

Let Γ = (N,E, (Si), (ce)) be a polytopal congestion game with aggregation poly-
tope PN . We identify two crucial properties that the aggregation polytope PN
has to satisfy for our results to go through:

(i) PN has the integer decomposition property (IDP).
(ii) PN is box-totally dual integral (box-TDI).

If both properties are satisfied, we also say that Γ is a polytopal congestion
game satisfying IDP and box-TDI.

Remark 3.6. Note that for a symmetric polytopal congestion games Γ =
(N,E,S, (ce)) given by a common polytope P , we have PN = nP = {y : y/n ∈
P}. From Proposition 3.2(iii), it follows that the aggregation polytope PN has
a box-TDI description if and only if P has a box-TDI description. In particu-
lar, whenever we require below that a symmetric polytopal congestion game is
box-TDI, then all we need is it that the common polytope P is box-TDI.

The IDP is crucial to establish a correspondence between feasible load profiles
for (N,E, (Si)) and the integral vectors in PN .

Proposition 3.7. If the aggregation polytope PN of a polytopal tuple (N,E, (Si))
has the IDP, then the feasible load profiles of the tuple correspond precisely to the
integral vectors in PN .

Proof. Let s = (s1, . . . , sn) ∈ ×iSi be a strategy profile and let x be the load
profile corresponding to s. It follows directly that x ∈ PN by definition of PN .
Moreover, because of the IDP any integral vector z in PN can be decomposed as
z =

∑n
i=1 z

i where zi ∈ Pi ∩ Zm for all i = 1, . . . , n. This implies that for every
i the vector zi is the incidence vector of some strategy of player i and thus z is
a feasible load profile.

The main reason as to why box-TDI is useful, is that it serves as a sufficient
condition to show that the polytope it describes is box-integral.

3.3. Polytopal congestion games 73

Proposition 3.8. If the system Ax ≤ b describing a polytope P is box-TDI and
b is integral, then P is box-integral.

Proof. By assumption, the describing system Ax ≤ b of P is box-TDI. Thus the
system Ax ≤ b, l ≤ y ≤ u is TDI for all rational vectors l and u. In particular,
Ax ≤ b, c ≤ y ≤ d is TDI for arbitrary integral vectors c and d. Because b, c and
d are integral, we can conclude that the polytope P ∩ {y : c ≤ y ≤ d} is integral
(see, e.g., [160, Corollary 22.1c]).

It seems that most 0/1-polytopes for which the integer decomposition prop-
erty is known in the literature, also have a box-TDI describing system. We are
not aware of any result showing that this is true in general, but it would imply
that box-TDI, as an assumption, is redundant in all our statements below.

3.3.1 Price of stability

The following is the main result of this section. Recall that ρ(D) is defined as in
(3.4) and refers to the price of anarchy of non-atomic network congestion games
with cost functions in class D.

Theorem 3.9. Let Γ = (N,E, (Si), (ce)) be a polytopal congestion game satis-
fying IDP and box-TDI with cost functions in class D. Then PoS(Γ) ≤ ρ(D).
Further, this bound is (asymptotically) tight even for symmetric singleton con-
gestion games, if D contains all non-negative constant functions and is closed
under dilations.

Proof overview. The remainder of this section is devoted to the proof of
Theorem 3.9. We first introduce a novel structural property, which we term the
symmetric difference decomposition property. We then show that the IDP and
box-TDI properties of the aggregation polytope are sufficient to establish that
the polytopal congestion game satisfies the symmetric difference decomposition
property. This in turn allows us to adapt the proof of Fotakis [80] to bound the
price of stability of these games.

3.3.1.1 Symmetric difference decomposition property

Our novel property is defined as follows:

Definition 3.10. A tuple (N,E, (Si)) satisfies the symmetric difference decom-
position property (SDD) if for all feasible load profiles f and g, there exist vectors
a1, . . . , aq ∈ {0,±1}m such that g − f =

∑q
k=1 a

k, and for all k = 1, . . . , q,

(i) the load profile f + ak is feasible, and
(ii) ak satisfies

ake = −1 ⇒ fe − ge > 0 and ake = 1 ⇒ fe − ge < 0. (3.8)

74 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

As an example, let us consider symmetric network congestion games, where
the common strategy set of all players is the set of all directed simple s, t-paths
in some directed graph G = (V,A) with s, t ∈ V . Here each feasible load profile
corresponds to an integral feasible s, t-flow of value n = |N |. The symmetric
difference of two flows f and g can be written as the sum of unit circuit flows
on cycles.8 The incidence vectors of these unit circuit flows correspond to the
vectors ak in Definition 3.10.

The following theorem establishes the symmetric difference decomposition
property for polytopal congestion games satisfying IDP and box-TDI.

Theorem 3.11. If the aggregation polytope PN of a polytopal tuple (N,E, (Si))
satisfies IDP and box-TDI, then the tuple has the symmetric difference decompo-
sition property.

Proof. We start by adding slack-variables to the system Ay ≤
∑
i∈N bi describing

PN . Note that by Proposition 3.2(ii) box-TDI is preserved under adding slack
variables. As a result, we obtain the polytope

QN =

{
(y, µ) : Ay + µ =

n∑
i=1

bi, µ ≥ 0, y ≥ 0

}
for which its describing system is box-TDI. Also, QN is integral.

Let f and g be two feasible load profiles with f 6= g. By Proposition 3.7, we
have f, g ∈ PN . Therefore, there are non-negative integral slack vectors τ, σ such
that f ′ = (f, τ), g′ = (g, σ) ∈ QN . Observe that τ and σ are integral because of
the integrality of A,

∑
i bi and f and g.

Note that the pairs f ′ = (f, τ) and g′ = (g, σ) are vectors in Zm+r since A
is an r ×m-matrix. Let c, d ∈ Zm+r be vectors defined by cj = min{f ′j , g′j} and
dj = max{f ′j , g′j} for j = 1, . . . , r + m, and let B be the integral box defined by
B = {z : c ≤ z ≤ d} ⊆ Rm+r. We first prove the following claim.

Claim 3.12. The polytope QN ∩ B is integral and every edge of QN ∩ B is in
the direction of a {0,±1}-vector.

Proof. The integrality follows from box-TDI of the integral system QN . For the
second part of the claim, we first show that QN ∩ B is box-integral. Note that
QN is box-integral by Proposition 3.8. Let B′ = {x : γ ≤ x ≤ δ} ∈ Zm+r

be an arbitrary integral box. Note that (QN ∩ B) ∩ B′ = QN ∩ (B ∩ B′) and
that B ∩ B′ is again an integral box, since B is integral as well (because f ′ and
g′ are integral). It follows that QN ∩ (B ∩ B′) is an integral polytope. Thus,
(QN ∩ B) ∩ B′ is integral which proves that QN ∩ B is box-integral. The claim
now follows from Proposition 3.2.

8A unit circuit flow is a {0,±1}-flow that satisfies flow-conservation at every node, including
s and t.

3.3. Polytopal congestion games 75

Note that f ′, g′ ∈ QN ∩B. Further, both f ′ and g′ are extreme points of this
polytope because they are extreme points of the box B. We now fix some edge of
QN ∩B containing f ′. Such an edge must exist because QN ∩B contains at least
two elements (since f ′ 6= g′). Let (a1)′ = (a1, µ1) be the non-zero {0,±1}-vector
describing the direction of the edge.9 Since QN ∩ B is an integral polytope, we
can show that f ′ + (a1)′ ∈ QN ∩ B. To see this, let h(λ) = f ′ + λ · (a1)′ be a
parameterization of the edge for some range 0 ≤ λ ≤ λ∗, where h′ = h(λ∗) is the
other extreme point of the edge (a1)′. Since f ′ is integral and (a1)′ a {0,±1}-
vector, it must be that λ∗ is a strictly positive integer. Thus, f ′+(a1)′ ∈ QN ∩B,
as claimed.

It follows that A(f + a1) + (τ + µ1) =
∑
i bi. We have Aa1 + µ1 = 0 because

Af + τ =
∑
i bi. Moreover, by construction of the box B it follows that for

j = 1, . . . , r +m,

(a1)′j = −1 ⇒ f ′j − g′j > 0 and (a1)′j = 1 ⇒ g′j − f ′j > 0. (3.9)

Exploiting that Aa1 + µ1 = 0, it now also follows that g′ − (a1)′j ∈ QN ∩ B.
To see this, note that

A(g − a1) + (σ − µ1) = Ag + σ − (Aa1 + µ1) =
∑
i bi.

Moreover, we also have g′− (a1)′ ≥ 0 by construction, since if (a1)′j = 1 for some
j then g′j > f ′j ≥ 0, so in particular g′j − 1 ≥ 0 (because of the integrality of g′j).

We can now apply the same argument to the vectors f ′ and g′− (a1)′ in order
to obtain a vector (a2)′ satisfying (3.9) and for which f ′+(a2)′, g′−(a1)′−(a2)′ ∈
QN . Repeating this procedure we find vectors (a1)′, . . . , (aq)′ satisfying (3.9), and
such that g′ − f ′ =

∑q
k=1(ak)′ with f ′ + (ak)′ ∈ QN for k = 1, . . . , q.10

We argue that this process terminates. For the `-th step of this procedure,
we have by construction of the (ak)′

T (`) =

∣∣∣∣∣∣∣∣
(
g′ −

∑̀
k=1

(ak)′

)
− f ′

∣∣∣∣∣∣∣∣
1

<

∣∣∣∣∣∣∣∣
(
g′ −

`−1∑
k=1

(ak)′

)
− f ′

∣∣∣∣∣∣∣∣
1

= T (`− 1)

where || · ||1 is the `1-norm. Since f ′, g′ and the ak are all integral this guarantees
that the expression T (`) decreases by at least one in every step.

We conclude the proof by showing that f and g can be decomposed according
to Definition 3.10. We have (ak)′ = (ak, µk) as defined before. It then follows that
a1, . . . , aq are vectors satisfying (3.8) such that g−f =

∑q
k=1 a

k with f+ak ∈ PN
for k = 1, . . . , q. Note that ak might be the zero-vector, if (ak)′ only contained
non-zero elements in the part of the vector corresponding to slack variables.
These ak can be left out.

It remains to show that f + ak corresponds to a feasible strategy profile for
k = 1, . . . , q. This follows directly from the fact that PN has the IDP. The
decomposition yields the strategies of the players.

9Here, µ1 corresponds to the slack variables, and a1 to the original variables.
10This construction is essentially a conformal circuit decomposition (see, e.g., [142]).

76 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

3.3.1.2 Upper bound on the price of stability

We prove the upper bound on the price of stability stated in Theorem 3.9. We
first prove the following lemma, whose proof relies on the symmetric difference
decomposition property.

Lemma 3.13. Let (N,E, (Si)) be a polytopal tuple that satisfies the symmetric
difference decomposition property and let (ce)e∈E be arbitrary cost functions. Let
f be a feasible load profile that minimizes Rosenthal’s potential Φ(·). Then for
every feasible load profile g

∆(f, g) :=
∑

e∈E: fe>ge

(fe − ge)ce(fe)−
∑

e∈E: fe<ge

(ge − fe)ce(fe + 1) ≤ 0. (3.10)

Proof. Let f be a global minimizer of Rosenthal’s potential and let g be an
arbitrary feasible load profile. Then by the SDD property, there exist vectors
a1, . . . , aq such that g − f =

∑q
k=1 a

k for some q. Moreover, for all k = 1, . . . , q

Φ(f)− Φ(f + ak) =
∑

e: ake=−1

ce(fe)−
∑

e: ake=1

ce(fe + 1) ≤ 0,

where the inequality holds because f minimizes Rosenthal’s potential Φ. By
adding up these inequalities for all k = 1, . . . , q, we obtain that ∆(f, g) ≤ 0. To
see this, note that if e ∈ E with fe > ge then there are precisely fe − ge vectors
ak with ake = −1; similarly, if e ∈ E with ge > fe then there are precisely ge− fe
vectors ak with ake = 1.

We can now prove the upper bound on the price of stability.

Proof of Theorem 3.9, upper bound. The upper bound proof follows a similar line
of arguments as the proof of Lemma 3 in [80]. We repeat the arguments here for
the sake of completeness.

Let f be a minimizer of Rosenthal’s potential and let g an arbitrary feasible
load profile. Note that f is a pure Nash equilibrium.

Consider a resource e ∈ E with fe > ge. We have

fece(fe) = gece(fe) + (fe − ge)ce(fe)
≤ gece(ge) + β(D)fece(fe) + (fe − ge)ce(fe), (3.11)

where the inequality follows from the definition of β(D) in (3.4), exploiting that
fe > ge ≥ 0 and ce ∈ D.

Next, consider a resource e ∈ E with fe < ge. We have

fece(fe) = gece(ge)− gece(ge) + fece(fe)

≤ gece(ge)− (ge − fe)ce(fe + 1), (3.12)

where the inequality follows because ce is non-decreasing and fe + 1 ≤ ge by
assumption.

3.3. Polytopal congestion games 77

Combining these inequalities, we obtain

C(f) ≤ C(g) +
∑

e∈E:fe>ge

β(D)fece(fe) + ∆(f, g) ≤ C(g) + β(D)C(f)

where the first inequality follows from (3.11) and (3.12) and the definition of
∆(f, g) in (3.10), and the last inequality holds because ∆(f, g) ≤ 0 by Lemma 3.13.
By rearranging terms, we obtain C(f)/C(g) ≤ (1−β(D))−1 = ρ(D), which proves
the claim.

3.3.1.3 Lower bound on the price of stability

We complete the proof of Theorem 3.9 by showing that the stated bound is
asymptotically tight.

Proof of Theorem 3.9, lower bound. Our lower bound construction is similar to
the one used by Correa et al. [46] to show tightness of the price of anarchy bound
ρ(D) for non-atomic network congestion games with cost functions in classD. But
we need some adjustments to make it work for atomic (unsplittable) congestion
games.

Let d ∈ D and a ≥ b > 0 be chosen arbitrarily. We show that there exists an
instance whose price of stability is arbitrarily close to(

1− b(d(a)− d(b))

ad(a)

)−1

. (3.13)

Because of the continuity of d, we can take a, b ∈ Q without loss of generality.
Let M ∈ N such that Ma,Mb ∈ N. Consider the instance depicted in Figure 3.2
with Ma players. Note that this is a symmetric singleton congestion game in-
stance. Further, note that c1 ∈ D because it is a constant function and c2 ∈ D
because D is closed under dilations. A Nash equilibrium is given by the flow
f = (f1, f2) = (0,Ma). A feasible (not necessarily socially optimal) flow is given
by g = (g1, g2) = (M(a− b),Mb). We have

C(f)

C(g)
=

Ma · d(a)

M(a− b)d(a) +Mb · d(b)
=

(
1− b(d(a)− d(b))

ad(a)

)−1

.

In order to get a lower bound on the price of stability, we make f the unique
Nash flow of this game. This can be done by adding a small enough ε > 0 to the
cost function of arc a1, i.e., we take c1(x) = d(a) + ε. Doing the same analysis
and sending ε→ 0, then shows that we can get arbitrarily close to the expression
in (3.13).

78 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

s t

d(a)

d(x/M)

Figure 3.2: The bottom and top arc a1 and a2, respectively, have cost functions
c1(x) = d(a) and c2(x) = d(x/M).

3.3.2 Minimizing Rosenthal’s potential

In this section, we consider the problem of computing a minimizer of Rosenthal’s
potential function for a polytopal congestion game Γ = (N,E, (Si), (ce)).

Throughout this section, we assume that the aggregation polytope PN is
a well-described polytope (PN ;m,φ) as described in Section 3.2.2 for which we
have a separation oracle. Further, all operations are performed on numbers whose
encoding length is bounded by a polynomial in φ+ 〈c〉 (see Remark 3.5).

The following is the main result of this section.

Theorem 3.14. Let Γ = (N,E, (Si), (ce)) be a polytopal congestion game whose
aggregation polytope PN satisfies IDP and box-TDI. Then a feasible load profile
minimizing Rosenthal’s potential can be computed using at most poly(n,m, φ)
arithmetic operations and separation oracle calls.

Remark 3.15. If the facet-complexity φ can be upper bounded by a polynomial in
n and m, and if PN has a separation oracle running in strongly polynomial time,
then a feasible load profile minimizing Rosenthal’s potential can be computed in
strongly polynomial time (see also Remark 3.4).

Note that by applying Theorem 3.14 we obtain a feasible load profile. We
can turn such a load profile into a feasible strategy profile (corresponding to a
pure Nash equilibrium) if the integer decomposition can be done in (strongly)
polynomial time. To the best of our knowledge, there is no universal algorithm
that can perform integer decomposition of an arbitrary polytope satisfying the
IDP using at most poly(n,m, φ) arithmetic operations and separation oracle calls
(even in the symmetric case when all right-hand side vectors bi are the same).
So whether this decomposition can be done efficiently has to be investigated on
a case-by-case basis.

However, under a slightly stronger integer decomposition property such a
decomposition can always be done in polynomial time. Here we focus on sym-
metric congestion games for clarity; but these arguments can be extended to the
non-symmetric case as well.

We say that a polytope P satisfies the middle integral decomposition property
(MIDP) [125] if for n ∈ N and w ∈ Zm, the polytope P ∩ (w − (n − 1)P) is

3.3. Polytopal congestion games 79

integral. If this property is satisfied, the decomposition algorithm of Baum and
Trotter [10] can be used to perform the integer decomposition (details are given
in the proof of Theorem 3.16 below).

Theorem 3.16. Let Γ = (N,E,S, (ce)) be a symmetric polytopal congestion
game for which the common polytope P satisfies MIDP and box-TDI. Then a
feasible strategy profile minimizing Rosenthal’s potential can be computed using
at most poly(n,m, φ) arithmetic operations and separation oracle calls.

We remark that all results in this section also hold for computing a social
optimum of congestion games with weakly convex cost functions, since this prob-
lem can be reduced to computing a global optimum of Rosenthal’s potential (we
refer to [54] for more details).

Aggregation/decomposition framework

Del Pia et al. [54] introduce an aggregation/decomposition framework for com-
puting a global minimum of Rosenthal’s potential, which also constitutes the
basis of our approach. It consists of two phases: In the aggregation phase, we
find a feasible load profile f∗ minimizing Rosenthal’s potential. In the decompo-
sition phase, f∗ is then decomposed into a feasible strategy profile. The authors
provide an aggregation approach (detailed below) that works for totally unimod-
ular matrices A and one common vector b = bi for all i ∈ N . Here we extend
this result to aggregation polytopes PN that have a box-TDI description.

Recall from Proposition 3.7 that if the aggregation polytope PN of a polytopal
congestion game has the IDP, then the feasible load profiles correspond to the
integral vectors of PN = {y : Ay ≤

∑
i∈N bi}. As a result, the problem we need

to solve in the aggregation phase is equivalent to

(Z) min

m∑
e=1

ye∑
k=1

ce(k) s.t. Ay ≤
∑
i∈N

bi, y ∈ Nm.

Note that this is an integer program with a non-linear objective. However, it is
not hard to see that the objective function is convex separable.11 It is known
that under certain circumstances such integer programs can be transformed into
equivalent linear programs. In particular, if the underlying system describes a
(single-commodity) network flow problem, then this problem can be reduced to a
minimum cost network flow problem (in fact, this trick dates back to Dantzig [51]
and Ford and Fulkerson [79]). Similarly, if the constraint matrix A is TUM and
b =

∑
i bi is integral, there exists an equivalent linear programming formulation

that is integral (see Meyer [130]). This idea is (implicitly) also exploited in the
works by Fabrikant et al. [75] and Del Pia et al. [54] to show that a Rosenthal
minimizer can be computed for symmetric network congestion games and for

11Observe that the function he(x) :=
∑x
k=1 ce(k) is convex because the cost functions are

non-negative and non-decreasing.

80 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

TUM congestion games, respectively. Here we use the same idea for our (more
general) setting.

We introduce binary variables hke ∈ {0, 1} for k = 1, . . . , n and e = 1, . . . ,m.
The interpretation is that hke = 1 if at least k players are using resource e ∈ E, and
hke = 0 otherwise. Exploiting that the cost functions are non-negative and non-
decreasing, the non-linear aggregation problem (Z) is equivalent to the problem
(R) stated below:

(R) min

m∑
e=1

n∑
k=1

ce(k)hke

s.t. [A,A, . . . , A](h1
1, . . . , h

1
m, . . . , h

n
1 , . . . , h

n
m)T ≤

∑
i∈N bi (3.14)

hke ∈ {0, 1} ∀k = 1, . . . , n, e = 1, . . . ,m (3.15)

The equivalence of (Z) and (R) follows from the following observations: If
f = (fe) ∈ PN ∩ Zm is optimal for (Z), we define for every e ∈ E, hke = 1 for
k = 1, . . . , fe and hke = 0 for k = fe + 1, . . . , n. The resulting solution h = (hke)
is feasible for (R). Similarly, if h = (hke) is an optimal solution for (R), then the
vector f defined by fe =

∑n
k=1 h

k
e is feasible for (Z). Note that here we implicitly

exploit that the cost functions are non-decreasing.
We show that the integer program (R) can be solved efficiently. In particular,

this proves Theorem 3.14.

Lemma 3.17. If PN has a box-TDI description, then (R) can be solved using at
most poly(n,m, φ) arithmetic operations and separation oracle calls.

Proof. Define A′ = [A,A, . . . , A] ∈ Zr×mn and h = (hke) ∈ Qmn. The relaxation
of the integral system (3.14) and (3.15) can then be written as the system A′h ≤∑
i bi, 0 ≤ h ≤ 1. Let QN = {h : A′h ≤

∑
i bi, 0 ≤ h ≤ 1} be the polytope

described by this system.
We first show that QN is integral. By assumption the description of PN =

{f : Af ≤
∑
i bi} is box-TDI. In particular, by applying Proposition 3.2(iv)

repeatedly, we obtain that the system

[A,A, . . . , A](h1
1, . . . , h

1
m, . . . , h

n
1 , . . . , h

n
m)T ≤

∑
i bi

is box-TDI as well. In particular, this implies that the system A′h ≤
∑
i bi, 0 ≤

h ≤ 1 is TDI because the intersection of a box-TDI system with an arbitrary
box yields a TDI system. Because

∑
i bi and the restrictions on h are integral

vectors, we conclude that QN is indeed integral.
We now show how to construct a separation oracle for QN from a separation

oracle for PN . For

h = (h1
1, . . . , h

1
m, . . . , h

n
1 , . . . , h

n
m) ∈ Qmn,

let the aggregated vector f ∈ Qm be defined as fe =
∑n
k=1 h

k
e for e = 1, . . . ,m.

Then h ∈ QN if and only if f ∈ PN . We now give a separation oracle for QN .

3.3. Polytopal congestion games 81

Let y = (yke) ∈ Qmn be an arbitrary rational vector and let f be defined as above
with respect to y. We use the separation oracle of PN to check if f ∈ PN or not.
If f ∈ PN , then also y ∈ QN and we are done. Otherwise if f /∈ PN the oracle
returns a vector a ∈ Qm such that aTx < aTf for all x ∈ PN . In particular this
means that (aT, aT, . . . , aT)z < (aT, aT, . . . , aT)y for all z = (zke) ∈ QN . Thus,
we obtain a separation oracle for QN .

We conclude with an analysis of the running time. It is not hard to see that
QN has a facet complexity that is at most a polynomial (in m and n) factor
larger than φ. The claim that we only need a number of arithmetic operations
and calls to a separation oracle for PN , that is polynomial in n,m, and φ, now
follows immediately from Theorem 3.3. This concludes the proof.

Finally, we consider the case where the aggregation polytope satisfies the
middle integral decomposition property (as introduced above) and prove Theo-
rem 3.16.

Proof of Theorem 3.16. By Theorem 3.14, we can compute a feasible load profile
f minimizing Rosenthal’s potential function in the stated running time. Then f
can be decomposed into n integer solutions in P by using the following decom-
position algorithm by Baum and Trotter [10]: We start by computing an integral
vector x1 ∈ P ∩ (f − (n− 1)P). By the middle integral decomposition property,
we know that P ∩ (f − (n−1)P) is integral, and therefore we can find an integral
(extreme) point in time polynomial in n, m, φ and the complexity of a separation
oracle of P (using similar arguments as in the proof of Theorem 3.14). Using the
same arguments, we can then find a vector x2 ∈ P ∩ ((f − x1) − (n − 2)P). By
repeating this procedure, we find the desired decomposition in the stated running
time.

3.3.3 Applications

We now give several examples of polytopal congestion games for which the ag-
gregation polytope has the (middle) integer decomposition property, is box-TDI
and admits an efficient separation oracle. As a consequence, our results on the
price of stability (Theorem 3.9) and the computation of Rosenthal’s potential
minimizer (Theorem 3.14 and Theorem 3.16) apply.

Remark 3.18. In all applications considered below, the facet complexity φ of the
well-described (aggregation) polyhedra are polynomially bounded in n and m.
In particular, all the matrices A considered are in fact {0,±1}-valued matrices,
and the right-hand side vectors bi are always integral valued.

Common source network congestion games. In a common source network
congestion game we are given a directed graph G = (V,A) and a source s ∈ V .
The strategy set of player i ∈ N is the set of all directed s, ti-paths for some
ti ∈ V . Ackermann et al. [1] already showed that one can compute a global
optimum of Rosenthal’s potential function for these games. We outline how this

82 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

case can be cast in our framework. The strategies of player i can be described by
a polytope Pi = {x : Ax = bi, 0 ≤ x ≤ 1}, where A is the arc-incidence matrix
of the network G, and b is the vector with (bi)s = 1, (bi)ti = −1 and zero other-
wise.12 The aggregation polytope is then PN = {y : Ay =

∑
i∈N bi, 0 ≤ y ≤ n}.

Any feasible load profile minimizing Rosenthal’s potential can be decomposed
efficiently into a feasible strategy profile, using a similar argument as in [1]. Fur-
ther, the describing system of PN is totally unimodular and thus box-TDI.13

Symmetric totally unimodular congestion games. Symmetric totally uni-
modular congestion games [54] capture a wide range of combinatorial congestion
games. Here the common strategy set of the players is described by a polytope
P = {x : Ax ≤ b} with a totally unimodular r×m-matrix A and an integral vec-
tor b. In particular, such a system satisfies the IDP and is box-TDI: The integer
decomposition property was shown in [10]. We argue that the system is box-TDI.
The constraint matrix describing the intersection of P with {x : c ≤ x ≤ d} for
c, d ∈ Qm is again totally unimodular [173]. Any totally unimodular system is
TDI (see, e.g., [160, Section 22.1]), and therefore the system Ax ≤ b, c ≤ x ≤ d
is TDI. We conclude that the system Ax ≤ b is box-TDI. If (as in [54]) the
parameter r is considered as part of the input size as well, then there is a triv-
ial (strongly) polynomial separation oracle that simply checks all inequalities of
the system Ax ≤ b. For all combinatorial applications considered in [54] (i.e.,
network, matching, edge cover, vertex cover and stable set congestion games on
bipartite graphs, and their respective extensions to the maximum (or minimum)
cardinality versions) the parameter r is actually polynomially bounded in n and
m, so then this assumption is justified.

Non-symmetric matroid congestion games. In a non-symmetric matroid
congestion game Γ = (N,E, (Si), (ce)), the strategy set of player i is given by the
bases Bi of a matroid Mi = (E, Ii) for i ∈ N .14 The incidence vectors of the
bases of Bi can be described by the base matroid polytope

Pi = {x : x(A) ≤ ri(A), A ⊂ E, x(E) = ri(E), x ≥ 0}

as introduced in the preliminaries. That is, for every player we have a polytope
of the form Pi = {x : Ax ≤ bi, x ≥ 0} where bi is the rank function ri of the
matroid Mi. In particular, it follows that the aggregation polytope is given by

PN = {y : y(A) ≤
∑
i ri(A), A ⊂ E, y(E) =

∑
i ri(E), y ≥ 0}.

12Technically, this polytope can also contain paths with a finite number of disjoint cycles,
but these can always be removed in the end.

13Note that common source network congestion games are not symmetric and are thus not
captured by the class of totally unimodular congestion games considered below.

14Our framework also captures the independent set congestion games studied in [54]. How-
ever, we mainly focus on non-negative cost functions here (because of the inefficiency measures)
and then these games are trivial.

3.3. Polytopal congestion games 83

The polytope PN has a box-TDI description, which follows from [161, Theo-
rem 46.2].15 The integer decomposition property is also satisfied (see, e.g., [161,
Corollary 46.2c]). Using similar arguments as for r-arborescences (see below), we
derive a strongly polynomial time algorithm to compute a minimum of Rosen-
thal’s potential.

We also prove a result that is of independent interest: For non-symmetric ma-
troid congestion games, we can derive a local search algorithm to compute a
global minimum of Rosenthal’s potential in strongly polynomial time. This local
search algorithm can be seen as a natural generalization of best response dynam-
ics (which are known to arrive at a local optimum in polynomial time [1]). Our
algorithm is based on a combinatorial approach to compute the symmetric dif-
ference decomposition for these games (which is of a specific form). The details
are given in Appendix A.

Symmetric matroid intersection congestion games. In symmetric matroid
intersection congestion games Γ = (N,E,S, (ce)) the (symmetric) strategy set S
of all players is given by the common bases of two matroids M1 = (E, I1) and
M2 = (E, I2) over a common element set E. The polytope P of the players
corresponds to the common base polytope PM1,M2

as defined in (3.7), i.e.,

P = {x : x(A) ≤ ri(A) ∀A ⊂ E, x(E) = ri(E) for i = 1, 2, x ≥ 0}.

The describing system of P is box-TDI (see, e.g., [161, Corollary 41.12e]). Fur-
ther, as noted in the preliminaries there is a separation oracle for P (and thus
PN) which runs in time polynomial in |E| and the complexity of the indepen-
dence oracles forM1 andM2. However, it is not precisely known for which cases
of matroid intersection the integer decomposition property holds.

Example 3.19 (r-Arborescences). Let D = (V,A) be a directed graph. An
r-arboresence in D is a directed spanning tree rooted in r ∈ V . The set of all
r-arboresences can be seen as the set of common bases of two matroids. The first
matroidM1 is the graphic matroid on the undirected graph D′ = (V,A′), where
A′ is the set formed by replacing every directed arc in A with its undirected
version, i.e., A′ = {{u, v} : (u, v) ∈ A}. The second matroid M2 is the partition
matroid in which independent sets are given by sets of arcs for which there is at
most one incoming arc at every node v 6= r (we assume there are no incoming
arcs at r). Thus, the common base polytope PM1,M2

describes the arborescences
of D and we let P = PM1,M2

.
We argue that there is a strongly polynomial time algorithm for comput-

ing a minimum of Rosenthal’s potential. First note that the describing system of
PM1,M2

is box-TDI (see [161, Corollary 41.12e]). Also, PM1,M2
satisfies the inte-

ger decomposition property, which follows from Edmonds’ Disjoint Arborescences

15To see this, we use the fact that the rank function is submodular and that the sum of
submodular functions is again submodular. We can then apply Theorem 46.2 in [161].

84 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

Theorem [64]. By Theorem 3.14, we can compute a minimum of Rosenthal’s po-
tential in time polynomial in n, m,

∑
i〈bi〉 and the complexity of a separation

oracle for PM1,M2
. The elements of the vector b are bounded by |E|, by the

definition of the rank functions. Moreover, it is not hard to see that there exist
independence oracles for both M1 and M2 that run in time polynomial in m.
These oracles can be used for separation oracles as described in the preliminar-
ies. It is not hard to see that if both base matroid polytopes have a polynomial
time separation oracle, then the intersection of these polytopes has one too. This
shows that there is an algorithm for computing an optimal feasible load profile
in time polynomial in n and m. Integer decomposition can also be done in time
polynomial in n and m [83].

Example 3.20 (Intersection of strongly base-orderable matroids). A matroid
M = (E, I) is strongly base-orderable if for every pair of bases B1, B2 ∈ B
there exists a bijection τ : B1 → B2 such that for every X ⊆ B1, we have
B1 −X + τ(X) ∈ B. As in the previous example, a box-TDI description follows
from [161, Corollary 41.12e]. It is also known that the independent set polytope of
the intersection of strongly base-orderable matroids has the integer decomposition
property [125, Theorem 5.1].16

3.3.4 Bottleneck congestion games

In this section we provide various results for the computation and inefficiency of
equilibria in bottleneck congestion games, based on our polytopal point of view.

A bottleneck congestion game Γ = (N,E, (S)i∈N , (ce)e∈E) is defined similarly
to a congestion game, with the only difference that the objective of a player
is to minimize the maximum (rather than the aggregated) congestion over all
resources that she occupies. Formally, the cost of player i ∈ N under strategy
profile s = (s1, . . . , sn) is given by Ci(s) = maxe∈si ce(xe(s)).

Harks et al. [99] give a dual greedy algorithm to compute a strong equilib-
rium, which uses a strategy packing oracle as a subroutine (see Appendix B for
details). They give efficient packing oracles for symmetric network congestion
games, non-symmetric matroid congestion games and (a slight generalization of)
r-arborescences. In particular, this leads to polynomial time algorithms for com-
puting a strong equilibrium in these cases.

We adapt their algorithm to compute a load profile of a strong equilibrium for
bottleneck polytopal congestion games satisfying the IDP and box-TDI property.

Theorem 3.21. Let Γ = (N,E, (Si), (ce)) be a polytopal bottleneck congestion
game whose aggregation polytope PN satisfies IDP and box-TDI. Then a load pro-
file of a strong equilibrium can be computed using at most poly(n,m, φ) arithmetic
operations and separation oracle calls.

16This also implies that the common base polytope has the integer decomposition property,
since the integer decomposition property is preserved if we restrict ourselves to a face of a
polytope with the integer decomposition property.

3.3. Polytopal congestion games 85

ALGORITHM 1: Load profile-dual greedy algorithm.

Input : Bottleneck congestion game Γ = (N,E, (Si), (ce)), load profile oracle O
Output : Load profile of strong equilibrium of Γ
1 set N ′ = N , ue = n for all e ∈ E, T = ∅, L = E and

a = O(T ∪ L,PN , (ue)e∈E)
2 while {e ∈ L : ue > 0} 6= ∅ do
3 choose e′ ∈ argmax{ce(ue) : e ∈ L, ue > 0}
4 ue′ := ue′ − 1
5 if O(T ∪ L,PN , (ue)e∈E) = no then
6 ue′ := ue′ + 1
7 L = L \ {e′}, T = T ∪ {e′}
8 end
9 a = O(T ∪ L,PN , (ue)e∈E)

10 end
11 return (ue)e∈E

We first need to adapt the definition of the strategy packing oracle of [99]
(see Appendix B) to load profiles. Below, we assume that PN is an aggregation
polytope of a polytopal congestion game.

Load profile oracle O(E = T ∪ L,PN , (ue)e∈E) :

Input: A finite set of resources E = T ∪ L with upper bounds (ue)e∈E and an
aggregation polytope PN .

Output: yes, if there exists a feasible load profile f ∈ PN such that fe = ue for all
e ∈ T and fe ≤ ue for all e ∈ L; no otherwise.

Our adaptation of the dual greedy algorithm is given in Algorithm 1. Al-
though the ideas are similar to the ones in [99], our algorithm only works with
load profiles. In particular, we do not have to explicitly compute decompositions
of feasible load profiles in intermediate steps of the algorithm, which (signifi-
cantly) improves the running time. Intuitively, our algorithm works as follows.
We start with capacities of n on every resource. In every step we pick a resource
e′ ∈ L with maximum cost among all resources that are called loose, and check
whether there is a feasible load profile if we reduce the capacity on e′ by one. If
this is not possible, we remove e′ from L and add e′ to the set T of so-called tight
resources. Note that after the algorithm has terminated, all resources are in the
set T .

The following lemma shows that the load profile output by our algorithm
corresponds to a strong equilibrium. Its proof is similar to the correctness proof
of the dual greedy algorithm by Harks et al. [99].

Lemma 3.22. Algorithm 1 computes a load profile of a strong equilibrium in
time polynomial in n, m and the complexity of the load profile oracle.

86 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

Proof. Clearly, Algorithm 1 can be executed in time polynomial in n, m and the
complexity of the load profile oracle. Let f be the load profile output by the
algorithm. Assume without loss of generality that the resources in E = [m] are
added to the set T in the order (1, 2, . . . ,m). Let s = (s1, . . . , sn) be a strategy
profile corresponding to the load profile f . We define σe = {i ∈ N : e ∈ si} as
the set of players using resource e. Moreover, we set N1 = σ1, and define

Nj = σj \ (N1 ∪ · · · ∪Nj−1) for j = 1, . . . ,m.

We show that players in N1 will never participate in a coalitional deviation in
which every player strictly improves.

Let D ⊂ N be a coalition of players that can profitably deviate to strategy
profile t = (tD, s−D). Remember that xe(t) denotes the number of players using
resource e in strategy profile t. Let (ue)e∈E be the capacity vector for which the
load profile oracle returns no for the first time in line 5. We consider two cases:

Case 1: xe(t) ≤ ue for all e ∈ E. In this case, there must be |N1| players
using resource 1; otherwise, the oracle would have returned yes because the load
profile of t would have been feasible for the capacities (ue). Further, for all players
i ∈ N1, we have Ci(s) = ce(xe(s)), which is in particular the highest player cost
in the strategy profile s. In particular, this implies that if a player in N1 would
strictly improve, then she cannot use resource 1 in t. This means that another
player is now using resource 1 in t, but that player can never have strictly better
cost than it had in s.

Case 2: xe(t) > ue for some e ∈ E. Using similar arguments, we can
show that x1(t) < u1 if some player in N1 is also part of D (since c1(x1(s))
is the maximum cost resource in s). Since the algorithm iteratively reduces the
capacities of resources with maximum cost, we must have that ce(xe(t)) ≥ c1(u1).
Further, since xe(t) > ue, at least one player in D must be using resource e in t.
But this player cannot have strictly improved then.

We can now use induction to show that no player in Nj will ever partici-
pate in a coalitional deviation. Assume that the players in N1 ∪ · · · ∪Nj−1 will
never participate in a coalitional deviation. By using similar arguments as above,
we can show that the players in Nj will also never participate in a coalitional
deviation.

Proof of Theorem 3.21. By Lemma 3.22, Algorithm 1 computes a load profile of
a strong equilibrium in time polynomial in n, m and the complexity of a load
profile oracle.

Based on a separation oracle of PN , we now show that there is an efficient
load profile oracle. Given that PN has a box-TDI description, it follows that the
polytope

{y : Ay ≤
∑
i∈N bi} ∩ {ye = ue : e ∈ T} ∩ {0 ≤ ye ≤ ue : e ∈ L}

is integral. We can then use a separation oracle for PN to find an integral vector
in this polytope using at most poly(n,m, φ) arithmetic operations and separation
oracle calls. This concludes the proof.

3.4. Perception-parameterized congestion games 87

Once we have obtained the feasible load profile, we can use an integer de-
composition algorithm to find the corresponding strategies of the players. If the
integer decomposition can be done within the same time bounds as stated in The-
orem 3.21, we obtain a (strongly) polynomial algorithm for computing a strong
equilibrium in a polytopal bottleneck congestion game. In particular, this applies
to all applications mentioned in Section 3.3.3.

We end this section by showing that for matroid bottleneck congestion games, we
can use our techniques from the previous sections to derive an upper bound on
the strong price of stability (SPoS).

The proof of the following theorem exploits that Algorithm 1 in fact computes
a global optimum of Rosenthal’s potential in the case of matroid bottleneck
congestion games.

Theorem 3.23. Let Γ = (N,E, (Si), (ce)) be a non-symmetric matroid bottleneck
congestion game with cost functions in class D. Then SPoS(Γ) ≤ ρ(D).

Proof. Let f be the load profile returned by the algorithm. f is a strong equilib-
rium by Lemma 3.22. We prove that f is also a global optimum of Rosenthal’s
potential. We then obtain a bound of ρ(D) on the strong price of stability by
using similar arguments as in the proof of Theorem 3.9.

Suppose for contradiction that f is not a global optimum. Then there exist
resources a and b such that ca(fa) > cb(fb + 1) and for which the load profile f ′,
defined by f ′a = fa − 1, f ′b = fb + 1 and f ′e = fe for all e ∈ E \ {a, b}, is feasible.
This claim follows from similar arguments as given in the proof of Theorem A.4
(Appendix A).

Now, consider the point in execution of the algorithm where the capacity of
resource a was fixed at fa. Since ca(fa) > cb(fb+1), we must have had fb+1 ≤ ub
at that point (since the algorithm iteratively reduces the capacity of resources
with maximum cost). But this contradicts the fact that the load profile oracle
returned no at this point; to see this note that f ′ would have been a feasible
load profile for the capacity vector in which ua was reduced by 1 (as in line 4 of
the algorithm).

3.4 Perception-parameterized congestion games

In this section we introduce our unifying model of perception-parameterized con-
gestion games with affine cost functions. We first extend some of the definitions
given in Section 3.2. For a fixed parameter ρ ≥ 0, we define the cost of player
i ∈ N by

Cρi (s) =
∑
e∈si

ce(1 + ρ(xe − 1)) =
∑
e∈si

ae[1 + ρ(xe − 1)] + be (3.16)

88 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

for a given strategy profile s = (s1, . . . , sn). For a fixed parameter σ ≥ 0, the
social cost of a strategy profile s is given by

Cσ(s) =
∑
i∈N

Cσi (s) =
∑
e∈E

xe(ae[1 + σ(xe − 1)] + be). (3.17)

We refer to the case ρ = σ = 1 as the classical congestion game setting, as it
corresponds to the standard setting of Rosenthal [150]. We next introduce some
notation that naturally generalizes that in Section 3.2.

A strategy profile s is a pure Nash equilibrium if for all players i ∈ N it holds
that Cρi (s) ≤ Cρi (s′i, s−i) for all s′i ∈ Si, where (s′i, s−i) denotes the strategy
profile in which player i plays s′i and all the other players their strategy in s.

The price of anarchy (PoA) and the price of stability (PoS) of a game Γ are
defined as

PoA(Γ, ρ, σ) =
maxs∈NE C

σ(s)

mins∗∈×iSi C
σ(s∗)

and PoS(Γ, ρ, σ) =
mins∈NE C

σ(s)

mins∗∈×iSi C
σ(s∗)

,

where NE = NE(ρ) denotes the set of pure Nash equilibria with respect to the
player costs as defined in (3.16). These definitions are natural generalizations of
those given in Section 3.2 for the case ρ = σ = 1. For a collection of games H,

PoA(H, ρ, σ) = sup
Γ∈H

PoA(Γ, ρ, σ) and PoS(H, ρ, σ) = sup
Γ∈H

PoS(Γ, ρ, σ).

Unless stated otherwise, our results refer to the class of perception-parameterized
congestion games with affine cost functions; we therefore drop the parameter H
below.

For every fixed parameter ρ ≥ 0 the Rosenthal potential (3.3) with cost
functions as defined in (3.16), i.e.,

c̄e(x) = ce(1 + ρ(x− 1)) = ae[1 + ρ(x− 1)] + be,

is an exact potential function for the corresponding perception-parameterized
congestion game. As a consequence, pure Nash equilibria always exist for these
games.

In light of the above bounds, we obtain an (almost) complete picture of the
inefficiency of equilibria (parameterized by ρ and σ). For example, see Figure 3.3
for an illustration of the price of anarchy for σ = 1. Note that the price of
anarchy decreases from 5

2 for ρ = 1 to 2.155 for ρ = h(1) ≈ 0.625. The price of
anarchy for ρ = h(1) was first established by Caragiannis et al. [22]. Note that
our bounds imply that the price of anarchy is in fact minimized at ρ = h(1) (see
also Figure 3.3). In particular, this shows that the bound of (4ρ + 1)/(ρ + 1)
proven in [28] for 1 ≤ ρ ≤ 2 continues to hold for h(1) ≤ ρ ≤ 1. This nicely
bridges the results in [22] and [28].

3.4. Perception-parameterized congestion games 89

ρ0 h(1) ≈ 0.625 1 2

PoA(Γ, ρ, 1)

ρ+ 1

4ρ+ 1

ρ+ 1
2.155

4

ρ(4− ρ)

Figure 3.3: Lower bounds on the price of anarchy for σ = 1. The bounds
(4ρ + 1)/(ρ + 1) and ρ + 1 are also tight upper bounds. The dotted horizontal
line indicates the lower bound following from [23, Theorem 3.7]. The bound
4/(ρ(4− ρ)) is a lower bound for symmetric singleton congestion games given in
[115]. A tight bound for 0 < ρ ≤ h(1) remains an open problem.

3.4.1 Price of anarchy

In this section, we present our bounds on the price of anarchy; see Figure 3.1
for an illustration. We first start with the simpler proof of the ρ + 1 bound
(Section 3.4.1.1) and then turn to the more involved proof of the (2ρ(1 + σ) +
1)/(ρ+ 1) bound (Section 3.4.1.2). Both bounds are shown to be tight for affine
congestion games. For the latter bound, we prove that it is asymptotically tight
even for the special case of symmetric network congestion games (Section 3.4.1.3).

We need the following technical lemma.

Lemma 3.24. Let ρ, σ ≥ 0 be fixed. If there exist α := α(ρ, σ) ≥ 0 and β :=
β(ρ, σ) > 0 such that for all non-negative integers x and y the inequality

(1 + ρx)y − ρ(x− 1)x− x ≤ −β(1 + σ(x− 1))x+ α(1 + σ(y − 1))y (3.18)

holds, then PoA(ρ, σ) ≤ α/β.

Proof. Without loss of generality, we may assume that ae = 1 and be = 0 for all
resources e ∈ E (see, e.g., [28, Lemma 4.3]). Let s be a Nash equilibrium with
respect to the cost functions Cρi (s) and let s∗ be a minimizer of Cσ(·). Further,
let x and x∗ be the load profiles for s and s∗, respectively.

We have∑
i

Cρi (s) =
∑
e

ρ(xe − 1)xe +
∑
e

xe

=
∑
e

ρ[1− σ + σ](xe − 1)xe + ρxe − ρxe +
∑
e

xe

90 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

= ρ
∑
e

[1 + σ(xe − 1)]xe + ρ
∑
e

(1− σ)(xe − 1)xe − xe +
∑
e

xe

= ρCσ(s) + ρ
∑
e

(1− σ)(xe − 1)xe + (1− ρ)
∑
e

xe.

By rearranging terms, we obtain

ρCσ(s) =
∑
i

Cρi (s) + ρ(σ − 1)
∑
e

(xe − 1)xe + (ρ− 1)
∑
e

xe

≤
∑
i

Cρi (s∗i , s−i) + ρ(σ − 1)
∑
e

(xe − 1)xe + (ρ− 1)
∑
e

xe

≤
∑
e

[1 + ρ(xe − 1 + 1)]x∗e + ρ(σ − 1)
∑
e

(xe − 1)xe + (ρ− 1)
∑
e

xe

=
∑
e

[1 + ρxe]x
∗
e + ρ(σ − 1)(xe − 1)xe + (ρ− 1)xe

=
∑
e

[1 + ρxe]x
∗
e + ρ[1 + σ(xe − 1)]xe − ρ(xe − 1)xe − xe

=
∑
e

[1 + ρxe]x
∗
e − ρ(xe − 1)xe − xe + ρCσ(s)

≤ −βCσ(s) + αCσ(s∗) + ρCσ(s).

Here the first inequality holds because s is a Nash equilibrium, the second in-
equality follows from the definition (3.16) and the last inequality holds because
of (3.18). We conclude that βCσ(s) ≤ αCσ(s∗), which proves the claim.

We remark that our upper bounds on the price of anarchy of perception-
parameterized congestion games can alternatively be proven by adapting the
smoothness framework of Roughgarden [155] appropriately; similarly as in [28].

3.4.1.1 First price of anarchy bound

We establish the following tight bound on the price of anarchy.

Theorem 3.25. We have PoA(ρ, σ) ≤ ρ + 1 for 1 ≤ 2σ ≤ ρ and this bound is
tight.

Note that the bound itself does not depend on σ, only the range of ρ and σ for
which it holds. For the altruism model of Caragiannis et al. [23] (corresponding
to σ = 1 and ρ ≥ 2) this bound is known the be tight for non-symmetric singleton
congestion games (i.e., all strategies consist of a single resource). Here we only
prove tightness for general congestion games, but our construction is significantly
simpler.

Proof of Theorem 3.25. By Lemma 3.24 it is sufficient to show that inequality
(3.18) holds with β = 1 and α = 1 + ρ. Thus, we have to show that

(1 + ρx)y − ρ(x− 1)x− x ≤ −(1 + σ(x− 1))x+ (1 + ρ)(1 + σ(y − 1))y.

3.4. Perception-parameterized congestion games 91

By rearranging terms, we obtain

[y + σy(y − 1)− xy + x(x− 1)] ρ+ σ [y(y − 1)− x(x− 1)] ≥ 0. (3.19)

We first show that [y + σy(y − 1)− xy + x(x− 1)] ≥ 0 for all σ ≥ 1
2 . If suffices

to show this claim for σ = 1
2 , since y(y − 1) ≥ 0 for all y ∈ N. We have

y +
1

2
y(y − 1)− xy + x(x− 1) =

1

2

[(
x− y − 1

2

)2

− 1

4
+ x(x− 1)

]
and this last expression is clearly non-negative for all x, y ∈ N (since the quadratic
term is always at least 1

4).
It now suffices to show (3.19) for ρ = 2σ, since we have shown that the expres-

sion is a non-decreasing affine function of ρ, for every fixed σ ≥ 1
2 . Substituting

ρ = 2σ and dividing (3.19) by σ, we get the equivalent statement

2 [y + σy(y − 1)− xy + x(x− 1)] + [y(y − 1)− x(x− 1)] ≥ 0 (3.20)

which we will show to be non-negative for all non-negative integers x and y and
σ ≥ 1

2 . Again, it suffices to show the statement for σ = 1
2 . The statement in

(3.20) is then equivalent to(
x− y − 1

2

)2

− 1

4
+ y (y − 1)

which is clearly non-negative for all x, y ∈ N.
To see that the bound is tight, consider the following game on four resources

with two players: Player A has strategies {{1}, {2, 4}} and player B has strategies
{{2}, {1, 3}}. Resources e = 1, 2 have cost function ce(x) = x and resources
e = 3, 4 have cost function ce(x) = ρx. The optimum s∗ = ({1}, {2}) has cost 2,
whereas the Nash equilibrium s = ({2, 4}, {1, 3} has cost 2(1 + ρ).

3.4.1.2 Second price of anarchy bound

We next prove our (2ρ(1 + σ) + 1)/(ρ + 1) bound on the price of anarchy. We
first establish the upper bound for different ranges of parameters ρ and σ.

Theorem 3.26. We have

PoA(ρ, σ) ≤ 2ρ(1 + σ) + 1

ρ+ 1
(3.21)

for

1. 1
2 ≤ σ ≤ ρ ≤ 2σ, or

2. σ = 1 and h(σ) ≤ ρ ≤ 2σ, where h(σ) = g(1 + σ +
√
σ(σ + 2), σ) is the

maximum of the function

g(a, σ) =
σ(a2 − 1)

(1 + σ)a2 − (2σ + 1)a+ 2σ(σ + 1)
.

92 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

Further, there exists a function ∆ = ∆(σ) (specified in the proof below) satisfying
that for every fixed σ0 ≥ 1

2 : if ∆(σ0) ≥ 0, then the bound in (3.21) also holds for
all h(σ0) ≤ ρ ≤ 2σ0.

We need the following technical lemma in the proof of Theorem 3.26:

Lemma 3.27. Let σ ≥ σ∗ := 1
2 be fixed. Then for every (x, y) ∈ N2 \ {(1, 0)},

we have

f1(x, y, σ) := 2y(y − 1)σ2 + [x2 + 2y2 − 2xy − x]σ + [x2 − xy + 2(y − x)] ≥ 0.

Proof. Note that 2y(y − 1) ≥ 0 for all y ∈ N. Furthermore,

x2 + 2y2 − 2xy − x = (x− y)2 + y2 − x ≥ (x− y)2 + (y − x) ≥ 0

for all (x, y) ∈ N2 because a2 − a ≥ 0 for all a ∈ N. Thus f1(x, y, σ) is non-
decreasing and it suffices to prove the statement for σ∗ = 1

2 .
We need to prove

1

2
y(y − 1) +

1

2
[x2 + 2y2 − 2xy − x] + [x2 − xy + 2(y − x)] ≥ 0

⇔ y(y − 1) + x2 + 2y2 − 2xy − x+ 2x2 − 2xy + 4(y − x) ≥ 0.

By simplifying we obtain

3x2 + 3y2 − 4xy + 3y − 5x ≥ 0 ⇔ 2(x− y)2 + x(x− 5) + y(y + 3) ≥ 0.

The last inequality clearly holds for all pairs (x, y) with x ≥ 5. For x = 4, we
find 2(4− y)2 − 4 + y(y + 3) ≥ 0 which is true for y ≥ 1, and for y = 0 it can be
verified by inspection. For x = 3, we find 2(3 − y)2 − 6 + y(y + 3) ≥ 0 which is
true for y ≥ 2, and for y ∈ {0, 1} it can be verified by inspection. For x = 2, we
find 2(2− y)2 − 6 + y(y + 3) ≥ 0 which again holds for y ≥ 2, and for y ∈ {0, 1}
it can be verified by inspection. For x = 1, we find 2(1− y)2 − 4 + y(y + 3) ≥ 0
which holds for y ≥ 1. For y = 0 the inequality does not hold, but this is the
case (x, y) = (1, 0) which we explicitly excluded in the claim. For x = 0, the
inequality holds.

We now give the formal proof of Theorem 3.26.

Proof of Theorem 3.26. We first show that inequality (3.18) of Lemma 3.24 holds
for the functions α(ρ, σ) = (2ρ(1+σ)+1)/(1+2σ) and β(ρ, σ) = (1+ρ)/(1+2σ).
That is,

(1+ρx)y−ρ(x−1)x−x ≤ − 1 + ρ

1 + 2σ
(1+σ(x−1))x+

2ρ(1 + σ) + 1

1 + 2σ
(1+σ(y−1))y.

(3.22)
Multiplying both sides by (1 + 2σ), we obtain

(1 + 2σ) [(1 + ρx)y − ρ(x− 1)x− x] ≤
−(1 + ρ)(1 + σ(x− 1))x+ (2ρ(1 + σ) + 1)(1 + σ(y − 1))y,

3.4. Perception-parameterized congestion games 93

which we rewrite as f1(x, y, σ)ρ+ f2(x, y, σ) ≥ 0, where

f1(x, y, σ) = −(1 + σ(x− 1))x+ 2(1 + σ)(1 + σ(y − 1))y

+ (1 + 2σ)((x− 1)x− xy)

= 2y(y − 1)σ2 + (−(x− 1)x+ 2(y − 1)y + 2y + 2x(x− 1)− 2xy)σ

+ (−x+ 2y + (x− 1)x− xy)

= 2y(y − 1)σ2 + [x2 + 2y2 − 2xy − x]σ + [x2 − xy + 2(y − x)]

and

f2(x, y, σ) = −(1 + σ(x− 1))x+ (1 + σ(y − 1))y + (1 + 2σ)(x− y)

= σy(y − 1)− σx(x− 1) + 2σ(x− y)

=
(
y2 − x2 + 3(x− y)

)
σ.

We first consider the case (x, y) = (1, 0). In this case, we do no have f1(x, y, σ) ≥
0. Substituting the values for x and y, we obtain −ρ + 2σ ≥ 0, which is true if
and only if ρ ≤ 2σ.

Case i). Suppose 1
2 ≤ σ ≤ ρ ≤ 2σ. For the pair (x, y) = (1, 0), the inequality

is true if and only if ρ ≤ 2σ. For all other pairs, we have f1(x, y, σ) ≥ 0, and
hence

f1(x, y, σ)ρ+ f2(x, y, σ) ≥ f1(x, y, σ)σ + f2(x, y, σ)

meaning that is suffices to show that f1(x, y, σ)σ + f2(x, y, σ) ≥ 0. Dividing by
σ, this is equivalent to

2y(y − 1)σ2 + [x2 + 2y2 − 2xy − x]σ + [x2 − xy + 2(y − x)]

+
(
y2 − x2 + 3(x− y)

)
≥ 0

⇔ 2y(y − 1)σ2 + [x2 + 2y2 − 2xy − x]σ + [y2 − xy + (x− y)] ≥ 0.

Again, we see that the terms before σ2 and σ are non-negative for all x, y ∈ N
(see proof of Lemma 3.27). Thus, if the inequality holds for some σ∗, then it
holds for all σ ≥ σ∗. We take σ∗ = 1

2 . Multiplying the resulting inequality by 2,
we obtain

y(y − 1) + [x2 + 2y2 − 2xy − x] + 2[y2 − xy + (x− y)] ≥ 0

⇔ x2 + 5y2 − 4xy − 3y + x ≥ 0

⇔ (x− 2y)2 + y(y − 3) + x ≥ 0.

The latter inequality holds for all y /∈ {1, 2}. For y = 1, we find (x−2)2−2+x ≥ 0.
The inequality clearly holds for all x ≥ 2, and for x ∈ {0, 1} it can be verified by
inspection. For y = 2, we find (x− 4)2− 2 + x ≥ 0. This is again clearly true for
x ≥ 2, and can be checked by inspection for x ∈ {0, 1}.

Case ii). We now prove the second claim of the theorem. If (x, y) ∈
N2 \ {(1, 0)}, then f1(x, y, σ) ≥ 0 by Lemma 3.27, meaning that f1(x, y, σ)ρ +

94 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

f2(x, y, σ) is non-decreasing in ρ. From the proof of Lemma 3.27, it follows
that f1(x, y, σ) = 0 if and only if (x, y) ∈ {(1, 1), (2, 1)} (which can be seen by
checking all the cases). Note that this observation is independent of σ. For
(x, y) ∈ {(1, 1), (2, 1)} it also holds that f2(x, y, σ) = 0, which implies that
f1(x, y, σ)ρ+ f2(x, y, σ) = 0 for every ρ. Therefore, we can focus on pairs (x, y)
for which f1(x, y, σ) > 0. It follows that any ρ∗ for which

ρ∗ ≥ sup
x,y∈N:f1(x,y,σ)>0

−f2(x, y, σ)

f1(x, y, σ)

yields the inequality for all ρ ≥ ρ∗. It is not hard to see that this supremum is
indeed finite, for every fixed σ. It can be proved that f1(x, y, σ)ρ′+f2(x, y, σ) ≥ 0
holds for some large constant ρ′, which then serves as an upper bound on the
supremum. For the pair (x, y) = (0, 1), we find −f2/f1 = σ/(1 + σ), but we will
see later that the supremum on the other pairs obtained is larger than σ/(1 +σ).

Note that by now, we can focus on pairs in {(x, y) : x ≥ 1, y ≥ 2}, since for
all other pairs we have either proven the inequality or given −f2/f1. That is, we
are interested in

sup
{(x,y):x≥1,y≥2}

−f2(x, y, σ)

f1(x, y, σ)
. (3.23)

Note that f2(x, y, σ) =
(
y2 − x2 + 3(x − y)

)
σ = (x + y − 3)(y − x) ≥ 0 if y ≥ x

(using that x + y ≥ 3 for (x, y) ∈ {(x, y) : x ≥ 1, y ≥ 2}). Hence, if y ≥ x we
have −f2/f1 ≤ 0, so these pairs are not relevant for the supremum (if it follows
that the upper bound on the supremum for all other pairs is positive, which we
will indeed see later). Therefore, we can focus on pairs with y < x.

We substitute x = ay for some (rational) a > 1. Note that

sup
a∈R>1

sup
y≥2
−f2(ay, y, σ)

f1(ay, y, σ)
(3.24)

provides an upper bound on (3.23). Using the identities above, we have

f1(ay, y, σ) = [(1 + σ)a2 − (2σ + 1)a+ 2σ(σ + 1)]y2 − [(2 + σ)a+ 2σ2 − 2]y

−f2(ay, y, σ) = [(a2 − 1)σ]y2 + [3(1− a)σ]y

We determine an upper bound on the expression

−f2(ay, y, σ)

f1(ay, y, σ)
=

[(a2 − 1)σ]y2 + [3(1− a)σ]y

[(1 + σ)a2 − (2σ + 1)a+ 2σ(σ + 1)]y2 − [(2 + σ)a+ 2σ2 − 2]y

=
[(a2 − 1)σ]y + [3(1− a)σ]

[(1 + σ)a2 − (2σ + 1)a+ 2σ(σ + 1)]y − [(2 + σ)a+ 2σ2 − 2]

=
αy + β

γy − δ
(3.25)

3.4. Perception-parameterized congestion games 95

for y ≥ 2. Elementary calculus shows that the derivative with respect to y of
(3.25) is given by −(αδ+ γβ)/(γy− δ)2, which means the expression in (3.25) is
non-decreasing or non-increasing in y. We have

αδ + γβ = (a2 − 1)σ[(2 + σ)a+ 2σ2 − 2] + 3(1− a)[(1 + σ)a2

− (2σ + 1)a+ 2σ(1 + σ)]

= (1− a)σ
[
− (1 + a)((2 + σ)a+ 2σ2 − 2) + 3((1 + σ)a2

− (2σ + 1)a+ 2σ(1 + σ))
]

= (1− a)σ
[
(3(1 + σ)− (2 + σ))a2 + (2− (2 + σ)− 2σ2

− 3(2σ + 1))a+ 2− 2σ2 + 6σ(1 + σ)
]

= (1− a)σ
[
(2σ + 1)a2 − (2σ2 + 7σ + 3)a+ (4σ2 + 6σ + 2)

]
= (1− a)σ

[
(2σ + 1)a2 − (2σ + 1)(σ + 3)a+ (2σ + 1)(2σ + 2)

]
= (1− a)σ(1 + 2σ)

[
a2 − (σ + 3)a+ (2σ + 2)

]
= (1− a)σ(1 + 2σ)

[(
a− σ + 3

2

)2

− 1

4
(1− σ)2

]
. (3.26)

Before we can proceed, we need to prove the following claim.

Claim 1. The function x2 = (αx1 + β)/(γx1 − δ) has a vertical asymptote at
x∗1 = δ/γ < 2.

Proof. It is not hard to verify that x2 has a vertical asymptote at x∗1 = δ/γ. Note
that since a > 1 we have δ > 0 for all σ ≥ 0. If γ < 0 then x∗1 < 0. If γ > 0, we
claim that x∗1 < 2. This is equivalent to showing that

(2 + σ)a+ 2σ2 − 2 < 2(1 + σ)a2 − 2(2σ + 1)a+ 4σ(σ + 1),

which holds if and only if

2(1 + σ)a2 − (5σ + 4)a+ 2(1 + σ)2 = 2(1 + σ)

([
a− 5σ + 4

4(1 + σ)

]2

− 1

4

[
5σ + 4

2(1 + σ)

]2

+ (1 + σ)

)
> 0.

If now suffices to show that

−1

4

[
5σ + 4

2(1 + σ)

]2

+ (1 + σ) > 0.

But this is true for all σ > 0 and thus the claim follows.

96 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

We can now conclude the proof of Theorem 3.26 by distinguishing three cases:
Case σ = 1. It follows that the expression in (3.26) is non-positive for all

a > 1, which implies that −(αδ + γβ)/(γy − δ)2 ≥ 0 and hence −f2/f1 is non-
decreasing in y ≥ 2 for every a > 1 (using Claim 1). We obtain

lim
y→∞

−f2(ay, y, σ)

f1(ay, y, σ)
=

σ(a2 − 1)

(1 + σ)a2 − (2σ + 1)a+ 2σ(σ + 1)
=: h1(a, σ)

and maximizing this function over a ∈ R>1, we find the optimum

a∗(σ) = 1 + σ +
√
σ(σ + 2). (3.27)

Case 1
2 ≤ σ < 1. More generally, for any σ < 1 it holds that αδ + γβ ≤ 0

if and only if a /∈ (1 + σ, 2). In particular for every a /∈ (1 + σ, 2), we can then
show that

sup
y≥2
−f2(ay, y, σ)

f1(ay, y, σ)
≤ lim
y→∞

−f2(a∗y, y, σ)

f1(a∗y, y, σ)
(3.28)

with a∗ as in (3.27) using the same argument as in the case σ = 1. Claim 1
implies that if the expression (3.25) is non-increasing in y, which is the case
when a ∈ (1 + σ, 2), then the maximum value is attained in y = 2. That is, we
are interested in the expression −f2(2a, 2, σ)/f1(2a, 2, σ), and in particular, we
want to show that the supremum over a ∈ (1 + σ, 2) does not exceed the right
hand side of (3.28), i.e., the supremum over all a /∈ (1 + σ, 2).

Given the discussion above, it suffices to study

−f2(2a, 2, σ)

f1(2a, 2, σ)
=

[(a2 − 1)σ]2 + [3(1− a)σ]

[(1 + σ)a2 − (2σ + 1)a+ 2σ(σ + 1)]2− [(2 + σ)a+ 2σ2 − 2]

=
σ(2a2 − 3a+ 1)

2(1 + σ)a2 − (5σ + 4)a+ 2(1 + σ)2
=: h2(a, σ) (3.29)

for a ∈ (1 + σ, 2). For a > 1, this expression is maximized for

b∗(σ) = 1 + σ +

√
σ

(
σ +

1

2

)
, (3.30)

which in particular gives an upper bound for a ∈ (1 + σ, 2).
It now suffices to show that

∆(σ) := h1(a∗(σ), σ)− h2(b∗(σ), σ) ≥ 0,

since this implies that the supremum over a > 1 in (3.24) is attained at some
a /∈ (1 +σ, 2). While unfortunately we lack an analytical proof of this inequality,
it can be verified numerically (see [115]).

Case σ > 1. Here we can use a similar reasoning as in the previous case.
The only difference is that now the expression in (3.25) is non-increasing for
a ∈ (2, 1+σ), but this does not affect the above arguments because we maximize
over all a > 1 when obtaining b∗(σ).

3.4. Perception-parameterized congestion games 97

Numerical experiments suggest that ∆(σ) is non-negative for all σ ≥ 1
2 . In

[115] we describe a procedure to verify this for σ ∈ [1
2 , σ̄] for any given σ̄. We

emphasize that for a fixed σ with ∆(σ) ≥ 0, the proof that the inequality holds
for all h(σ) ≤ ρ ≤ 2σ is exact in the parameter ρ. The first two cases of Theorem
3.26 capture all price of anarchy results from the literature.

We now show that the bound in Theorem 3.26 is tight for arbitrary ρ, σ ≥ 0.
To this aim, we generalize the lower bound construction of Christodoulou and
Koutsoupias [34] for classical congestion games with ρ = σ = 1. This construction
is also adapted in the risk-uncertainty model by Nikolova et al. [146] and the
altruism model by Chen et al. [28].

Theorem 3.28. For ρ, σ > 0 fixed, there exists a linear congestion game such
that

PoA(ρ, σ) ≥ 2ρ(1 + σ) + 1

ρ+ 1
.

Proof. We construct a congestion game of n ≥ 3 players and |E| = 2n resources.
The set E is divided in the sets E1 = {h1, . . . , hn} and E2 = {g1, . . . , gn}. Player
i has two pure strategies: {hi, gi} and {hi+1, gi−1, gi+1}, where the indices appear
as i mod n. The cost functions of the elements in E1 are ce(x) = x, whereas the
cost functions of the elements in E2 are ce(x) = ρx.

Regardless which strategy player i plays, he always uses at least one resource
from both E1 and E2, implying that Cσi (s) ≥ ρ+ 1. This implies that

Cσ(t) =
∑
i∈N

Cσi (s) ≥ (ρ+ 1)n (3.31)

for every strategy profile t, and in particular for a social optimum s∗.

We will now show that the strategy profile s where every agent i plays its
second strategy {hi+1, gi−1, gi+1} is a Nash equilibrium. We have

Cρi (s) = 2ρ[1 + ρ(2− 1)] + 1 = 2ρ2 + 2ρ+ 1.

If some agent i deviates to its first strategy s′i, we have

Cρi (s′i, s−i) = ρ[1 + ρ(3− 1)] + (1 + ρ(2− 1)) = 2ρ2 + 2ρ+ 1,

since there are then three agents using gi and two agents using hi. This shows
that s is a Nash equilibrium. The social cost of this strategy s is

Cσ(s) = n(1 + 2ρ[1 + σ(2− 1)]) = (1 + 2ρ(1 + σ))n. (3.32)

Combining (3.32) with (3.31) then gives the desired result.

98 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

3.4.1.3 Lower bound for symmetric network congestion games

In this section, we show that the bound of Theorem 3.26 is asymptotically tight
even for the special case of linear symmetric network congestion games. This im-
proves a result for the risk-uncertainty model by Piliouras et al. [146], who prove
asymptotic tightness for symmetric linear congestion games for their respective
values of ρ and σ only. It also improves a result for the altruism model by Chen
et al. [28], who show tightness only for general congestion games.

For the classical congestion game setting with ρ = σ = 1, Christodoulou and
Koutsoupias [34] showed that for symmetric affine congestion games the bound
of 5

2 on the price of anarchy is asymptotically tight. More recently, Correa et al.
[44] proved that the bound of 5

2 is tight for symmetric network affine congestion
games. Our lower bound proof is a generalization of their construction.

Theorem 3.29. For ρ, σ > 0 fixed, there exists a symmetric network affine
congestion game such that for every ε > 0,

PoA(ρ, σ) ≥ 2ρ(1 + σ) + 1

ρ+ 1
− ε.

Proof. We construct a symmetric network linear congestion game with n players.
We first describe the graph topology used in the proof of Theorem 5 in [44] (using
similar notation and terminology). The graph G consists of n principal disjoint
paths P1, . . . , Pn from s to t (horizontal paths in Figure 3.4 with P1 and Pn being
the topmost and bottommost paths, respectively), each consisting of 2n− 1 arcs
(and hence 2n nodes). With ei,j the j-th arc on path i is denoted for i = 1, . . . , n
and j = 1, . . . , 2n− 1. Also, vi,j denotes the j-th node on path i for i = 1, . . . , n
and j = 1, . . . , 2n. There are also n(n − 1) connecting arcs: for every path i
there is an arc (vi,2k+1, vi+1,2k) for k = 1, . . . , n, where i + 1 is taken modulo n
(the diagonal arcs in Figure 3.4). For j ≥ 1 fixed, we say that the arcs ei,j for
i = 1, . . . , n form the (j − 1)-th layer of G (see Figure 3.4).

The cost functions are as follows. All arcs leaving s (the arcs ei,1 for i =
1, . . . , n) and all arcs entering t (the arcs ei,2n for i = 1, . . . , n) have cost ce(x) =
(1 + ρ)x. For all i = 1, . . . , n, the arcs ei,2k−1 for k = 1, . . . , n − 1 have cost
function ce(x) = ρx, whereas the arcs ei,2k for k = 1, . . . , n−2 have cost function
ce(x) = x. All other arcs (the diagonal connecting arcs) have cost zero.

The feasible strategy profile t in which player i uses principal path Pi, for
all i = 1, . . . , n has social cost Cσ(t) = n(2(1 + ρ) + (n − 1)ρ + (n − 2)) =
n((1 + ρ)n + ρ). A Nash equilibrium is given by the strategy profile in which
every player k uses the following path: she starts with arcs ek,1 and ek,2, then
uses all arcs of the form ek+j,2j , ek+j,2j+1, ek+j,2j+2 for j = 1, . . . , n−1, and ends
with arcs ek+n−1,2n−2, ek+n−1,2n−1 (and uses all connecting arcs in between).17

Note that all the (principal) arcs of layer j have load 1 is j is even, and load 2
if j is odd. The social cost of this profile is given by Cσ(s) = n(2(1 + ρ) + (n−

17This is similar to the construction in [44, Theorem 5].

3.4. Perception-parameterized congestion games 99

s t

(1 + ρ)x

ρx x ρx x ρx x ρx

(1 + ρ)x

0 1 2 3 4 5 6 7 8

v1 w1

v2

w2

Figure 3.4: Illustration of the instance for n = 5. The dashed (blue) path
indicates the strategy of player 2 in the Nash equilibrium. For every principal
path, the first and last arc have cost (1 + ρ)x, and in between the costs alternate
between ρx and x (starting and ending with ρx). The diagonal connecting arcs
have cost zero. The numbers at the bottom indicate the layers. The bold (red)
subpaths indicate the two deviation situations that are analyzed to prove that s
is indeed a Nash equilibrium.

1) · 2 · ρ(1 + σ(2 − 1)) + n − 2) = n((1 + 2ρ(1 + σ))n − 2ρσ). It follows that
Cσ(s)/Cσ(t) ↑ (1 + 2ρ(1 + σ))/(1 + ρ) as n→∞. We now show that the above
mentioned strategy profile s is indeed a Nash equilibrium.

Fix some player, say player 2, as in Figure 3.4, and suppose that this player
deviates to some path Q. Let j be the first layer in which P2 and Q overlap. Note
that j must be odd. The cost Cρ2 (s) of player 2, on the subpath of P2 leading to
the first overlapping arc with Q, is at most

(1 + ρ) +
j − 1

2
· [2 · [ρ(1 + ρ(2− 1))] + 1] + ρ(1 + ρ(2− 1))

= (1 + ρ)2 +
j − 1

2
(1 + 2ρ(1 + ρ))

The subpath of Q leading to the first overlapping arc with P2 has Cρi (Q, s−i)
as follows. She uses at least one arc in every odd layer (before the overlapping
layer) with a load of 3 and one arc of every even layer (before the overlapping
arc) with load 2, meaning that the cost of player i on the subpath of Q is at least

(1 + ρ)(1 + ρ(2− 1)) +
j − 1

2
· [(ρ(1 + ρ(3− 1))) + (1 + ρ(2− 1))]

= (1 + ρ)2 +
j − 1

2
· (2ρ+ 1)(1 + ρ)

Since 1+2ρ(1+ρ) < (2ρ+1)(1+ρ) for all ρ ≥ 0, if follows that the cost of player
i on the subpath of P2 is no worse than that of the subpath of Q, when player 2

100 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

deviates from P2 to Q. If follows that it suffices to show that P2 is an equilibrium
strategy in s with respect to deviations Q that overlap on the first arc e2,1 with
P2. A similar argument shows that it also suffices to look at deviations Q for
which Q and P2 overlap on the last arc e2,2n−1 of P2.

Now suppose that P2 and Q do not overlap on some internal part of P2. Note
that the first arc of Q that is not contained in P2, say (v1, w1) must be in an even
layer, and also that the last arc, say (v2, w2) (which is a connecting arc) is in an
odd layer (note that v1 6= s and w2 6= t w.l.o.g. by what is said in the previous
paragraph). It is not hard to see that the subpath of Q from v1 to w2 contains the
same number of even-layered arcs as the subpath of P2, and the same number of
odd-layered arcs as the subpath of P2. However, the load on all the odd-layered
arcs on the subpath of deviation Q is 3, whereas the load on odd-layered arcs in
the subpath of P2 between v1 and w2 (in strategy s) is 2. Similarly, the load on
every even-layered arc on the subpath of deviation Q is 2, whereas the load on
ever even-layered arc in the subpath of P2 is 1. Hence the subpath of deviation
Q between v1 and w2 can never be profitable.

3.4.2 Price of stability

In this section, we present our bound on the price of stability for pure Nash
equilibria in general affine congestion games. We first establish our upper bound
and show that it is tight afterwards.

Theorem 3.30. We have

PoS(ρ, σ) ≤
√
σ(σ + 2) + σ√

σ(σ + 2) + ρ− σ
for

2σ

1 + σ +
√
σ(σ + 2)

≤ ρ ≤ 2σ

and σ > 0. This bound is asymptotically tight.

We need the following technical lemma.

Lemma 3.31. Let σ ≥ 0 be fixed. For all non-negative integers x and y we have(
x− y +

1

2

)2

− 1

4
+ 2σx(x− 1) + (

√
σ(σ + 2) + σ)[y(y − 1)− x(x− 1)] ≥ 0.

Proof. The inequality is clearly true for all y ≥ x so we focus on the case y < x.
By rewriting the inequality, we obtain

(1 + σ +
√
σ(σ + 2))y2 − 2xy + (1 + σ −

√
σ(σ + 2))x2

− (1 + σ +
√
σ(σ + 2))y + (1− σ +

√
σ(σ + 2))x ≥ 0.

By multiplying both sides with 1 + σ−
√
σ(σ + 2) (which is non-negative for all

σ ≥ 0) and exploiting that (1 + σ +
√
σ(σ + 2))(1 + σ −

√
σ(σ + 2)) = 1, we

obtain

y2 − 2
(

1 + σ −
√
σ(σ + 2)

)
xy +

(
1 + σ −

√
σ(σ + 2)

)2

x2

3.4. Perception-parameterized congestion games 101

− y + (1 + σ −
√
σ(σ + 2))(1− σ +

√
σ(σ + 2))x ≥ 0.

This is equivalent to((
1 + σ −

√
σ(σ + 2)

)
x− y +

1

2

)2

+
(

1 + σ −
√
σ(σ + 2)

)
([1 + σ −

√
σ(σ + 2)]−1)x− 1

4
≥ 0.

Define c := c(σ) = 1+σ−
√
σ(σ + 2). Note that c(σ) is a bijective function from

R to [0, 1). Substituting c in the above inequality, we obtain for 0 ≤ c < 1 the
equivalent formulation(

cx− y +
1

2

)2

+ c(1− c)x− 1

4
≥ 0. (3.33)

For x = 0, the inequality reduces to (1
2 − y)2 − 1

4 ≥ 0 which is true for all y ∈ N.
For x = 1, we get the equivalent formulation (y−1) (y − 2c) ≥ 0, which is clearly
true for y = 1. For y = 0, it follows from the fact that c ≥ 0. For y ≥ 2 it follows
from the fact that y − 2c ≥ 0 for all y ≥ 2, since 0 ≤ c < 1. This completes the
case x = 1.

For x ≥ 2, we rewrite the expression (3.33) to

x(x− 1)c2 + 2x(1− y)c+ y(y − 1) ≥ 0. (3.34)

If y = 0, the expression in (3.34) is clearly non-negative for all x ≥ 2 and
0 ≤ c < 1. For y ≥ 1, note that g(c) = x(x − 1)c2 + 2x(1 − y)c + y(y − 1) is a
quadratic and convex function for all fixed x and y. Therefore, in particular, for
any x and y fixed, it suffices to show that the inequality holds for the minimizer
of g, which is c∗ = (y − 1)/(x − 1) (which can be found by differentiating with
respect to c). Note that 0 ≤ c∗ < 1 by our assumption that y ≥ 1 and y < x
(made at the beginning of the proof). Substituting implies that it suffices to
show that

x(x− 1)(y − 1)2

(x− 1)2
+

2x(1− y)(y − 1)

x− 1
+ y(y − 1) ≥ 0.

Multiplying the expression with (x− 1) implies that it now suffices to show that

x(y − 1)2 − 2x(y − 1)2 + y(y − 1)(x− 1) ≥ 0

for all 1 ≤ y < x. This is always true since

x(y − 1)2 − 2x(y − 1)2 + y(y − 1)(x− 1) = −x(y − 1)2 + y(y − 1)(x− 1)

= (y − 1) [−x(y − 1) + y(x− 1)]

= (y − 1)(x− y)

≥ 0

whenever 1 ≤ y < x. This completes the proof.

102 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

Our proof is similar to the approach used by Christodoulou, Koutsoupias and
Spirakis [35] to upper bound the price of stability of ρ-approximate equilibria.
However, for general σ the analysis is more involved. The main technical contri-
bution is to establish the inequality in Lemma 3.31. The proof of the asymptotic
tightness is also based on a construction given in [35] to obtain a (non-tight)
lower bound on the price of stability of approximate equilibria.

Proof of Theorem 3.30. Without loss of generality, we may assume that ae = 1
and be = 0 for all resources e ∈ E. Using this, we obtain that the cost of player
i with respect to strategy profile s is

Cρi (s) =
∑
e∈si

(1 + ρ(xe − 1)) =
∑
e∈si

(xe + (ρ− 1)(xe − 1)).

By adapting Rosenthal’s potential function (3.3), we obtain that

Φρ(s) :=
∑
e∈E

xe(xe + 1)

2
+ (ρ− 1)

∑
e∈E

(xe − 1)xe
2

is an exact potential for Cρi (s). The idea of the proof is to combine the Nash
inequalities and the fact that the global minimum of Φρ(·) is a Nash equilibrium.

Let s denote the global minimum of Φρ and s∗ a socially optimal solution.
Further, let x and x∗ be the load profiles for s and s∗, respectively. Similar to
the proof of Lemma 3.24, by exploiting that s is a Nash equilibrium we obtain∑

e∈E
xe(1 + ρ(xe − 1)) =

∑
i∈N

Cρi (s) ≤
∑
i∈N

Cρi (s∗i , s−i) ≤
∑
e∈E

(1 + ρxe)x
∗
e.

The fact that s is a global optimum of Φρ(·) yields Φρ(s) ≤ Φρ(s∗), which reduces
to ∑

e∈E
ρx2

e + (2− ρ)xe ≤
∑
e∈E

ρ(x∗e)
2 + (2− ρ)x∗e.

If we can find γ, δ ≥ 0 and some K ≥ 1, for which(
0 ≤

)
γ
[
ρ(x∗e)

2 + (2− ρ)x∗e − ρx2
e − (2− ρ)xe

]
+ δ [(1 + ρxe)x

∗
e − xe(1 + ρ(xe − 1)]

≤ K · x∗e[1 + σ(x∗e − 1)]− xe[1 + σ(xe − 1)], (3.35)

then this implies that Cσ(s)/Cσ(s∗) ≤ K. We take δ = (K − 1)/ρ and γ =
((ρ− 1)K + 1)/(2ρ). It is not hard to see that δ ≥ 0 always holds. However, for
γ we have to be more careful. We will later verify for which combinations of ρ
and σ the parameter γ is indeed non-negative. Rewriting the expression in (3.35)
yields that we have to find K satisfying K ≥ f2(xe, x

∗
e, σ)/f1(xe, x

∗
e, ρ, σ), where

f2(xe, x
∗
e, σ) := (x∗e)

2 − 2xex
∗
e + (1 + 2σ)x2

e − x∗e + (1− 2σ)xe

f1(xe, x
∗
e, ρ, σ) := (1− ρ+ 2σ)(x∗e)

2 − 2xex
∗
e + (1 + ρ)x2

e

3.4. Perception-parameterized congestion games 103

+ (ρ− 1− 2σ)x∗e − (ρ− 1)xe.

Note that this reasoning is correct only if f1(xe, x
∗
e, ρ, σ) ≥ 0. This is true because

f1(xe, x
∗
e, ρ, σ) =

(
xe − x∗e +

1

2

)2

− 1

4
+ (2σ − ρ)x∗e(x

∗
e − 1) + ρxe(xe − 1)

is non-negative for all xe, x
∗
e ∈ N, σ ≥ 0 and 0 ≤ ρ ≤ 2σ. Furthermore, the

expression is zero if and only if (xe, x
∗
e) ∈ {(0, 1), (1, 1)}. But for these pairs the

nominator is also zero, and hence the expression in (3.35) is satisfied for these
pairs. We can write

f2(xe, x
∗
e, σ) =

(
xe − x∗e +

1

2

)2

− 1

4
+ 2σxe(xe − 1)

and therefore f2/f1 = A
A+(2σ−ρ)B , where

A =

(
xe − x∗e +

1

2

)2

− 1

4
+ 2σxe(xe − 1) and B = x∗e(x

∗
e − 1)− xe(xe − 1).

Note that if ρ = 2σ, we have f2/f1 = 1, and hence we can take K = 1. Otherwise,

A

A+ (2σ − ρ)B
≤

√
σ(σ + 2) + σ√

σ(σ + 2) + ρ− σ
=: K ⇔ A+ (

√
σ(σ + 2) + σ)B ≥ 0.

The inequality on the right is true by Lemma 3.31.
To finish the proof, we determine the pairs (ρ, σ) for which the parameter γ

is non-negative. This holds if and only if

(ρ− 1)K + 1 = (ρ− 1)

√
σ(σ + 2) + σ√

σ(σ + 2) + ρ− σ
+ 1 ≥ 0.

Rewriting this inequality yields the bound on ρ in the statement of the theorem.

Note that Theorem 3.30 does not provide the bound of 2 for uniform affine
congestion games stated in Table 3.1. The reason is that the bound in Theo-
rem 3.30 with ρ = σ is only valid for σ ≥ 1

4 (because otherwise the lower bound
on ρ is not satisfied). However, for 0 ≤ σ ≤ 1

4 the corresponding cost functions
ce(x) = σx+ (1− σ) have non-negative constants and thus the price of stability
for classical congestion games applies (see [22]). As a consequence, we obtain

PoS(A′) = max

{
1.577, sup

σ≥1/4

{
1 +

√
σ/(σ + 2)

}}
= 2.

We next provide a lower bound on the price of stability for arbitrary non-negative
pairs (ρ, σ). The proof is similar to a construction of Christodoulou et al. [35]

104 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

used to give a lower bound on the price of stability for ρ-approximate equilibria.
The key difference is to tune some parameters in the proof with respect to the
Nash definition based on the cost function Cρi (·) rather than the ρ-approximate
Nash equilibrium definition.

Theorem 3.32. For ρ, σ > 0 fixed with ρ < 2σ, there exists a linear congestion
game such that for every ε > 0

PoS(ρ, σ) ≥
√
σ(σ + 2) + σ√

σ(σ + 2) + ρ− σ
− ε.

Proof. We describe the construction of Theorem 9 [35] (using similar notation
and terminology). We have a game of n = n1 + n2 players divided into two sets
G1 and G2 with size resp. n1 and n2. Each player i ∈ G1 has two strategies: Ai
and Pi. The players in G2 have a unique strategy D. The strategy profile A =
(A1, . . . , An1

, D, . . . ,D) will be the unique Nash equilibrium, and the strategy
profile P = (P1, . . . , Pn1

, D, . . . ,D) will be the social optimum.
We have three types of resources:

• n1 resources αi, i = 1, . . . n1, with cost function cαi(x) = αx. The resource
αi only belongs to strategy Pi.

• n1(n1 − 1) resources18 βij , i, j = 1, . . . , n1 with i 6= j, with cost function
cβij (x) = βx. The resource βij belongs only to strategies Ai and Pj .

• One resource γ with cost function cγ(x) = x, that belongs to Ai for i =
1, . . . , n1 and to D.

The idea is to set the parameters α and β in such a way that A becomes
the unique Nash equilibrium. For any strategy profile s, there are k players
playing strategy Ai and n1 − k players playing strategy Pi in the set G1, for
some 0 ≤ k ≤ n1. By symmetry, it then suffices to look at profiles Sk =
(A1, . . . , Ak, Pk+1, . . . , Pn1

, D, . . . ,D) for 0 ≤ k ≤ n1. Furthermore, the first
k players playing Ai all have the same cost, and also, the n1 − k players playing
Pi have the same cost. We can therefore focus on the costs of player 1, denoted
by CρA(k), and that of player n1, denoted by CρP (k). We have

CρA(k) = β(k − 1) + β(1 + ρ(2− 1))(n1 − k) + 1 + ρ(n2 + k − 1)

= (β − β(1 + ρ) + ρ)k + (−β + β(1 + ρ)n1 + 1 + ρ(n2 − 1))

= ρ(1− β) · k + (1− β − ρ) + β(1 + ρ)n1 + ρn2

and

CρP (k) = α+ β(n1 − 1− k) + β(1 + ρ(2− 1))k

18The proof of Theorem 9 [35] contains a typo here: it says there are n(n − 1) resources of
this type, instead of n1(n1 − 1).

3.4. Perception-parameterized congestion games 105

= βρ · k + α+ β(n1 − 1). (3.36)

We can set the parameters α and β such that CρA(k) = CρP (k − 1), meaning
that Sk is a Nash equilibrium for every k (we will create a unique Nash equilibrium
in a moment), that is we take

ρ(1− β) = βρ and (1− β − ρ) + β(1 + ρ)n1 + ρn2 = α+ β(n1 − 1)− βρ.

Note that the −βρ term on the far right of the second equation comes from
the fact that we evaluate CρP (·) in k − 1 (remember that k denotes the number
of players playing strategy Ai, so if a player would switch to Pi this number
decreases by 1). Solving the left equation leads to β = 1/2. Inserting this in the
right equation, and solving for α, gives

α = ρ

(
n1

2
+ n2 −

1

2

)
+ 1.

We emphasize that α, β > 0 for all ρ ≥ 0. In order to make A the unique Nash
equilibrium, we can slightly increase α such that we get CρA(k) < CρP (k − 1) for
all k (which means that Ai is a dominant strategy for player i). Note that this
increase in α can be arbitrary small. We have

Cσ(A)

Cσ(P)
=
n1

[
1 + σ(n1 + n2 − 1) + 1

2 (n1 − 1)
]

+ n2 [1 + σ(n1 + n2 − 1)]

n1

[
ρ(n1+1

2 + n2 − 1) + 1 + 1
2 (n1 − 1)

]
+ n2 [1 + σ(n2 − 1)]

.

Inserting n2 = a · n1 for some rational a > 0, and sending n1 →∞ gives a lower
bound of

f(a) =
2σ(1 + a)2 + 1

ρ(1 + 2a) + 1 + 2σa2

on the price of stability. Optimizing over a > 0 (this only works if ρ < 2σ) gives

a∗ = −1

2
+

√
1

4
+

1

2σ

and f(a∗) then yields the bound in the statement of the theorem.

3.4.3 Applications

We review various models that fall within our model of perception parameterized
congestion games introduced above (for certain values of ρ and σ). A comparison
with existing work is given in Table 3.1 in Section 3.1.2.

Altruism [23, 28]. We can rewrite the cost of player i as

Cρi (s) =
∑
e∈si

(aexe + be) + (ρ− 1)ae(xe − 1).

106 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

The term (ρ − 1)ae(xe − 1) can be interpreted as a “dynamic” (meaning load-
dependent) tax that all players using resource e have to pay. For 1 ≤ ρ ≤ ∞
and σ = 1, this model is equivalent to the altruistic player setting proposed by
Caragiannis et al. [23]. Chen et al. [28] also study this model of altruism for
1 ≤ ρ ≤ 2 and σ = 1.19

Universal taxes [22]. We can rewrite the cost of player i as

Cρi (s) =
∑
e∈si

ρaexe + (1− ρ)ae + be.

Dividing by ρ gives that s is a Nash equilibrium with respect to Cρi if and only
if s is a Nash equilibrium with respect to

T ρi (s) =
Cρi
ρ

=
∑
e∈si

(
aexe +

be
ρ

)
+
∑
e∈si

1− ρ
ρ

ae.

That is, s is a Nash equilibrium in a classical congestion game in which players
take into account constant resource taxes of the form τ(ρ) · ae, where τ(ρ) =
(1 − ρ)/ρ. Caragiannis, Kaklamanis and Kanellopoulos [22] study this type of
taxes, which they call universal tax functions, for ρ satisfying τ(ρ) = 3

2

√
3 − 2.

They consider these taxes to be refundable, i.e., they are not taken into account
in the social cost, which is equivalent to the case σ = 1. Note that the function
τ : (0, 1]→ [0,∞) with τ(ρ) = (1−ρ)/ρ is bijective. That is, there is a one-to-one
correspondence between universal taxes with τ(ρ) ∈ [0,∞) and spiteful behavior
with ρ ∈ (0, 1]; this relation is also mentioned by Caragiannis et al. [23].

Risk sensitivity under uncertainty [146]. Piliouras, Nikolova and Shamma
[146] consider congestion games in which there is a (non-deterministic) order of
the players on every resource. A player is only affected by players in front of
her. That is, the load on resource e for player i in a strict ordering r, where re(i)
denotes the position of player i, is given by xe(i) = |{j ∈ N : re(j) ≤ re(i)}|.
The cost of player i is then Ci(s) =

∑
e∈si ce(xe(i)). Note that xe(i) is a random

variable if the ordering is non-deterministic. The social cost of the model is
defined by the sum of all player costs

C
1
2 (s) =

∑
e∈E

1

2
aexe(xe + 1) + be

which is independent of the ordering r.20 Note that the social cost corresponds to
the case σ = 1

2 in our framework. Piliouras et al. [146] study various risk attitudes

19The equivalence between the altruism model in [23] and our model is immediate; the
equivalence between the altruism model in [28] and the model in [23] (and thus also our model)
is proven in [28].

20In every ordering there is always one player first, one player second, and so on.

3.4. Perception-parameterized congestion games 107

towards the ordering r that is assumed to have a uniform distribution over all
possible orderings. In particular, they consider players who are risk-neutral and
players who apply Wald’s minimax principle. In the risk-neutral setting the cost
of a player is defined as the expected cost under the ordering r, which corresponds
to the case ρ = 1

2 in (3.16). Intuitively, this can be interpreted as that players
expect to be scheduled in the middle on average. In contrast, when players apply
Wald’s minimax principle they adopt a worst-case perspective, i.e., each player
assumes that she is scheduled last on all the resources; this corresponds to the
case ρ = 1.

Approximate Nash equilibria [35]. Suppose that s is a Nash equilibrium
under the cost functions defined in (3.16). Then, in particular, we have

C1
i (s) ≤ Cρi (s) ≤ Cρi (s′i, s−i) ≤ ρC1

i (s′i, s−i)

for any player i and s′i ∈ Si and ρ ≥ 1. That is, we have C1
i (s) ≤ ρC1

i (s′i, s−i)
which means that the profile s is a ρ-approximate equilibrium, as studied by
Christodoulou, Koutsoupias and Spirakis [35]. In particular, this implies that
any upper bound on the price of anarchy, or price of stability, in our framework
yields an upper bound on the price of stability for ρ-approximate equilibria for
the same class of games.21

Uniform affine congestion games. Let A′ denote the class of all congestion
games Γ for which all resources have uniform costs c(x) = ax+b, where a = a(Γ)
and b = b(Γ) satisfy a ≥ 0 and a+b > 0. Note that we allow b to be negative here.
The class of affine congestion games with non-negative coefficients as defined
above is contained in A′ since every such game can always be transformed22 into
a game Γ′ with ae = 1 and be = 0 for all resources e ∈ E′, where E′ is the
resource set of Γ′. Without loss of generality, we can assume that a+b = 1 (since
the cost functions can be scaled by 1/(a+ b)). The cost functions of Γ ∈ A′ can
then equivalently be written as c(x) = ρx + (1 − ρ) for ρ ≥ 0. This is precisely
the definition of Cρi (s) (with ae = 1 and be = 0). In particular, if we take σ = ρ
(and thus Cρ(s) =

∑
i∈N C

ρ
i (s)), we have

PoA(A′) = sup
ρ≥0

PoA(A, ρ, ρ) and PoS(A′) = sup
ρ≥0

PoS(A, ρ, ρ),

where A denotes the class of affine congestion games with non-negative coeffi-
cients.

21In particular, we essentially show in Section 3.4.2 that the analysis carried out in [35], for
the price of stability of approximate equilibria, actually gives a tight bound on the price of
stability of the altruism model in [28].

22This transformation can be done in such a way that both the PoA and the PoS of the game
do not change; see, e.g., [28, Lemma 4.3] for a proof.

108 Chapter 3. On pure Nash equilibria in Rosenthal congestion games

3.5 Conclusion

We identified two structural properties of polytopal congestion games which are
sufficient to efficiently compute a global minimizer of Rosenthal’s potential: IDP
and box-TDI. Further, we proved that the computed Nash equilibria obtain a
social cost approximation guarantee of ρ(D) if the cost functions belong to class
D. As we showed, this also establishes a tight bound on the price of stability for
polytopal congestion games satisfying IDP and box-TDI. Intuitively, these games
thus inherit the social cost approximation guarantee of non-atomic network rout-
ing games [45]. In our inefficiency proofs, we crucially exploited the symmetric
difference decomposition property of polytopes; we believe that this new notion
might be useful also in other contexts. Finally, we provided several examples of
classes of congestion games that can be cast into our framework and showed that
some of the results also extend to bottleneck congestion games.

For future work it would be interesting to see whether out techniques extend
to other classes of games, e.g., to special cases of weighted congestion games.
Note that, although having an exact potential function turned out to be conve-
nient, our approach per se is not limited by this requirement. In fact, it would
be interesting to see how different (ordinal) potential functions impact the ineffi-
ciency guarantee of the respective global potential function minimizers. Another
interesting direction for future work is whether or not the condition of box-TDI
can be dropped. More generally, is it true that every aggregation polytope with
the integer decomposition property is also box-TDI? Furthermore, can one show
that the integer decomposition property is in some sense necessary for the price
of stability results to go through? For the computation of an arbitrary pure Nash
equilibrium, this is not true, as one can efficiently compute a pure Nash equilib-
rium in so-called max-cut games with unit weights. It is interesting to note that
computing a global minimum of Rosenthal’s potential is an NP-complete problem
for this case. Hence, it is not true that whenever we can compute some pure Nash
equilibrium, we can also always compute a Rosenthal potential minimizer. Is the
integer decomposition property in some sense necessary for the computation of
a Rosenthal minimizer?

We feel that in general the power of polyhedral techniques to compute good
Nash equilibria in games is not well-understood and worth being investigated
more intensively. In particular, research in this direction opens up an intriguing
connection between the fields of polyhedral combinatorics and computational
game theory.

Secondly, we introduced a new model of affine congestion games by parame-
terizing both the cost functions of the players and the social cost function. Our
model encompasses several extensions of Rosenthal’s (classical) congestion games
which were previously studied in the literature. We derived bounds on the price
of anarchy and the price of stability which are tight for a large range of param-
eters ρ and σ. Our work reveals that tight bounds on the inefficiency of these
extensions can be derived in a unifying manner. The study of such parameterized

3.5. Conclusion 109

games seems particularly valuable if tight bounds can be derived.
A first natural extension of our model is to go beyond affine cost functions.

Some of the connections between perception-parameterized congestion games and
other models revealed in this chapter, continue to hold for more general cost
functions (although not always as clean as for the affine case). Another natural
direction for future research is to consider parameterized versions of other funda-
mental games such as cost sharing games, utility games, network design games
or auctions.

For non-atomic network routing games [175] several extensions which were
recently studied in the literature can also be unified; in particular, there are
close connections between the extensions considered in [17, 29, 35, 81, 129, 128].
Similar to the viewpoint adopted here, these extensions can be viewed as network
routing games where the cost functions of the players are suitably parameterized.
In fact, many of these models incorporate (implicitly or explicitly) some scaled
marginal tolls into the cost functions of the players. Further, this also connects
to the notion of approximate Nash equilibria (as in [35]). Several of these works
find similar inefficiency bounds which can also be derived in a unifying manner
by using these scaled marginal tolls.

In this chapter, we focused on the homogeneous player case because this is the
setting addressed in most previous studies which we unify here. An interesting
direction for future research is to consider heterogeneous players. In this context,
Chen et al. [28] derived a price of anarchy bound for their altruistic congestion
games which depends on the extreme values of the parameter ρ used by players
(with σ = 1).

Chapter 4

New results for the switch
Markov chain

4.1 Introduction

A classical result due to Erdős and Gallai [86] characterizes when a sequence of
non-negative integers d1 ≥ · · · ≥ dn can be realized as the degree sequence of a
simple undirected (labelled) graph on n vertices, i.e., if there exists a graphical
realization of the sequence. The Erdős-Gallai theorem states that the sequence
can be realized if and only if: the sum d1 + · · ·+ dn is even and

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min{di, k} (4.1)

for every 1 ≤ k ≤ n.

Example 4.1. Consider the sequence d = (2, 2, 2, 2). It is not hard to see that
this sequence satisfies the conditions in (4.1). There are precisely three (labelled)
graphical realizations corresponding to this degree sequence, as illustrated in
Figure 4.1.

Figure 4.1: All graphical realizations for the sequence d = (2, 2, 2, 2).

Havel [102] and, independently, Hakimi [98], provide a simple algorithm to
compute a graphical realization if it exists. Their algorithm relies on the obser-
vation that the sequence d = (d1, . . . , dn), with d1 ≥ · · · ≥ dn, is realizable if and

111

112 Chapter 4. New results for the switch Markov chain

only if the sequence d−1 = (d2 − 1, . . . , dd1+1 − 1, . . . , dn) is non-negative and
realizable. The natural greedy approach, in which we connect d1 to d2, . . . , dd1+1

and then repeat this procedure starting with the sequence d−1 (reordered from
largest to smallest if necessary), outputs a graphical realization after at most
n− 1 steps of this procedure if one exists.

Similar results are known for bipartite graphs. The following characterization
is due to Gale [85] and Ryser [157]. Given two sequences of non-negative integers
r = (r1, . . . , rm) and c = (c1, . . . , cn) with r1 ≥ r2 ≥ · · · ≥ rm, there is a bipartite
graphical realization1 if and only if

∑n
i=1 ci =

∑m
i=1 ri and

k∑
i=1

ci ≤
m∑
i=1

min{ri, k} (4.2)

for 1 ≤ k ≤ n.

With the existence and construction problem being well-understood, there has
also been a great interest in the last decades in uniformly sampling graphs with a
given degree sequence, as it finds many applications in, e.g., hypothesis testing in
network structures [141]. The first explicit sampler appears as the configuration
model in the work of Bollobás [16]. Roughly speaking, every node i is given di
half-edges (or stubs) which are paired up uniformly at random, with every pair
of stubs being paired up becoming an edge between the nodes corresponding
to the stubs. In general, this procedure outputs a loopy multigraph (possibly
containing parallel edges and self-loops) with degree sequence d. The probability
that the output of the configuration model is a simple graph is exponentially
small in general, and has therefore no direct algorithmic value. Nevertheless,
various approaches (see Section 4.1.2) for sampling a graph with given degrees
rely on probabilistic procedures to turn the (possibly) non-simple output of the
configuration model into a simple graph.

Another prominent line of work for sampling graphs with given degrees is the
Markov Chain Monte Carlo (MCMC) method; see Section 1.4.2. Here one studies
a random walk on the set of all graphical realizations induced by a probabilistic
algorithmic procedure that specifies how to make (small) random changes to
the current graphical realization. The probabilities, arising from the algorithmic
procedure, with which graphical realizations are turned into each other define a
Markov chain on the set of all graphical realizations. The idea, roughly, is that
after a sufficient number of changes, the so-called mixing time of the Markov
chain, the resulting graphical realization corresponds to a sample from an almost
uniform distribution over all graphical realizations of the given degree sequence.
The goal is to show that the chain mixes rapidly, meaning that one only needs
to simulate the Markov chain a polynomial (in the size of the graph) number of
steps in order to obtain an approximately uniform sample.

1That is, there exists a bipartite graph G = (A ∪ B,E) where A = {a1, . . . , an} and B =
{b1, . . . , bn} so that dai = ci for i ∈ A and dbj = rj for j ∈ B.

4.1. Introduction 113

One of the most well-known probabilistic procedures for making these small
changes uses local operations called switches (also known as swaps or transpo-
sitions); see Figure 4.2 for an example. The notion of a switch naturally gives

v

w

x

y

v

w

x

y

Figure 4.2: Example of a switch in which edges {v, w}, {x, y} are replaced by
{v, y}, {x,w}. Note that the degree sequence is preserved when applying a switch
operation.

rise to the switch algorithm: start with some initial graphical realization G0 with
degree sequence d, that we can compute in polynomial time using the Havel-
Hakimi algorithm explained earlier, and repeatedly apply random switches. This
can, e.g., be done by selecting a tuple of four nodes (x, y, v, w) uniformly at ran-
dom. If, as in Figure 4.2, the edges {x, y} and {v, w} are present in G0, and
{x,w} and {v, y} are not, we switch the edges {x, y} and {v, w}. Does this al-
gorithm have all the desired properties? That is, do we have the guarantee that
if one applies sufficiently many switches that the resulting graph is close to a
uniform sample from the set of all graphical realizations?

In order to establish correctness of this approach we consider the switch
Markov chain on the set of all graphical realizations induced by this algorith-
mic procedure, where the transition probabilities of the Markov chain are given
by the probabilities with which the switches are applied. We should first check
that this is an aperiodic, irreducible Markov chain with the uniform distribution
as stationary distribution, i.e., that it actually does the job. Aperiodicity is easy
to check, as well as the fact that the chain is reversible with respect to the uniform
distribution. Irreducibility is less trivial, but still well-understood. In particular,
Taylor [167] has shown that every two graphical realizations of a degree sequence
d can be transformed into one another by a finite sequence of switches, which
implies that the switch chain is irreducible. It then follows that the switch algo-
rithm is a fully polynomial almost uniform sampler (see Section 1.4) if the switch
Markov chain is rapidly mixing. The switch Markov chain has been shown to be
rapidly mixing for various degree sequences [41, 95, 96, 131, 73, 71], but it is still
open whether it is rapidly mixing for all degree sequences.

For the problem of sampling bipartite graphs with a given degree sequence,
we also study a second algorithm that is closely related to the switch algorithm,
the so-called curveball algorithm [174, 166]. The curveball algorithm is a varia-
tion on the switch algorithm in which essentially multiple switches are performed
simultaneously, with the goal of speeding up switch-based algorithms. These
type of operations are called binomial trades; see Example 4.14 in Section 4.2.4.
Roughly speaking, the neighborhoods of two given vertices are completely ran-

114 Chapter 4. New results for the switch Markov chain

domized in this procedure (while preserving the degree sequence), as opposed to
just applying one switch operation.

Joint degree matrix problem. Apart from the problem of sampling graphs with
given degrees, we also study the joint degree matrix (JDM) problem, where, in
addition to the degree sequence d, we are also given a so-called (symmetric)
joint degree distribution c = (cij)i,j∈[dmax] with cij specifying the total number
of edges between nodes of degree i and j. Motivation for including such extra
information is, e.g., given by Mahadevan et al. [124], who argued that the joint
degree distribution is a much more reliable metric for a synthetic graph2 to
resemble a real network topology, compared to just using the degree sequence.
The joint degree matrix model of Amanatidis, Green, and Mihail [5] formalizes
this approach.

Example 4.2. We let n = 11, and consider the pair (c, d) given by

c =


0 0 0 0
0 0 0 0
0 0 7 4
0 0 4 8

 and d = (3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4).

This means that there are six nodes of degree three, five nodes of degree four,
and there are in total four edges between the nodes of degree three and four. In
Figure 4.3 below we give a possible graphical realization of this tuple (c, d).

V3 V4

Figure 4.3: An example of a graphical realization for c and d as given in Example
4.2.

Although there are polynomial-time algorithms that produce a graphical re-
alization of a given joint degree distribution [5, 163, 49, 92], it is not known how
to uniformly sample such a realization efficiently. In particular, bounding the
mixing time of the natural restriction of the switch Markov chain (in which only
switches that preserve the joint degree distribution are allowed) for this setting
has been an open problem since the introduction of the model [5, 163, 73].

In Section 4.2 we work with a slightly different definition of the joint degree
matrix model where we leave out the zeros from the matrix c. In particular,

2That is, a graph not obtained from empirical data, but generated by a random graph model.

4.1. Introduction 115

in this work we will focus on sampling graphical realizations for the case of two
degree classes. That is, we are given a partition V = V1 ∪ V2 of the node set
V = {1, . . . , n} and we are interested in sampling simple graphs for which all
nodes in V1 have degree β1, all nodes in V2 have degree β2, and where there are
precisely γ edges between nodes in V1 and V2. This essentially corresponds to
the case in which the joint degree matrix c is non-zero only for the submatrix
induced by the rows and columns corresponding to β1 and β2.

Remark 4.3. We note that for the joint degree matrix model, it is actually not
necessary to specify the degree sequence d as it is uniquely defined (up to rela-
belling of the nodes) by the joint degree distribution c. However, our analysis
in Section 4.4 will actually be carried out in a more general model, called the
partition adjacency matrix model [48], for which this is not the case.

4.1.1 Our contributions

We present three new results related to the switch Markov chain.

1. In Section 4.3, we present a new proof idea for showing rapid mixing of
the switch Markov chain that unifies and extends all ranges of degrees for
which the switch chain is known to be rapidly mixing. In particular, we
show that the switch chain is rapidly mixing for so-called strongly stable
degree sequences (Theorem 4.16). We introduce strong stability as a stricter
version of the notion of P -stability [109], which roughly means that the
number of graphical realizations that a degree sequence has, does not vary
too much if the degree sequence is slightly perturbed. The strong stability
condition is satisfied by the degree sequences in the works [113, 41, 95,
131, 73, 71] and by characterizations of P-stability [107]. In particular,
our results resolve an open question posed by Greenhill [95] (see Corollary
4.17). We should note that the unification of the existing results mentioned
so far is qualitative rather than quantitative, in the sense that our simpler,
indirect approach provides weaker polynomial bounds for the mixing time.
For examples of explicit mixing time bounds we refer the reader to [41, 42,
96].

The proofs of the results in [131, 95, 73, 72] for the analysis of the switch
Markov chain in undirected (or bipartite) graphs are all using conceptually
similar ideas to the ones introduced by Cooper, Dyer and Greenhill [41] for
the analysis of the switch chain for regular undirected graphs, and are based
on the multi-commodity flow method of Sinclair [162]. Sinclair’s method
roughly speaking states that if one can define a good multi-commodity flow
(of which the demands depend on the stationary distribution) in the state
space graph of the Markov chain in which no edge gets too congested, then
the Markov chain mixes rapidly. The individual parts of this method for
the known switch chain analyses can become quite technical and require
somewhat long proofs.

116 Chapter 4. New results for the switch Markov chain

In this work we take a different approach for proving that the switch
chain is rapidly mixing. First we analyze an easier auxiliary Markov chain
introduced by Jerrum and Sinclair [109]; such a chain can be used to sample
graphical realizations that almost have a given fixed degree sequence. We
show that there exists an efficient multi-commodity flow for the auxiliary
chain when the given instance is strongly stable, and then show how it can
be transformed into an efficient multi-commodity flow for the switch chain.
In this last step we compare two Markov chains with different state spaces,
as the auxiliary chain samples from a strictly larger set of graphs than the
switch chain. For this part of the proof we rely on embedding arguments
similar to those by Feder, Guetz, Mihail and Saberi [76].

2. In Section 4.4, building on the ideas in Section 4.3, we study the problem
of sampling undirected simple graphs with a given joint degree distribution
using the switch Markov chain. We show that the switch chain restricted
on the space of the graphical realizations of a given joint degree distribution
with two degree classes is always rapidly mixing (Theorem 4.24). Despite
being for the case of two classes, this is the very first rapid mixing result for
the problem. We again first analyze an auxiliary chain, the so-called hinge
flip chain. We study this chain in the more general partition adjacency
matrix model for two classes. Establishing the rapid mixing of the hinge
flip chain in this case presents significant challenges. To attack this problem,
we rely on ideas introduced by Bhatnagar, Randall, Vazirani and Vigoda
[15] in the context of sampling exact matchings (Remark 1.13). At the core
of this approach lies the mountain-climbing problem [105, 176].

3. In Section 4.5 we address the mixing time of the curveball chain. We give
some mathematically rigorous evidence for the claim that the curveball
chain might speed up switch-based approaches, by providing a spectral gap
comparison between the switch and curveball chain. The spectral gap is
a quantity that essentially determines the mixing time of a Markov chain
(see Section 4.2). In order to establish our results, we introduce a general
comparison framework inspired by, and based on, the notion of a heat-bath
Markov chain, using the definition by Dyer, Greenhill and Ullrich [61]. This
framework essentially compares a given Markov chain with a locally refined
version, which we will call its heat-bath variant. We introduce a novel
decomposition of the state space graph of the switch and curveball chains,
based on Johnson graphs, in order to apply this framework.

Recent improvements. Erdős et al. [67] show, in a recent preprint, that the proof
templates used in [41, 95, 131, 73, 72] can be adjusted to show rapid mixing for
P-stable degree sequences. This is an improvement over our result for strongly
stable degree sequences. In particular, it allows the authors to claim rapid mix-
ing of the switch Markov chain for certain power-law degree sequences. These
sequences are claimed to be P-stable in [89], based on results in [88], but it is not
known if these power-law degree sequences are also strongly stable (or provably

4.1. Introduction 117

not strongly stable in general).

Omitted contributions. A similar approach as sketched in the first contribution
above can be used to show that the switch chain is rapidly mixing for various
strongly stable bipartite degree sequences. This is shown in [6]. We choose to
omit these results here as they are all proved along similar lines, and do not add
much in terms of technical contributions.3

4.1.2 Related work

Jerrum and Sinclair [109] provide a fully polynomial almost uniform sampler
(FPAUS) for generating graphical realizations of degree sequences coming from
any P -stable family of sequences (see Section 4.2.1). Jerrum, Sinclair and Vigoda
[110] give the first FPAUS for sampling bipartite graphs with any given degree
sequence. This is a corollary of their breakthrough work [110] on approximating
the permanent of a non-negative matrix. Bezáková, Bhatnagar and Vigoda pro-
vide a more direct and improved sampler of that in [110]. In the latter work the
problem is reduced to that of sampling perfect matchings in a bipartite graph. It
is open whether or not there exists an FPAUS for general undirected degree se-
quences. More generally, it is still open if there is an FPAUS for sampling perfect
matchings in undirected graphs. Recently S̆tefankovic̆, Wilmes and Vigoda [164]
showed that the approach in [110] does not go through for general undirected
graphs.

One drawback of the sampler of Jerrum and Sinclair [109] is that it works
with auxiliary states. Kannan, Tetali and Vempala [113] introduce the switch
chain as a simpler and more direct sampler that does not have to work with
auxiliary states. They addressed the mixing time of such a switch-based Markov
chain for the (near)-regular bipartite case. Cooper, Dyer and Greenhill [41] then
gave a rapid mixing proof for regular undirected graphs, and later Greenhill
[95] extended this result to certain ranges of irregular degree sequences; see also
Greenhill and Sfragara [96]. Miklós, Erdős and Soukup [131] proved rapid mixing
for the half-regular bipartite case, and Erdős, Miklós and Toroczkai [73] for the
almost half-regular case. Very recently, Erdős, Mezei and Miklós [71] presented
a range of bipartite degree sequences unifying and generalizing the results in
[131, 73].

Switch-based Markov chain Monte Carlo approaches have also been stud-
ied for other graph sampling problems. Feder et al. [76], as well as Cooper et
al. [43], study the mixing time of a Markov chain using a switch-like probabilistic
procedure (called a flip) for sampling connected graphs. For sampling perfect
matchings, switch-based Markov chains have also been studied, see, e.g., the
recent work of Dyer, Jerrum and Müller [62] and references therein.

The joint degree matrix model was first studied by Patrinos and Hakimi [145],

3Moreover, some of the results we obtain in [6] for bipartite degree sequences have been
improved in the preprint [67] mentioned above.

118 Chapter 4. New results for the switch Markov chain

albeit with a different formulation and name, and was reintroduced in Amanatidis
et al. [5]. While it has been shown that the switch chain restricted on the space
of the graphical realizations of any given joint degree distribution is irreducible
[5, 49], almost no progress has been made towards bounding its mixing time.
Stanton and Pinar [163] performed experiments based on the autocorrelation of
each edge, suggesting that the switch chain mixes quickly. The only relevant
result is that of Erdős et al. [73] showing rapid mixing for a related Markov
chain over the severely restricted subset of so-called balanced joint degree matrix
realizations; this special case, however, lacks several of the technical challenges
that arise in the original problem.

The curveball chain was first described by Verhelst [174] and a slightly differ-
ent version was later independently formulated by Strona et al. [166]. The term
‘curveball’ was introduced in [166]. The curveball chain has also been formulated
for (un)directed graphs, see Carstens, Berger and Strona [25]. Our comparison
analysis for the curveball chain is a special case of the classical comparison frame-
work developed largely by Diaconis and Saloff-Coste and is based on so-called
Dirichlet form comparisons of Markov chains, see, e.g., [55, 56], and also Quastel
[147]. See also the expository paper by Dyer, Goldberg, Jerrum and Martin [60].
As the stationary distributions are the uniform distribution for all our Markov
chains, we can use a more direct, but equivalent, framework based on positive
semidefiniteness. Finally, the transition matrix of the curveball Markov chain is
a special case of a heat-bath Markov chain under the definition of Dyer, Greenhill
and Ullrich [61]. Our work partially builds on [61] in the sense that we compare
a Markov chain, with a similar decomposition property as in the definition of a
heat-bath chain, to its heat-bath variant.

Non-MCMC algorithms for sampling graphs with given degrees. There also exist
graph sampling algorithms not relying on the MCMC method as mentioned in the
introduction, many inspired by the configuration model [16]. Although this model
in general outputs a loopy multigraph, there exist degree sequences for which the
configuration model yields a simple graph with positive probability. For d-regular
degree sequences, in which all nodes have degree d ∈ N, the configuration model
outputs a simple graph with probability roughly e(d−1)2/4. This is actually an
exact uniform sample from the set of all simple d-regular graphs (not just close
to a uniform sample). The probability for obtaining a simple graph is a strictly

positive constant if and only if d = O
(√

log(n)
)

.

Steger and Wormald [165] analyze a natural variant of the configuration model
in which repeatedly only feasible edges are added uniformly at random. An
edge is feasible if it does not create a loop or parallel edge. They show this
procedure gives an output distribution over all simple d-regular graphs which
is asymptotically uniform, for d = o(n1/28). This range was extended to d =
o(n1/3−ε) by Kim and Vu [114], and later by Bayati, Kim and Saberi [11] to
d = o(n1/2−ε). The latter work [11] also studies irregular degree sequences.

McKay and Wormald [126] considered a different extension of the configu-

4.1. Introduction 119

ration model, in which first a loopy multigraph is generated, after which loops
and parallel edges are carefully switched out. This procedure provides an ex-
act uniform sample, in particular for regular graphs with d = o(n1/3), and runs
in expected polynomial time. Based on this algorithm, Gao and Wormald [89]
provided an algorithm that gives an exact uniform sample for d = o(

√
n), and

later obtained similar results for power-law degree sequences [90]. Very recently,
Gao and Greenhill [87] obtained results along this line in which there is a set of
forbidden edges, that cannot be used in any graphical realization.

Counting the number of graphs with given degrees. Jerrum and Sinclair [109] show
the existence of a fully polynomial randomized approximation scheme (FPRAS)
for counting the number of graphical realizations in case the degree sequence
comes from a class of P-stable degree sequences as a corollary of the sampling
result mentioned earlier. Similarly, the sampler for general bipartite degree se-
quences of Jerrum, Sinclair and Vigoda [110] can be turned into an FPRAS for
counting the number of bipartite graphical realizations. Designing an FPRAS is
in fact the main point of interest in [110]. We note that, to the best of our knowl-
edge, it is actually not known whether or not counting the number of graphs with
a given degree sequence is #P-complete.

Apart from algorithmic approaches for approximating |G(d)| in polynomial
time, there is also a great interest in obtaining asymptotic formulas for |G(d)|; see,
e.g., the recent breakthrough work of Liebenau and Wormald [121] and references
therein. In particular, it is shown in [121] that the number of d-regular4 graphs
on n nodes is approximately (

n−1
d

)n((n2)
m

)(
n(n−1)

2m

) e
1
4

if n is large, where m = nd/2 and 1 ≤ d ≤ n − 2. For other asymptotic results
we refer the reader to, e.g., the work of Barvinok and Hartigan [9] who obtain
results for so-called tame degree sequences.

4.1.3 Outline

In Section 4.2 we give all the necessary Markov chain preliminaries and we for-
mally describe the auxiliary chain of Jerrum and Sinclair [109], the switch chain,
the restricted switch chain, and the curveball chain. Section 4.3 presents our
new proof approach for the switch Markov chain and our rapid mixing results for
strongly stable degree sequences. These ideas are then extended in Section 4.4 to
show rapid mixing of the switch Markov chain for joint degree matrix instances
with two degree classes. In both Sections 4.3 and 4.4 we consider the sampling of
general undirected graphs. In Section 4.5 we switch5 to bipartite graphs and pro-

4A graph is d-regular is all nodes have degree d ∈ N.
5No pun intended.

120 Chapter 4. New results for the switch Markov chain

vide our comparison argument for the curveball chain, showing that it is rapidly
mixing whenever the switch chain is rapidly mixing.

4.2 Preliminaries

We begin with the necessary preliminaries regarding Markov chains and the mul-
ticommodity flow method of Sinclair [162]. For Markov chain definitions not
given here, see for example [118] or Section 1.4.2.

LetM = (Ω, P) be an ergodic, time-reversible Markov chain over state space
Ω with transition matrix P and stationary distribution π. We write P t(x, ·) for
the distribution over Ω at time step t given that the initial state is x ∈ Ω. The
total variation distance at time t with initial state x is

∆x(t) = dTV (P t(x, ·), π) = max
S⊆Ω

∣∣P t(x, S)− π(S)
∣∣ =

1

2

∑
y∈Ω

∣∣P t(x, y)− π(y)
∣∣ ,

and the mixing time τ(ε) is defined as

τ(ε) = max
x∈Ω

{
min{t : ∆x(t′) ≤ ε for all t′ ≥ t}

}
.

Informally, τ(ε) is the number of steps until the Markov chain is ε-close to its
stationary distribution independent of the initial state x ∈ Ω. A Markov chain is
said to be rapidly mixing if the mixing time can be upper bounded by a function
polynomial in ln(|Ω|/ε).

It is well-known that, since the Markov chain is time-reversible, the matrix P
only has real eigenvalues 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λ|Ω|−1 > −1. We may replace
the transition matrix P of the Markov chain by (P + I)/2, to make the chain
lazy, and hence guarantee that all its eigenvalues are non-negative. It then follows
that the second-largest eigenvalue of P is λ1. In this work we always consider
the lazy versions of the Markov chains involved unless specified otherwise.6 It
follows directly from Proposition 1 in [162] that

τ(ε) ≤ 1

1− λ1

(
ln(1/π∗) + ln(1/ε)

)
,

where π∗ = minx∈Ω π(x). For the special case where π is the uniform distribution,
the above bound becomes

τ(ε) ≤ 1

1− λ1
(ln(|Ω|) + ln(1/ε)).

The quantity (1 − λ1)−1 can be upper bounded using the multicommodity flow
method of Sinclair [162].

6In particular, in Section 4.5 we will be interested in non-lazy versions of the switch Markov
chain.

4.2. Preliminaries 121

We define the state space graph of the chainM as the directed graph G with
node set Ω that contains exactly the arcs (x, y) ∈ Ω×Ω for which P (x, y) > 0 and
x 6= y. Let P = ∪x 6=yPxy, where Pxy is the set of simple paths between x and
y in the state space graph G. A flow f in Ω is a function P → [0,∞) satisfying∑
p∈Pxy f(p) = π(x)π(y) for all x, y ∈ Ω, x 6= y. The flow f can be extended to

a function on oriented edges of G by setting f(e) =
∑
p∈P:e∈p f(p), so that f(e)

is the total flow routed through e ∈ E(G). Let `(f) = maxp∈P:f(p)>0 |p| be the
length of a longest flow carrying path, and let ρ(e) = f(e)/Q(e) be the load of
the edge e, where Q(e) = π(x)P (x, y) for e = (x, y). The maximum load of the
flow is ρ(f) = maxe∈E(G) ρ(e). Sinclair ([162], Corollary 6 ′) shows that

(1− λ1)−1 ≤ ρ(f)`(f).

We use the following standard technique for bounding the maximum load of
a flow in case the chain M has uniform stationary distribution π. Suppose θ
is the smallest positive transition probability of the Markov chain between two
distinct states. If b is such that f(e) ≤ b/|Ω| for all e ∈ E(G), then it follows
that ρ(f) ≤ b/θ. Thus, we have

τ(ε) ≤ `(f) · b
θ

ln(|Ω|/ε) .

Now, if `(f), b and 1/θ can be bounded by a function polynomial in log(|Ω|), it
follows that the Markov chainM is rapidly mixing. In this case, we say that f is
an efficient flow. Note that in this approach the transition probabilities do not
play a role as long as 1/θ is polynomially bounded.

4.2.1 Graphical degree sequences and the switch chain

A sequence of non-negative integers d = (d1, . . . , dn) is called a graphical degree
sequence if there exists a simple, undirected, labeled graph on n nodes having
degrees d1, . . . , dn; such a graph is called a graphical realization of d. For a
given degree sequence d, G(d) denotes the set of all graphical realizations of d.
Throughout this work we only consider sequences d with positive components,
and for which G(d) 6= ∅. Let G′(d) = ∪d′G(d′) with d′ ranging over the set{

d′ : d′j ≤ dj for all j, and

n∑
i=1

|di − d′i| ≤ 2

}
.

That is, we have (i) d′ = d, or (ii) there exist distinct κ, λ such that d′i = di−1 if
i ∈ {κ, λ} and d′i = di otherwise, or (iii) there exists a κ so that d′i = di−2 if i = κ
and d′i = di otherwise. In the case (ii) we say that d′ has two nodes with degree
deficit one, and in the case (iii) we say that d′ has one node with degree deficit
two. A family D of graphical degree sequences is called P -stable [109] if there

122 Chapter 4. New results for the switch Markov chain

exists a polynomial q(n) such that for all d ∈ D we have |G′(d)|/|G(d)| ≤ q(n),
where n is the number of components of d.

Jerrum and Sinclair [109] define the following Markov chain on G′(d), which
will henceforth be referred to as the JS chain.7

Let G ∈ G′(d) be the current state of the JS chain. Choose an ordered pair of
vertices (i, j) uniformly at random:

• if G ∈ G(d) and (i, j) is an edge of G, delete (i, j) from G (Type 0
transition),

• if G /∈ G(d) and the degree of i in G is less than di, and (i, j) is not an
edge of G, add (i, j) to G; if this causes the degree of j to exceed dj , select
an edge (j, k) uniformly at random and delete it (Type 1 transition).

In case the degree of j does not exceed dj in the second case, we call this a
Type 2 transition.

The graphs G,G′ ∈ G′(d) are JS adjacent if G can be obtained from G′

with positive probability in one transition of the JS chain and vice versa. The
properties of the JS chain, stated in Theorem 4.4 below, are easy to check [109].

Theorem 4.4. The JS chain is irreducible, aperiodic and symmetric, and, hence,
has uniform stationary distribution over G′(d). Moreover, P (G,G′)−1 ≤ 2n3 for
all JS adjacent G,G′ ∈ G′(d), and also the maximum in- and out-degrees of the
state space graph of the JS chain are bounded by n3.

We say that two graphs G,G′ are within distance r in the JS chain if there
exists a path of at most length r from G to G′ in the state space graph of the
JS chain. By dist(G, d) we denote the minimum distance of G to an element in
G(d). The following parameter will play a central role in this work. Let

kJS(d) = max
G∈G′(d)

dist(G, d) . (4.3)

Based on the parameter kJS(d), we define the notion of strong stability. The
simple observation in Proposition 4.6 justifies the terminology. For other settings,
e.g., for sampling bipartite graphs [6] or joint degree matrix realizations (Section
4.4), the definition of kJS can be adjusted accordingly.

Definition 4.5 (Strong stability). A family of graphical degree sequences D is
called strongly stable if there exists a constant ` such that kJS(d) ≤ ` for all
d ∈ D.

7A slightly different definition of stability is given by Jerrum, McKay and Sinclair [107].
Based on this variant, one could define the corresponding variant of the JS chain. Nevertheless,
the definitions of stability in [107] and [109] (and their corresponding definitions of strong
stability) are equivalent. To avoid confusion, here we only use the definitions in [109] in this
section.

4.2. Preliminaries 123

Proposition 4.6. If D is strongly stable, then it is P -stable.

Proof. Suppose D is strongly stable with respect to the constant `. Let d ∈ D be
a degree sequence with n components. For every G ∈ G′(d) G(d) choose some
ϕ(G) ∈ G(d) within distance k = kJS(d) of G. As the in-degree of any node in
the state space graph of the JS chain is bounded by n3, the number of paths with
length at most k that end up at any particular graph in G(d) is upper bounded
by (n3)k. Therefore, |G′(d)|/|G(d)| ≤ n3k ≤ n3`, meaning that D is P-stable,
since ` is constant.

Finally, the lazy version of the switch chain on G(d) is defined as follows; see,
e.g., [41].

Let G ∈ G(d) be the current state of the switch chain:

• With probability 1/2, do nothing.

• Otherwise, perform a switch operation: select two edges {a, b} and
{x, y} uniformly at random, and select a perfect matching M on nodes
{x, y, a, b} uniformly at random (there are three possible options). If
M ∩ E(G) = ∅, then delete {a, b}, {x, y} from E(G) and add the edges
of M .

The graphs G,G′ ∈ G(d) are switch adjacent if G can be obtained from G′

with positive probability in one transition of this chain and vice versa. Below
we summarize some properties of the switch chain; see, e.g., [96] and references
therein. The bound on the transition probabilities follows from a simple counting
argument.

Theorem 4.7. The switch chain is irreducible, aperiodic and symmetric, and,
thus, has uniform stationary distribution over G(d). Also, we have P (G,G′)−1 ≤
6n4 for all switch adjacent G,G′ ∈ G(d), and the maximum in- and out-degrees
of the state space graph of the switch chain are bounded by n4.

4.2.2 JDM model and the restricted switch chain

Here in addition to the degrees, we would also like to specify the number of
edges between nodes of degree i and nodes of degree j for every pair (i, j). Let
V = {1, . . . , n} be a set of nodes. An instance of the joint degree matrix (JDM)
model is given by a partition V1∪V2∪· · ·∪Vq of V into pairwise disjoint (degree)
classes, a symmetric joint degree matrix c = (cij)i,j∈[q] of non-negative integers,
and a sequence d = (d1, . . . , dq) of non-negative integers.8 We say that the tuple
((Vi)i∈q, c, d) (or just (c, d) when it is clear what the partition is) is graphical, if

8This is shorthand notation. More formally, we could write d̂ =
(
d11, . . . , d

|V1|
1 , . . . , d1q , . . . ,

d
|Vq|
q

)
corresponding to the definition of a graphical degree sequence. In such a case, dji = di

for i ∈ V and j ∈ {1, . . . , |Vi|}.

124 Chapter 4. New results for the switch Markov chain

there exists a simple, undirected, labeled graph G = (V,E) on the nodes in V
such that all nodes in Vi have degree di and there are precisely cij edges between
nodes in Vi and Vj . Such a G is called a graphical realization of the tuple. We
let G((Vi)i∈q, c, d), or just G(c, d), denote the set of all graphical realizations of
((Vi)i∈q, c, d). We focus on the case of q = 2, i.e., when two degree classes are
given.

While switches maintain the degree sequence, this is no longer true for the
joint degree constraints. However, some switches do respect these constraints
as well, e.g., if w, y in Figure 4.2 are in the same degree class. Thus, we are
interested in the following (lazy) restricted switch Markov chain for sampling
graphical realizations of G(c, d).

Let G ∈ G(c, d) be the current state of the (restricted) switch chain:

• With probability 1/2, do nothing.

• Otherwise, perform a switch operation: select two edges {a, b} and
{x, y} uniformly at random, and select a perfect matching M on nodes
{x, y, a, b} uniformly at random. If M ∩E(G) = ∅ and G+M − ({a, b}∪
{x, y}) ∈ G(c, d), then delete {a, b}, {x, y} from E(G) and add the edges
of M .

Theorem 4.8 below, that summarizes some properties of the restricted switch
chain, follows from [5, 49].

Theorem 4.8. This restricted switch chain is irreducible, aperiodic and sym-
metric. Like the switch chain defined above, P (G,G′)−1 ≤ n4 for all adjacent
G,G′ ∈ G′(c, d), and also the maximum in- and out-degrees of the state space
graph are less than n4.

4.2.3 PAM model and the hinge flip chain

We give a description of the partition adjacency matrix (PAM) model [48], that
forms a generalization of the joint degree matrix model described in Section 4.2.2.
Let V = {1, . . . , n} be a given set. An instance of the partition adjacency matrix
model is given by a partition V1 ∪V2 ∪ · · · ∪Vq of V into pairwise disjoint classes.
Moreover, we are given a symmetric partition adjacency matrix c = (cij)i,j∈[q] of
non-negative integers, and a sequence d = (d1, . . . , dn) of non-negative integers.
We say that the tuple ((Vi)i∈q, c, d) is graphical if there exists a simple, undi-
rected, labelled graph G = (V,E) on the nodes in V with node i ∈ V having
degree di, and so that there are precisely cij edges between endpoints in Vi and
Vj . This is denoted by E[Vi, Vj] = cij . The graph G is called a graphical realiza-
tion of the tuple. We let G((Vi)i∈q, c, d) denote the set of all graphical realizations
of the tuple ((Vi)i∈q, c, d). We often write G(c, d) instead of G((Vi)i∈[q], c, d) when
it is clear what the partition is (similar to the notation in Section 4.2.2).

4.2. Preliminaries 125

In this work we focus on the case of a partition into two classes V1 and V2,
and, without loss of generality, assume that 1 ≤ c12 ≤ |V1| · |V2| − 1.9 For the
case of two classes an initial state can be computed in polynomial time [68].10

We let G′(c, d) = ∪(c′,d′)G′(c′, d′) with (c′, d′) ranging over tuples satisfying

(i)
∑n
i=1 di − d′i = 0,

(ii)
∑n
i=1 |di − d′i| ∈ {0, 2, 4},

(iii) c′12 ∈ {c12 − 1, c12, c12 + 1}.

We call elements in G′(c, d) \ G(c, d) perturbed (auxiliary) states. For any
G ∈ G′(c, d) the perturbation at node v ∈ V is defined as αv = d′v−dv where d′ is
the degree sequence of G. We say that the node v has a degree surplus if αv > 0
and a degree deficit if αv < 0. Moreover, the total degree surplus is defined as∑
v:αv>0 αv, and the total degree deficit as −

∑
v:αv<0 αv. Note that

∑
v:αv>0

αv −
∑

v:αv<0

αv =

n∑
i=1

|di − d′i|.

Finally, we say that a tuple (c′, d′) is edge-balanced if c′ = c (but possibly d′ 6= d).
From the conditions defining G′(c, d), we may infer the following properties.

Proposition 4.9. For any G ∈ G′(c, d), for some tuple (c′, d′) satisfying (i)-(iii)
above, it holds that

(a) the perturbation at node v satisfies αv ∈ {−2,−1, 0, 1, 2} for any v ∈ V ,

(b) maxi,j=1,2 |cij − c′ij | ≤ 1, and
∑

1≤i<j≤2 |cij − c′ij | ∈ {0, 2}.

Proof. If there is some node with degree surplus greater or equal than three, then
the total degree deficit is also at least three, which follows from the first condition
defining G′(c, d). This means that

∑n
i=1 |di − d′i| ≥ 6, which violates the second

condition defining G′(c, d). A similar argument holds in case there is some node
with degree deficit greater or equal than three. To see that the second property is
true, assume without loss of generality, because of (iii), that c′11 ≥ c11 +2 (similar
arguments hold for c′22). Because of the fact that c′12 ∈ {c12 − 1, c12, c12 + 1}, by
the third condition defining G′(c, d), it must be that the total degree surplus of
the nodes in V1 is at least three. This gives a contradiction for similar reasons
as before. An analogous argument holds in case c′11 ≤ c11 − 2. Finally, the
last property is a direct consequence of maxi,j=1,2 |cij − c′ij | ≤ 1 and the fact
that

∑
i,j=1,2 |cij − c′ij | is an even number, because of the first property defining

G′(c, d).

9It is not hard to see that the cases c12 ∈ {0, |V1| · |V2|} reduce to the single class case.
10For general instances, it is not known if an initial state can be computed in time polynomial

in n. It is conjectured to be NP-hard in general [68]; see also [50].

126 Chapter 4. New results for the switch Markov chain

Remark 4.10. As we focus on the case in which V is partitioned into two classes
V1 and V2 here, we will sometimes use shorthand notation in this section. Given
a sequence d, the number γ = c12 uniquely determines the matrix c, and the set
G(c, d) is then denoted by G(V1, V2, γ, d). As before, we often leave out V1 and V2

from the tuple (for sake of readability). That is, we then write G′(γ, d) instead
of G′(V1, V2, c, d).

We define the hinge flip Markov chain M(γ, d) on G′(γ, d) as follows.

Let G ∈ G′(γ, d) be the current state of the hinge flip chain:

• With probability 1/2, do nothing.

• Otherwise, perform a hinge flip operation: select an ordered triple i, j, k
of nodes uniformly at random. If {i, j} ∈ E(G), {j, k} /∈ E(G), and
G− {i, j}+ {j, k} ∈ G′(γ, d), then delete {i, j} and add {j, k}.

Note that we can check if G− {i, j}+ {j, k} ∈ G′(γ, d) in time polynomial in
n based on the state G.

i

j

k i

j

k

Figure 4.4: Example of a hinge flip operation for the ordered triple i, j, k.

Graphs G,G′ ∈ G′(γ, d) are said to be adjacent in M if G can be obtained
from G′ with positive probability in one transition of the chain M. We say that
two graphs G,G′ are within distance r in M if there exists a path of at most
length r from G to G′ in the state space graph ofM. By dist(G, γ, d) we denote
the minimum distance of G from an element in G(γ, d). The following parameter
is the analogue of (4.3) for the current setting and will be used in a similar
manner to define the appropriate variant of strong stability. We define

k(γ, d) = max
G∈G′(γ,d)

dist(G, γ, d). (4.4)

In the PAM model with two degree classes, a family D of graphical tuples (γ, d)
is called strongly stable11 if there exists a constant k such that k(γ, d) ≤ k for all
(γ, d) ∈ D.

11When restricted to the single class case, this notion is essentially equivalent to that defined
after (4.3).

4.2. Preliminaries 127

Theorem 4.11. Let D be a family of graphical tuples that is strongly stable with
respect to some constant k. Then for every (γ, d) ∈ D, the chain M(γ, d) is ir-
reducible, aperiodic and symmetric, and, hence, has uniform stationary distribu-
tion over G′(γ, d). Moreover, P (G,G′)−1 ≤ n3 for all adjacent G,G′ ∈ G′(γ, d),
and also the maximum in- and out-degrees of the state space graph of the chain
M(γ, d) are bounded by n3.12

Proof. The only claim that requires a detailed argument, and uses the assumption
of strong stability, is that of the irreducibility of the chain. By definition of strong
stability, we always know that every perturbed state is connected to some element
in G(γ, d) so it suffices to show that there is a path between any two states in
G(γ, d). This follows from the analysis in Section 4.4. Aperiodicity follows from
the holding probability in the description of the chain M, and symmetry is
straightforward. The bound on P (G,G′)−1 follows directly from the description
of the chain, as do the bounds on the in- and out-degrees of the state space
graph.

Remark 4.12. In general, the space of all graphical realizations satisfying a given
partition adjacency matrix constraint with two classes is not connected under
switches [68]. However, it is shown in [68] that it is connected under so-called dou-
ble switches, in which one is, roughly speaking, allowed to perform two switches
simultaneously.

4.2.4 Bipartite degree sequences and the curveball chain

In this section we provide terminology related to bipartite degree sequences
used in Section 4.5. We will consider bipartite graphs with given degrees r =
(r1, . . . , rm) and c = (c1, . . . , cn). An equivalent way of looking at such graphs is
to consider their adjacency matrices, which are binary matrices with row sums
r and column sums c. The vectors r and c are referred to as the marginals.
The latter viewpoint is adopted as it is more convenient to illustrate our ideas
in Section 4.5. We actually consider a slightly more general model (than that
in Section 4.2.1) in which we also have a set of forbidden entries that have to
be zero in any binary matrix with the given marginals.13 Formal definitions are
given next.

We are given n,m ∈ N, fixed row sums r = (r1, . . . , rm), column sums
c = (c1, . . . , cn), and a set of forbidden entries F ⊆ {1, . . . ,m} × {1, . . . , n}.
We define Ω = Ω(r, c,F) as the set of all binary m× n-matrices A, with entries
in {0, 1}, satisfying these row and column sums, and for which A(a, b) = 0 if
(a, b) ∈ F . Deciding whether or not Ω is non-empty, and computing an element

12It might be the case that the chain is always irreducible, even if D is not strongly stable,
but this is not relevant at this point. The assumption of strong stability allows for a shortcut
in the proof of irreducibility.

13This would correspond to introducing a set of forbidden edges in the setting of Section
4.2.1.

128 Chapter 4. New results for the switch Markov chain

from it in case it is non-empty, can be done in time polynomial in m and n.14

In Section 4.5 we consider a switch Markov chain with different transition prob-
abilities than that given in Section 4.2.1. We will consider the implementation
of Kannan, Tetali and Vempala [113], henceforth referred to as the KTV switch
chain. It proceeds as follows.15

Let A ∈ Ω(r, c,F) be the current state of the KTV switch chain:

• Select two rows 1 ≤ i < j ≤ m and two columns 1 ≤ k < ` ≤ n uniformly
at random.

• Perform a switch operation: If A(i, k) = A(j, `) = 1, A(i, `) = A(j, k) =
0, and A(i, `), A(j, k) /∈ F , replace the entries A(i, k), A(j, `) by zeros
and the entries A(i, `), A(j, k) by ones. Similarly, if A(j, k) = A(i, `) =
1, A(j, `) = A(i, k) = 0, and A(j, `), A(i, k) /∈ F , replace the entries
A(j, k), A(i, `) by zeros and the entries A(j, `), A(i, k) by ones.

Matrices A,B ∈ Ω are switch adjacent for row i and j if A = B or if A − B
contains exactly four non-zero elements that occur on rows i and j and columns
k and `. Two matrices are switch adjacent if they are switch adjacent for some
rows i and j.

Remark 4.13. We always assume the (KTV) switch chain is irreducible for given
marginals r and c, and forbidden entry set F (it is clearly always aperiodic,
symmetric and finite). Irreducibility is for instance guaranteed in case there
are no forbidden entries [148]; or in case n = m ≥ 4, with F is the set of
diagonal entries and regular marginals ci = ri = d for some given d ≥ 1 [93].
A characterization for irreducibility in the case where F is the set of diagonal
entries is given in [14].

We next continue with some additional terminology in order to define the curve-
ball chain. For A ∈ Ω, we let Aij be the 2 × n-submatrix formed by rows i and
j, for 1 ≤ i < j ≤ m. We define

Uij(A) = {k ∈ {1, . . . , n} : A(i, k) = 1, A(j, k) = 0 and (j, k) /∈ F}, (4.5)

with uij(A) = |Uij(A)|, and similarly

Lij(A) = {k ∈ {1, . . . , n} : A(i, k) = 0, A(j, k) = 1 and (i, k) /∈ F}, (4.6)

with `ij(A) = |Lij(A)|. Note that Lij ∪Uij are precisely the columns k for which
Aij has different values on its rows and for which (i, k) and (j, k) are both not

14Deciding non-emptiness of Ω can be reduced to deciding if a certain auxiliary graph (a
variation on Tutte’s construction) contains a perfect matching [170]. The latter can be done
using Edmond’s blossom algorithm [63]. This is also mentioned in [70].

15This is not a lazy Markov chain
(
staying at the current x ∈ Ω with probability P (x, x) ≥ 1

2

)
.

4.2. Preliminaries 129

forbidden. We will often write uij and `ij instead of uij(A) and `ij(A) for brevity.
With the given notation, we can proceed with the definition of the curveball chain.

Let A ∈ Ω(r, c,F) be the current state of the curveball chain:

• Select two rows 1 ≤ i < j ≤ m uniformly at random. Let S be the
submatrix formed by the rows i and j and columns in Uij ∪ Lij .

• Perform a binomial trade operation: Replace the submatrix S by a
uniform randomly chosen 2 × (uij + `ij)-matrix Su with marginals
ru = (uij , `ij) and cu = (1, . . . , 1).

Note that Su can be computed by uniformly at random choosing uij column
indices in Uij ∪ Lij , and that the sets Uij and Lij can be found easily.

Two matrices A and B are called trade adjacent for rows i and j if A = B
or if B can be obtained from A using one binomial trade operation on rows i
and j. Two matrices are trade adjacent if they are trade adjacent for some row
pair. Roughly speaking, instead of only performing one switch on rows i and j,
we completely randomize rows i and j in the curveball chain.

Example 4.14 (Binomial trade). Suppose that the matrix Aij (the matrix A
restricted to rows i and j) is given by(

1 1 0 0 0 1
1 0 0 1 1 0

)
,

and that A(i, 4) ∈ F is the only forbidden entry appearing on either row i or j.
We have Uij(A) = {2, 6} and Lij(A) = {5}. We consider the submatrix

S =

(
1 0 1
0 1 0

)
formed by the second, fifth and sixth column. We now replace the submatrix S
by a randomly chosen submatrix

Su ∈
{(

0 1 1
1 0 0

)
,

(
1 0 1
0 1 0

)
,

(
1 1 0
0 0 1

)}
.

4.2.5 Johnson graphs

One class of graphs that are of particular interest in Section 4.5, are the so-
called Johnson graphs. For given integers 1 ≤ q ≤ p, the undirected Johnson
graph J(p, q) contains as nodes all subsets of size q of {1, . . . , p}, and two subsets
u, v ⊆ {1, . . . , p} are adjacent if and only if |u∩v| = q−1. We refer the reader to
[104, 19] for the following facts. The Johnson graph J(p, q) is a q(p− q)-regular
graph and the eigenvalues of its adjacency matrix are given by

(q − i)(p− q − i)− i with multiplicity

(
p

i

)
−
(

p

i− 1

)

130 Chapter 4. New results for the switch Markov chain

for i = 0, . . . , q, with the convention that
(
p
−1

)
= 0. The following observation is

included for ease of reference. It will often be used to lower bound the smallest
eigenvalue of a Johnson graph.

Proposition 4.15. Let p, q ∈ N be given. The continuous function f : R → R
defined by

f(x) = [(q − x)(p− q − x)− x]− q(p− q) = x(x− (p+ 1))

is minimized for x∗ = (p+ 1)/2, with f(x∗) = −(p+ 1)2/4.

4.3 Switch chain for strongly stable sequences

The result in Theorem 4.16 below is our main result regarding the mixing time
of the switch chain for strongly stable degree sequences. Its proof is divided in
two parts. First, in Section 4.3.1, by giving an efficient multicommodity flow, we
show that for any d in a family of strongly stable degree sequences the JS chain
is rapidly mixing on G′(d). Then, in Section 4.3.2, we show that such an efficient
flow for the JS chain on G′(d) can be transformed into an efficient flow for the
switch chain on G(d). This yields the following theorem.

Theorem 4.16. Let D be a strongly stable family of degree sequences with respect
to some constant k. Then there exists a polynomial q(n) such that, for any
0 < ε < 1, the mixing time τsw of the switch chain for a graphical sequence
d = (d1, . . . , dn) ∈ D satisfies

τsw(ε) ≤ q(n)k ln(1/ε) .

We next discuss a direct corollary of Theorem 4.16 which was posed as an
open question in [95]. Its proof is esessentially the same as that of a similar result
for a slightly different, but equivalent, notion of stability in [107]. It is given here
for self-containment.

Corollary 4.17. Let D = D(δ,∆) be the set of all graphical degree sequences
d = (d1, . . . , dn) satisfying

(∆− δ + 1)2 ≤ 4δ(n−∆− 1) (4.7)

where δ and ∆ are the minimum and maximum component of d, respectively. For
any d ∈ D, we have kJS(d) ≤ 6. Hence, the switch chain is rapidly mixing for
sequences in D.

Proof. We first introduce some notation, using the same terminology as in [107].
Let G = (V,E) be an undirected graph. For distinct u, v ∈ V we say that u, v
are co-adjacent if {u, v} /∈ E, and {u, v} is called a co-edge. An alternating path
of length q in G is a sequence of (not necessarily distinct) nodes v0, v1, . . . , vq
such that {vi, vi+1} is an edge when i is even, and a co-edge if i is odd. The
path is called a cycle if v0 = vq. As in the proof of Theorem 2 [107], we need the
following lemma from [107].

4.3. Switch chain for strongly stable sequences 131

Lemma 4.18 ([107]). Let H be an undirected n-vertex graph with distinguished
vertices s and t (not necessarily distinct), and suppose the set of vertices adjacent
to s is equal to the set of vertices adjacent to t. Suppose that δmin and δmax are
natural numbers such that the degrees of all vertices other than s and t lie in the
range [δmin, δmax], and such that s and t themselves have degree at least δmin + 1.
If (δmax − δmin + 1)2 ≤ 4δmin(n − δmax − 1), then there exists an edge-disjoint
alternating path in G which starts at s, ends at t, and has length 1, 3, 5 or 7.

Let G ∈ G′(d) G(d). First consider the case where for the degree sequence d′

of G there exist x, y so that

d′i =

{
di − 1 if i = x, y,
di otherwise.

If {x, y} is a co-edge, then clearly dist(G, d) = 1, as we can then simply add
the edge {x, y} to obtain a graph in G(d). Therefore, assume that {x, y} is an
edge in G. It follows that both nodes x and y have degree at most n − 2 in
G− {x, y}, and therefore there exist two nodes a and b so that {x, a} and {y, b}
are co-edges. If nodes a and b have the same set of neighbors in G+{x, a}+{y, b},
we can directly apply Lemma 4.18 to the graph G+ {x, a}+ {y, b} to obtain an
odd alternating path from a to b of length at most 7. Otherwise, without loss of
generality, we may assume that there exists a node c which is a neighbor of a but
not of b (again in G+ {x, a}+ {y, b}). We can then remove {a, c} and add {c, b}
in order to get a degree surplus of two at node b, and then we can apply Lemma
4.18 with s = t = b in the graph G + {x, a} + {y, b} − {a, c} + {c, b} (if c = x
this part of the proof can be skipped by choosing a = b in the beginning of the
argument, as both {x, b} and {y, b} are then co-edges in the graph G we start
with). In any case, it follows that there exists an alternating (between edges and
non-edges of G) circuit of even length containing the edge {x, y} in G of length
at most 12. This implies that dist(G, d) ≤ 6. That is, in at most six moves in
the JS chain we can now reach an element in G(d).

Next, suppose that for the degree sequence d′ of G there exists some x so that

d′i =

{
di − 2 if i = x,
di otherwise.

It is clear that the degree of x is at most n − 2 in G. Let {x, a} and {x, b}
be two co-edges. Applying similar steps as in the previous case to the graph
G+ {x, a}+ {x, b} it follows that G has an alternating path of length at most 9
starting in a and ending in b. It then again follows that dist(G, d) ≤ 6.

Explicit families satisfying these conditions are given in [107]. For instance,
all sequences d = (d1, . . . , dn) with (i) δ(d) ≥ 1 and ∆(d) ≤ 2

√
n − 2, or (ii)

δ(d) ≥ 1
4n and ∆(d) ≤ 3

4n − 1 satisfy (4.7). The bound in Corollary 4.17 is
in a sense best possible with respect to the graph parameters involved. Namely,
there exist non-stable degree sequence families the members of which only slightly
violate (4.7); see the discussion in [107] for details.

132 Chapter 4. New results for the switch Markov chain

4.3.1 Flow for the Jerrum-Sinclair chain

Jerrum and Sinclair [109] claim, without proof, that the JS chain is rapidly
mixing for (some) families of stable degree sequences. For completeness, we
prove in Theorem 4.19 that the chain is rapidly mixing for any family of strongly
stable degree sequences.

Theorem 4.19 ([109]). Let D be a strongly stable family of degree sequences with
respect to some constant k. Then there exist polynomials p(n) and r(n) such that
for any d = (d1, . . . , dn) ∈ D there exists an efficient multicommodity flow f for
the JS chain on G′(d) satisfying maxe f(e) ≤ p(n)/|G′(d)| and `(f) ≤ r(n).

Our proof of Theorem 4.19, given below, uses conceptually similar arguments
to the ones used in [41] for the analysis of the switch chain on regular undirected
graphs. However, the analysis done here for the JS chain is, in our opinion, easier
and cleaner than the corresponding analysis for the switch chain. In particular,
the so-called circuit processing procedure is simpler in our setting, as it only
involves altering edges in the symmetric difference of two graphical realizations
in a straightforward fashion. In the switch chain analyses [41, 96, 131, 73, 71] one
also has to temporarily alter edges that are not in the symmetric difference and
this significantly complicates things. Moreover, for the analysis of the JS chain,
we can rely on arguments used (in a somewhat different context) by Jerrum
and Sinclair [108] for the analysis of a Markov chain for sampling (near) perfect
matchings of a given graph. This usage of arguments in [108] was suggested by
Jerrum and Sinclair [109] for showing that the JS chain is rapidly mixing for
stable degree sequences.

We will use the following idea from [108]—used in a different setting—in
order to restrict ourselves to establishing flow between states in G(d), rather
than between all states in G′(d). Assume that d is is a degree sequence with
n components that is a member of a strongly stable family of degree sequences
(with respect to some k).

Lemma 4.20. Let f ′ be a flow that routes 1/|G′(d)|2 units of flow between any
pair of states in G(d) in the JS chain, so that f ′(e) ≤ b/|G′(d)| for all e in the
state space graph of the JS chain. Then f ′ can be extended to a flow f that routes
1/|G′(d)|2 units of flow between any pair of states in G′(d) with the property that
for all e in the state space graph of the JS chain

f(e) ≤ q(n)
b

|G′(d)|
,

where q(·) is a polynomial whose degree only depends on kJS(d). Moreover,
`(f) ≤ `(f ′) + 2kJS(d).16

16We omit the proof of Lemma 4.20 as the lemma is actually not needed for proving Theorem
4.16. Careful consideration of the proof of Theorem 4.22 shows that we can only focus on flow
between states in G(d), since the flow h given in the proof of Theorem 4.22 only has positive

4.3. Switch chain for strongly stable sequences 133

We now continue with the proof of Theorem 4.19. It consists of four parts
following, in a conceptual sense, the proof template in [41] developed for proving
rapid mixing of the switch chain for regular graphs. Certain parts use similar
ideas as in [108] where a Markov chain for sampling (near)-perfect matchings is
studied. Whenever we refer to [108], the reader is referred to Section 3 of [108].

Proof of Theorem 4.19. We only need to define a flow f ′ as in Lemma 4.20 so
that b ≤ p1(n) and `(f ′) ≤ p2(n) for some polynomials p1(·), p2(·) whose degrees
may only depend on k = kJS(d). Actually, we are going to show that we may
use p1(n) = p2(n) = n2. Then the theorem follows from the lemma and the fact
that ln(|G′(d)|) is upper bounded by a polynomial in n. The latter follows from
Equation (1) of McKay and Wormald [127] that implies that

|G(d′)| ≤ nn
2

for any degree sequence d′ with n components (see also [96]). So, by the definition
of |G′(d)| we have

|G′(d)| ≤
(
n(n− 1)

2
+ n+ 1

)
nn

2

,

and thus ln(|G′(d)|) ≤ 3n3.
Before we define f ′, we first introduce some basic terminology similar to that

in [41]. Let V be a set of labeled vertices, let ≺E be a fixed total order on the
set {{v, w} : v, w ∈ V } of edges, and let ≺C be a total order on all circuits on
the complete graph KV , i.e., ≺C is a total order on the closed walks in KV that
visit every edge at most once. We fix for every circuit one of its vertices where
the walk begins and ends.

For given G,G ∈ G(d), let H = G4G′ be their symmetric difference. We refer
to the edges in G G′ as blue, and the edges in G′ G as red. A pairing of red and
blue edges in H is a bijective mapping that, for each node v ∈ V , maps every red
edge adjacent to v, to a blue edge adjacent to v. The set of all pairings is denoted
by Ψ(G,G′), and, with θv the number of red edges adjacent to v (which is the
same as the number of blue edges adjacent to v), we have |Ψ(G,G′)| = Πv∈V θv!.

4.3.1.1 Canonical paths and circuit processing

Similar to the approach in [41], the goal is to construct for each pairing ψ ∈
Ψ(G,G′) a canonical path from G to G′ that carries a |Ψ(G,G′)|−1 fraction of
the total flow from G to G′ in f ′. For notational convenience, for the remaining
of the proof we write uv instead of {u, v} to denote an edge. For a given pairing ψ

flow between states corresponding to elements in G(d). That is, when defining the flow h, we
essentially forget about all flow in f between any pair of states where at least one state is an
auxiliary state, i.e., an element of G′(d) G(d). Said differently, in Theorem 4.22 we could start
with the assumption that f routes 1/|G′(d)|2 units of flow between any pair of states in G(d)
in the state space graph of the JS chain, and then the transformation still works. However, the
formulations of Theorems 4.19 and 4.22 are more natural for describing a comparison between
the JS and switch chains.

134 Chapter 4. New results for the switch Markov chain

and the total order ≺E given above, we first decompose H into the edge-disjoint
union of circuits in a canonical way. We start with the lexicographically smallest
edge w0w1 in EH and follow the pairing ψ until we reach the edge wkw0 that
was paired with w0w1. This defines the circuit C1. If C1 = EH , we are done.
Otherwise, we pick the lexicographically smallest edge in H C1 and repeat this
procedure. We continue generating circuits until EH = C1 ∪ · · · ∪ Cs. Note that
all circuits have even length and alternate between red and blue edges, and that
they are pairwise edge-disjoint. We form a path

G = Z0, Z1, . . . , ZM = G′

from G to G′ in the state space graph of the JS chain, by processing the circuits
Ci in turn according to the total order ≺C . The processing of a circuit C is the
procedure during which all blue edges on C are deleted, and all red edges of C
are added to the current graphical realization, using the three types of transitions
in the JS chain mentioned at the beginning of this section. All other edges of
the current graphical realization remain unchanged. In general, this can be done
similarly to the circuit processing procedure in [108].17

Circuit processing [108]. Let C = vx1x2 . . . xqv be a circuit with start node
v. We may assume, without loss of generality, that vx1 is the lexicographically
smallest blue edge adjacent to the starting node v. We first perform a type 0
transition in which we remove the blue edge vx1. Then we perform a sequence
of q−1

2 type 1 transitions in which we add the red edge xixi+1 and remove the
blue edge xi−1xi for i = 1, 3, . . . , q. Finally we perform a type 2 transition in
which we add the red edge vxq. In particular, this means that the elements on
the canonical path right before and after the processing of a circuit belong to
G(d). It is easy to see that all the intermediate elements that we visit during the
processing of the circuit C belong to G′(d) G(d), i.e., every element has either
precisely two nodes with degree deficit one, or one node with degree deficit two.
This is illustrated in Figures 4.6, 4.7 and 4.8 for the circuit in Figure 4.5.

For the next part, we define the notion of an encoding that can be used to
bound the congestion of an edge in the state space graph of the JS chain using
an injective mapping argument.

4.3.1.2 Encoding

Let t = (Z,Z ′) be a given transition of the Markov chain. Suppose two graphs
G and G′ use the transition t over some canonical path for some pairing ψ ∈
Ψ(G,G′). Let H = G4G′. We define the encoding

Lt(G,G
′) =

{
(H4(Z ∪ Z ′))− eH,t if t is a Type 1 transition,
H4(Z ∪ Z ′) otherwise,

17This is the main difference between the switch chain analyses [41, 96, 131, 70, 73, 71] and
our analysis. The processing of a circuit is much more complicated if performed directly in the
switch chain.

4.3. Switch chain for strongly stable sequences 135

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

Figure 4.5: The circuit C = vx1x2x3x4x5x6x7x8x9v with v = x3 and x5 = x8.
The blue edges are represented by the solid edges, and the red edges by the
dashed edges.

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

−1

−1

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

−2

Figure 4.6: The edge vx1 is removed using a Type 0 transition (left). The edge
x1x2 is added and x2x3 = x2v is removed using a Type 1 transition (right). We
have also indicated the non-zero degree deficits.

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

−1 −1

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

−1

−1

Figure 4.7: The edge x3x4 is added and x4x5 is removed using a Type 1 transition
(left). The edge x5x6 is added and x6x7 is removed using a Type 1 transition
(right).

where eH,t is the first blue edge on the circuit that is currently being processed
on the canonical path from G to G′ (for the given pairing ψ). This encoding is
of a similar nature as the encoding used in [108]. An example is given in Figures
4.9, 4.10 and 4.11. We also refer the reader to Figure 1 in [108] for a detailed
example.18 The following lemma is crucial for the analysis.

18Although the perfect matching setting might seem different at first glance, it is actually
closely related to our setting, with the only difference that the symmetric difference of two
perfect matchings is the union of node-disjoint cycles, whereas in our setting the symmetric
difference of two graphical realizations is the union of edge-disjoint circuits. This is roughly

136 Chapter 4. New results for the switch Markov chain

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

−1

−1

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

Figure 4.8: The edge x7x8 = x5x8 is added and x5x9 = x8x9 is removed using a
Type 1 transition (left). The edge vx9 is added using a Type 2 transition (right).

Lemma 4.21. Given t = (Z,Z ′), L, and ψ, we can uniquely recover G and G′.
That is, if L is such that Lt = Lt(G,G

′) for some pair (G,G′), then (G,G′) is
the unique pair for which this is the case, given t, L, ψ.

Proof. We give the proof for when t is a Type 1 transition. The cases of the
two other types are similar, and arguably somewhat easier. The proof uses the
arguments in [108] interpreted in our setting. First note that L4(Z ∪ Z ′) is a
graph in which there are precisely two nodes with odd degree. In particular, the
edge eH,t is the unique edge (having as endpoints these odd degree nodes) that
has to be added to L4(Z ∪Z ′) to obtain H = G4G′. That is, we have (L4(Z ∪
Z ′)) + eH,t = H. The pairing ψ then yields a unique circuit decomposition of
E(H) as explained at the beginning of the proof. From the transition t it can be
inferred which circuit is currently being processed, and, moreover, we can infer
which edges of that circuit belong to G and which to G′. Furthermore, the global
ordering ≺C on all circuits can then be used to determine for every other circuit
whether it has been processed already or not. For every such circuit, we can then
infer which edges on it belong to G and which to G′ by comparing with Z (or
Z ′). Therefore, G and G′ can be uniquely recovered from t, L and ψ.

4.3.1.3 Bounding the congestion

We complete the proof by using an injective mapping argument to bound the
congestion of the flow f ′ on the edges of the state space graph of the JS chain.
The arguments used are a combination of ideas from [108] and the proof of Lemma
2.5 in [41] (see also Lemma 1 in [42]).19 We again focus on Type 1 transitions t
as the proofs for the other two types are similar but simpler.

For a tuple (G,G′, ψ), let pψ(G,G′) denote the canonical path from G to G′

for pairing ψ. Let
Lt = {Lt(G,G′) | (G,G′, ψ) ∈ Ft}

why the notion of pairings is needed, as they allow us to uniquely determine the circuits. That
is, the edge-disjoint circuits determined by the pairing are the analogue of the node-disjoint
cycles in the perfect matching setting in [108].

19Lemma 2.5 in [41] contained a flaw for which the corrigendum [42] was published.

4.3. Switch chain for strongly stable sequences 137

a1

a2 a3

a4 x1

v/x3

x2 x4

x5/x8

x6

x7
x9 b1

b2 b3

b4

Figure 4.9: Symmetric difference H = G4G′ where the solid edges represent the
edges G and the dashed edges the edges of G′. From left to right the circuit are
numbered C1, C2 and C3, and assume that this is also the order in which they
are processed.

a1

a2 a3

a4 x1

v/x3

x2 x4

x5/x8

x6

x7
x9 b1

b2 b3

b4

a1

a2 a3

a4 x1

v/x3

x2 x4

x5/x8

x6

x7
x9 b1

b2 b3

b4

Figure 4.10: The transition t = (Z,Z ′) that removes the edge x6x7 and adds
the edge x5x6 as part of the processing of C2. Note that C1 has already been
processed. The edges in (E(G) ∪ E(G′)) \ E(H) are left out.

be the set of all (distinct) encodings Lt, where

Ft =
{

(G,G′, ψ) : t ∈ pψ(G,G′)
}

is the set of all tuples (G,G′, ψ) such that the canonical path from G to G′ under
pairing ψ uses the transition t. A crucial observation is that every encoding
Lt(G,G

′) itself is an element of G′(d) (see Figure 4.11 for an example). This

138 Chapter 4. New results for the switch Markov chain

a1

a2 a3

a4 x1

v/x3

x2 x4

x5/x8

x6

x7
x9 b1

b2 b3

b4

Figure 4.11: The encoding L = Lt(G,G
′), where again the edges in (E(G) ∪

E(G′)) \E(H) are left out. Note that in this case eH,t = vx1 and that L is itself
an element of G′(d).

implies that

|Lt| ≤ |G′(d)|. (4.8)

Moreover, with H = G4G′ and L = Lt(G,G
′), the pairing ψ has the property

that it pairs up the edges of E(H) E(L) and E(H)∩E(L) in such a way that for
every node v (with the exception of at most two nodes) each edge in E(H) E(L)
that is incident to v is paired up with an edge in E(H)∩E(L) that is incident to v.
However, there are either two nodes for which the incident edges in E(H) E(L)
exceed by 2 the incident edges in E(H)∩E(L), or one node for which the incident
edges in E(H) E(L) exceed by 4 the incident edges in E(H)∩E(L). These are
exactly the two nodes with degree deficit 1 or the one node with degree deficit 2
in L; for the example in Figure 4.11 these are nodes x1 and x6. There ψ pairs
up each edge of E(H) ∩ E(L) to an edge of E(H) E(L) but also two edges of
E(H) E(L) with each other; or in the case of one node with degree deficit 2 ψ
pairs up each edge of E(H)∩E(L) to an edge of E(H) E(L) but also makes two
pairs out of the remaining 4 edges in E(H) E(L). Let Ψ′(L) be the set of all
pairings with this property.20 Note that not every such pairing has to correspond
to a tuple (G,G′, ψ) for which t ∈ pψ(G,G′).

By simply counting, we can upper bound |Ψ′(L)| in terms of |Ψ(H)|. We
show the calculation for the case where L has two nodes with degree deficit 1.
The case of one node with degree deficit 2 is very similar and the same upper
bound works there as well. Suppose that u,w are the two nodes of L with degree
deficit 1. Then

|Ψ′(L)| =
(
Πv∈V {u,w}θv!

)
· (θu + 1)!

2
· (θw + 1)!

2

= |Ψ(H)| · (θu + 1)(θw + 1)

4

≤ n2 · |Ψ(H)| . (4.9)

20Remember that we do not need to know G and G′ in order to determine the set H. It can
be found based on L and the transition t = (Z,Z′), as described in the proof of Lemma 4.21.

4.3. Switch chain for strongly stable sequences 139

Putting everything together, we have

|G′(d)|2f ′(e) =
∑

(G,G′)

∑
ψ∈Ψ(G,G′)

1(e ∈ pψ(H))|Ψ(H)|−1

≤
∑
L∈Lt

∑
ψ′∈Ψ′(L)

|Ψ(H)|−1 (using Lemma 4.21)

≤ n2
∑
L∈Lt

1 (using (4.9))

≤ n2 · |G′(d)|. (using (4.8)) (4.10)

The usage of Lemma 4.21 for the first inequality works as follows. Every tuple
(G,G′, ψ) ∈ Ft with encoding Lt(G,G

′) generates a unique tuple in {Lt(G,G′)}×
Ψ′(Lt(G,G

′)). But since, by Lemma 4.21, we can uniquely recover G and G′ from
L, t and ψ, we have that

∑
L∈Lt |{L}×Ψ′(L)| =

∑
L∈Lt

∑
ψ′∈Ψ′(L) 1 is an upper

bound on the number of canonical paths that use t.
By rearranging (4.9) we get the upper bound for f ′ required in Lemma 4.20.

What is left to show is that `(f ′) is not too large. This, however, is determined
by the way we defined the canonical paths. It is easy to see that for any canonical
path between any two graphs G,G′ ∈ G(d) has length at most 3

4 |E(G4G′)| and,
therefore, `(f ′) ≤ n2.

This finishes the proof of Theorem 4.19.

4.3.2 Flow transformation

Next we show that, when d comes from a family of strongly stable degree se-
quences, an efficient multicommodity flow for the JS chain on G′(d) can be trans-
formed into an efficient multicommodity flow for the switch chain on G(d). In
combination with Theorem 4.19 this implies that if D is strongly stable, then for
any sequence in D there exists an efficient flow for the switch chain. For the sake
of simplicity, we did not attempt to optimize the bounds in the proof of Theorem
4.22.

Theorem 4.22. Let D be a strongly stable family of degree sequences with respect
to some constant k, and let p(n) and r(n) be polynomials such that for any
d = (d1, . . . , dn) ∈ D there exists an efficient multicommodity flow fd for the JS
chain on G′(d) with the property that maxef(e) ≤ p(n)/|G′(d)| and `(f) ≤ r(n).

Then there exists a polynomial t(n) such that for all d = (d1, . . . , dn) ∈ D
there is a feasible multicommodity flow gd for the switch chain on G(d) with (i)
`(gd) ≤ 2k · `(fd), and (ii) for every edge e of the state space graph of the switch
chain, we have

gd(e) ≤ t(n)k · p(n)

|G(d)|
. (4.11)

Proof. Let d ∈ D. For simplicity we will write f and g instead of fd and gd
respectively. We let Pxy refer to the set of simple paths between x and y in

140 Chapter 4. New results for the switch Markov chain

the state space graph of the JS chain (not those in the state space graph of the
switch chain). We first introduce some additional notation.

For every pair (x, y) ∈ G′(d)×G′(d) with x 6= y, and for any p ∈ Pxy, we write
α(p) = f(p)|G′(d)|2. Recall that since the stationary distribution of the JS chain
is uniform on G′(d) we have

∑
p∈Pxy f(p) = |G′(d)|−2. Thus,

∑
p∈Pxy α(p) = 1.

Moreover, we define α(e) =
∑
p∈Pxy :e∈p α(p) = f(e)|G′(d)|2.

Now, for every G ∈ G′(d) G(d) choose some ϕ(G) ∈ G(d) that is within
distance k of G in the JS chain, and take ϕ(G) = G for G ∈ G(d). Based on the
arguments in the proof of Proposition 4.6, it follows that for any H ∈ G(d),

|ϕ−1(H)| ≤ n3k , (4.12)

using that the maximum in-degree of any element in the state space graph of the
JS chain is upper bounded by n3. In particular, this implies that

|G′(d)|
|G(d)|

≤ n3k . (4.13)

Let the flow h be defined as follows for any given pair (x, y). If (x, y) ∈ G(d)×G(d),
take h(p) = α(p)/|G(d)|2 for all p ∈ Pxy. If either x or y is not contained in G(d),
take h(p) = 0 for every p ∈ Pxy. Note that h is a multicommodity flow that
routes 1/|G(d)|2 units of flow between any pair (x, y) ∈ G(d) × G(d), and zero
units of flow between any other pair of states in G′(d).

Note that

h(e) ≤ |G
′(d)|2

|G(d)|2
· f(e) ≤ |G

′(d)|2

|G(d)|2
p(n)

|G′(d)|
=

p(n)

|G(d)|
|G′(d)|
|G(d)|

≤ n3k · p(n)

|G(d)|
, (4.14)

using the definition of h in the first inequality, the assumption on f in the second
inequality, and the upper bound of (4.13) in the last one.

Next, we merge the “auxiliary states” in G′(d) G(d), i.e., the states not
reached by the switch chain, with the elements of G(d). Informally speaking,
for every H ∈ G(d) we merge all the nodes in ϕ−1(H) into a supernode. Self-
loops created in this process are removed, and parallel arcs between states are
merged into one arc that gets all the flow of the parallel arcs. Formally, we
consider the graph Γ where V (Γ) = G(d) and e = (H,H ′) ∈ E(Γ) if and only if
H and H ′ are switch adjacent or if there exist G ∈ ϕ−1(H) and G′ ∈ ϕ−1(H ′)
such that G and G′ are JS adjacent. Moreover, for a given h-flow carrying
path (G1, G2, . . . , Gq) = p ∈ Pxy, let p′Γ = (ϕ(G1), ϕ(G2), . . . , ϕ(Gq)) be the
corresponding (possibly non-simple) directed path in Γ. Any self-loops and cycles
can be removed from p′Γ and let pΓ be the resulting simple path in Γ. Over pΓ we
route hΓ(pΓ) = h(p) units of flow. Note that hΓ is a flow that routes 1/|G(d)|2
units of flow between any pair of states (x, y) ∈ G(d)× G(d) in the graph Γ and
that `(hΓ) ≤ `(f). Furthermore, the flow hΓ on an edge (H,H ′) ∈ E(Γ) is then
bounded by

hΓ(H,H ′) ≤
∑

(G,G′)∈ϕ−1(H)×ϕ−1(H′)
G and G′ are JS adjacent

h(G,G′) , (4.15)

4.3. Switch chain for strongly stable sequences 141

x y x y

Figure 4.12: The dashed edge on the left represents an illegal edge, and the bold
path represents a “short” detour. The shortcutted path on the right is the result
of removing any loops and cycles.

where the inequality (instead of an equality) follows from the fact that when we
map a path p ∈ Pxy to the corresponding path pΓ, some edges of the intermediate
path p′Γ may be deleted. Using (4.12), it follows that |ϕ−1(H) × ϕ−1(H ′)| ≤
n3k · n3k = n6k and therefore, in combination with (4.14) and (4.15), we have
that

hΓ(e) ≤ n3k · n6k · p(n)

|G(d)|
. (4.16)

Now recall how E(Γ) was defined. An edge (H,H ′) might have been added
because: (i) H and H ′ are switch adjacent (we call these edges of Γ legal), or (ii)
H and H ′ are not switch adjacent but there exist G ∈ ϕ−1(H) and G′ ∈ ϕ−1(H ′)
that are JS adjacent (we call these edges of Γ illegal). The final step of the proof
consists of showing that the flow on every illegal edge in E(Γ) can be rerouted
over a “short” path consisting only of legal edges. In particular, for every flow
carrying path p using e, we are going to show that the flow hΓ(p) can rerouted
over some legal detour, the length of which is bounded by a multiple of k. Doing
this iteratively for every remaining illegal edge on p, we obtain a directed path p′′

only using legal edges, i.e., edges of the state space graph of the switch chain. Of
course, p′′ might not be simple, so any self-loops and cycles can be removed, as
before, to obtain the simple legal path p′. Figure 4.12 illustrates this procedure
for a path with a single illegal edge. Note that deleting self-loops and cycles only
decreases the amount of flow on an edge.

The crucial observation here is that if (H,H ′) ∈ E(Γ), then |E(H)4E(H ′)| ≤
4k. That is, even though H and H ′ might not be switch adjacent, they are not
too far apart. To see this, first note that the symmetric difference of any two
JS adjacent graphs has size at most 2. Moreover, if one of any two JS adjacent
graphs is in G(d), then their symmetric difference has size 1. In particular, for
any G∗ ∈ G′(d), we have |E(G∗)4E(ϕ(G∗))| ≤ 2k − 1.

Clearly, if (H,H ′) ∈ E(Γ) is legal, then |E(H)4E(H ′)| = 4 ≤ 4k. Assume
(H,H ′) ∈ E(Γ) is illegal. Then there exist JS adjacent G ∈ ϕ−1(H) and G′ ∈
ϕ−1(H ′) and according to the above we have

|E(H)4E(H ′)| ≤ |E(H)4E(G)|+ |E(G)4E(G′)|+ |E(G′)4E(H ′)|
≤ 2k − 1 + 2 + 2k − 1 ≤ 4k .

142 Chapter 4. New results for the switch Markov chain

Moreover, this implies that we can go from H to H ′ in a ‘small’ number of moves
in the switch chain. This easily follows from most results showing that the state
space of the switch chain is connected, e.g., from [167].21 Specifically, here we
use the following result of Erdős, Király, and Miklós [69] which implies that we
can go from H to H ′ in 2k switches.

Theorem 4.23 (follows from Theorem 3.6 in [69]). Let d = (d1, . . . , dn) be a
degree sequence. For any two graphs H,H ′ ∈ G(d), H can be transformed into
H ′ using at most 1

2 |E(H)4E(H ′)| switches.

For every illegal edge e ∈ E(Γ), we choose such a (simple) path from H to H ′

with at most 2k transitions and reroute the flow of e over this path. Note that
for any legal edge e ∈ E(Γ), the number of illegal edge detours that use e for this
rerouting procedure, is at most (n4)2k · (n4)2k = n16k, using the fact that in the
state space graph of the switch chain the maximum degree of an element is at
most n4 and any illegal edge using e in its rerouting procedure must lie within
distance 2k of e. Combining this with (4.16), we see that the resulting flow, g,
satisfies

g(e) ≤ p(n) · n9k + p(n) · n16k

|G(d)|
. (4.17)

Note that `(g) ≤ 2k`(hΓ). This holds because every illegal edge on a flow-
carrying path gives rise to at most 2k additional edges as a result of rerouting
the flow over legal edges, and the removal of loops and cycles from any resulting
non-simple path can only decrease its length. Combining this inequality with
`(hΓ) ≤ `(f) (as we noted above), we get `(g) ≤ 2k · `(f). This completes the
proof of (4.11), as we have now constructed a feasible multicommodity flow g in
the state space graph of the switch chain with the desired properties.

4.4 Switch chain for 2-class JDM instances

In this section we use a similar high-level approach as that in Section 4.3 to show
that the (restricted) switch chain22 defined in Subsection 4.2.2 is always rapidly
mixing for JDM instances with two degree classes. The formal statement is as
follows.

Theorem 4.24. Let D be the family of instances of the joint degree matrix model
with two degree classes. Then the switch chain is rapidly mixing for instances in
D.

The proof of Theorem 4.24 consists of three parts. In analogy to the JS chain
we first analyze a simpler Markov chain, called the hinge flip chain, that adds

21To be precise, we can focus on the subgraph induced by the nodes with positive degree in
the symmetric difference. Taylor’s proof on the connectivity of the state space of the switch
chain [167] implies that we can find O(k2) switches to get from H to H′, only using edges in
this induced subgraph.

22In this section the switch chain always refers to the restricted switch chain.

4.4. Switch chain for 2-class JDM instances 143

and removes (at most) one edge at a time (see Figure 4.4).23 Very much like the
JS chain, the hinge flip chain might slightly violate the degree constraints. Now,
however, the joint degree constraints might be violated as well. The definition of
strong stability is appropriately adjusted to account for both deviations from the
original requirements, and in Section 4.4.2 we show that instances of the JDM
model with two degree classes are indeed strongly stable under this definition.
Finally, we use a similar embedding argument as in Theorem 4.22 to argue that
the (restricted) switch chain is rapidly mixing. Next, we give a more detailed
description of these three parts.

Proof overview. The first step of the proof is to show that the hinge flip chain
defined on a strict superset of the state space mixes rapidly for strongly stable
instances. This is done in Section 4.4.1. The auxiliary states have the property
that the joint degree constraint may only be violated slightly, by an additive
value of one to be precise. This makes the analysis much more challenging than
the one for the JS chain presented in Section 4.3.1. In order to overcome the
difficulties that arise due to the fact that the number of edges across the two
degree classes should remain almost the same, we rely on ideas introduced by
Bhatnagar et al. [15] for uniformly sampling exact matchings; see Remark 1.13.24

In particular, in the circuit processing part of the proof, we process a circuit at
multiple places simultaneously in case there is only one circuit in the canonical
decomposition of a pairing; or we process multiple circuits simultaneously in case
the decomposition yields multiple circuits. At the core of this approach lies a
variant of the mountain-climbing problem [105, 176]. In our case the analysis
is more involved than that of [15], and we therefore use different arguments in
various parts of the proof.

It is interesting to note that the analysis of the hinge flip chain is not carried
out in the JDM model but in the more general partition adjacency matrix model
(Section 4.2.3). The difference from the JDM model is that in each class Vi the
nodes need not have the same degree but rather follow a given degree sequence
of size |Vi|. Given that small deviations from the prescribed degrees cannot be
directly handled—by definition—by the JDM model, the PAM model is indeed
a more natural choice for this step.

Next, in Section 4.4.2, we show that for any JDM instance, any graph in the
state space of the hinge flip chain (i.e., graphs that satisfy or almost satisfy the
joint degree requirements) can be transformed to a graphical realization of the
original instance within 7 hinge flips at most. That is, the set of JDM instances
is a strongly stable family of instances of the PAM model and thus the hinge flip
chain mixes rapidly for JDM instances.

The final step is an embedding argument, along the lines of the argument of

23This is the Markov chain that naturally corresponds to the definition of P -stability given
in [107], whereas the JS chain is the natural choice for the (equivalent) definition of P -stability
given in [109].

24These are called bichromatic matchings in [15].

144 Chapter 4. New results for the switch Markov chain

Section 4.3.2, for transforming the efficient flow for the hinge flip chain to an
efficient flow for the switch chain. As an intermediate step we need an analogue
of Theorem 4.23, but this directly follows from the proof of irreducibility of the
(restricted) switch chain in [5]. This step is presented in Section 4.4.3.

4.4.1 Rapid mixing of the hinge flip chain

In this section we show that the hinge flip chain is rapidly mixing for strongly
stable tuples (Theorem 4.25). We prove Theorem 4.25 based on ideas introduced
in [15]. Throughout this section we always consider tuples (γ, d) coming from
strongly stable families.

Theorem 4.25. Let D be a strongly stable family of tuples (γ, d) with respect to
some constant k. Then there exist polynomials p(n) and r(n) such that for any
(γ, d) ∈ D, with d = (d1, . . . , dn), there exists an efficient multicommodity flow f
for the hinge flip chain M(γ, d) on G′(γ, d) satisfying maxe f(e) ≤ p(n)/|G′(d)|
and `(f) ≤ r(n). Hence, the hinge flip chain M(γ, d) is rapidly mixing for
families of strongly stable tuples.

We will use the following lemma in order to simplify the proof of Theorem
4.25. It is the analogue of Lemma 4.20 in Section 4.3.1.

Lemma 4.26. Let f ′ be a flow that routes 1/|G′(γ, d)|2 units of flow between any
pair of states in G(γ, d) in the chain M(γ, d), so that f ′(e) ≤ b/|G′(γ, d)| for all
e in the state space graph of M(γ, d). Then f ′ can be extended to a flow f that
routes 1/|G′(γ, d)|2 units of flow between any pair of states in G′(γ, d) with the
property that for all e

f(e) ≤ q(n)
b

|G′(γ, d)|
, (4.18)

where q(·) is a polynomial whose degree only depends on k(γ, d) (≤ k). Moreover,
`(f) ≤ `(f ′) + 2k(γ, d).

Proof. We extend the flow f ′ to f as follows. For any G ∈ G′(γ, d) \ G(γ, d) fix
some φ(G) ∈ G(γ, d) within distance k of G (which exists by assumption of strong
stability), and fix some path in the state space graph from G to φ(G) of length
at most k. Moreover, define φ(H) = H for all H ∈ G(γ, d). The flow between G
and any given G′ ∈ G′(γ, d) is now sent as follows.

First route 1/|G′(γ, d)|2 units of flow from G to φ(G) over the fixed path from
G to φ(G). Then use the flow-carrying paths used to send 1/|G′(γ, d)|2 units of
flow between φ(G) and φ(G′) as in the flow f ′ (note that in general multiple paths
might be used for this in the flow f ′). Finally, use the reverse of the fixed path
from G′ to φ(G′) to route 1/|G′(γ, d)|2 from φ(G′) to G′. For any H ∈ G(γ, d),
we have |φ−1(H)| ≤ poly(nk), as the in- and out-degrees of the nodes in the state
space graph of M(γ, d) are polynomially bounded. It can then be shown that
this extension of f ′, yielding the flow f , only gives an additional term of at most
poly(nk) b

|G′(γ,d)| to the congestion of every arc in the state space graph of the

4.4. Switch chain for 2-class JDM instances 145

chainM(γ, d) in the flow f ′. Hence, the extended flow f satisfies (4.18) for some
appropriately chosen polynomial q(n).

Because of Lemma 4.26 it now suffices to show that there exists a flow f ′

that routes 1/|G′(γ, d)|2 units of flow between any two pair of states in G(γ, d),
in the state space graph of the chain M(γ, d), with the property that f ′(e) ≤
p(n)/|G′(γ, d)|, and `(f ′) ≤ q(n) for some polynomials p(·), q(·) whose degrees
may only depend on k(γ, d). Note that f ′ is not a feasible multi-commodity flow
as defined in Section 4.2, but should rather be interpreted as an intermediate
auxiliary flow. The proof of Theorem 4.25 will consist of multiple parts following,
conceptually, the proof template in [41] developed for proving rapid mixing of
the switch chain for regular graphs. The main difference is that for the so-called
canonical paths between states we rely on ideas introduced in [15].

4.4.1.1 Canonical paths

We first introduce some basic terminology similar to that in [41]. Let V be a set
of labeled vertices, let ≺E be a fixed total order on the set {{v, w} : v, w ∈ V }
of edges, and let ≺C be a total order on all circuits on the complete graph KV ,
i.e., ≺C is a total order on the closed walks in KV that visit every edge at most
once. We fix for every circuit one of its vertices where the walk begins and ends.

For given G,G ∈ G(γ, d), let H = G4G′ be their symmetric difference. We
refer to the edges in G G′ as blue, and the edges in G′ G as red. A pairing
of red and blue edges in H is a bijective mapping that, for each node v ∈ V ,
maps every red edge adjacent to v, to a blue edge adjacent to v. The set of all
pairings is denoted by Ψ(G,G′), and, with θv the number of red edges adjacent
to v (which is the same as the number of blue edges adjacent to v), we have
|Ψ(G,G′)| = Πv∈V θv!.

Remember that we are considering an instance of the PAM model with two
classes V1 and V2. For a given graphical realization G ∈ G(γ, d) we say that
e ∈ E(G) is a cut edge if it has an endpoint in both V1 and V2. Otherwise we
say that e is an internal edge, as both endpoints either lie both in the class V1

or both in class V2.

Similar to the approach in [41], the goal is to construct for each pairing
ψ ∈ Ψ(G,G′) a canonical path from G to G′ that carries a fraction |Ψ(G,G′)|−1

of the total flow from G to G′ in f ′. For a given pairing ψ and the total order
≺E given above, we first decompose H into the edge-disjoint union of circuits in
a canonical way. We start with the lexicographically least edge w0w1 in EH and
follow the pairing ψ until we reach the edge wkw0 that was paired with w0w1.
This defines the circuit C1 (which is indeed a closed walk). If C1 = EH , we are
done. Otherwise, we pick the lexicographically least edge in H C1 and repeat
this procedure. We continue generating circuits until EH = C1 ∪ · · · ∪ Cs. Note
that all circuits have even length and alternate between red and blue edges, and
that they are pairwise edge-disjoint.

146 Chapter 4. New results for the switch Markov chain

We form a path from G to G′ in the state space graph of the chainM(γ, d) by
changing the blue edges of G into the red edges of G′ using hinge flip operations.
For certain pairings this can be done in a straightforward way, but in general
this is not the case. As a warm-up, we first consider a simple case (this case
essentially describes how we would process the circuits in case there is only one
class).

Warm-up example. If for every i, the circuit Ci exclusively consists of internal
edges, only within V1 or only within V2, or exclusively of cut edges, then circuits
can be processed according to the ordering≺C as follows. Let C = x0x1x2 . . . xqx0

be a circuit, and assume w.l.o.g. that x0x1 is the lexicographically smallest
blue edge adjacent to the starting node x0 of the circuit. The processing of
C now consists of performing a sequence of hinge flips on the ordered pairs
(xi−1, xi, xi+1) for i = 1, . . . , q with the convention that xq+1 = x0. This is
illustrated in Figures 4.13, 4.14 and 4.15 for an example of C as illustrated in
Figure 4.13 on the left.25 We have also indicated the degree surplus and deficit
at every step. By assumption, the edges of C either are all internal edges or
all cut edges. Therefore, throughout the processing of C, we never violate the
constraint that there should be γ edges between the classes V1 and V2, and, in
particular, this implies that every intermediate state is an element of G′(γ, d).

x0/x3

x1

x2 x4

x5/x8

x6

x7x9

x0/x3

x1

x2 x4

x5/x8

x6

x7x9

+1

−1

Figure 4.13: The circuit C = x0x1x2x3x4x5x6x7x8x9x0 with x0 = x3 and x5 =
x8. The blue edges are represented by the solid edges, and the red edges by the
dashed edges (left). The edge x0x1 is removed and x1x2 is added (right).

In general, however, it might happen that circuits contain both cut and inter-
nal edges, in which case we cannot use the circuit processing procedure explained
above, as the processing of a circuit might result in a graphical realization for
which the number of edges between the classes V1 and V2 lies outside the set
{γ − 1, γ, γ + 1}. The latter condition is necessary for the intermediate states in
the circuit processing procedure to be elements of G′(γ, d), by definition of that
set. In order to overcome the issue described above, we will use the ideas in [15],
and process a circuit at multiple places simultaneously in case there is only one
circuit in the canonical decomposition of a pairing, or, process multiple circuits

25This is similar to the procedure described in Figures 4.6, 4.7 and 4.8 for the JS chain (we
give an example here as well for self-containment).

4.4. Switch chain for 2-class JDM instances 147

x0/x3

x1

x2 x4

x5/x8

x6

x7x9

−1

+1

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

−1

+1

Figure 4.14: The edge x2x3 is removed and x3x4 is added (left). The edge x4x5

is removed and x5x6 is added (right).

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

−1 +1

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

Figure 4.15: The edge x6x7 is removed and x7x8 is added (left). The edge x8x9

is removed and x9x0 is added (right).

simultaneously in case the decomposition yields multiple circuits. At the core of
this approach lies (a variation of) the mountain-climbing problem [105, 176]. We
begin with introducing this problem, and afterwards continue with the descrip-
tion of the circuit processing procedure, based on the solution to the mountain
climbing problem.

Intermezzo: mountain climbing problem. We first introduce some notation
and terminology. For non-negative integers a, b with a + 1 < b we define an
{a, b}-mountain as a function P : {a, a + 1, . . . , b} → Z≥0 with the properties
that (i) P (a) = P (b) = 0; (ii) P (i) > 0 for all i ∈ {a + 1, . . . , b − 1}; and (iii)
|P (i+ 1)−P (i)| = 1 for all i ∈ {a, . . . , b− 1}. A function P : {a, a+ 1, . . . , b} →
Z≤0 is called an {a, b}-valley if the function −P is an {a, b}-mountain. We
subdivide a mountain into a left side {a, . . . , t} and right side {t, . . . , b} where
t is the smallest integer maximizing the function P . For a valley function P ,
the left and right side are determined by the smallest integer t minimizing the
function P .

Definition 4.27. A traversal of the mountain P on {a, . . . , b} is a sequence

(a, t) = (i1, j1), . . . , (ik, jk) = (t, b)

with the properties

(a) |ir − ir+1| = |jr − jr+1| = 1,

148 Chapter 4. New results for the switch Markov chain

(b) P (ir) + P (jr) = P (t),

(c) a ≤ ir ≤ t and t ≤ jr ≤ b,

for all 1 ≤ r ≤ k− 1. We always assume that a traversal is minimal, in the sense
that there is no subsequence of (a, t) = (i1, j1), . . . , (ik, jk) = (t, b) which is also
a traversal.

Roughly speaking, we place one person at the far left end of the mountain, and
one at the first top. These persons now simultaneously traverse the mountain in
such a way that the sum of their heights is always equal, and they always stay on
their respective sides of the mountain that they started. The goal of the person
on the left it to ascend to the top, whereas the goal of the player at the top is to
descend to the far right of the mountain.

Lemma 4.28 ([15]). For any mountain or valley function P on {a, . . . , b} with
first top t, there exists a traversal of P of length at most O((t − a)(b − t)), that
can be found in time O((t− a)(b− t)).

Figure 4.16: Example of a mountain function P on the integers in {0, . . . , 14}
with the first top at t = 6. The left side of the mountain is given by {0, . . . , 6}
and the right side by {6, . . . , 14}. A traversal of P is given by the sequence
(0, 6), (1, 7), (0, 8), (1, 9), (2, 10), (3, 11), (4, 12), (5, 13), (6, 14).

We finish this part with some additional notation that will be used later on.
Let Pj : {aj , . . . , bj} → Z for j = 1, . . . , l be a collection of mountain and valley
functions such that a1 = 0, bj = aj+1 for j = 1, . . . , p− 1, and every Pj is either
a mountain or a valley. We define the landscape Q of the functions P1, . . . , Pl as
the function Q : {0, 1, . . . , bl} → Z given by Q(i) = Pj(i) where j = j(i) is such
that i ∈ {aj , . . . , bj}. Note that Q(0) = Q(bl) = 0, and |Q(i + 1) − Q(i)| = 1
for all i ∈ {0, . . . , bj − 1}. Moreover, for any function R : {0, . . . , r} → Z sat-
isfying the latter two conditions, there is a unique collection of mountain and
valley functions so that R is the landscape of those functions. We call functions
satisfying these conditions landscape functions.

General case. We first partition every circuit into a collection of so-called
sections, which in turn will be grouped into so-called segments. Let C1, . . . , Cs
be the canonical circuit decomposition of the symmetric differenceG4G′ for some
pairing ψ, and assume w.l.o.g. that Ci ≺C Cj whenever i < j. We write Ci =

4.4. Switch chain for 2-class JDM instances 149

xi0x
i
1 . . . x

i
qix

i
0 where xi0x

i
1 is the lexicographically smallest blue edge adjacent to

the starting point xi0 of the circuit Ci, and where qi is such that Ci has qi + 1
edges (and where x0 = xqi+1). For any i, we define the function

li (r) =

 −1 if {xir−2, x
i
r−1} is cut edge and {xir−1, x

i
r} is internal edge,

1 if {xir−2, x
i
r−1} is internal edge and {xir−1x

i
r} is cut edge,

0 otherwise,

for r = 2, 4, . . . , qi + 1. The function li indicate what happens to the number of
cut edges of a graphical realization when we perform a hinge flip on a pair of
consecutive edges {xir−2, x

i
r−1} and {xir−1, x

i
r} on the circuit Ci.

Decomposition into segments. We subdivide every circuit Ci into a sequence
of (not necessarily closed) walks of even length, called sections. Let Zi = {r :
li(r) 6= 0} = {z1, . . . , zui} ⊆ {2, 4, . . . , qi+1} be the set of indices that represent a
change in cut edges along the circuit, where we assume that z1 ≤ z2 ≤ · · · ≤ zui .
We define C1

i = xi0x
i
1 . . . x

i
z1 and Cji = xizj . . . x

i
zj+1

for j = 2, . . . , ui − 1. If
li(qi + 1) 6= 0 this procedure partitions the circuit Ci completely, with Cuii being
the last section. Otherwise, we define Cu1+1

i = xizui
. . . xi0 as the final section,

which is the remainder of the circuit Ci. We define Ui as the total number of
obtained sections, which is either ui or ui + 1. Note that when Zi = ∅, the whole
circuit will form one section Ci = C1

i . Also note that a section always starts with
a blue edge. We extend the function li to sections in the following way:

li

(
Cji

)
=

∑
r=2,4,...,zj

li(r) =

 −1 if li(zj) = −1,
1 if li(zj) = 1,
0 otherwise,

for j = 1, . . . , Ui. Note that l(Cji) ∈ {−1, 1} for j = 1, . . . , ui, and zero for
j = ui + 1 if this term is present. An example is given in Figure 4.17.

We continue by grouping the union of all sections into segments in a similar
flavor. For sake of readability, we rename the sections

C1
1 , . . . , C

U1
1 , C1

2 , . . . , C
U2
2 , . . . , C1

s , . . . , C
Us
s

as D1, . . . , DU in the obvious way, where U =
∑s
i=1 Ui, and we define l(Dk) =

li(C
j
i) if Cji was renamed Dk. We define W = {k : l(Dk) 6= 0} = {w1, . . . , wB}

as the set of sections representing a change in cut edges along a circuit, where
we assume that w1 ≤ · · · ≤ wB . We define the segment S1 = (D1, . . . , Dw1), and
Si = (Dwi−1+1, . . . , Dwi) for i = 2, . . . , wB − 1. If l(DU) 6= 0, i.e., when wB =
U , this procedure completely groups the collection of sections into segments.
Otherwise, we redefine the last segment as SB = (DwB−1+1, . . . , DU). We can
extend the function l to segments in the following way:

l (Si) =

wi∑
j=wi−1+1

l(Dj) =

{
−1 if l(Dwi) = −1,
1 if l(Dwi) = 1,

150 Chapter 4. New results for the switch Markov chain

x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15

c

c c c

c

c

Figure 4.17: The circuit C1 = x0x1 . . . x15x0 with q1 = 15. The blue edges
are represented by the solid edges, and the red edges by the dashed edges. A
label c on an edge indicates that it is a cut edge (all others are internal edges).
We have C1

1 = x0x1x2 with l1(C1
1) = −1; C2

1 = x2x3x4x5x6 with l1(C2
1) = 1;

C3
1 = x6x7x8x9x10 with l1(C3

1) = −1; C4
1 = x10x11x12x13x14 with l1(C4

1) = −1;
and C5

1 = x14x15x0 with l1(C5
1) = 0 (note that U1 = 5 in this example).

for i = 1, . . . , B − 1, and l (SB) =
∑U
j=wB−1+1 l(Dj). Note that

l(Si) ∈ {−1, 1} for i = 1, . . . , B, (4.19)

unless in the special case that there is only one segment S1 covering all circuits,
then l(S1) = 0. This happens, e.g., in the situation of the warm-up example.

An example of a decomposition into segments is given in Figures 4.20 and
4.21 later on. Roughly speaking, a segment is a maximal collection of edges that
could be processed, using hinge flips operations as in the warm-up example, un-
til the number of cut-edges changes. In particular, the first segment represents
precisely the point up to where we could carry out the same processing steps as
in the warm-up example until the number of cut edges will have changed for the
first time. Note that a segment might contain sections from multiple circuits, in
particular, it might consist of a final section of a circuit J1, then some full circuits
J2, . . . , Jh (which all form a section on their own) and then the first section of
some circuit Jh+1. The function l is then zero on the last section of J1 and all
circuits (sections) J2, . . . , Jh, and non-zero on the section of Jh+1.

Unwinding/rewinding of a segment. The unwinding of a section D = xf . . . xg
consists of performing a number of hinge flip operations, that represent transi-
tions in the Markov chain M′(γ, d). That is we perform a sequence of hinge flip
operations replacing the (blue) edges {xr−2, xr−1} by (red) edges {xr−1, xr} for
r = f + 2, . . . , g, in increasing order of r. Sometimes, we need to temporarily
undo the unwinding of a section, in which case we perform a sequence of hinge
flip operations replacing the (red) edges {xr−1, xr} by (blue) edges {xr−2, xr−1}
for r = f + 2, . . . , g, in decreasing order of r this time. That is, we reverse the
operations done during the unwinding. This is called rewinding a section. We
say that a circuit is (currently) processed if all its sections have been unwound,
and it is (currently) unprocessed if at least one section has not been unwound.

4.4. Switch chain for 2-class JDM instances 151

The unwinding of a segment Si = (Dai , . . . , Dai+1) consists of unwinding
the sections Dai , . . . , Dai+1 in increasing order. The rewinding of Si consists of
rewinding the section Dai , . . . , Dai+1 in decreasing order.

x0 x1 x2 x3 x4 x5 x6

x0 x1 x2 x3 x4 x5 x6

unwinding rewinding

Figure 4.18: A section D = x0x1 . . . x6. The blue edges are represented by
the solid edges. The unwinding consists of performing first a hinge flip with
{x0, x1} to {x1, x2}; then {x2, x3} to {x3, x4}; and finally {x4, x5} to {x5, x6}.
The rewinding consist of first a hinge flip with {x5, x6} to {x4, x5}; then {x3, x4}
to {x2, x3}; and finally {x1, x2} to {x0, x1}

Landscape processing. Remember that B is the number of segments obtained
from the decomposition of circuits into segments. We define the function P :
{0, 1, . . . , B} → Z by P (0) = 0 and P (i) =

∑i
j=1 l(Sj) for i = 1, . . . , B.

Lemma 4.29. The function P is a landscape function.

Proof. We have to check that P (0) = P (B) = 0 and that |P (i+1)−P (i)| = 1 for
all i = 0, . . . , B − 1, see the description of the mountain climbing problem. We
have P (0) by definition. Moreover, since both graphical realizations G and G′

contain γ cut edges, it holds that P (B) =
∑B
i=1 l(Si) = 0. Finally, using (4.19)

and the definition of P , it follows that

|P (i+ 1)− P (i)| =

∣∣∣∣∣
i+1∑
j=1

l(Sj)−
i∑

j=1

l(Sj)

∣∣∣∣∣ = |l(Si)| = 1

for all i = 1, . . . , B − 1.

Based on the segments S1, . . . , SB , we define the canonical path from G to G′

in the state space graph of the chain G′(γ, d) that replaces all the blue edges in
G4G′ with the red edges in G4G′. By Lemma 4.29 we know P is a landscape
function and therefore there is a unique decomposition into mountain and valley
functions P1, . . . , Pp so that P is the landscape function for this collection, where
every function is of the form Pj : {aj , . . . , bj} → Z with a1 = 0, bj = aj+1 for j =
1, . . . , p−1, and bp = B.26 The processing of a mountain/valley Pj means that all
segments Saj+1, . . . , Sbj will be unwound (it might be that during this procedure

26The function P1 can be found by determining the first j > 0 so that P (j) = 0. The sign of
P (1) determines if it is a mountain or a valley. The remaining mountains and valleys can be
found similarly.

152 Chapter 4. New results for the switch Markov chain

segments are temporarily rewound). This processing will rely on a traversal of
the mountain, see Definition 4.27. We say that the segments Saj+1, . . . , Stj are
on the left side of the mountain, and the segments Stj+1, . . . , Sbj on the right
side of the mountain, where tj is the first top of the mountain. Let P = Pj for
some j and assume that P is a mountain function. For sake of notation, we write
a = aj and b = bj , and t = tj .

Now, fix some traversal (a, t) = (r1, s1), . . . , (rk, sk) = (t, b) of P . For c =
1, . . . , k − 1 in increasing order, do the following:

1. if rc+1 > rc and sc+1 > sc: first unwind segment Src+1
, then unwind

segment Ssc+1 ;

2. if rc+1 > rc and sc+1 < sc: first unwind segment Src+1
, then rewind segment

Ssc ;

3. if rc+1 < rc and sc+1 > sc: first rewind segment Src , then unwind segment
Ssc+1

;

4. if rc+1 < rc and sc+1 < sc: first rewind segment Src , then rewind segment
Ssc .

This describes the processing of a mountain based on a traversal. Note that after
the processing of a mountain, indeed all its segments have been unwound (see
also the example worked out in the Figures 4.20, 4.21, 4.22 and 4.23). If P is a
valley function, we can use essentially the same procedure performed on −P . The
processing of a landscape is done by processing the mountains/valleys P1, . . . , Pp
in increasing order.

This procedure generates a sequence G = Z1, Z2, . . . , Zl = G′ of graphical
realizations transforming G into G′ where any two consecutive realizations differ
by a hinge flip operation. The following lemma shows that this sequence indeed
defines a (canonical) path from G to G′ in the state space graph of M(γ, d), for
a given pairing ψ. This lemma is essentially the motivation for the definition of
G′(γ, d).

Lemma 4.30. Let Z = Zi be a graphical realization on the constructed path from
G to G′ for pairing ψ, with degree sequence d′ and γ′ cut edges. Then (γ′, d′)
satisfies the properties (i), (ii) and (iii) defining G′(γ, d) (see Section 4.2.3).

Moreover, there exists a polynomial r(·) such that the length of any constructed
(canonical) path carrying flow is at most r(n).

Proof. Since hinge flip operations never change the number of edges in a graph,
property (i) is clearly satisfied. Since the operations (1)–(4) given above un-
wind and rewind at most two segments, and by construction of the trajectories
describing the traversal, the property (ii) is also satisfied. Finally, the cases (1)–
(4), in combination with the second property of a traversal as in Definition 4.27,
guarantee that property (iii) is satisfied. To see that all canonical paths have
polynomial length, note that the traversal has polynomial length, and also every
individual segment has polynomial length.

4.4. Switch chain for 2-class JDM instances 153

4.4.1.2 Encoding

We continue with defining the notion of an encoding that will be used in the
next section to bound the congestion of an edge in the state space graph of
M(γ, d). Let τ = (Z,Z ′) be a given transition of the Markov chain. Suppose
that a canonical path from G to G′ for some pairing ψ ∈ Ψ(G,G′), with canonical
circuit decomposition {C1, . . . , Cs}, uses the transition τ . We define Lτ (G,G′) =
(G4G′)4Z. An example is given in Figures 4.20, 4.21, 4.22 and 4.23.

Lemma 4.31. Given τ = (Z,Z ′), ψ, L, if there is some pair (G,G′) so that
L = Lτ (G,G′), then there are at most 1

8n
4 such pairs.

Proof. For any pair (G,G′), let P be the landscape function of this canonical
path between G and G′ using the transition τ , and P1, . . . , Pp its decomposi-
tion into mountain and valley functions. Let Tτ,ψ(G,G′) ∈ {C1, . . . , Cs} be the
circuit containing the first node of the first segment of the right part of the moun-
tain/valley Pj containing the transition τ . Without loss of generality, we assume
that Pj is a mountain. Moreover, let Γ be the circuit containing the transition
τ . If τ is used in the processing of a segment on the left side of the mountain Pj
containing τ , let σψ(G,G′) be the circuit containing the last node of the segment
with highest index on the right side of the mountain that is currently unwound.
If τ lies on the right side of the mountain, we let σψ(G,G′) be the circuit con-
taining the last node of the segment with highest index on the left side of the
mountain that is currently unwound.

TψΓ σψ
processed unprocessed processed unprocessed

Figure 4.19: The dashed vertical lines sketch the ranges of the circuits Tψ, σψ
and Γ. For every other circuit, contained in one of the four regions represented
below the landscape, we know whether it has currently been processed or not.

We claim that, given Tψ, σψ ∈ {C1, . . . , Cs}, it can be argued that there are at
most 8 pairs (G,G′) so that Tψ = Tψ(G,G′), σψ = σψ(G,G′). This can be seen as
follows. Note that we can infer for all other circuits in {C1, . . . , Cs}\{Tψ, σψ,Γ}
which edges belong to G and which to G′ using the (global) circuit ordering. To
see this, assume that Γ �C Tψ �C σψ (the only other case σψ �C Tψ �C Γ is
similar). Because the landscapes of the canonical paths always respect the circuit
ordering, we know that all circuits in the canonical decomposition of ψ appearing
before Γ have been unwound at this point. All circuits lying strictly between Γ
and Tψ are not unwound. The circuits strictly between Tψ and σψ again have

154 Chapter 4. New results for the switch Markov chain

been unwound, and finally, all circuits appearing after σψ have not been unwound
(see Figure 4.19). By comparison with Z, it is uniquely determined which edges
on these circuits belong to G and which to G′. For the remaining three circuits
Tψ, σψ and Γ there are for every circuit two possible configurations of the edges
of G and G′, since every circuit alternates between edges of G and G′.27 Hence,
there are at most 23 = 8 possible pairs (G,G′) with the desired properties given
Tψ and σψ.

Finally, note that for any pairing ψ, there are at most 1
4

(
n
2

)
circuits in the

canonical circuit decomposition {C1, . . . , Cs} of the pairing ψ, as every circuit
has length at least four. Hence, for both Tψ and σψ there are at most 1

4

(
n
2

)
possible choices. Since Γ is uniquely determined by the transition τ , this implies
that there are at most

8 · 1

4

(
n

2

)
· 1

4

(
n

2

)
≤ n4

8

possible pairs (G,G′) with L = Lτ (G,G′).28

a1

a2 a3

a4 x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15 b1

b2 b3

b4

c

c c c

c

c

c

c

Figure 4.20: Symmetric difference H = G4G′ where the solid edges represent the
(blue) edges G and the dashed edges the (red) edges of G′. From left to right the
circuit are numbered C1 = a1a2a3a4a1, C2 = x0 · · ·x15x0 and C3 = b1b2b3b4b1,
and assume that this is also the order in which they are processed. Cut edges
are indicated with the label c.

4.4.1.3 Bounding the congestion

For a tuple (G,G′, ψ), let pψ(G,G′) denote the canonical path from G to G′ for
pairing ψ. Let

Lτ = ∪(G,G′,ψ)∈FτLτ (G,G′)

be the union of all (distinct) encodings Lτ , where Fτ = {(G,G′, ψ) : τ ∈
pψ(G,G′)} is the set of all tuples (G,G′, ψ) such that the canonical path from G
to G′ under pairing ψ uses the transition τ . A crucial observation is the following.

27Note that we cannot use the transition τ to infer which edges belong to G and G′ on the
circuit Γ, as we do not know (i.e., we do not encode) whether we are unwinding or rewinding
the segment containing τ .

28A canonical path uses every transition at most once, which follows from the fact that we
assumed that a traversal is always minimal, see Definition 4.27.

4.4. Switch chain for 2-class JDM instances 155

S
1 S 2

S
3

S
4 S 5

S 6

Figure 4.21: The landscape, consisting of two valleys, corresponding to the
symmetric difference in Figure 4.20. The segments are given by S1 =
(a1a2a3a4a1, x0x1x2), S2 = (x2x3x4x5x6), S3 = (x6x7x8x9x10), S4 =
(x10x11x12x13x14), S5 = (x14x15x0, b1b2b3), and S6 = (b3b4b1).

a1

a2 a3

a4 x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15 b1

b2 b3

b4

a1

a2 a3

a4 x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15 b1

b2 b3

b4

Figure 4.22: The transition τ = (Z,Z ′) that is the hinge flip operation that
removes the edge {x10, x11} and adds the edge {x11, x12} as part of the unwinding
of S4. Note that the segments S1 and as S2, forming the first valley, have been
processed already. Also, the first segment S3 of the left part of the second valley,
as well as the segment S5 being the first segment of the right part of the second
valley, have been processed already. The segment S6 has not been processed yet.
The edges in (E(G) ∪ E(G′)) \ E(H) are left out.

Lemma 4.32. If Lτ (G,G′) = (G4G′)4Z for transition τ = (Z,Z ′) used by a
canonical path between G and G′, then L ∈ G′(γ, d). This implies that

|Lτ | ≤ |G′(γ, d)|. (4.20)

Proof. We check that the properties (i), (ii) and (iii) defining the set G′(γ, d) (see
Section 4.2.3) are satisfied by L. Note that L4Z = G4G. As every individual
hinge flip operations adds and removes an arc from the symmetric difference, it
follows that L and Z have the same number of edges. This proves property (i).

156 Chapter 4. New results for the switch Markov chain

a1

a2 a3

a4 x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15 b1

b2 b3

b4

Figure 4.23: The encoding L = Lt(G,G
′) = (G4G′)4Z for the symmetric

difference in Figure 4.20 and transition as in Figure 4.22, where again the edges
in (E(G) ∪ E(G′)) \ E(H) are left out.

Also, if Z has a perturbation of αv ∈ {−2,−1, 0,−1,−2} (see Proposition 4.9) at
node v, then L has a perturbation of −αv at node v, which shows that property
(ii) is satisfied for L. Finally, with β ∈ {−1, 0, 1}, if Z contains γ − β cut edges,
then L contains γ+β cut edges (using implicitly that G and G′ contain the same
number of cut edges). This implies that property (iii) is satisfied.

Moreover, with H = G4G′ and L = Lt(G,G
′), the pairing ψ has the property

that it pairs up the edges of E(H) E(L) and E(H) ∩ E(L) in such a way that
for every node v each edge in E(H) E(L) that is incident to v is paired up with
an edge in E(H) ∩ E(L) that is incident to v, except for at most four pairs.29

Let Ψ′(L) be the set of all pairings with this property. Remember that we do
not need to know G and G′ in order to determine the set H = L4Z. Note
that not every pairing in Ψ′(L) has to correspond to a tuple (G,G′, ψ) for which
t ∈ pψ(G,G′). Using a counting argument,30 we can upper bound |Ψ′(L)| in
terms of |Ψ(H)|. In particular, there exists a polynomial q(n) such that

|Ψ′(L)| ≤ q(n) · |Ψ(H)|.31 (4.21)

Putting everything together, we have

|G′(γ, d)|2f ′(τ) =
∑

(G,G′)

∑
ψ∈Ψ(G,G′)

1(e ∈ pψ(H))|Ψ(H)|−1

≤ 1

8
n4
∑
L∈Lτ

∑
ψ′∈Ψ′(L)

|Ψ(H)|−1 (using Lemma 4.21)

≤ 1

8
n4 · q(n)

∑
L∈Lτ

1 (using (4.21))

≤ 1

8
n4 · q(n) · |G′(γ, d)| (using (4.20)) (4.22)

29These are the nodes x10, x14, b1 and b3 in Figure 4.23.
30This can be done similarly as the argument used in Section 4.3.1.3.
31A very rough choice is q(n) = n20.

4.4. Switch chain for 2-class JDM instances 157

The usage of Lemma 4.31 for the first inequality works as follows. Every tuple
(G,G′, ψ) ∈ Ft with encoding Lt(G,G

′) generates a unique tuple in {Lt(G,G′)}×
Ψ′(Lt(G,G

′)). But since, by Lemma 4.31, there are at most 1
8n

4 pairs (G,G′)
with L = Lτ (G,G′) for given L, τ and ψ, we have that 1

8n
4
∑
L∈Lτ |{L} ×

Ψ′(L)| = 1
8n

4
∑
L∈Lτ

∑
ψ′∈Ψ′(L) 1 is an upper bound on the number of canonical

paths that use τ .
By rearranging (4.22) we get the upper bound for f ′ required in Lemma

4.26. We already observed that the length of any canonical path is polynomially
bounded as well. This then completes the proof of Theorem 4.25.

4.4.2 Strong stability of 2-class JDM instances

In Section 4.4.1 we have shown that the hinge flip Markov chain for PAM in-
stances with two classes is rapidly mixing on G′(γ, d) in case (γ, d) comes from a
family of strongly stable tuples. In this section we show that JDM instances with
two degree classes are strongly stable. When dealing with a family of instances,
even when this is not explicitly mentioned, we only consider the tuples (c, d) for
which there is at least one graphical realization.

Theorem 4.33. Let D be the family of instances of the joint degree matrix model,
i.e., where for every tuple (V1, V2, γ, d) it holds that 1 ≤ β1, β2 ≤ |V | − 1, and
1 ≤ γ ≤ |V1||V2| − 1, where β1 and β2 are the common degrees in the classes V1

and V2, respectively. The family D is strongly stable for k = 7, and, hence, the
hinge flip chain is rapidly mixing for all tuples in D.

Proof. We first show that this family is strongly stable for k = 7. For convenience,
we will work with the notation G′(c, d) instead of G′(γ, d). Remember that

cii =

∑
j∈Vi

dj

− γ
for i = 1, 2 is the number of internal edges that Vi has in any graphical realization
in G(γ, d), and that γ = c12 = c21. For sake of readability, we define the notion
of a cancellation hinge flip. For either i = 1 or i = 2, suppose nodes v, w ∈ Vi,
are such that v has a degree deficit of at least one, and w a degree surplus of at
least one. Then w has a neighbor z ∈ V that is not a neighbor of v (using that v
and w have the same degree βi). The hinge flip operation that removes the edge
{z, w} and adds the edge {z, v} is called a cancellation flip on v and w. Note
that the number of internal edges in V1 and V2 as well as the number of cut edges
does not change with such an operation.32 Moreover, we say that an edge {a, b}
is a non-edge of a graphical realization G if {a, b} /∈ E(G).

32That is, either z lies in the other class, in which case the cancellation flip removes and
adds a cut edge, or, z lies in the same class as v and w in which case an internal edge in Vi is
removed and added.

158 Chapter 4. New results for the switch Markov chain

Let G ∈ G′(c, d) for some tuple (c′, d′) as in the definition of G′(c, d) at the
start of Section 4.4.1. We first show that with at most four hinge flip operations,
we can obtain a perturbed auxiliary state G∗ ∈ G′(c, d) for which its tuple (c∗, d∗)
is edge-balanced. That is, it satisfies c∗ = c. Remember that the value c′12

uniquely determines the matrix c′, and, by assumption of G′(c, d), we have c′12 ∈
{c12 − 1, c12, c12 + 1}. We can therefore distinguish the following cases.

• Case 1: c′12 = c12 + 1. Then, by Proposition 4.9, either c′11 = c11 − 1 and
c′22 = c22, or, c′22 = c22−1 and c′11 = c11. Assume without loss of generality
that we are in the first case. Then it holds that

∑
j∈V1

d′j =

∑
j∈V1

dj

− 1 and
∑
j∈V2

d′j =

∑
j∈V2

dj

+ 1. (4.23)

Moreover, there must be at least one node v2 ∈ V2 with a degree surplus
(of either one or two), and there is at least one non-edge {a, b} with both
endpoints in V1. If v2 is adjacent to either a or b, we can perform a hinge
flip to make the realization G edge-balanced, so assume this is not the
case. Also, if the total deficit of a and b is −2, there must be a node in V1

with degree surplus, otherwise (4.23) is violated. Then we can perform a
cancellation flip in V1 to remove the deficit at either a or b. Hence, we may
assume without loss of generality that a does not have a degree deficit.

– Case A: v2 has a neighbor v1 ∈ V1. If v1 has a degree surplus we
can perform a cancellation flip in V1 to remove it, which must exist by
(4.23). So assume v1 has no degree surplus. As node a has no deficit,
and is not connected to v2, whereas v1 is, there must be some neighbor
p of a which is not a neighbor of v1. This holds since v1 and b have the
same degree β1 in the sequence d. Then the path v2 − v1 − p− a− b
alternates between edges and non-edges of G, and with two hinge flips
we can obtain an edge-balanced realization in G′(γ, d).

b a
p

v1

v2

V1 V2

Figure 4.24: Sketch of first case with subcase A.

– Case B: v2 has no neighbors in V1. We know that there is at least
one cut edge {q, r}, with q ∈ V2 and r ∈ V1, in the realization G, since
c′12 = c12 + 1. If q has a degree surplus, we are in the situation of

4.4. Switch chain for 2-class JDM instances 159

Case A. Otherwise v2 has a neighbor u which is not a neighbor of q,
since q and v2 have the same degree β2 in the sequence d. We can
then perform the hinge flip that removes {v2, u} and adds {u, q}. If
q now has a degree surplus, we are in Case A. Otherwise, in case this
hinge flip cancelled out a degree deficit at q, there must be at least
one other node in V2 with a degree surplus, because of (4.23). We can
then perform the same step again, which will now result in a degree
surplus at q. This is true since the node q cannot have a deficit of
−2, since (4.23) would then imply that the the total degree surplus
of nodes in V2 is at least three, which violates the second property
defining G′(c, d). That is, we can always reduce to the situation in
Case A.

Summarizing, we can always find an edge-balanced realization G∗ using at
most four hinge flip operations in case c′12 = c12 + 1.

• Case 2: c′12 = c12 − 1. Using complementation, it can be seen that this
case is similar to Case 1. That is, we consider the tuple (c̄, d̄) in which all
nodes in V1 have degree |V | − β1, all nodes in V2 have degree |V | − β2, and
where all feasible graphical realizations have c̄12 = |V1||V2| − c12 cut edges.
The case c12 = c12 − 1 then corresponds to the case c̄′12 = c̄12 + 1.

• Case 3: c′12 = c12. If also c11 = c′11 we are done. Otherwise, suppose that
c11 = c′11 + 1. Then it must be that c22 = c′22− 1, as c′12 = c12, and it holds
that

∑
j∈V1

d′j =

∑
j∈V1

dj

+ 2 and
∑
j∈V2

d′j =

∑
j∈V2

dj

− 2. (4.24)

Then there is at least one edge {a, b} in the graphical realization with
a, b ∈ V1. Moreover, we may assume that a has a degree surplus. If
not, then there is at least one other node u with a degree surplus because
of (4.24). Performing a cancellation flip then gives the node a a degree
surplus (it could not be that a had a degree deficit, as this would imply, in
combination with (4.24), that the total degree surplus of nodes in V1 is at
least three).

Now, if there is a non-edge of the form {b, v2} for some v2 ∈ V2, we can
perform a hinge flip operation removing {a, b} and adding {b, v2} in order
to end up in Case 1. Otherwise, assume that b is adjacent to all v2 ∈ V2.
As b is also adjacent to a, and a has a degree surplus of at least one,33 it
follows that β1 ≥ |V2|. Now, by the assumption that c12 ≤ |V1||V2| − 1,
there is at least one non-edge {p, q} with p ∈ V1 and q ∈ V2. As p is not
adjacent to q, but has degree at least β1 ≥ |V2|, it must be that p is adjacent

33That is, b can have a degree surplus of at most one. A degree surplus of two at b would
only give a bound of β1 ≥ |V2| − 1.

160 Chapter 4. New results for the switch Markov chain

aw

r
p

q

V1 V2

Figure 4.25: Sketch of last situation in Case 3.

to some r ∈ V1. If r has a degree surplus, then we can perform a hinge flip
that removes {p, r} and adds {p, q} in order to end up in the situation of
Case 1. Otherwise, node a, which has a degree surplus, has some neighbor
w which is not a neighbor of r. This implies the path a − w − r − p − q
alternates between edges and non-edges of G. Performing two hinge flips
then brings us in the situation of Case 1.

We have shown that with at most five hinge flips we can always obtain some
G∗ ∈ G′(c, d) that is edge-balanced. This implies that∑

j∈V1

d∗j =
∑
j∈V1

dj and
∑
j∈V2

d∗j =
∑
j∈V2

dj . (4.25)

Now, if v ∈ V1 has a degree surplus, there must be some w ∈ V1 that has a degree
deficit, because of (4.25). We can then perform a cancellation flip to decrease the
sum of the total degree deficit and degree surplus. A similar statement is true if
v ∈ V2 has a degree surplus. By performing this step at most twice, we obtain a
realization H ∈ G(c, d). That is, with at most seven hinge flip operations in total
we can transform G into a graphical realization in G(c, d). This shows that D is
strongly stable for k = 7.

4.4.3 Rapid mixing of the switch chain

In this section we will use an embedding argument similar to that in the proof of
Theorem 4.22 to show that the restricted switch chain is rapidly mixing in case
both classes are regular, i.e., for instances that are essentially JDM instances
with two degree classes.

While the restricted switch chain is known to be irreducible for the instances
of the JDM model [5, 49], in general this is not true [68]. To the best of our
knowledge, there is no clear understanding for which pairs c and d it is irreducible
in general. Nevertheless, we present the following meta-result for the rapid mixing
of the switch chain, which in particular applies in case the degrees are component-
wise regular (Theorem 4.24).

4.5. Curveball chain 161

Theorem 4.34. Let D be a strongly stable family of tuples (γ, d) with respect
to some constant k, and suppose there exists a function p0 : N → N with the
property that, for any fixed x ∈ N: if (γ, d) ∈ D, and G,G′ ∈ G(γ, d) so that
|E(G)4E(G′)| ≤ x, the switch-distance satisfies distG(γ,d)(G,G

′) ≤ p0(x). Then
the switch chain is rapidly mixing for all tuples in the family D with respect to
the uniform stationary distribution over G(γ, d).

Proof. First note that by definition of the function p0 the switch chain is ir-
reducible. Moreover, it is not hard to see that the switch chain is aperiodic
and symmetric as well. This implies that it has a unique stationary distribu-
tion which is the uniform distribution over G(γ, d). Moreover, by assumption of
strong stability, we know that the hinge flip chain M(γ, d) is rapidly mixing. In
particular, from the proof of Theorem 4.25, we know there exists a flow f ′ that
routes 1/|G′(γ, d)|2 units of flow between any pair of states in G(γ, d) in the state
space graph of the chainM(γ, d), with the property that f ′(e) ≤ p(n)/|G′(γ, d)|,
and `(f ′) ≤ q(n), for some polynomials p(·), q(·) whose degrees may only depend
on k(γ, d).

One can then use exactly the same embedding argument as in the proof of
Theorem 4.22. The existence of the function p0, together with the notion of
strong stability as defined in Section 4.2.3, are sufficient for reproducing all the
arguments.

We end this section with the proof of Theorem 4.24.

Proof of Theorem 4.24. Strong stability was shown in the previous section in
Theorem 4.33. Moreover, from the proof of Lemma 7 in [5] it follows that for
any two graphs H,H ′ ∈ G(γ, d), H can be transformed into H ′ using at most
3
2 |E(H)4E(H ′)| switches of the restricted switch chain. That is, we may take
p0(x) = 3

2x. Then the statement follows from Theorem 4.34.

4.5 Curveball chain

The main result of this section is to show that the spectral gaps of the KTV
switch chain and the curveball chain are equivalent up to polynomial factors, see
Theorem 4.35 below. The transition matrices PKTV and PC are specified later
on in this section.

Theorem 4.35. Let r = (r1, . . . , rn) and c = (c1, . . . , cm) be given marginals
with n ≥ 3, F a set of forbidden entries, and assume that Ω(r, c,F) 6= ∅. Let
PC and PKTV be the transition matrices of respectively the curveball and KTV
switch Markov chains. Then

2

n(n− 1)
·(1−λKTV∗)−1 ≤ (1−λC∗)−1 ≤ min

{
1,

(2rmax + 1)2

2n(n− 1)

}
·(1−λKTV∗)−1,

where λKTV∗ (= λKTV1) is the second largest eigenvalue of PKTV , and λC∗ (= λC1)
that of PC .

162 Chapter 4. New results for the switch Markov chain

In particular, Theorem 4.35 implies that the curveball chain is rapidly mixing
whenever the switch chain is, and vice versa.

Proof overview. We first present a general comparison framework in Section
4.5.1, that compares a Markov chain with a locally refined version. We then prove
Theorem 4.35 in Section 4.5.2 as the first application of this framework. We also
provide a second application in Section 4.5.3, in the form of a comparison between
the curveball chain and the global curveball chain where multiple binomial trades
are performed in parallel [25].

4.5.1 Comparison framework

In this section we describe the comparison framework that will be used to compare
the KTV switch and curveball Markov chains (Section 4.5.2), and to compare the
curveball and the global curveball chain (Section 4.5.3). In general, we consider
an ergodic (irreducible) Markov chain M = (Ω, P) with stationary distribution
π, being strictly positive for all x ∈ Ω, that can be decomposed as34

P =
∑
a∈L

ρ(a)
∑
R∈Ra

PR (4.26)

which is given by a

1. finite index set L, and probability distribution ρ over L,

2. partition Ra = ∪R`,a of Ω for a ∈ L,

and where the restriction of a matrix PR to the rows and columns of R = R`,a
defines the transition matrix of an ergodic, time-reversible Markov chain on R
(and is zero elsewhere), with stationary distribution π̃R(x) = π(x)/π(R) for
x ∈ R. We use 1 = λR0 ≥ λR1 ≥ · · · ≥ λR|R|−1 to denote its eigenvalues. Note that
these are also eigenvalues of PR and that all other eigenvalues of PR are zeros
(as all rows and columns not corresponding to elements in R only contain zeros).
The chainM proceeds by drawing an index a from the set L, and then performs
a transition in the Markov chain on the set R that the current state is in.

The heat-bath variant Mheat of the chainM is given by the transition matrix

Pheat =
∑
a∈L

ρ(a)
∑
R∈Ra

1 · σR (4.27)

where σR is the row-vector given by σR(x) = π̃R(x) if x ∈ R and zero otherwise,
and 1 the all-ones column vector. Intuitively, the chain Mheat proceeds by
drawing an index a from L, and then drawing a state x ∈ R with probability
π̃R(x). It can be shown that Mheat is an ergodic Markov chain whenever M is

34This description is almost the same as that of a heat-bath chain [61], and is introduced to
illustrate the conceptual idea.

4.5. Curveball chain 163

ergodic, as the state space graph of M is a subgraph of the state space graph of
Mheat. It is reversible by construction [61]. The eigenvalues of Pheat are always
non-negative as was shown in [61].

Theorem 4.36. Let M = (Ω, P) be a Markov chain as in (4.26) with the prop-
erty that λR0 , . . . , λ

R
|R|−1 ≥ 0 for all a ∈ L and R ∈ Ra. Let Mheat = (Ω, Pheat)

be its heat-bath variant as in (4.27) and let α and β be constants with αβ > 0. If

α− β(1− λRi) ≥ 0 (4.28)

for all a ∈ L and R ∈ Ra and i ∈ {1, . . . , |R| − 1}, then P only has non-negative
eigenvalues and

1

α

1

1− λheat∗
≤ 1

β

1

1− λ∗
, (4.29)

where λ∗ (resp. λheat∗) is the second largest eigenvalue of P (resp. Pheat). For
α = β = 1, we find (1− λheat∗)−1 ≤ (1− λ∗)−1.

The intuition behind Theorem 4.36 is that in order to compare the relaxation
times of a Markov chain and its heat-bath variant, it suffices to compare them
locally on the sets R. Note that α and β can both be negative, so that this
statement can be used both to upper bound and lower bound the relaxation time
of the heat-bath variant in terms of the original relaxation time.

We will use Propositions 4.37 and 4.38 in the proof of Theorem 4.36. Our
proof makes use of positive semidefinite matrices; a symmetric real-valued matrix
A is positive semidefinite if all its eigenvalues are non-negative, this is denoted
by A � 0.

Proposition 4.37 ([177]). Let X,Y be symmetric `× ` matrices. If X −Y � 0,
then λi(X) ≥ λi(Y) for i = 1, . . . , `, where λi(C) is the i-th largest eigenvalue of
C = X,Y .

Proposition 4.38. Let X be the k× k transition matrix of an ergodic reversible
Markov chain with stationary distribution π, and eigenvalues 1 = λ0 > λ1 ≥
· · · ≥ λk−1. Let X∗ = limt→∞Xt be the matrix containing the row vector π on
every row. Then the eigenvalues of α(I −X∗)− β(I −X) are

{0} ∪ {α− β(1− λi)
∣∣ i = 1, . . . , k − 1}.

for given constants α and β.

Proof. Since X is the transition matrix of a reversible Markov chain, it holds

that the matrix V XV −1 is symmetric35, where V = diag(π
1/2
1 , π

1/2
2 , . . . , π

1/2
k) =

35This is the same argument that is used to show that a reversible Markov chain only has
real eigenvalues.

164 Chapter 4. New results for the switch Markov chain

diag(
√
π). Using the fact that similar36 matrices have the same set of eigenvalues

we determine the eigenvalues of α(I −X∗)− β(I −X) by finding those of

V (α(I −X∗)− β(I −X))V −1 = α(I −
√
π
T√

π)− β(I − V XV −1).

Let 1 = (1, 1, 1, . . . , 1)T denote the all-ones vector. We find

V XV −1
√
π
T

= V X1 = V 1 =
√
π
T
,

so that
√
π
T

is an eigenvector of V XV −1 with eigenvalue 1. It then follows that√
π
T

is an eigenvector of α(I −
√
π
T√

π) − β(I − V XV −1) with eigenvalue 0.

Let
√
π
T

= w0, w1, . . . , wk−1 be a basis of orthogonal eigenvectors for V XV −1

corresponding to eigenvalues 1, λ1, . . . , λk−1 (note that X and V XV −1 have the
same eigenvalues). It then follows that

[α(I −
√
π
T√

π)− β(I − V XV −1)]wi = (α− β(1− λi))wi

because of orthogonality. This completes the proof.

Proof of Theorem 4.36. We first show that all eigenvalues of P are non-negative.
Let D be the |Ω| × |Ω| diagonal matrix with (D)xx =

√
π(x). Note that the

matrices D−1PRD are positive semidefinite: they are symmetric because PR
defines a reversible Markov chain on R. The eigenvalues of D−1PRD are equal to
those of PR, which are all non-negative by assumption. Any non-negative linear
combination of positive semidefinite matrices is again positive semidefinite, hence
D−1PD � 0. Thus, P has non-negative eigenvalues. A similar argument holds
for Pheat and was shown in [61]. In particular, this implies that λ∗ = λ1 and
λheat∗ = λheat1 .

Let
YR := D−1[α(IR − 1 · σR)− β(IR − PR)]D

where IR is defined by IR(x, y) = 1 if x = y ∈ R and IR(x, y) = 0 otherwise. The
matrix YR is symmetric since the matrices 1 ·σR and PR define reversible Markov
chains on R. Furthermore its eigenvalues are {0}∪{α−β(1−λi)

∣∣ i = 1, . . . , k−1}
by Proposition 4.38 and the fact that similar matrices have the same set of
eigenvalues. These eigenvalues are non-negative by assumption, hence YR is
positive semidefinite. It then follows that the matrix

D−1[α(I−Pheat)−β(I−P)]D =
∑
a∈L

ρ(a)
∑
R∈Ra

D−1[α(IR−1·σR)−β(IR−PR)]D

is also positive semidefinite. Using Proposition 4.37 and again the fact that
similar matrices have the same set of eigenvalues, it follows that

α(1− λheati) ≥ β(1− λi)

which finishes the proof.
36Two square matrices A and B are similar if there exists an invertible matrix T such that

A = T−1BT .

4.5. Curveball chain 165

4.5.2 Comparing the switch and curveball chain

In order to prove Theorem 4.35, we give a novel decomposition of the state
space of the KTV switch chain. We then show that the curveball chain is its
heat-bath variant. In fact, we introduce a general γ-switch chain, as there are
multiple switch-based chains in the literature, and show that the curveball chain
is the heat-bath variant of this general switch chain. The KTV switch chain
corresponds to a specific choice of γ.37

Definition 4.39 (γ-switch chain). Let γ be such that

1− uij(A)`ij(A) · γ > 0 (4.30)

for all A ∈ Ω = Ω(r, c,F) and 1 ≤ i < j ≤ m. The transition matrix of the
γ-switch chain on state space Ω is given by

Pγ(A,B) =


(
m
2

)−1 · γ if A 6= B are
switch adjacent,(

m
2

)−1∑
1≤i<j≤m (1− uij(A)`ij(A) · γ) if A = B,

0 otherwise.

Note that the transition probability for switch-adjacent matrices is the same
everywhere in the state space, and does not depend on the matrices A and B. In
particular, the transition matrix Pγ is symmetric and hence the chain is reversible
with respect to the uniform distribution. The factor 2/(m(m − 1)) is included
for notational convenience. The γ-switch chain can roughly be interpreted as
follows. We first choose two distinct rows i and j uniformly at random, and then
transition to a different matrix switch-adjacent for rows i and j, of which there
are uij`ij possibilities and where every matrix has probability γ of being chosen;
with probability 1 − uij`ijγ we do nothing. Taking γ = 2/(n(n − 1)) we obtain
the KTV switch chain [113].

We continue with the description of the transition probabilities of the curve-
ball Markov chain MC = (Ω, PC), where Ω = Ω(r, c,F). We have

PC(A,B) =


(
m
2

)−1 ·
(
uij+`ij
uij

)−1
if A 6= B are trade adjacent,(

m
2

)−1∑
1≤i<j≤m

(
uij+`ij
uij

)−1
if A = B,

0 otherwise.

State space decomposition. We next explain how the switch and curveball chain
fit in the comparison framework by giving a suitable state space decomposition
of the γ-switch chain. The index set L = {(i, j) : 1 ≤ i < j ≤ m} is the set
of all pairs of distinct rows, and ρ is the uniform distribution over L, that is,

ρ(i, j) =
(
m
2

)−1
for all (i, j) ∈ L. The partitions R(i,j) for (i, j) ∈ L are based on

the notion of a binomial neighborhood, as defined in [174].

37In [26] we compare the curveball chain with another switch-based chain for a different value
of γ.

166 Chapter 4. New results for the switch Markov chain

Definition 4.40 (Binomial neighborhood). For a fixed binary matrix A and
row-pair (i, j), the (i, j)-binomial neighborhood Nij(A) of A is the set of matrices
that can be reached by only applying switches on rows i and j. That is, Nij(A)
contains all matrices that are trade adjacent to A for rows i and j. Note that
for B ∈ Nij(A) we have Uij(A) ∪ Lij(A) = Uij(B) ∪ Lij(B) and furthermore
uij(A) = uij(B) and `ij(A) = `ij(B).

Next we will discuss the structure and properties of these binomial neighbor-
hoods. This discussion will culminate into Theorem 4.43 describing the switch
and curveball chains as being of the forms (4.26) and (4.27). Note that we
have A ∈ Nij(A); if B ∈ Nij(A), then A ∈ Nij(B) [174]; and, if A ∈ Nij(B),
B ∈ Nij(C), then A ∈ Nij(C). That is, the relation ∼ij defined by a ∼ij b if
and only if a ∈ Nij(b), is an equivalence relation on Ω. The equivalence classes
of ∼ij define the sets R(i,j).

Furthermore, two matrices A,B ∈ Ω can be part of at most one common
binomial neighborhood. This follows directly from the observation that if B ∈
Nij(A) \ {A}, then A and B differ on precisely rows i and j, so switches using
any other pair of rows {k, `} 6= {i, j} can never transform A into B, see [174].
Finally, since uij(A) = uij(B) and `ij(A) = `ij(B) when A and B are part of the
same binomial neighborhood, these numbers are only neighborhood-dependent,
and not element-dependent within a fixed neighborhood. Observe that

|Nij | =
(
uij + `ij
uij

)
.

A crucial observation now is that the undirected state space graph H of the γ-
switch chain induced on a binomial neighborhood Nij is isomorphic to a Johnson
graph J(uij + `ij , uij) whenever uij , `ij ≥ 1 (see Section 4.2.5 for notation and
definition).38 To see this, note that every element in the binomial neighborhood
Nij(A) can be represented by the set of indices Uij(A). The set {1, . . . , `ij +uij}
here is then the set of indices of Uij(A) ∪ Lij(A). Indeed, matrices A 6= B are
switch-adjacent for rows i and j if Uij(A) ∩ Uij(B) = uij − 1.

Example 4.41. Consider the binary matrix

A =

0 1 1 0 1 0 1
1 0 0 1 1 0 1
0 1 0 0 0 1 1


and the 2× 7-submatrix formed by rows 1 and 2, which is

A12 =

(
0 1 1 0 1 0 1
1 0 0 1 1 0 1

)
.

For sake of simplicity, we (uniquely) describe every element of the (1, 2)-binomial
neighborhoodN12(A) by the first four columns (precisely those with column sums

38If either uij = 0 or `ij = 0 it consists of a single binary matrix.

4.5. Curveball chain 167

equal to one in the submatrix). For the switch chain, the induced subgraph of
the undirected state space graph H on the (1, 2)-binomial neighborhood of A,
the Johnson graph J(4, 2) is given in Figure 4.26.

(
1 0 0 1
0 1 1 0

) (
1 0 1 0
0 1 0 1

)
(

0 1 1 0
1 0 0 1

) (
1 1 0 0
0 0 1 1

)
(

0 1 0 1
1 0 1 0

) (
0 0 1 1
1 1 0 0

)

{1, 4} {1, 3}

{2, 3} {1, 2}

{2, 4} {3, 4}

Figure 4.26: The induced subgraph H for the switch chain on the (1, 2)-binomial
neighborhood of A. On the left we have indexed the nodes by the submatrices
of the first four columns, and on the right by label sets, indicating the positions
of the 1’s on the top row (i.e., row 1).

Remark 4.42. A fixed binomial neighborhood is reminiscent of the Bernoulli-
Laplace Diffusion model, see, e.g., [57, 58] for an analysis of this model. In this
model there are two bins with respectively k and n−k balls, and in every transi-
tion two randomly chosen balls, one from each bin, are interchanged between the
bins. Indeed, the state space graph is then a Johnson graph [58]. The transition
probabilities are different, due to the non-zero holding probabilities in the switch
algorithm, but the eigenvalues of this Markov chain are related to the eigenvalues
of the switch Markov chain on a fixed binomial neighborhood, see also [57, 58].

Informally, the Markov chain resulting from always deterministically choosing
rows i and j in the switch algorithm, is the disjoint union of smaller Markov chains
each with a state space graph isomorphic to some Johnson graph. For a binomial
neighborhood N = Nij(A) for given i < j and A ∈ Ω, the undirected graph
HN = (Ω, EN) is the graph where EN forms the edge-set of the Johnson graph
J(uij + `ij , uij) on N ⊆ Ω, and where all binary matrices B ∈ Ω \N are isolated
nodes. We use M(HN) to denote its adjacency matrix. The discussion above
leads to the following theorem, where we define IS as the identity matrix on S,
and we define JS as the all-ones matrix on S, that is JS(x, y) = 1 if x, y ∈ S and
zero elsewhere.

Theorem 4.43. The transition matrix Pγ of the γ-switch chain is of the form
(4.26) namely

Pγ =
∑

1≤i<j≤m

(
m

2

)−1 ∑
N∈R(i,j)

((1− uij`ij · γ) · IN + γ ·M(HN)) . (4.31)

168 Chapter 4. New results for the switch Markov chain

The heat-bath variant of the γ-switch chain is given by the curveball chain, and
can be written as

PC =
∑

1≤i<j≤m

(
m

2

)−1 ∑
N∈R(i,j)

(
uij + `ij
uij

)−1

JN . (4.32)

Proof. The decomposition in (4.31) follows from the discussion above, and (4.30)
guarantees that the matrix (1 − uij`ij · γ) · IN + γ ·M(HN) indeed defines the
transition matrix of a Markov chain for every N . Moreover, remember that
the γ-switch chain has uniform stationary distribution π over Ω. Indeed, for a
binomial neighborhood N = Nij(A) for given i < j and A ∈ Ω, the vector σN as
used in (4.27) is then given by

σN (x) =
π(x)

π(N)
=

1

|Ω|
· |Ω|
|N |

=
1

|N |
=

(
uij + `ij
uij

)−1

if x ∈ N , and zero otherwise. This implies that 1 · σN =
(
uij+`ij
uij

)−1
JN as

desired.

As a by-product of this decomposition, we can show that the transition matrix
of the KTV switch chain [113] only has non-negative eigenvalues when n ≥ 3.
This is of independent interest as it shows that the KTV switch chain does not
have to be made lazy in order to guarantee that all its eigenvalues are non-
negative.3940

Theorem 4.44. The transition matrix of the KTV switch Markov chain only
has non-negative eigenvalues when n ≥ 3.

Proof. The KTV switch chain is exactly the γ-switch chain with γ = 2/(n(n−1)).
As the product uij(A)`ij(A) can be at most n2/4 for any A ∈ Ω and 1 ≤ i <
j ≤ m, we see that γ satisfies (4.30) when n ≥ 3. To show that PKTV has all
non-negative eigenvalues we show that the property assumed in Theorem 4.36 is
satisfied by showing that the matrices

YN =

[
1− uij`ij ·

(
n

2

)−1
]
IN +

(
n

2

)−1

M(HN)

have all non-negative eigenvalues. Theorem 4.36 then implies that PKTV also
only has non-negative eigenvalues. For any eigenvalue λ of the submatrix YN , we

have λ = 1 + (µ − uij`ij)
(
n
2

)−1
where µ = µ(λ) is an eigenvalue of the Johnson

39We refer the reader to a note of Greenhill [94] for more examples where ‘laziness’ can be
avoided.

40Remember that a Markov chain is made lazy by replacing the transition matrix P by
(P + I)/2. This is done in order to avoid technical issues in Sinclair’s multi-commodity flow
method [162] regarding negative eigenvalues.

4.5. Curveball chain 169

graph J(uij + `ij , uij) on N . In particular, using Proposition 4.15 with p = uij +
`ij and q = uij , we get (µ−uij`ij) ≥ − 1

4 (uij + `ij + 1)2 ≥ − 1
4 (n+ 1)2 using that

0 ≤ uij+`ij ≤ n. Therefore, when n ≥ 5, we have λ ≥ 1−(n+1)2/(2n(n−1)) ≥ 0.
The cases n = 3, 4 can be checked with some elementary arguments. This is left
to the reader.

We conclude this section with the proof of Theorem 4.35.

Proof of Theorem 4.35. Let N = Nij(A) for given i < j and A ∈ Ω. Note that
the upper bound (1 − λKTV∗)−1 follows from Theorem 4.36 with α = β = 1 for
which (4.29) holds as was shown in Theorem 4.44. We apply Theorem 4.36 for
two pairs (α, β) to obtain the remaining upper and lower bound.

Case 1: α = 1 and β = (2n(n− 1))/((2rmax + 1)2). We show that condition
(4.28) is satisfied. That is, we show that

λ = 1− β

(
1−

(
1 + (µ− uij · `ij)

(
n

2

)−1
))

= 1 + β(µ− uij · `ij)
(
n

2

)−1

≥ 0

for any µ = µ(λ) that is an eigenvalue of the Johnson graph J(uij + `ij , uij).
Again, using Proposition 4.15 in order to lower bound the quantity (µ−uij · `ij),
we find

1 + β · (µ− uij · `ij)
(
n

2

)−1

≥ 1− β

4
(uij + `ij + 1)2

(
n

2

)−1

≥ 1− β

4
(2rmax + 1)2

(
n

2

)−1

≥ 0,

using the fact that 0 ≤ uij + `ij ≤ 2rmax and the choice of β. Hence we find the
second part of the upper bound.

Case 2: α = −1 and β = −(n(n− 1))/2. We have to show that

λ =

(
n

2

)(
1−

(
1 + (µ− uij · `ij)

(
n

2

)−1
))
− 1 = uij · `ij − µ− 1 ≥ 0

for all µ = µ(k) = (uij − k)(`ij − k) − k where k = 1, . . . , uij . Note that the
eigenvalue uij · `ij for the case k = 0 yields the largest eigenvalue 1 = λN0 of YN ,
and does not have to be considered here. The maximum over k = 1, . . . , u is then
attained for k = 1, and we have uij ·`ij−µ−1 ≥ uij ·`ij−((uij−1)(`ij−1)−1)−1 =
uij + `ij − 1 ≥ 0, since uij , `ij ≥ 1. This gives us the lower bound and finishes
the proof.

170 Chapter 4. New results for the switch Markov chain

4.5.3 Parallelism in the curveball chain

In this section we discuss an additional application of the comparison framework
in Section 4.5.1. As a binary matrix is only adjusted on two rows at the time in
the curveball algorithm, one might perform multiple binomial trades in parallel
on distinct pairs of rows [25]. To be precise, in every step of the so-called k-
curveball algorithm, we choose a set of k ≤ bm/2c disjoint pairs of rows uniformly
at random and perform a binomial trade on every pair (see Section 4.5). For
k = bm/2c this corresponds to the global curveball algorithm described in [25].
We show that the k-curveball chain, resulting from the k-curveball algorithm,
is a heat-bath variant of the curveball chain. We use the notation as given in
Section 4.5.1

The index set L = L(k) is the collection of all sets containing k pairwise
disjoint sets of two rows, i.e.,

L(k) =

{
{(1c, 1d), (2c, 2d), . . . , (kc, kd)} : 1c, 1d, . . . , kc, kd ∈ [m],∣∣{1c, 1d, 2c, 2d, . . . , kc, kd}∣∣ = 2k

}
,

(4.33)

and ρ is the uniform distribution over L. For a fixed collection κ ∈ L(k), we
define the κ-neighborhood Nκ(A) of a binary matrix A ∈ Ω as the set of binary
matrices B ∈ Ω that can be obtained from A by binomial trade-operations only
involving the row-pairs in κ. Formally speaking, we have B ∈ Nκ(A) if and only
if there exist binary matrices A` for ` = 0, . . . , k − 1, so that

A`+1 ∈ N(`+1)c,(`+1)d(A`)

where A = A0 and B = Ak. Note that the matrices A` might not all be pairwise
distinct, as A and B could already coincide on certain pairs of rows in κ. Also note
that uicid(A) = uicid(B) and licid(A) = licid(B) if B ∈ Nκ(A) for i = 1, . . . , k. It
is not hard to see that such a neighborhood is isomorphic to a Cartesian product
W1 ×W2 × · · · ×Wk of finite sets41 W1, . . . ,Wk with

|Wi| =
(
uicid + licid

uicid

)
.

Moreover, the relation ∼κ defined by a ∼κ b if and only if b ∈ Nκ(a) defines an
equivalence relation, and its equivalence classes give the set Rκ. We now consider
the following artificial formulation of the original curveball chain: we first select
k pairs of distinct rows uniformly at random, and then we choose one of those
pairs uniformly at random and apply a binomial trade on that pair. It should be
clear that this generates the same Markov chain as when we directly select a pair
of distinct rows uniformly at random. For Nκ ∈ Rκ the matrix PNκ restricted
to the rows and columns in Nκ is then the transition matrix of a Markov chain

41That is, the elements of Wi describe a matrix on row-pair (ic, id).

4.5. Curveball chain 171

over W1 × · · · ×Wk, where in every step we choose an index i ∈ [k] uniformly at
random and make a transition in Wi based on the (uniform) transition matrix

Qi =

(
uicid + licid

uicid

)−1

J

where J is the all-ones matrix of appropriate size. More formally, the matrix
PNκ restricted to the columns and rows in Nκ is given by∑k

i=1

[
⊗i−1
j=1Ij

]
⊗Qi ⊗

[
⊗kj=i+1Ij

]
k

, (4.34)

forming a transition matrix on Nκ, and is zero elsewhere. Here Ij is the identity
matrix with the same size as Qj and ⊗ the usual tensor product. The eigenvalues
of the matrix in (4.34) are given by

λNκ =

{
1

k

k∑
i=1

λji,i : 0 ≤ ji ≤ |Wi| − 1

}
(4.35)

where 1 = λ0,i ≥ λ1,i ≥ · · · ≥ λ|Wi|−1,i are the eigenvalues42 ofQi for i = 1, . . . , k.
It then follows that

PC =
∑

κ∈L(k)

1

|L(k)|
∑
Nκ∈Rκ

PNκ

which is of the form (4.26). For k = 1, we get back the description of the previous
section. Now, its heat-bath variant is precisely the k-curveball Markov chain

Pk,C =
∑

κ∈L(k)

1

|L(k)|
∑
Nκ∈Rκ

1

|Nκ|
JNκ ,

where

|Nκ| =
k∏
i=1

(
uicid + licid

uicid

)−1

as, roughly speaking, for a fixed neighborhood Nκ, the k-curveball chain is pre-
cisely the uniform sampler over such a neighborhood.

Theorem 4.45. We have (1− λC∗)−1/k ≤ (1− λk,C∗)−1 ≤ (1− λC∗)−1 where

λk,C∗ is the second-largest eigenvalue of the k-curveball chain, and λC∗ the second-
largest eigenvalue of the original (1-)curveball chain.

Proof. The upper bound follows from Theorem 4.36, with α = β = 1, as the
eigenvalues of all the Qi are non-negative, and therefore (4.35) implies that the

42See, e.g., [73] for a similar argument regarding the transition matrix, and eigenvalues, of
a Markov chain of this form. These statements follow directly from elementary arguments
involving tensor products.

172 Chapter 4. New results for the switch Markov chain

eigenvalues of the matrix in (4.34) are also non-negative. For the lower bound, we
take α = −1 and β = −k. That is, we have to show that −1 + k(1−µ) ≥ 0 with
µ ∈ λNκ \{1} as in (4.35). It is not hard to see that the second-largest eigenvalue
in λNκ is (k − 1)/k, as the eigenvalues of every fixed Qi are 1 = λ0,i > λ1,i =
· · · = λ|Wi|−1 = 0. This implies that −1 + k(1− µ) ≥ −1 + k(1− (k − 1)/k) = 0
for all µ ∈ λNκ \ {1}.

In general, the upper bound is tight for certain (degenerate) cases, that is,
parallelism in the curveball chain does not necessarily guarantee an improvement
in its relaxation time. E.g., take column marginals ci = 1 for i = 1, . . . , n, and
row-marginals r1 = r2 = n/2 and r3 = r4 = 0, and consider k = 2.

4.6 Conclusion

We have provided mixing time analyses for three different Markov chains: the
switch chain for strongly stable degree sequences; the restricted switch chain for
joint degree matrix instances with two degree classes; and, finally, the curveball
chain for bipartite degree sequences. The first two results rely on the multi-
commodity flow method of Sinclair, whereas the latter relies on a Markov chain
comparison argument.

We believe that our ideas introduced in Section 4.3 can be also used to simplify
the switch chain analyses in settings where there is some given forbidden edge
set,43 the elements of which cannot be used in any (bipartite) graphical realization
[93, 96, 70, 72]. This is an interesting direction for future work, as it captures
the case of sampling directed graphs. Further, it is not clear whether there exist
degree sequence families that are P-stable but not strongly stable. For instance, in
a recent work by Gao and Wormald [90], who provide a very efficient non-MCMC
approximate sampler for certain power-law degree sequences, it is argued that
these power-law degree sequences are P-stable. Is it the case these sequences are
strongly stable as well? A central open question is how to go beyond (strong)
stability.

The problem of sampling graphical realizations of a given joint degree dis-
tribution with three or more degree classes is also open, either using the switch
chain or any other method for that matter. Although our proof breaks down
for more than two classes, we hope that our high level approach can facilitate
progress on the problem.

For the curveball chain we believe similar ideas as in this work can be used to
prove that the curveball chain is rapidly mixing for the sampling of undirected
graphs with given degree sequences [25], whenever a switch-based chain is rapidly
mixing for those degree sequences. It should be noted that the main conclusion
of our results in Section 4.5 is not that the curveball approach is necessarily
better than the switch-based approaches. In particular, the improvement in
relaxation time in Theorem 4.35, when the maximum row sum is small compared

43This is similar to the setting we consider in Section 4.5.

4.6. Conclusion 173

to n, is mostly caused by the fact that the KTV switch chain is a bad choice of
implementation here (as the holding probability of a state in the Markov chain
is relatively large in this case). There exist other implementations of the switch
chain that are more efficient than the KTV switch chain for certain marginals.
For example, an implementation similar to the switch chain as in Section 4.2.
Although we believe the curveball chain will outperform any switch-based chain
for certain marginals, it not obvious for which marginals this is true. For example,
it is not clear to us if this is true in the case of sampling regular directed graphs
with in- and out-degree some small constant. However, for graphs with large
regular degrees we expect the curveball chain to be better.

Moreover, one step of the curveball algorithm is computationally more expen-
sive than one step of a switch-based algorithm, so although the relaxation time
of the curveball chain might be better than a switch-based chain, this does not
automatically imply that the overall running time of the curveball algorithm is
better than that of a switch-based algorithm. Nevertheless, we believe that our
results are a first theoretical step for speeding up switch-based Markov chains for
sampling (bipartite) graphs with a given degree sequence.

Summary

In this thesis we focus on two problems at the intersection of mathematics and
theoretical computer science: the inefficiency and computation of Nash equilibria
in congestion games and the uniform generation of graphs with a given degree
sequence using simple Markov Chain Monte Carlo methods. In Chapter 1 we
provide some background and context for both these problems.

In Chapters 2 and 3 we study congestion game models, that can be used to
analyze problems such as traffic congestion and internet routing from a theoretical
point of view. We are interested in so-called Nash equilibria of these games. A
Nash equilibrium is in some sense a ‘stable’ outcome of a game, meaning that
no player of the game has an incentive to act differently. The main difference
between the models studied in these chapters is the influence that individual
players have on the outcome of a game. In Chapter 2 we study non-atomic
congestion games, that can be used to model large systems in which individual
players do not significantly influence the outcome of a game. On the other hand,
in Chapter 3, we study atomic congestion games, where individual players can
have a significant impact on the outcome of a game. We next give a more detailed
overview of the problems studied in Chapters 2 and 3.

In Chapter 2 we study the quality deterioration of Nash equilibria as a result
of deviations (or perturbations) in the latency functions of non-atomic network
routing games. This framework can, e.g., be used to study risk-averse behavior of
players in such games, as has been done in the literature somewhat recently. For
example, in the case of traffic congestion, it might be uncertain how long it will
take to travel through certain parts of the road network, and, as a result, these are
avoided by players that prefer to know exactly how long their journey will take
(at the cost of an increased travel time). The main contributions of Chapter 2
are tight inefficiency bounds quantifying this type of quality deterioration. The
quality of a Nash equilibrium here is measured as the total latency (or travel
time) of all players in the network.

In Chapter 3 we study atomic congestion games. Here we provide various uni-
fications and extensions regarding the computation and inefficiency of pure Nash
equilibria. In particular, we do this by taking a polytopal point of view, following
recent approaches in the literature. We identify polytopal properties, satisfied by
many games with a combinatorial flavor, that are sufficient to compute a pure

175

176 Chapter 4. New results for the switch Markov chain

Nash equilibrium in polynomial time. Moreover, we give quantitative bounds on
the quality of these equilibria that outperform bounds known for arbitrary pure
Nash equilibria. We also unify various extensions and variations on the classical
atomic congestion game model due to Rosenthal (1973).

In Chapter 4 we present various new results related to the switch algorithm
for the uniform generation of graphs with a given degree sequence. The problem
of uniformly generating a graph with a given degree sequence entails the design
of an algorithm that outputs every graph with the desired degree sequence with
(almost) equal probability. The switch algorithm is a very simple Markov Chain
Monte Carlo approach that proceeds by repeatedly selecting two edges of the cur-
rent graph and switching them if possible, while preserving the degree sequence.
The main question of interest here is how many switches are needed before the
output is close to being a uniform random sample from the set of all graphs with
the given degree sequence. We make some progress on this problem by identify-
ing large ranges of degree sequences for which a polynomial number of switches
is sufficient, thereby unifying various results in the literature. We also study two
Markov chains related to the switch algorithm.

Bibliography

[1] H. Ackermann, H. Röglin, and B. Vöcking. On the impact of combinatorial
structure on congestion games. Journal of the ACM, 55(6):25:1–25:22, 2008.

[2] H. Ackermann, H. Röglin, and B. Vöcking. Pure Nash equilibria in player-
specific and weighted congestion games. Theoretical Computer Science,
410(17):1552–1563, 2009.

[3] E. Aigner-Horev, J. Carmesin, and J.-O. Frohlich. Infinite matroid union.
CoRR, abs/1111.0602, 2012.

[4] S. Aland, D. Dumrauf, M. Gairing, B. Monien, and F. Schoppmann. Ex-
act price of anarchy for polynomial congestion games. SIAM Journal of
Computing, 40(5):1211–1233, 2011.

[5] G. Amanatidis, B. Green, and M. Mihail. Graphic realizations of joint-
degree matrices. CoRR, abs/1701.03856, 2008.

[6] G. Amanatidis and P. Kleer. Rapid mixing of the switch Markov chain for
strongly stable degree sequences and 2-class joint degree matrices. CoRR,
abs/1803.01338, 2018.

[7] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and
T. Roughgarden. The price of stability for network design with fair cost
allocation. SIAM Journal on Computing, 38(4):1602–1623, 2008.

[8] B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable
flow. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, pages 57–66, 2005.

[9] A. Barvinok and J. Hartigan. The number of graphs and a random graph
with a given degree sequence. Random Structures & Algorithms, 42(3):301–
348, 2013.

[10] S. P. Baum and L. E. Trotter. Integer rounding and polyhedral decom-
position for totally unimodular systems. In Optimization and Operations
Research: Proceedings of a Workshop Held at the University of Bonn, Oc-
tober 2–8, 1977, pages 15–23, 1978.

177

178 BIBLIOGRAPHY

[11] M. Bayati, J. H. Kim, and A. Saberi. A sequential algorithm for generating
random graphs. Algorithmica, 58(4):860–910, 2010.

[12] M. Beckmann, B. McGuire, and C. Winsten. Studies in the economics of
transportation. Yale University Press, 1956.

[13] M. Bellare, O. Goldreich, and E. Petrank. Uniform generation of np-
witnesses using an np-oracle. Information and Computation, 163(2):510–
526, 2000.

[14] A. Berger and M. Müller-Hannemann. Uniform sampling of digraphs with
a fixed degree sequence. In Lecture Notes in Computer Science, volume
6410, pages 220–231, 2010.

[15] N. Bhatnagar, D. Randall, V. V. Vazirani, and E. Vigoda. Random bichro-
matic matchings. Algorithmica, 50(4):418–445, 2008.

[16] B. Bollobás. A probabilistic proof of an asymptotic formula for the number
of labelled regular graphs. European Journal of Combinatorics, 1(4):311–
316, 1980.

[17] V. Bonifaci, M. Salek, and G. Schäfer. On the efficiency of restricted tolls
in network routing games. In Lecture Notes in Computer Science, volume
6982, pages 302–313, 2011.

[18] D. Braess. Über ein paradoxon aus der verkehrsplanung. Un-
ternehmensforschung, 12:258–268, 1969.

[19] A. Brouwer and W. Haemers. Spectra of Graphs. Universitext. Springer
New York, 2011.

[20] I. Caragiannis, A. Fanelli, N. Gravin, and A. Skopalik. Computing approxi-
mate pure Nash equilibria in congestion games. ACM SIGecom Exchanges,
11(1):26–29, 2012.

[21] I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and
L. Moscardelli. Tight bounds for selfish and greedy load balancing. In
Proceedings of the 33rd International Colloquium on Automata, Languages
and Programming, pages 311–322, 2006.

[22] I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. Taxes for linear
atomic congestion games. ACM Transactions on Economics and Compu-
tation, 7(1):13:1–13:31, 2010.

[23] I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, M. Kyropoulou, and
E. Papaioannou. The impact of altruism on the efficiency of atomic con-
gestion games. In Lecture Notes in Computer Science, volume 6084, pages
172–188, 2010.

BIBLIOGRAPHY 179

[24] M. Carol. Network flow problems and congestion games: complexity and
approximation results. Ph.D. thesis, 2006.

[25] C. J. Carstens, A. Berger, and G. Strona. Curveball: a new generation
of sampling algorithms for graphs with fixed degree sequence. CoRR,
abs/1609.05137, 2016.

[26] C. J. Carstens and P. Kleer. Comparing the switch and curveball
Markov chains for sampling binary matrices with fixed marginals. CoRR,
abs/1709.07290, 2017.

[27] H. Chan and A. X. Jiang. Congestion games with polytopal strategy spaces.
In Proceedings of the 25th International Joint Conference on Artificial In-
telligence, pages 165–171, 2016.

[28] P.-A. Chen, B. de Keijzer, D. Kempe, and G. Schäfer. Altruism and its
impact on the price of anarchy. ACM Transactions on Economics and
Computation, 2(4):17:1–17:45, 2014.

[29] P.-A. Chen and D. Kempe. Altruism, selfishness, and spite in traffic routing.
In Proceedings of the 9th ACM conference on Electronic Commerce, pages
140–149, 2008.

[30] Y. Chen, P. Diaconis, S. P. Holmes, and J. S. Liu. Sequential monte carlo
methods for statistical analysis of tables. Journal of the American Statis-
tical Association, 100(469):109–120, 2005.

[31] S. Chien and A. Sinclair. Convergence to approximate Nash equilibria in
congestion games. In Proceedings of the 18th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 169–178, 2007.

[32] G. Christodoulou and M. Gairing. Price of stability in polynomial conges-
tion games. ACM Transactions on Economics and Computation, 4(2):10:1–
10:17, 2016.

[33] G. Christodoulou and E. Koutsoupias. On the price of anarchy and stability
of correlated equilibria of linear congestion games. In Proceedings of the
13th Annual European Conference on Algorithms, pages 59–70, 2005.

[34] G. Christodoulou and E. Koutsoupias. The price of anarchy of finite con-
gestion games. In Proceedings of 37th Annual ACM Symposium on Theory
of Computing, pages 67–73, 2005.

[35] G. Christodoulou, E. Koutsoupias, and P. G. Spirakis. On the performance
of approximate equilibria in congestion games. Algorithmica, 61(1):116–
140, 2011.

[36] G. Christodoulou, V. S. Mirrokni, and A. Sidiropoulos. Convergence and
approximation in potential games. Theoretical Computer Science, 438:13–
27, 2012.

180 BIBLIOGRAPHY

[37] R. Cole, Y. Dodis, and T. Roughgarden. Bottleneck links, variable demand,
and the tragedy of the commons. Networks, 60(3):194–203, 2012.

[38] R. Cole, T. Lianeas, and E. Nikolova. When does diversity of agent pref-
erences improve outcomes in selfish routing? In Proceedings of the 27th
International Joint Conference on Artificial Intelligence, pages 173–179,
2018.

[39] R. Colini-Baldeschi, R. Cominetti, P. Mertikopoulos, and M. Scarsini. The
asymptotic behavior of the price of anarchy. In Lecture Notes in Computer
Science, volume 10674, pages 133–145, 2017.

[40] R. Cominetti. Equilibrium routing under uncertainty. Mathematical Pro-
gramming, 151(1):117–151, 2015.

[41] C. Cooper, M. E. Dyer, and C. S. Greenhill. Sampling regular graphs and a
peer-to-peer network. Combinatorics, Probability & Computing, 16(4):557–
593, 2007.

[42] C. Cooper, M. E. Dyer, and C. S. Greenhill. Corrigendum: Sampling
regular graphs and a peer-to-peer network. CoRR, abs/1203.6111, 2012.

[43] C. Cooper, M. E. Dyer, C. S. Greenhill, and A. J. Handley. The flip Markov
chain for connected regular graphs. Discrete Applied Mathematics, 254:56–
79, 2018.

[44] J. Correa, J. de Jong, B. Keijzer, and M. Uetz. The curse of sequentiality in
routing games. In Lecture Notes in Computer Science, volume 9470, pages
258–271, 2015.

[45] J. R. Correa, A. S. Schulz, and N. E. Stier-Moses. Selfish routing in ca-
pacitated networks. Mathematics of Operations Research, 29(4):961–976,
2004.

[46] J. R. Correa, A. S. Schulz, and N. E. Stier-Moses. A geometric approach to
the price of anarchy in nonatomic congestion games. Games and Economic
Behavior, 64(2):457–469, 2008.

[47] M. Cryan, M. Dyer, L. A. Goldberg, M. Jerrum, and R. Martin. Rapidly
mixing markov chains for sampling contingency tables with a constant num-
ber of rows. SIAM Journal on Computing, 36(1):247–278, 2006.

[48] É. Czabarka. Partition adjacency matrices in network modeling. Technical
report on GRAPHS project FA9550-12-1-040, 2014.

[49] É. Czabarka, A. Dutle, P. L. Erdös, and I. Miklós. On realizations of a
joint degree matrix. Discrete Applied Mathematics, 181:283–288, 2015.

BIBLIOGRAPHY 181

[50] É. Czabarka, L. A. Szekely, Z. Toroczkai, and S. Walker. An algebraic
Monte-Carlo algorithm for the bipartite partition adjacency matrix real-
ization problem. CoRR, abs/1708.08242, 2017.

[51] G. B. Dantzig. Linear programming and extensions. Princeton University
Press, 1963.

[52] J. de Jong, W. Kern, B. Steenhuisen, and M. Uetz. The asymptotic price
of anarchy for k-uniform congestion games. In Lecture Notes in Computer
Science, volume 10138, pages 317–328, 2018.

[53] J. de Jong, M. Klimm, and M. Uetz. Efficiency of equilibria in uniform
matroid congestion games. In Lecture Notes in Computer Science, volume
9928, pages 105–116, 2016.

[54] A. Del Pia, M. Ferris, and C. Michini. Totally unimodular congestion
games. In Proceedings of the 28th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 577–588, 2017.

[55] P. Diaconis and L. Saloff-Coste. Comparison techniques for random walk
on finite groups. The Annals of Probability, 21(4):2131–2156, 1993.

[56] P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible Markov
chains. The Annals of Applied Probability, 3(3):696–730, 1993.

[57] P. Diaconis and M. Shahshahani. Time to reach stationarity in the
bernoulli-laplace diffusion model. SIAM Journal on Mathematical Anal-
ysis, 18(1):208–218, 1987.

[58] P. Donnelly, P. Lloyd, and A. Sudbury. Approach to stationarity of
the bernoulli-laplace diffusion model. Advances in Applied Probability,
26(3):715–727, 1994.

[59] M. Dyer, A. Frieze, and M. Jerrum. Approximately counting hamilton
paths and cycles in dense graphs. SIAM Journal on Computing, 27(5):1262–
1272, 1998.

[60] M. Dyer, L. A. Goldberg, M. Jerrum, and R. Martin. Markov chain com-
parison. Probability Surveys, 3:89–111, 2006.

[61] M. Dyer, C. S. Greenhill, and M. Ullrich. Structure and eigenvalues of
heat-bath Markov chains. Linear Algebra and its Applications, 454:57–71,
2014.

[62] M. Dyer, M. Jerrum, and H. Müller. On the switch Markov chain for perfect
matchings. Journal of the ACM, 64(2):12:1–12:33, 2017.

[63] J. Edmonds. Paths, trees, and flowers. Canadian journal of mathematics,
17(3):449–467, 1965.

182 BIBLIOGRAPHY

[64] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In
Lecture Notes in Computer Science, volume 2570, pages 11–26, 2003.

[65] J. Edmonds and R. Giles. A min-max relation for submodular functions
on graphs. Annals of Discrete Mathematics, 1:185–204, 1977.

[66] M. Englert, T. Franke, and L. Olbrich. Sensitivity of Wardrop equilibria.
In Lecture Notes in Computer Science, volume 4997, pages 158–169, 2008.

[67] P. L. Erdős, C. S. Greenhill, T. R. Mezei, I. Miklós, D. Soltész, and
L. Soukup. The mixing time of the swap (switch) markov chains: a unified
approach. CoRR, abs/1903.06600, 2019.

[68] P. L. Erdős, S. G. Hartke, L. van Iersel, and I. Miklós. Graph realizations
constrained by skeleton graphs. Electronic Journal of Combinatorics, 24(2),
2017.

[69] P. L. Erdős, Z. Király, and I. Miklós. On the swap-distances of different
realizations of a graphical degree sequence. Combinatorics, Probability &
Computing, 22(3):366–383, 2013.

[70] P. L. Erdős, S. Z. Kiss, I. Miklós, and L. Soukup. Approximate counting
of graphical realizations. PLOS ONE, 10(7):1–20, 2015.

[71] P. L. Erdős, T. R. Mezei, and I. Miklós. Efficiently sampling the realizations
of irregular, but linearly bounded bipartite and directed degree sequences.
CoRR, abs/1712.01709, 2017.

[72] P. L. Erdős, T. R. Mezei, I. Miklós, and D. Soltész. Efficiently sampling the
realizations of bounded, irregular degree sequences of bipartite and directed
graphs. PLOS ONE, 13(8):1–20, 08 2018.

[73] P. L. Erdős, I. Miklós, and Z. Toroczkai. A decomposition based proof for
fast mixing of a Markov chain over balanced realizations of a joint degree
matrix. SIAM Journal on Discrete Mathematics, 29(1):481–499, 2015.

[74] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to Nash
equilibrium in load balancing. ACM Transactions on Algorithms, 3(3):1–32,
2007.

[75] A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure
Nash equilibria. In Proceedings of the 36th Annual ACM Symposium on
Theory of Computing, pages 604–612, 2004.

[76] T. Feder, A. Guetz, M. Mihail, and A. Saberi. A local switch Markov
chain on given degree graphs with application in connectivity of peer-to-
peer networks. In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science, pages 69–76, 2006.

BIBLIOGRAPHY 183

[77] M. Feldman, N. Immorlica, B. Lucier, T. Roughgarden, and V. Syrgkanis.
The price of anarchy in large games. In Proceedings of the 48th Annual
ACM Symposium on Theory of Computing, pages 963–976, 2016.

[78] L. Fleischer. Linear tolls suffice: New bounds and algorithms for tolls
in single source networks. Theoretical Computer Science, 348(2):217–225,
2005.

[79] D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 2010.

[80] D. Fotakis. Congestion games with linearly independent paths: Conver-
gence time and price of anarchy. Theory of Computing Systems, 47(1):113–
136, 2010.

[81] D. Fotakis, D. Kalimeris, and T. Lianeas. Improving selfish routing for
risk-averse players. In Lecture Notes in Computer Science, volume 9470,
pages 328–342, 2015.

[82] A. Frank and É. Tardos. An application of simultaneous diophantine ap-
proximation in combinatorial optimization. Combinatorica, 7(1):49–65,
1987.

[83] H. Gabow. A matroid approach to finding edge connectivity and packing
arborescences. Journal of Computer and System Sciences, 50(2):259–273,
1995.

[84] M. Gairing, T. Lücking, M. Mavronicolas, B. Monien, and M. Rode. Nash
equilibria in discrete routing games with convex latency functions. Journal
of Computer and System Sciences, 74(7):1199–1225, 2008.

[85] D. Gale. A theorem on flows in networks. Pacific Journal of Mathematics,
7(2):1073–1082, 1957.

[86] T. Gallai and P. Erdos. Graphs with prescribed degree of vertices. Lapok,
11:264–274, 1960.

[87] P. Gao and C. S. Greenhill. Uniform generation of spanning regular sub-
graphs of a dense graph. CoRR, abs/1807.00964, 2018.

[88] P. Gao and N. Wormald. Enumeration of graphs with a heavy-tailed degree
sequence. Advances in Mathematics, 287:412–450, 2016.

[89] P. Gao and N. C. Wormald. Uniform generation of random regular graphs.
SIAM Journal of Computing, 46(4):1395–1427, 2017.

[90] P. Gao and N. C. Wormald. Uniform generation of random graphs with
power-law degree sequences. In Proceedings of the 29th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1741–1758, 2018.

184 BIBLIOGRAPHY

[91] A. L. Gibbs and F. E. Su. On choosing and bounding probability metrics.
International Statistical Review, 70(3):419–435, 2002.

[92] M. Gjoka, B. Tillman, and A. Markopoulou. Construction of simple graphs
with a target joint degree matrix and beyond. In Proceedings of IEEE
Conference on Computer Communications, pages 1553–1561, 2015.

[93] C. S. Greenhill. A polynomial bound on the mixing time of a Markov chain
for sampling regular directed graphs. Electronic Journal of Combinatorics,
18(1), 2011.

[94] C. S. Greenhill. Making Markov chains less lazy. CoRR, abs/1203.6668,
2013.

[95] C. S. Greenhill. The switch Markov chain for sampling irregular graphs. In
Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1564–1572, 2015.

[96] C. S. Greenhill and M. Sfragara. The switch Markov chain for sampling
irregular graphs and digraphs. Theoretical Computer Science, 719:1–20,
2018.

[97] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Com-
binatorial Optimization. Springer, 1988.

[98] S. Hakimi. On realizability of a set of integers as degrees of the vertices
of a linear graph. I. Journal of the Society for Industrial and Applied
Mathematics, 10(3):496–506, 1962.

[99] T. Harks, M. Hoefer, M. Klimm, and A. Skopalik. Computing pure Nash
and strong equilibria in bottleneck congestion games. Mathematical Pro-
gramming, 141(1):193–215, 2013.

[100] T. Harks, M. Klimm, and B. Peis. Sensitivity analysis for convex separable
optimization over integral polymatroids. SIAM Journal on Optimization,
28(3):2222–2245, 2018.

[101] A. Haurie and P. Marcotte. On the relationship between Nash—Cournot
and Wardrop equilibria. Networks, 15(3):295–308, 1985.

[102] V. Havel. A remark on the existence of finite graphs. Časopis pro pěstováńı
matematiky, 080(4):477–480, 1955.

[103] M. Hoefer, L. Olbrich, and A. Skopalik. Taxing subnetworks. In Lecture
Notes in Computer Science, volume 5385, pages 286–294, 2008.

[104] D. A. Holton and J. Sheehan. The Petersen graph. Cambridge University
Press Cambridge, 1993.

BIBLIOGRAPHY 185

[105] T. Homma. A theorem on continuous functions. Kodai Mathematical Sem-
inar Reports, 4(1):13–16, 1952.

[106] S. Ieong, R. McGrew, E. Nudelman, Y. Shoham, and Q. Sun. Fast and
compact: A simple class of congestion games. In Proceedings of the 20th
National Conference on Artificial Intelligence, pages 489–494, 2005.

[107] M. Jerrum, B. D. McKay, and A. Sinclair. When is a graphical sequence
stable? Department of Computer Science: Internal report, 1989.

[108] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal
on Computing, 18(6):1149–1178, 1989.

[109] M. Jerrum and A. Sinclair. Fast uniform generation of regular graphs.
Theoretical Computer Science, 73(1):91–100, 1990.

[110] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation
algorithm for the permanent of a matrix with nonnegative entries. Journal
of the ACM, 51(4):671–697, 2004.

[111] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of
combinatorial structures from a uniform distribution. Theoretical Computer
Science, 43:169–188, 1986.

[112] S. Kakutani. A generalization of brouwer’s fixed point theorem. Duke
Mathematical Journal, 8(3):457–459, 1941.

[113] R. Kannan, P. Tetali, and S. Vempala. Simple Markov-chain algorithms
for generating bipartite graphs and tournaments. Random Structures and
Algorithms, 14(4):293–308, 1999.

[114] J. H. Kim and V. H. Vu. Generating random regular graphs. Combinator-
ica, 26(6):683–708, 2006.

[115] P. Kleer and G. Schäfer. Tight inefficiency bounds for perception-
parameterized affine congestion games. Theoretical Computer Science,
754:65–87, 2019.

[116] M. Klimm and P. Warode. Computing all Wardrop equilibria parametrized
by the flow demand. In Proceedings of the 30th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 917–934, 2019.

[117] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings
of the 16th Annual Conference on Theoretical Aspects of Computer Science,
pages 404–413, 1999.

[118] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times.
American Mathematical Society, 2009.

186 BIBLIOGRAPHY

[119] T. Lianeas, E. Nikolova, and N. E. Stier-Moses. Asymptotically tight
bounds for inefficiency in risk-averse selfish routing. CoRR, abs/1510.02067,
2015.

[120] T. Lianeas, E. Nikolova, and N. E. Stier-Moses. Asymptotically tight
bounds for inefficiency in risk-averse selfish routing. In Proceedings of the
25th International Joint Conference on Artificial Intelligence, pages 338–
344, 2016.

[121] A. Liebenau and N. Wormald. Asymptotic enumeration of graphs by
degree sequence, and the degree sequence of a random graph. CoRR,
abs/1702.08373, 2017.

[122] H. Lin, T. Roughgarden, É. Tardos, and A. Walkover. Stronger bounds
on braess’s paradox and the maximum latency of selfish routing. SIAM
Journal on Discrete Mathematics, 25(4):1667–1686, 2011.

[123] T. Lücking, M. Mavronicolas, B. Monien, and M. Rode. A new model for
selfish routing. Theoretical Computer Science, 406(3):187–206, 2008.

[124] P. Mahadevan, D. V. Krioukov, K. R. Fall, and A. Vahdat. Systematic
topology analysis and generation using degree correlations. In Proceedings
of the ACM SIGCOMM 2006 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, pages 135–
146, 2006.

[125] C. McDiarmid. Integral decomposition in polyhedra. Mathematical Pro-
gramming, 25(2):183–198, 1983.

[126] B. D. McKay and N. C. Wormald. Uniform generation of random regular
graphs of moderate degree. Journal of Algorithms, 11(1):52–67, 1990.

[127] B. D. McKay and N. C. Wormald. Asymptotic enumeration by degree
sequence of graphs with degress o

(
n1/2

)
. Combinatorica, 11(4):369–382,

1991.

[128] R. Meir and D. C. Parkes. Congestion games with distance-based strict
uncertainty. CoRR, abs/1411.4943, 2014.

[129] R. Meir and D. C. Parkes. Playing the wrong game: Smoothness bounds
for congestion games with behavioral biases. SIGMETRICS Performance
Evaluation Review, 43(3):67–70, 2015.

[130] R. Meyer. A class of nonlinear integer programs solvable by a single linear
program. SIAM Journal on Control and Optimization, 15(6):935–946, 1977.

[131] I. Miklós, P. L. Erdős, and L. Soukup. Towards random uniform sam-
pling of bipartite graphs with given degree sequence. Electronic Journal of
Combinatorics, 20(1), 2013.

BIBLIOGRAPHY 187

[132] I. Milchtaich. Congestion games with player-specific payoff functions.
Games and economic behavior, 13(1):111–124, 1996.

[133] I. Milchtaich. Network topology and the efficiency of equilibrium. Games
and Economic Behavior, 57(2):321–346, 2006.

[134] D. Monderer and L. S. Shapley. Potential games. Games and Economic
Behavior, 14(1):124–143, 1996.

[135] B. Morris and A. Sinclair. Random walks on truncated cubes and sampling
0-1 knapsack solutions. SIAM journal on computing, 34(1):195–226, 2004.

[136] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7(1):105–113, 1987.

[137] J. F. Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295,
1951.

[138] E. Nikolova and N. E. Stier-Moses. A mean-risk model for the traffic assign-
ment problem with stochastic travel times. Operations Research, 62(2):366–
382, 2014.

[139] E. Nikolova and N. E. Stier-Moses. The burden of risk aversion in mean-risk
selfish routing. In Proceedings of the 16th ACM Conference on Economics
and Computation, pages 489–506, 2015.

[140] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, 2007.

[141] B. P. Olding and P. J. Wolfe. Inference for graphs and networks: Adapt-
ing classical tools to modern data. In Data Analysis for Network Cyber-
Security, pages 1–31, 2014.

[142] S. Onn, U. G. Rothblum, and Y. Tangir. Edge-directions of standard poly-
hedra with applications to network flows. Journal of Global Optimization,
33(1):109–122, 2005.

[143] A. Orda, R. Rom, and N. Shimkin. Competitive routing in multiuser com-
munication networks. IEEE/ACM Transactions on Networking, 1(5):510–
521, 1993.

[144] C. H. Papadimitriou and M. Yannakakis. The complexity of restricted
spanning tree problems. Journal of the ACM, 29(2):285–309, 1982.

[145] A. Patrinos and S. Hakimi. Relations between graphs and integer-pair
sequences. Discrete Mathematics, 15(4):347–358, 1976.

[146] G. Piliouras, E. Nikolova, and J. S. Shamma. Risk sensitivity of price of
anarchy under uncertainty. In Proceedings of the 14th ACM Conference on
Electronic Commerce, pages 715–732, 2013.

188 BIBLIOGRAPHY

[147] J. Quastel. Diffusion of color in the simple exclusion process. Communica-
tions on Pure and Applied Mathematics, 45(6):623–679, 1992.

[148] A. R. Rao, R. Jana, and S. Bandyopadhyay. A Markov chain Monte
Carlo method for generating random (0, 1)-matrices with given marginals.
Sankhyā: The Indian Journal of Statistics, Series A, 58(2):225–242, 1996.

[149] Rijkswaterstaat, Ministry of Infrastructure and Water Management.
Eerste auto’s rijden over nieuwe A4. https://www.rijkswaterstaat.nl/
nieuws/2015/12/eerste autos rijden over nieuwe a4.aspx, 2015.

[150] R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria.
International Journal of Game Theory, 2:65–67, 1973.

[151] R. W. Rosenthal. The network equilibrium problem in integers. Networks,
3(1):53–59, 1973.

[152] T. Roughgarden. The price of anarchy is independent of the network topol-
ogy. Journal of Computer and System Sciences, 67(2):341–364, 2003.

[153] T. Roughgarden. Selfish Routing and the Price of Anarchy. The MIT Press,
2005.

[154] T. Roughgarden. On the severity of braess’s paradox: Designing net-
works for selfish users is hard. Journal of Computer and System Sciences,
72(5):922–953, 2006.

[155] T. Roughgarden. Intrinsic robustness of the price of anarchy. Journal of
the ACM, 62(5):32, 2015.

[156] T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the
ACM, 49(2):236–259, 2002.

[157] H. J. Ryser. Combinatorial properties of matrices of zeros and ones. Cana-
dian Journal of Mathematics, 9:371–377, 1957.

[158] J. G. Sanderson. Testing ecological patterns. American Scientist, 88(4):332,
2000.

[159] D. Schmeidler. Equilibrium points of nonatomic games. Journal of Statis-
tical Physics, 7(4):295–300, 1973.

[160] A. Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, Inc., 1986.

[161] A. Schrijver. Combinatorial optimization: polyhedra and efficiency. Vol. B,
Matroids, trees, stable sets. Chapters 39–69. Springer-Verlag, 2003.

[162] A. Sinclair. Improved bounds for mixing rates of Markov chains and mul-
ticommodity flow. Combinatorics, Probability & Computing, 1:351–370,
1992.

BIBLIOGRAPHY 189

[163] I. Stanton and A. Pinar. Constructing and sampling graphs with a pre-
scribed joint degree distribution. ACM Journal of Experimental Algorith-
mics, 17(1), 2011.

[164] D. Štefankovič, E. Vigoda, and J. Wilmes. On counting perfect matchings
in general graphs. In Proceedings of the 13th Latin American Symposium
on Theoretical Informatics, pages 873–885, 2018.

[165] A. Steger and N. C. Wormald. Generating random regular graphs quickly.
Combinatroics, Probability & Computing, 8(4):377–396, 1999.

[166] G. Strona, D. Nappo, F. Boccacci, S. Fattorini, and J. San-Miguel-Ayanz.
A fast and unbiased procedure to randomize ecological binary matrices with
fixed row and column totals. Nature Communications, 5(4114), 2014.

[167] R. Taylor. Constrained switchings in graphs. In Proceedings of the 8th Aus-
tralian Conference on Combinatorial Mathematics, pages 314–336, 1981.

[168] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal
on Computing, 20(5):865–877, 1991.

[169] L. Tran-Thanh, M. Polukarov, A. Chapman, A. Rogers, and N. R. Jen-
nings. On the existence of pure strategy Nash equilibria in integer–splittable
weighted congestion games. In Lecture Notes in Computer Science, volume
6982, pages 236–253, 2011.

[170] W. T. Tutte. The factors of graphs. Canadian Journal of Mathematics,
4(3):314–328, 1952.

[171] W. T. Tutte. A short proof of the factor theorem for finite graphs. Canadian
Journal of Mathematics, 6:347–352, 1954.

[172] L. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8(2):189–201, 1979.

[173] A. F. Veinott and G. B. Dantzig. Integral Extreme Points. Defense Tech-
nical Information Center, 1968.

[174] N. D. Verhelst. An efficient MCMC algorithm to sample binary matrices
with fixed marginals. Psychometrika, 73(4):705, 2008.

[175] J. G. Wardrop. Some theoretical aspects of road traffic research. Proceed-
ings of the Institution of Civil Engineers, 1:325–378, 1952.

[176] J. V. Whittaker. A mountain-climbing problem. Canadian Journal of
Mathematics, 18(873-882):4, 1966.

[177] F. Zhang. Matrix Theory: Basic Results and Techniques. Springer, 1999.

Appendix A

Combinatorial SDD of matroid
congestion games

In this section, we describe a combinatorial approach for computing the symmet-
ric difference decomposition of non-symmetric matroid congestion games. Our
analysis also provides a local search algorithm which can be seen as a natural
generalization of best response dynamics.

Throughout this section, we let Γ = (N,E, (Si), (ce)) be a non-symmetric
matroid congestion game, where the strategy set Si of each player i ∈ N is given
by the bases Bi of a matroid Mi = (E, Ii).

A.1 Symmetric difference decomposition

We start by deriving the symmetric difference decomposition.
Let s = (s1, . . . , sn) and t = (t1, . . . , tn) be two feasible strategy profiles with

(feasible) load profiles f and g, respectively. We need the following result for
matroids.

Proposition A.1 ([161]). Let M = (E, I) be a matroid and let B denote the set
of bases ofM. Then for all B,B′ ∈ B, there exists a bijection τ : B\B′ → B′\B
such that B − x+ τ(x) ∈ B for all x ∈ B \B′.

For i ∈ N , let τ i : si \ ti → ti \ si be a bijection satisfying Proposition A.1.
Let G = (V,A) be a directed multigraph defined by V = E, and the multiset

A =
⋃
i∈N
{(e, τ i(e)) : e ∈ si \ ti}.

Note that, implicitly, every arc corresponds to a unique player. Since, for a fixed
player i the bases si and ti have the same size, it follows that

K :=
∑

e: fe>ge

(fe − ge) =
∑

e: ge>fe

(ge − fe).

191

192 Chapter A. Combinatorial SDD of matroid congestion games

In particular, the graph G can be decomposed into K edge-disjoint paths (or
chains) (Pj)j=1,...,K with the property that they start at an overloaded resource
e with fe > ge and end at an underloaded resource e with ge > fe (and possibly
some cycles). If follows that we can write

g − f =

K∑
j=1

xj ,

where for each path Pj = (aj , . . . , bj) we have

xje =

 1 if e = bj ,
−1 if e = aj ,

0 otherwise.

We claim that the load profiles f + xj are again feasible.
Let us first introduce some more terminology. Let M = (E, I) be a matroid

and let I ∈ I. Let DM(I) = (E,AM(I)) be the directed exchange graph defined
by

AM(I) = {(y, z) : y ∈ I, z ∈ E \ I, I − y + x ∈ I}.

The following proposition will be used below.

Proposition A.2 ([161]). Let M = (E, I) be a matroid and let I ∈ I. Let
DM(I) be as defined above, and let J ⊆ E be such that |I| = |J | and such that
AM(I) contains a unique perfect matching on I∆J . Then J ∈ I.

Moreover, for matroids Mi = (E, Ii), i ∈ N , let D(I1, . . . , In) = (E,A) be
the multigraph defined by the

A =
⋃
i∈N

AMi
(Ii).

We implicitly label every a ∈ A with a player i, namely the player for which
a ∈ AMi(Ii). For a path Q = (e1, . . . , ep) in D, we denote by AiQ the set of arcs
corresponding to player i, i.e.,

AiQ = {a ∈ Q : a = (ej , ej+1) has label i}.

Further, we let T iQ and Hi
Q contain the tails and heads of the arcs in AiQ, respec-

tively, i.e.,

T iQ = {v ∈ E : a = (v, w) ∈ AiQ} and Hi
Q = {w ∈ E : a = (v, w) ∈ AiQ}.

We let σiQ : T iQ → Hi
Q denote the bijection that maps every tail to its head.

We say that a shift over the path Q is feasible, if for i = 1, . . . , n, it holds that
Ii − T iQ +Hi

Q ∈ Ii.1

1Subsequently, we omit the subscript Q if it is clear from the context which path is meant.

A.2. Local search algorithm 193

Let us now come back to the paths Pj . By definition of D(s1, . . . , sn), every
path Pj is contained in the graph D(s1, . . . , sn). In particular this means that
there is at least one path from aj to bj . Then there is also a shortest path (in
terms of number of arcs) from aj to bj . By Lemma A.3 (given below), the load
profile f+xj is feasible since we can shift players over some shortest (aj , bj) path
Qj such that the resulting bases are again feasible for all players. That is, we
apply Lemma A.3 with the bases Ii = si.

It remains to prove Lemma A.3.

Lemma A.3. Let D(I1, . . . , In) = (V,A) be as defined above, and let a, b ∈ V . If
Q = (a, . . . , b) is a shortest (a, b)-path, then Ii−T iQ+Hi

Q ∈ Ii for all i = 1, . . . , n.2

Proof. Fix some i. We let I = Ii and J = Ii − T i +Hi (= si − T i + σi(Hi)). In
particular, the function σi as defined above gives a perfect matching on I∆J . We
claim that σi is the unique perfect matching between T i and Hi. It follows from
Proposition A.2 that J ∈ I. Let ρ be an arbitrary perfect matching. Let (v, w)
be the first arc on Q corresponding to player i. If ρ(v) 6= w, then this means that
Q was not a shortest (a, b)-path, so we must have ρ(v) = w. A similar argument
can be given for the second arc corresponding to i, then the third arc, etc. We
find that ρ = σi, and this concludes the proof.

A.2 Local search algorithm

We can derive a local search algorithm based on the analysis above. We first
introduce some terminology. We say that the difference between two strategy
profiles s (with load profile f) and s′ (with load profile f ′) is minimal, if there
exist resources a, b such that

fe − f ′e =

 1 if e = a
−1 if e = b

0 otherwise.

We define the neighborhood of a strategy profile s by

N (s) = {s} ∪ {s′ ∈ ×iSi : the difference between s and s′ is minimal}. (A.1)

Note that by definition the load profiles f and f ′ of two neighboring strategy
profiles s, s′ with s′ ∈ N (s), respectively, must differ by one on exactly two
resources. However, this load difference might not be achievable by a single-
player deviation. In fact, it is not hard to construct examples, where a sequence
of unilateral deviations is needed to reach s′ from s.

We prove the following lemma.

2A similar statement is shown in [3, Lemma 4.5]. However, our proof is different and seems
(much) shorter because of the fact that we use the result in [161].

194 Chapter A. Combinatorial SDD of matroid congestion games

Lemma A.4. A strategy profile s minimizes Rosenthal’s potential if and only
if s is a local minimum of Rosenthal’s potential with respect to the neighborhood
N (s).

Proof. First, let s be a a strategy profile minimizing Rosenthal’s potential. It
follows directly that s is a local minimum with respect to N (s), since s is a global
optimum of the potential function.

Conversely, let s be a local minimum with respect to N (s) and suppose that s
is not a minimizer of Rosenthal’s potential. We claim that there exists a strategy
profile s′ such that

∆(f, g) :=
∑

e: fe>ge

(fe − ge)ce(fe)−
∑

e: fe<ge

(ge − fe)ce(fe + 1) > 0, (A.2)

where f and g are the load profiles of s and s′, respectively. Assume for contra-
diction that ∆(f, g) ≤ 0 for all feasible load profiles g. Then

Φ(f)− Φ(g) =
∑

e: fe>ge

fe∑
k=ge+1

ce(k)−
∑

e: ge>fe

ge∑
k=fe+1

ce(k)

≤
∑

e:fe>ge

(fe − ge)ce(fe)−
∑

e:fe<ge

(ge − fe)ce(fe + 1) ≤ 0,

where the first inequality holds because the cost functions are non-decreasing
and non-negative. But then f minimizes the potential function Φ, which is a
contradiction.

Let the paths W1, . . . ,WK form the path decomposition of the multigraph G
(as described above) for the strategies s and s′. Because of (A.2) there must be
some path Wj = (aj , . . . , bj) such that ca(fa)− cb(fb + 1) > 0. This contradicts
the fact that s is a local minimum with respect to N (s).

We next show that, given an arbitrary strategy profile s, we can determine in
polynomial time whether there is an improving move with respect to the altered
neighborhood defined in (A.1).

Lemma A.5. Assume that for every player i ∈ N we have a polynomial inde-
pendence oracle for matroid Mi = (E, Ii). Then for every strategy profile s, we
can check in time polynomial in m and the independence oracles of the matroids
Mi, whether or not there exists a strategy profile s′ ∈ N (s) with Φ(s′) < Φ(s).

Proof. Note that there are at most m(m − 1) possibilities for the resources a
and b in the description of strategy profiles with minimal difference. For a and
b fixed, with ca(fa) > cb(fb + 1), we can in polynomial time check whether or
not there exists a chain starting at a and ending in b. For example, we can
run an all-pairs shortest path algorithm on the graph D(s1, . . . , sn), which can
be constructed in strongly polynomial time using the polynomial independence
oracles. By construction, we know that every shortest path yields a new strategy

A.3. Example 195

profile s′ with f ′a = fa − 1 and f ′b = fb + 1 (and all the other loads remain the
same). Note that s′ can be constructed in polynomial time.

Exploiting the insights above, we conclude that we can find a global opti-
mum of Φ in strongly polynomial time as follows: Starting from an arbitrary
strategy profile s0, iteratively perform local improvement steps with respect to
the neighborhood N (·) as defined in (A.1) until a local optimum is reached. By
Lemma A.4, the final strategy profile is a global optimum of Rosenthal’s poten-
tial. Further, by Lemma A.5, each improving move can be done in polynomial
time. The fact that this local search takes only a strongly polynomial number
of steps follows from arguments similar to the ones in [1] (showing that any
better-response sequence in matroid congestion games has polynomial length).

A.3 Example

We given an example illustrating the analysis above.
Let us consider the (non-symmetric) game in Figure A.1. The matroid of

player a is the graphic matroid on the complete graph K4 (with spanning trees
as bases). The matroid of player b is a 1-uniform matroid on the set E2 =
{{1, 4}, {1, 2}}. The strategies of the players in s are given by the bold edges,
and the strategies in t by the dotted edges.

1

2

3

4

Player a

1

2

3

4

Player b

Figure A.1: Matroids and strategies of players a and b.

Let τa be given by τa({2, 4}) = {1, 4}, τa({1, 3}) = {2, 3} and τa({1, 2}) =
{3, 4} (note that τa satisfies the condition in Proposition A.1). For τ b there is only
a unique choice defined by τ b({1, 4}) = {1, 2}. The (unique) path decomposition
for s and t is given in Figure A.2.

The path P1 from {2, 4} to {3, 4} can be replaced by the shorter chain P ′1 as
in Figure A.3.

196 Chapter A. Combinatorial SDD of matroid congestion games

P1 : {2, 4} {1, 4} {1, 2} {3, 4}
a b a

P2 : {1, 3} {2, 3}
a

Figure A.2: Path decomposition for the profiles s and t,based on the bijections
τ1 and τ2.

P ′1 : {2, 4} {1, 4} {1, 2} {3, 4}

a

Figure A.3: The chain P ′1 that is a feasible path from {2, 4} to {3, 4} as in Figure
A.2.

Appendix B

Omitted material from
Section 3.3.4

We briefly summarize the dual greedy algorithm of Harks et al. [99] for computing
a strong equilibrium in bottleneck congestion games (see [99] for more details).
Their algorithm is based on a strategy packing oracle.

Strategy packing oracle O(E, (Si)i∈N , (ue)e∈E) [99]:

Input: A finite set of resources E with upper bounds (ue)e∈E and strategy sets
(Si)i∈N (given implicitly by some combinatorial property).

Output: Strategy profile s ∈ ×i∈NSi such that xe(s) ≤ ue for all e ∈ E, or ∅ if no
such strategy profile exists.

Basically, the dual greedy algorithm (Algorithm 2 below) works as follows:
In every step of the algorithm, we have capacity constraints (ue)e∈E for which
it is known that there exists a strategy profile respecting these capacities. The
algorithm then selects a resource e′ with maximum cost (line 3) and checks if
there exists a feasible strategy profile for the capacities in which ue′ is decreased
by 1. If so, then ue′ is updated and we continue with the new vector of capacity
constraints. Otherwise, the strategies of the ue′ players using resource e′ are fixed
(and all variables are updated accordingly). We say that resource e′ becomes
frozen. Note that the players of which the strategies are fixed do not change
anymore; these players are frozen too.

197

198 Chapter B. Omitted material from Section 3.3.4

ALGORITHM 2: Dual greedy algorithm of Harks et al. [99].

Input : Bottleneck congestion game Γ = (N,E, (Si), (ce)), strategy packing
oracle O

Output : Strong equilibrium of Γ
1 set N ′ = N , ue = n, xe = 0 ∀e ∈ E, and s′ = O(E, (Si)i∈N′ , (ue))
2 while {e ∈ E : ue > 0} 6= ∅ do
3 choose e′ ∈ argmax{ce(ue + xe) : e ∈ E, ue > 0}
4 ue′ = ue′ − 1
5 if O(E, (Si)i∈N′ , (ue)) = ∅ then
6 ue′ = ue′ + 1
7 foreach j ∈ N ′ with e′ ∈ s′j do
8 sj = s′j
9 set xe = xe + 1, ue = ue − 1 for all e ∈ s′j

10 N ′ = N ′ \ {j}
11 end

12 end
13 s′ = O(E, (Si)i∈N′ , (ue)}
14 end
15 return s = (s1, . . . , sn)

	Acknowledgements
	Introduction
	About this thesis
	Strategic games
	Existence
	Computation
	Inefficiency

	Congestion models
	Sampling and counting
	Perfect matchings
	Markov Chain Monte Carlo method

	Overview and publications

	Worst-case latency deviations in non-atomic routing games
	Introduction
	Our contributions
	Related work
	Outline

	Preliminaries
	Non-atomic network routing games
	Bounded deviation model
	Inefficiency measures

	Upper bounds on the deviation ratio
	Characterization of -inducible flows
	Existence of alternating path tree
	Proofs of Theorem 2.5 and Corollary 2.6

	Lower bounds on the deviation ratio
	Single-commodity instances
	Common-source instances
	Multi-commodity instances

	Biased price of anarchy
	Heterogeneous populations
	Applications
	Price of risk aversion
	Stability of Nash flows under small perturbations

	Conclusion

	On pure Nash equilibria in Rosenthal congestion games
	Introduction
	Our contributions
	Related work
	Outline

	Preliminaries
	Inefficiency measures and smoothness parameter
	Polytopes
	Matroids

	Polytopal congestion games
	Price of stability
	Minimizing Rosenthal's potential
	Applications
	Bottleneck congestion games

	Perception-parameterized congestion games
	Price of anarchy
	Price of stability
	Applications

	Conclusion

	New results for the switch Markov chain
	Introduction
	Our contributions
	Related work
	Outline

	Preliminaries
	Graphical degree sequences and the switch chain
	JDM model and the restricted switch chain
	PAM model and the hinge flip chain
	Bipartite degree sequences and the curveball chain
	Johnson graphs

	Switch chain for strongly stable sequences
	Flow for the Jerrum-Sinclair chain
	Flow transformation

	Switch chain for 2-class JDM instances
	Rapid mixing of the hinge flip chain
	Strong stability of 2-class JDM instances
	Rapid mixing of the switch chain

	Curveball chain
	Comparison framework
	Comparing the switch and curveball chain
	Parallelism in the curveball chain

	Conclusion

	Summary
	References
	Combinatorial SDD of matroid congestion games
	Symmetric difference decomposition
	Local search algorithm
	Example

	Omitted material from Section 3.3.4

