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Abstract

This thesis presents an investigation into selfish routing games from three main

perspectives. These three areas are tied together by a common thread that runs

through the main text of this thesis, namely selfish routing games and network

equilibrium flows.

First, it investigates methods and models for nonatomic selfish routing and then

develops algorithms for solving atomic selfish routing games. A number of algo-

rithms are introduced for the atomic selfish routing problem, including dynamic

programming for a parallel network and a metaheuristic tabu search. A piece-wise

mixed-integer linear programming problem is also presented which allows standard

solvers to solve the atomic selfish routing problem. The connection between the

atomic selfish routing problem, mixed-integer linear programming and the multi-

commodity flow problem is explored when constrained by unsplittable flows or flows

that are restricted to a number of paths. Additionally, some novel probabilistic on-

line learning algorithms are presented and compared with the equilibrium solution

given by the potential function of the nonatomic selfish routing game.

Second, it considers multi-criteria extensions of selfish routing and the ineffi-

ciency of the equilibrium solutions when compared with social cost. Models are

presented that allow exploration of the Pareto set of solutions for a weighted sum

model (akin to the social cost) and the equilibrium solution. A means by which

these solutions can be measured based on the Price of Anarchy for selfish routing

games is also presented.

Third, it considers the importance and criticality of components of the network

(edges, vertices or a collection of both) within a selfish routing game and the impact

of their removal. Existing network science measures and demand-based measures

are analysed to assess the change in total travel time and issues highlighted. A new



measure which solves these issues is presented and the need for such a measure is

evaluated.

Most of the new findings have been disseminated through conference talks and

journal articles, while others represent the subject of papers currently in prepara-

tion.
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Chapter 1

Introduction, Aims and Objectives

Chapter Preface

This chapter places the work presented in this thesis into the context of congestion

games and, in particular, selfish routing. It reviews previous work done into self-

ish routing and identifies areas to which this thesis makes particular contributions.

This thesis aims to investigate these areas and present work that contributes to the

identified gaps.

Chapter Keywords

Selfish Routing, Network Flow, Congestion Games, Traffic Assignment Problem

1.1 Background

The study of multiagent systems with strategic agents that behave in a self-interested

manner has been of practical and theoretical interest for almost a century. Game

theory has provided a powerful framework for the study and analysis of such sys-

tems, with the concepts of equilibria, social welfare, social cost, drawing inspiration

from the fields of philosophy, politics and economics. With the continued rise of

decentralised systems such as the internet, economy and wireless networks, it has

become increasingly apparent that the selfish behaviour of multiple agents (as mod-

elled by game theory) is no longer confined to traffic or the classic examples given in

1



Chapter 1

textbooks (e.g. the prisoner’s dilemma), but can be applied to numerous real-world

problems.

Noncooperative games, in which no external mechanism incentivises cooperation

between agents, provides a very natural way of modelling concepts which arise in

the real-world such as processor scheduling, routing and network design [92]. For

example, in transport modelling, the traffic assignment stage is underpinned by a

widely accepted phenomenon that, given the selfish nature of drivers’ attempts to

minimise their own travel time, a system will settle to a state of equilibrium in

which no driver can benefit from switching their current path (there is no unilateral

profitable deviation) [167]. Although this system can be considered stable, it does

not (in almost all cases) result in the minimum average journey (minimum total time

for all drivers) which can only happen with social cooperation or central control.

Under these circumstances, certain drivers will be worse off when compared to the

stable state of equilibrium; however, the average driver benefits. In the case of traffic

assignment, the attractiveness of one state compared to the other may be a matter

of opinion but it is without debate that for some real-world applications, such as

processor scheduling, minimising the total time taken is preferred [22].

In recent years the field of algorithmic game theory [127] has emerged in an at-

tempt to answer the core questions around selfish behaviour of multi-agent systems

using the principles of game theory as a foundation for the design and implementa-

tion of algorithms. As well as the modelling of existing systems, research has been

undertaken into the design of multiagent games whereby the equilibrium state gen-

erated by self-interest coincides with a socially optimal one - a high profile use of this

is second price auctions employed by the likes of eBay [143]. Common measures for

the suboptimality of an equilibrium state, when compared with the socially optimal,

are the price of anarchy (PoA) and the price of stability (PoS).

The natural stability that arises out of the selfish behaviour of agents has been

studied extensively. However, it has been found that computing a stable solution

(mixed-strategy Nash equilibrium) is PPAD-complete (Polynomial Parity Argu-

ments on Directed graphs) [134, 47, 60] and thus the design of exact convergent

algorithms is not only hard but a thankless task. Thus, the study of classes of prob-

lems that are computable in polynomial time is warranted; however, for intractable
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problems, advances in combinatorial optimisation and metaheuristics are needed.

Of particular interest is the class of potential games, which have a set of use-

ful properties such as the existence of at least one pure-strategy Nash equilibrium,

known to be PLS-complete (Polynomial Local Search) [60, 141] whereby the com-

putation of a stable state takes an exponential number of steps, but a solution can

be validated in polynomial time via searching the local neighbourhood. This class

of games has been shown to model network flow problems in distributed networks,

such as resource allocation in wireless networks and distributed power control and

scheduling. The presence of at least one Nash equilibrium guarantees that both the

price of anarchy and price of stability are defined for this class of games and pro-

vide measures that can be used for analysis and identification of issues, suggesting

potential improvements, such as infrastructure investment or patron subsidiaries.

Selfish routing games are a class of potential games with specific properties (see

Section 1.2.5) and are born out of the area of transportation planning and modelling.

The concept of selfish routing is at the heart of these games and shares the same

principles as game theory, namely the search for mixed-strategy Nash equilibrium;

however, it is restricted to the flows on a network.

This thesis looks at selfish routing games from three main perspectives. First,

it investigates methods and models for nonatomic selfish routing games and then

develops algorithms for solving atomic selfish routing games. Second, it considers

multi-criteria extensions of selfish routing and the inefficiency of the equilibrium

solutions when compared with the social cost. Third, it considers the importance

and criticality of components of the network (edges, vertices or a collection of both)

within a selfish routing game and the impact of their removal.

The notation used within this thesis is defined, when introduced, within each

chapter.

1.2 Preliminaries

1.2.1 Game Theory

Game Theory is the applied branch of mathematics concerned with the study of

strategic interactions between self-interested rational agents (often referred to as

3
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players). First studied by John Von Neumann in 1928, the main theoretic concepts

were formalised in the 1944 treatise Theory of Games and Economic Behaviour [164].

Loosely, a game consists of a set of agents, a set of available agent strategies and the

set of reachable game states (combinations of agents’ played strategies). To measure

an agent’s happiness with a the state of the game, a utility function is employed

that, for each player, maps the state of the game to a real-valued function. In general

two types of games are considered, noncooperative and cooperative. In noncooper-

ative games, individual agents play strategies to benefit their personal standpoint,

preferences, needs, etc, whereas in cooperative games, agents play strategies which

benefit the group (self-interest here is still applicable but it is aligned with group

interest). The remainder of this section provides an overview and formally defines

key concepts necessary in the analysis and optimisation of network flow problems.

For all definitions given in Section 1.2.1 see Chapter 1 and 2 of [101].

1.2.1.1 Normal Form

A game in which agents (players - in the language of game theory) move simul-

taneously, i.e. without knowledge of their opponents move, can be represented in

Normal Form as follows:

Definition 1.2.1 (Normal form game). A game in normal form is a tuple (N,S, u)

where:

• N - The finite set of n players;

• S - The set of strategy profiles (strategy space) S = S1 × · · · × Sn, where Si is

the set of strategies available to player i. Each vector s = (s1, . . . , sn) ∈ S is

a given strategy profile;

• u - The vector of utility functions u = (u1, . . . , un), where ui : S 7→ R is the

utility function for player i.

Strategies are either chosen as deterministic (pure-strategies), whereby the game

state determines the pure-strategy an agent will play, or probabilistic (mixed-strategies),

agents play a pure-strategy with a given probability. A pure-strategy is just the de-

generate case of a mixed-strategy in which the deterministic pure-strategy to be
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played at a given move has probability 1, and all other pure-strategies have proba-

bility 0.

1.2.1.2 Pareto Optimality

Pareto optimality is a state in which any attempt to benefit an agent’s utility results

in a loss to some other agent. This observation is made by considering all the agents

in the game.

Definition 1.2.2 (Pareto dominant). Given a strategy profile s and s′, s Pareto

dominates s′ if there exists for some j ∈ N , uj(s) > uj(s
′) and that ui(s) ≥

ui(s
′), ∀i ∈ N .

That is, no agent is worse off given some agents move to a better strategy.

Definition 1.2.3 (Pareto optimality (efficiency)). A strategy profile s is Pareto

optimal if there does not exist another strategy profile s′ that dominates s.

Given the partial ordering from definition 1.2.2there must be at least one opti-

mum; however, multiple optima may exist and the set of all Pareto optimal strategy

profiles is referred to as the Pareto frontier.

1.2.1.3 Nash Equilibrium

The concept of Nash equilibrium was first introduced by John F. Nash Jr. [121]

who built on the work done by von Neumann and Morgenstern [91, 164] for 2 player

noncooperative games. It differs from Pareto optimality in that the benefit of a

different strategy on an agent’s utility is only from the standpoint of the agent in

question. Let s−i = (s1, . . . , si−1, si+1, . . . , sn) be the strategy profile of all other

agents and si the strategy of agent i. The best response of agent i to the strategy

profile s−i is defined as [101]:

Definition 1.2.4 (Best response). The mixed strategy s∗i ∈ Si is a best response for

an agent i to the strategy s−i such that ui(s
∗
i , s−i) ≥ ui(si, s−i), ∀si ∈ Si.

If an agent knew the strategies of the other agents, s∗i is a strategy (not necessarily

unique) that maximises their utility. The concept of Nash equilibrium follows [101],

5



Chapter 1

Definition 1.2.5 (Nash equilibrium). A strategy s is a Nash equilibrium if si is the

best response to s−i, ∀i ∈ N .

Therefore, no agent has any motivation to change their strategy given knowledge

of the other agents strategies.

Nash proved that, for any mixed-strategy game with a finite number of agents and

strategies, there exists at least one equilibrium state [121]. If the best response

(1.2.4) is strict (>), then the Nash equilibrium is referred to as a strict Nash and,

for a weak best response (≥), a weak Nash. A strict Nash is necessarily a pure-

strategy equilibrium [101].

1.2.1.4 Social Choice Optimality

A strategy profile of a game is said to be socially optimal (sometimes referred to as

system optimal) if it is the optimal solution for some given objective function in the

feasible set of strategy profiles [127], in particular a social welfare objective is max-

imised and a social cost is minimised. In general, the self-interest and motivation

of players do not align with the social objective and thus a strategy that is an equi-

librium from a strategy that is socially optimal differ. In fact, the socially optimal

state can be considered unstable in a system in which players have self-interested

preferences. Parallels are easily drawn with philosophy, politics and economics, e.g.

utilitarianism and social choice theory, where a greater good is sought.

Definition 1.2.6 (Socially Optimal). Given a game (N,S, u) and an objective func-

tion - C : S 7→ R, the strategy s∗ ∈ S is socially optimal if and only if:

C(s∗) ≤ C(s), ∀s ∈ S.

Whilst this definition minimises the social cost, the social welfare can be max-

imised by letting C(s) = −W (s), where W : S 7→ R is the social welfare objective

function.

1.2.1.5 Price of Anarchy

The price of anarchy was first introduced by Koutsoupias and Papadimitriou [89] and

is a commonly used measure in the analysis of how suboptimal equilibria are from
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the socially optimal state. It provides an upper bound when measuring the ratio of

the worse equilibrium compared with the socially optimal solution. It is analogous

to the approximation ratio used in measuring how far an the approximate solution

obtained by an algorithm is from the optimal solution and is a tool used for analysis

in algorithmic game theory [127].

Definition 1.2.7 (Price of anarchy). For a game G(N,S, u) with social objective

function C : S 7→ R and the set of Nash equilibrium strategy profiles SE, the price

of anarchy is:
maxs∈SE

C(s)

minp∈SC(p)
.

1.2.1.6 Price of Stability

The price of stability is another measure by which the best equilibrium is used in the

analysis of how suboptimal equilibria are. Rationale for this measure is to consider

games in which the price of stability and price of anarchy differ considerably. Such

a case motivates a strategy in which the game converges to a good equilibria. For

example, Anshelevich et al [5] showed that for the network design game with fair

cost allocation the price of stability is at most O(log(n)), where n is the number of

users. First studied by Correa, Schulz and Moses [41], the first appearance of the

name price of stability is given in [5].

Definition 1.2.8 (Price of stability). For a game (N,S, u) with objective function

C : S 7→ R and the set of Nash equilibrium strategy profiles SE, the price of stability

is:
mins∈SE

C(s)

minp∈SC(p)
.

1.2.2 Selfish Routing

The concept of selfish routing arises naturally in many real world scenarios where

agents wish to route their flow through a network as cheaply as possible for a given

commodity (origin-destination (OD) pair). Examples include traffic networks, com-

puting networks, mechanical and electrical networks. The most recognisable of these

to the layperson is traffic networks, whereby each vehicle wishes to route itself be-

tween two points and research into this area has been ongoing since the example
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given by Pigou in the 1920s [1]. Seminal work was undertaken by Wardrop [167],

Beckmann, McGuire and Winsten [19], Braess [33], Dafermos and Sparrow [43]

which formed the basis of traffic assignment in transportation theory. The term

‘selfish routing’ was coined by Roughgarden and Tardos [147] and makes use of the

price of anarchy.

1.2.2.1 Pigou’s Example

Consider the graph given in Figure 1.1 with flow dependent edge cost functions

ce(xe).

s t

c1(x1) = 1

c2(x2) = x2

Figure 1.1: Pigou’s example.

The edge cost functions determine the travel time on each edge as a function of the

fraction of the total flow using that edge. In this example the total demand to be

routed on the network between the source s and the sink t is 1 unit. i.e. the demand

routed on each of the edges sums to 1, x1 + x2 = 1.

Under the assumption that an agent (some fraction of the flow) wishes to minimise

the travel time that it experiences, no agent has any incentive to ever use the upper

edge. Consider the case where ϵ amount of flow has been routed on the upper

edge, then the cost of the upper and lower edges are 1 and 1 − ϵ respectively.

Given this strategy profile, the best response for any vehicle (agent) residing on the

upper edge would be to switch to the lower edge. Thus equilibrium is reached with

(x1, x2) = (0, 1).

The total travel time experienced by all users for the equilibrium is x1c1(x1) +

x2c2(x2) = 0 · 1 + 1 · 1 = 1, however the minimum overall travel time possible is to

route half the flow on each edge (x1, x2) = (1
2
, 1
2
) resulting in a cost of 1

2
·1+ 1

2
· 1
2

= 3
4
.

The PoA for this example is therefore 4
3
.

This example motivates a central theme in selfish routing, comparing the minimum

overall travel time possible and the overall travel time subject to selfish routing.
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1.2.2.2 Wardrop’s Principles

In his 1952 paper Road Paper. Some Theoretical Aspects of Road Traffic Research

[167] Wardrop proposed two approaches to analysing the flow on a traffic network

[135].

Wardrop’s first principle (user equilibrium):

The journey times on all the routes used between an origin and a destination are

equal, and less than those which would be experienced by a single vehicle on any

unused route.

Wardrop’s second principle (system optimal):

The average journey time is at a minimum.

Under specific restrictions (Section 1.2.4), user equilibrium has been shown to

be equivalent to a non-cooperative Nash equilibrium for discrete flows by Rosenthal

[142] and extended for continuous flows by Devarajan [51].

1.2.3 Traffic Assignment Problem (TAP)

The Traffic Assignment Problem (TAP) has been at the heart of the transport

modelling community for over 60 years since its formulation by Beckmann, McGuire

and Winsten [19] and under a set of simple assumptions provides a unique solution,

in terms of the edge flows, to Wardrop’s first principle - user equilibrium.

A full formulation of the TAP model (nonatomic selfish routing) is given in

Section 1.3.1.

1.2.3.1 Illustrative Example

The following introductory example given by Sheffi [152] serves to illustrate the idea

of sefish routing of traffic between commodities. Figure 1.2 depicts the flow depen-

dent travel time functions for each edge in the network and Figure 1.3 highlights the

two potential paths {π1, π2} for the commodities (A,E) and {π3, π4} for (B,E).
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Figure 1.2: Edge travel time functions.

(a) Paths π1 and π2 between A and E.

(b) Paths π3 and π4 between B and E.

Figure 1.3: Path decomposition for example given in Figure 1.2.
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For the given example the travel time functions for the five roads (edges) are

t1(x1) = 1

t2(x2) = 2

t3(x3) = 2 + x3

t4(x4) = 1 + 2x4

t5(x5) = 1,

where x = (x1, x2, x3, x4, x5)
T ∈ R5

≥0 denotes the amount of traffic flow on each of the

5 edges. The flow on the 4 paths (Figure 1.3) is represented by f = (f1, f2, f3, f4)
T ∈

R4
≥0 and the flow on an edge e is found by summing the flow on the paths using

edge e, e.g. x1 = f1 + f2. The cost of the paths, c = (c1, c2, c3, c4)
T , is then the sum

of the travel times of its edges and thus also dependent on any other flow using the

same edges, e.g.

c1(f) = t1(x1) + t3(x3) + t5(x5).

The objective of user equilibrium is to route a demand d1 between (A,E) such that

the cost of the used paths is equal and to separately route a demand d2 between

(B,E) such that the cost of the used paths is equal. More formally, find a set of

path flows f = (f1, f2, f3, f4)
T that satisfy a routing demand d1 for (A,E) given by

f1 +f2 = d1 and a routing demand d2 for (B,E) given by f3 +f4 = d2, such that the

cost of the nonempty paths for each commodity are equal and less than the empty

paths.

For the given example, the commodity demands are:

d1 = 2

d2 = 3.

A solution to user equilibrium is f∗ = (1, 1, 2, 1)T , which results in the set of edge

flows x∗ = (2, 3, 3, 2, 5)T . The cost of the paths for each commodity are equal and

minimised.

c1(f) = c2(f) = 7

c3(f) = c4(f) = 8.
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It can be shown that given certain conditions for the travel time functions, the edge

flow vector x∗ is unique [135, 152], see Section 1.3.3. Given the solution x∗ is unique,

what about the path flow vector f∗, is this unique?

To illustrate that this is not the case it is possible to form a linear system of

equations. First, as the flow on an edge is the sum of the paths using the edge

write x = ∆f , where ∆ is the edge/path incidence matrix - note that this also

gives convenient expressions for the flows and their respective costs, f = ∆Tx and

c = ∆Tt, where t = (t1(x1), t2(x2), t3(x3), t4(x4), t5(x5))
T . Second, f1 + f2 = d1 and

f3 + f4 = d2 can be expressed by the relationship Af = d, where A specifies the

paths for a given commodity and d is the demand for said commodity. Thus the

unique solution x∗ can be represented by the system of equations∆
A

 f =

x∗

d

 .

The given example is a system of [7× 4] equations,

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

1 1 1 1

1 1 0 0

0 0 1 1




f1

f2

f3

f4

 =



x1

x2

x3

x4

x5

d1

d2


=



2

3

3

2

5

2

3


,

having rank

∆
A

 = 3, resulting in the underdetermined system with one free

variable e1 given by the system of equations

f1 = e1

f2 = 2− e1

f3 = 3− e1

f4 = e1.

Thus, infinitely many path flow solutions can be generated, demonstrating that path

flow solutions are not necessarily unique.
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1.2.3.2 Brief History of TAP

The formulation of the traffic assignment problem with elastic demand (TAP-E)

was first developed by Beckmann, McGuire and Winsten [19] who prove that the

optimal solution to the user equilibrium problem is unique with regards to the flow

on the edges. Dafermos and Sparrow [43] defined the fixed demand case TAP in its

edge-path form. The idea of marginal cost taxation is discussed by Pigou [1], Beck-

mann, McGuire and Winsten [19] and Dafermos and Sparrow [43]. Roughgarden

[147] makes use of the idea in his analysis of the price of anarchy. Murchland [114],

and Dantzig [45] showed that TAP and TAP-E are equivalent under network trans-

formations that introduce edges to simulate the behaviour of the inverse demand

function. Thus it had been sufficient to develop methods to solve the fixed demand

case. The convex combination (Frank-Wolfe) algorithm was first presented as a

method for solving quadratic programs [65]; Bruynooghe, Gilbert and Sakarovitch

[34] provide the first known application of the Frank-Wolfe algorithm for TAP; for

a detailed survey of link-based methods (link-based is the name given in the lit-

erature, where link is an alternative name for edge) and models, see Patrikkson

[135]. Owing to the convergence issues surrounding link-based methods, path-based

(e.g. Jayakrishnan et al [83]) and bush-based (hybrid link-path) methods (e.g. Dial

[57], Bar-Gera [13]) have been developed converging to a greater degree of accuracy.

Empirical studies comparing edge-based, path-based and bush-based methods are

found in ([57], [136], [154]).

It is easy to understate the contribution and importance of the work of Mar-

tin J. Beckmann. Boyce, Mahmassani and Hani [32] provide a retrospective of the

influential 1956 work Studies in the Economics of Transportation [19] and Haupt-

mann, Krelle and Mosler capture his contributions made to the fields of Operations

Research and Economic Theory [75]. During the early 1950s Beckmann worked on

a continuous model of transport [17] [18] utilising the Euler-Lagrange equations.

Then, with the newly presented conditions of optimality by Khun and Tucker [87],

Beckmann and his colleagues arrived at the objective function for TAP (see Boyce

for a more detailed discussion [30]).
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1.2.3.3 System Optimal

The traffic assignment problem is equivalent to Wardrop’s first principle but it is

easily modified to be equivalent to Wardrop’s second principle. The second principle

states that the total travel time spent by all routed flow for all commodities should

be minimised. As the cost experienced by flow on the edge e is te(xe), the total cost

experienced by all flow for edge e is then xete(xe). Thus, the total travel time T

experienced for all flow is the sum over all edges of the total edge costs given by the

formula T (x) =
∑

e∈E xete(xe).

1.2.3.4 Braess Paradox

Pigou’s example illustrates a key point for the traffic assignment problem (inherent

in Game Theory) that selfish behaviour rarely leads to a socially optimal solution,

i.e. although some may suffer, the overall effect is beneficial to the group. More

disturbing is the paradox discovered by Braess [33] in which the addition of an edge

can actually lead to an equilibrium flow that is not only socially suboptimal, but

also detrimental to all users. The difficulty of discovering a Braess paradox has been

shown to be NP-hard by Roughgarden [145]. It has also been shown by Nagurney

that the wisdom of crowds prevails at a high enough demand [116]. That is to say,

for a given demand it is profitable for a user to take the Braess path; however,

beyond that the users shift towards the non-Braess paths, until at a high enough

demand the Braess path is no longer profitable to any user.

Remarkably the Braess paradox has been found to exist in many real physi-

cal systems and field such as transportation networks [144], electrical engineering,

mechanical systems [39], biology [113] and sports [153, 72].

To illustrate the paradox the following example from [118] is presented, Figure

1.4 displays the classic Braess network, with cost functions given by Table 1.1 and

a single commodity which routes a demand d = 6 between vertices 1 and 4.
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Figure 1.4: Braess network.

xe te(xe)

x12 t12(x12) = 10x12

x13 t13(x13) = x13 + 50

x23 t23(x23) = x23 + 10

x24 t24(x24) = x24 + 50

x34 t34(x34) = 10x34

Table 1.1: Edge cost functions for example given in 1.4.

Consider first the case when the dotted edge between vertices 2 and 3 is not

present. In this case the equilibrium cost can be calculated by equating the cost of

path π1, cπ1 = 10x12 +x24 + 50, passing through vertices 1− 2− 4 and the cost path

π2, cπ2 = x13 + 10x34 + 50, passing through vertices 1 − 3 − 4 which results in the

equation

10x12 + x24 + 50 = x13 + 10x34 + 50. (1.1)

Clearly the flow on the edges on path π1 are equal and the flow on the edges on path

π2 are equal, i.e. x12 = x24 and x13 = x34, and the flow leaving vertex 1 must be 6,

i.e. x12 = x13 = 6. Substituting these into equation (1.1) gives the equilibrium edge
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flow solution x12 = x24 = x13 = x34 = 3 and path flow solution fπ1 = fπ2 = 3. The

cost of the paths cπ1 = cπ2 = 83.

Considering the case where the edge (2, 3) is introduced to the current equilib-

rium solution. The cost of the path π3 (which is currently empty, i.e. x23 = 0)

passing through vertices 1− 2− 3− 4 is cπ3 = 10x12 + x23 + 10 + 10x34 = 70. Thus

there is an incentive for users to shift their paths from the higher cost paths of π1

and π2 to the lower cost path π3. Similarly if all flow is placed on the new path π3,

then paths π1 and π2 are of lower cost and flow will shift evenly between the two

paths. Finally, if flow is placed on paths π1 and π3 and cost equalised cπ1 = cπ3 ,

then π2 would be a cheaper option than π3, as the cost of the edges not common to

both paths for π3, x12 and x23 are clearly more expensive than the empty edge x13

for path π2. Therefore the set of paths that satisfy Wardrop’s first principle (user

equilibrium), i.e. there is not an empty path of lower cost available, is all three

paths which must have equal cost, cπ1 = cπ2 = cπ3 .

To find the equilibrium for the second case the path-edge equations can be

utilised, namely the flow on a given edge is the sum of the flow on the paths that

utilise the edge.

x12 = fπ1 + fπ3 (1.2a)

x13 = fπ2 (1.2b)

x23 = fπ3 (1.2c)

x24 = fπ1 (1.2d)

x34 = fπ2 + fπ3 . (1.2e)

Substituting (1.2) into the paths costs cπ1 , cπ2 and cπ3 and taking into account the

demand equation fπ1+fπ2+fπ3 = 6, cπ3 the following system of equations is obtained,

cπ1 = 11fπ1 + 10fπ3 + 50 (1.3a)

cπ2 = 11fπ2 + 10fπ3 + 50 (1.3b)

cπ3 = 10fπ1 + 10fπ2 + 21fπ3 + 10 (1.3c)

6 = fπ1 + fπ2 + fπ3 , (1.3d)
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which must also satisfy the equilibrium condition,

cπ1 = cπ2 = cπ3 .

Clearly equating cπ1 (1.3a) and cπ2 (1.3b) yields fπ1 = fπ2 . Finally by equating

cπ1 = cπ3 and some algebraic manipulation results in the equilibrium path solution

π1 = π2 = π3 = 2 with associated costs cπ1 = cπ2 = cπ3 = 92. Hence the cost per

user has risen from 83 to 92.

This illustrates the aforementioned idea that the introduction of an edge can

result in all users being worse off.

1.2.4 Congestion Games

The class of games known as congestion games was first introduced by Rosenthal

[141]; in the same year he also published a paper on network equilibrium expressed

in integers [142], which is a generalisation of the user equilibrium problem. A con-

gestion game consists of a set of players, a set of congestible facilities and a set of

strategy profiles determining how players choose a set of facilities. The cost of each

facility is dependent on the number of players choosing the facility and the payoff

to each player is then the sum of the costs of their respective choices of facilities.

Rosenthal showed that finite unweighted congestion games emit a potential function

(Section 1.2.5), which under best response dynamics (Section 1.2.4) converges to a

Nash equilibrium and this result was extended to the continuous case by Devarajan

[51] in which the number of players tends to infinity. An unweighted congestion

game can be defined as follows, for further details see [127].

Definition 1.2.9 (Unweighted congestion game). An unweighted congestion game

is a tuple (N, E ,A, l) where:

• N - The finite set of n players;

• E - The set of congestible elements;

• A - The set of pure strategy profiles (strategy space) A = A1×· · ·×An, where

Ai is the set of strategies available to player i and a given strategy for player

i, ai ∈ Ai is a set of congestible elements ai ⊆ E. A pure strategy a is then a

vector of player strategies a = (a1, . . . , an);

17



Chapter 1

• l - The vector of cost functions l = (le)e∈E , where le : N 7→ R is the cost

(latency) for congestible element (facility) e subject to the number of players

xe choosing e.

For a given strategy profile a, xe = |X|, where X = {i : e ∈ ai : ai ∈ a}. A

players cost is then given by λj =
∑

e∈ai le(xe).

Note that the size of strategies available to player i is bounded by 2|E| (either

player i chooses facility j or not) and can make the problem intractable. Studies

into restricted classes of congestion games such as linearly independent paths [64]

and single resource strategies [79] demonstrate tractability but are limited by the

scope of problems that can be modelled.

1.2.4.1 Existence of Nash Equilibria

Rosenthal [141] showed that an unweighted congestion game has at least one pure

strategy Nash equilibrium which can be found by minimising the function Φ =∑
e∈E
∑xe

i=1 le(xe). Theorem 1.2.1 is integral to providing bounds on the price of

anarchy and price of stability. i.e. it guarantees the existence of an equilibrium

solution. Another key consequence is that it exposes the notion of the potential

function as a theoretical and computation means to finding an equilibrium solution.

Section 1.2.5 details the broader area of potential games that arose from Rosenthal’s

work.

Theorem 1.2.1. (Rosenthal [141]) Unweighted congestion games possess at least

one pure-strategy Nash equilibrium.

Proof. Consider the outcome of a player’s payoff under best response dynamics

from a strategy ai to a′i to the cost of the facilities e ∈ E . Denote the corresponding

strategy profiles a and a′. Edges common to strategies are unaffected, elements not

in either strategy are unaffected, elements e ∈ ai \a′i decrease their cost to le(xe−1)

and elements e ∈ a′i \ai increase their cost to le(xe + 1). The effect to the cost of the

player is therefore
∑

e∈a′i\ai
le(xe + 1)−∑e∈ai\a′i

le(xe), however under best response

dynamics
∑

e∈a′i\ai
le(xe + 1)−∑e∈ai\a′i

le(xe) < 0.

Consider the function Φ =
∑

e∈E
∑xe

i=1 le(xe), then the change in Φ for strategy
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profile a to a′ is,

Φ(a)− Φ(a′) =

 ∑
e∈a′i\ai

xe∑
i=1

le(xe) +
∑

e∈ai\a′i

xe∑
i=1

le(xe)


−

 ∑
e∈a′i\ai

xe+1∑
i=1

le(xe) +
∑

e∈ai\a′i

xe−1∑
i=1

le(xe)


=
∑

e∈a′i\ai

le(xe + 1)−
∑

e∈ai\a′i

le(xe),

which is precisely the change to the cost of the player. i.e. Φ exactly maps the

changes under best response dynamics.

Thus a Nash equilibrium can be found by the strategy a which minimises Φ.

1.2.5 Potential Games

Potential games are a class of games introduced by Monderer and Shapley [112] that

generalises the work introduced by Rosenthal on congestion games which exhibit a

number of useful properties for studying the existence and computation of Nash

equilibria. In essence they map players’ individual strategy changes to maximise

their utility ui to a real-valued function (potential function) based on the current

strategy profile (all player strategies) of the game Φ : S 7→ R. If a player i moves to

increase their utility ui, the potential function Φ increases. The potential function

derives its name from the notion of potential energy and can be seen as a similar

mechanism for finding states of equilibrium, e.g. the potential energy of a mechan-

ical system is at a local/global optimum. An extension to the class of potential

games was given by Sandholm [148], who defined the notion of continuous player

sets. The traffic assignment problem and nonatomic selfish routing games belong to

this class of potential game, whereby the potential function is the objective (1.5a)

and the players are the infinitesimal flow distributed across the paths. Numerous

other problems within communications and networking can be modelled as a poten-

tial game, with applications in resource allocation, power control and interference

avoidance. For a detailed summary of applications see [92].

Monderer and Shapley originally proposed four categories of potential games:

exact; weighted; ordinal; generalised ordinal (not considered below). A hierarchy of

potential games is given in Figure 1.5.
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Ordinal Potential Games

Generalised Ordinal Potential Games

Weighted Potential Games

Exact Potential Games

Power Allocation, Resource Allocation
Interference Minimisation

Congestion Games(Rosenthal 1974)

Routing Games (e.g. TAP)
NetworkSharing Games

Hierarchy of Potential Games
(Mondererand Shapley 1996)

Figure 1.5: A hierarchy of potential games.

1.2.5.1 Potential Game Categories

The following categories are defined for a finite game (N,S, u), for further details

see [92]. Definitions for continuous games, games with continuous real strategy sets

and continuous and differentiable utility functions are also given by Monderer and

Shapley [112].

Definition 1.2.10. (Exact Potential Game) The game (N,S, u) is an exact potential

game (EPG) iff a function Φ : S 7→ R exists such that for strategies s = (si, s−i)

and s′ = (s′i, s−i),

ui(s
′)− ui(s) = Φ(s′)− Φ(s), ∀si, s′i ∈ Si, ∀s−i ∈ S−i,∀i ∈ N.

i.e. the change in a player’s utility by that player switching to an alternative

strategy results in an equal change to the potential function.

Definition 1.2.11. (Weighted Potential Game) The game (N,S, u) is an weighted

potential game (WPG) iff a function Φ : S 7→ R exists such that for strategies

s = (si, s−i), s
′ = (s′i, s−i) and positive weight wi,

ui(s
′)− ui(s) = wi(Φ(s′)− Φ(s)), ∀si, s′i ∈ Si,∀s−i ∈ S−i,∀i ∈ N.
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i.e. the change in a player’s utility by that player switching to an alternative

strategy results in an equal weighted change to the potential function.

Note that an exact potential game is a weighted potential game with weights all

equal to 1.

Definition 1.2.12. (Ordinal Potential Game) The game (N,S, u) is an ordinal

potential game (OPG) iff a function Φ : S 7→ R exists such that for strategies

s = (si, s−i) and s′ = (s′i, s−i),

ui(s
′)− ui(s) > 0 ⇐⇒ Φ(s′)− Φ(s) > 0, ∀si, s′i ∈ Si,∀s−i ∈ S−i,∀i ∈ N.

i.e. the change in a player’s utility by that player switching to an alternative

strategy results in a change to the potential function of equal sign and vice versa.

Owing to this equivalence, clearly a WPG is also an OPG. Hence the following

hierarchy is established: every EPG is a WPG which is a OPG. Thus any properties

of OPGs apply to both EPGs and WPGs.

1.2.5.2 Existence of Pure Strategy Nash Equilibrium

One of the most fundamental results of ordinal potential games is that they have at

least one pure strategy Nash equilibrium.

Theorem 1.2.2. (Monderer and Shapley [112]) The set of strategy profiles that

result in a value of Φ that cannot be improved by any player switching to another

strategy are pure strategy Nash equilibrium of the ordinal potential game.

Proof. Let s = (si, s−i) s′ = (s′i, s−i) be strategy profiles whereby Φ(s′) − Φ(s) >

0, ∀si, s′i ∈ Si; ∀s−i ∈ S−i;∀i ∈ N , i.e. there is no unilateral deviation by any

player that improves Φ. By (1.2.12), ∀i ∈ N , any move by a player i ∈ N would

result in a decrease in the utility ui. Hence s is stable.

Corollary 1.2.2.1. (Monderer and Shapley [112]) Every ordinal potential game has

at least one pure strategy Nash equilibrium.

Proof. Let s be a strategy profile that maximises Φ. Thus any move by any player

i ∈ N would result in a decrease in Φ and by (1.2.12) would result in a decrease in

the utility ui. Therefore ∀i ∈ N any move by a player i results in a decrease in their

utility i and hence s is stable.
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1.2.5.3 Best Response Dynamics

Best response dynamics utilises the concept of a player’s best response, but moves

are made sequentially. That is, players take turns to make a best response to the

current state of the game. It was shown by Monderer and Shapley [112] that finite

ordinal potential games (those with a finite strategy set) have a finite improvement

property, that is, any improvement path, a sequence of strategy profiles generated

by each player (in turn) making a best response move to improve their utility and

terminating if no player can improve their utility, is finite. Such a sequence of

moves (s0, s1, s2, . . . , sk) must terminate in a finite ordinal potential game as Φ(s0) <

Φ(s1) < Φ(s2) < · · · < Φ(sk) and the strategy profile set S is finite and thus

Φ is bounded. Moreover, a finite improvement path must terminate at a Nash

equilibrium, as otherwise this would lead to a contradiction as the path would have

terminated with a best response move available to a player. The finite improvement

property and the existence of at least one pure strategy Nash equilibrium provide a

powerful technique for analysing Nash equilibria and bounding the price of stability

in these types of games and is the main rationale for the attention they have received.

1.2.5.4 Bounds on the Price of Stability

The potential function of an ordinal potential game can be used to establish an

upper bound on the price of stability and is implicit in [5].

Theorem 1.2.3. For an ordinal potential game with potential function Φ, assume

that for a strategy profile s′ that maximises Φ and strategy profile s∗ that maximises

the social cost C and some constants A,B > 0,

A · C(s′) = Φ(s′)

and,
C(s∗)

B
= Φ(s∗).

Then the price of stability is at most AB.

Proof. As s′ is the strategy profile maximising Φ, then s′ is a Nash equilibrium.

Thus,

A · C(s′) = Φ(s′) ≥ Φ(s∗) =
C(s∗)

B
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and,
C(s′)

C(s∗)
≤ AB.

Note that this bound may not be tight as the equilibrium found my maximising

the potential function may not be the best equilibrium (i.e. the one with minimum

cost). For the Global Connection Game, a cost sharing congestion game where

every congestible element has a cost ce(xe) = ke
xe

(users share the fixed cost ke, as

opposed to contributing to it) the upper bound on the price of stability is Hk (the

kth harmonic number) generated by the constants 1 and Hk [5].

1.2.5.5 PLS-Completeness

Best Response Dynamics provides an algorithmic approach to finding pure strategy

Nash equilibria in potential games; however, the computation of these equilibria need

not necessarily be done in reasonable time. The class of PLS problems, introduced

by Johnson, Papadimitriou and Yannakakis [85], is a complexity class in which the

problem of finding a local optimum is hard, but a local optimum can be verified

within its neighbourhood in polynomial time. Fabrikant, Papadimitriou, Talwar

[60] showed that ordinal potential games (referred to as general potential games)

are PLS-complete.

The first problem to be shown to be PLS-complete by Johnson et al [85] was the

maximum satisfiability problem (MAX-SAT). Krentel [90] showed that the weighted

MAX-SAT problem is also PLS-complete and it is through a reduction to weighted

MAX-SAT by which the computation of Nash equilibria in potential games is shown

to be PLS-complete [60].

Whilst the nature of the PLS-complete class makes designing algorithms difficult,

it does however motivate the study of local search methods, such as metaheuristics,

for generating Nash equilibria in potential games.

1.3 Nonatomic Selfish Routing

The notation used to define both the nonatomic selfish routing and unweighted

atomic selfish routing models is consistent with the literature, but uses some addi-
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tional set notation that is based on the notation used by Roughgarden in [147].

Given a network G = (V,E) and a set of commodities K of k OD pairs

{(r1, s1), . . . , (rk, sk)}. For each commodity (ri, si) there is an amount of traffic di to

be routed between ri and si, the set of used paths by commodity (ri, si) is denoted

by Πi. The set of all paths used for all commodities is then Π =
⋃

i Πi. Let fπ

to be the amount of flow routed along path π and xe to be the amount of flow

induced onto edge e, xe =
∑

π∈Π:e∈π fπ. The cost of an edge te(xe) is a function of

the flow on the edge e, which is the aggregated flow from all paths that use edge e.

A feasible flow f induces a flow x = (xe)e∈E and therefore the cost of a path π is

cπ = cπ(f) =
∑

e∈π te(xe).

Defining the shortest path and its cost between commodity (ri, si) as π∗
i and

cπ∗
i
, respectively, then the principle of user equilibrium is succinctly stated as the

nonlinear complementarity problem [62],

0 ≤ cπ − cπ∗
j
⊥ fπ ≥ 0 ∀π ∈ Πj,∀j ∈ {1, . . . , k}, (1.4)

that is, either the cost of a path π ∈ Πj between a given commodity (rj, sj) is equal

to the shortest path π∗
j for commodity (rj, sj) or there is no flow on the path.

An instance of a nonatomic selfish routing game is given by the triple (G, d, t)

where d = (dj)j∈{1,...,k} is a vector of demands and t = (te)e∈E is a vector of edge

travel time functions (an example was given in Section 1.2.3). The above definition

therefore makes the assumption that commodities are homogeneous, i.e. there is a

single demand di to be routed for a given OD pair (ri, si), and that the flows on

edges xe and paths fπ can be fractional.

1.3.1 Path-based Model

The path-based model is motivated by the potential combinatorial explosion of the

supply/demand constraints of the link-based formulation given in Section 1.3.5.

The decision variables are the paths used by the commodities and the number of

constraints and variables can be managed through column-generation methods (see

Section 5.3.2). The path-based model can be stated as the following optimisation

problem [135]:

24



Chapter 1

minimise U(x) =
∑
e∈E

∫ xe

0

te(ω)dω (1.5a)

subject to ∑
π∈Πj

fπ = dj, ∀j ∈ {1, . . . , k} (1.5b)

∑
π∈Π:e∈π

fπ = xe, ∀e ∈ E (1.5c)

fπ ≥ 0, ∀π ∈ Π, (1.5d)

subject to the three assumptions:

A1. The network is strongly connected.

A2. The traffic demand dj is non-negative for all j ∈ {1, . . . , k}.

A3. The travel time function te : [0,∞)→ [0,∞) are non-negative, continuous and

non-decreasing. N.B. Functions of this type will be referred to as a congestible

function for the remainder of this thesis.

To find a solution to Wardrop’s second principle one can replace the objective func-

tion U(x) with the objective function that minimises the total travel time, resulting

in the following optimisation problem adhering to assumptions A1, A2 and A3.

minimise T (x) =
∑
e∈E

xete(xe) (1.6a)

subject to ∑
π∈Πj

fπ = dj, ∀j ∈ {1, . . . , k} (1.6b)

∑
π∈Π:e∈π

fπ = xe, ∀e ∈ E (1.6c)

fπ ≥ 0, ∀π ∈ Π. (1.6d)

For the optimisation problems (1.5) and (1.6), assumptions A1 and A2 ensure that

every pair of vertices can be a commodity and that a positive amount of traffic

is routed. Assumption A3 ensures the uniqueness of the solution in terms of edge

flows (see Section 1.3.3). It is common in the literature for a weaker variant of A3 to
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be used which guarantees uniqueness for the equilibrium problem, but not system

optimal problem.

Whilst unique in terms of edge flows, the path decomposition for edges xe =∑
π∈Π:e∈π fπ is generally not unique. In fact for most instances of the path-based

model the set of all possible paths for all commodities is much greater than the set

of edges E and would result in an underdetermined system of linear equations with

a non-empty null space for the set of paths.

1.3.2 Equivalence of the Optimisation Problem (1.5) to User

Equilibrium

It can be shown that the optimal solution to the problem given by (1.5) is equivalent

to user equilibrium, i.e. it solves Wardrop’s first principle (Section 1.2.2.2) and the

nonlinear complementarity problem (1.4). A proof via the Karush–Kuhn–Tucker

(KKT) conditions is given and further details can be found in [152].

Theorem 1.3.1. Let x∗ be an optimal solution to the optimisation problem (1.5),

then any network flow f which induces the edge flow x∗ is a solution to the nonlinear

complementarity problem (1.4), i.e. it is equivalent to user equilibrium.

Proof. Let x∗(f) be an optimal solution to (1.5) induced by a flow f . The Lagrangian

of the optimisation problem is given by,

L(f , λ) = U(x∗(f)) +
k∑

j=1

λj

dj −
∑
π∈Πj

fπ

 , (1.7)

and given that,

∂xe

∂fπ
=

∂

∂fπ

∑
π∈Π:e∈π

fπ =

1 if e ∈ π

0 if e /∈ π.

Let δπe be an indicator variable that represents whether edge e is on path π, i.e.

δπe = 1 represents that edge e is on path the π, then by the chain rule,

∂U(x∗(f))

∂fπ
=
∑
e∈E

∂U

∂xe

∂xe

∂fπ
=
∑
e∈E

te(xe)δ
π
e =

∑
e∈π

te(xe) = cπ(f),
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the resulting KKT conditions are:

fπ
∂L(f , λ)

∂fπ
= 0 =⇒ fπ(cπ(f)− λj) = 0 ∀π ∈ Πj, ∀j ∈ {1, . . . , k} (1.8)

∂L(f , λ)

∂fπ
≥ 0 =⇒ cπ(f)− λj ≥ 0 ∀π ∈ Πj, ∀j ∈ {1, . . . , k} (1.9)

∂L(f , λ)

∂λj

= 0 =⇒
∑
π∈Πj

fπ = dj ∀j ∈ {1, . . . , k} (1.10)

fπ ≥ 0 ∀π ∈ Πj, ∀j ∈ {1, . . . , k}. (1.11)

The KKT conditions (1.10) and (1.11) are just the feasibility constraints of the

program (1.5) . Replacing the constant λj with the shortest path for commodity j,

cπ∗
j
, then equations (1.8) and (1.9) are equivalent to the nonlinear complementary

problem, that is either the cost of a path π ∈ Πj is greater than the shortest path

for commodity j or the flow on the path is zero (the path is empty).

1.3.3 Uniqueness of the User Equilbrium Solution of (1.5)

Much like the equivalence of the previous section, it can also be shown that the

optimal solution to the problem given by (1.5) is unique in terms of flows on the

edges. Further details can be found in [152].

Theorem 1.3.2. An optimal solution x∗ to (1.5) is unique in terms of the edges

flows x.

Proof. The feasible region, defined by the linear equality constraints (1.5b) and

non-negativity constraints (1.5d), is clearly closed and convex.

The first and second derivatives of the objective function (1.5a) with respect to

the edge flows xe are given by,

∂U(x)

∂xe

= te(xe) (1.12)

∂2U(x)

∂xe∂xa

=
∂te(xe)

∂xa

=


dte(xe)
dxe

if e = a

0 if otherwise.

(1.13)

The Hessian ∇2U(x) is positive definite and the objective function is strictly convex.

As the feasible region is closed and convex, the optimal solution x∗ is unique.
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1.3.4 Marginal Cost Taxation

An important result relating to nonatomic selfish routing games is that via a small

change to the edge cost functions, the user equilibrium solution to the changed

network is also the socially optimal solution of the original network. This allows

methods that solve the user equilibrium problem to be used to solve the socially

optimal problem. The following proof is given, for further details see [135].

Theorem 1.3.3. Let (G, d, t) be a nonatomic selfish routing instance and (G, d, t̃) be

another instance with marginal cost functions t̃e(xe) = te(xe) + xet
′
e(xe). A solution

x∗ is a solution to system optimal for the instance (G, d, t) if and only if it is a

solution to user equilibrium for (G, d, t̃).

Proof. The optimisation problem for system optimal is defined by (1.6).

For an instance (G, d, t) for which the system optimal solution is sought, the

Lagrangian is given by,

L(f , λ) = T (x(f)) +
k∑

j=1

λj

dj −
∑
π∈Πj

fπ

 , (1.14)

and noting that,

∂T (x(f))

∂fπ
=
∑
e∈E

∂T (x)

∂xe

∂xe

∂fπ
=
∑
e∈E

(te(xe) + xet
′
e(xe))δ

π
e =

∑
e∈π

(te(xe) + xet
′
e(xe)).

Letting t̃e(xe) = te(xe) + xet
′
e(xe) and c̃π(f) =

∑
e∈π t̃e(xe), then the resulting KKT

conditions are:

fπ
∂L(f , λ)

∂fπ
= 0 =⇒ fπ(c̃π(f)− λj) = 0 ∀π ∈ Πj, ∀j ∈ {1, . . . , k} (1.15)

∂L(f , λ)

∂fπ
≥ 0 =⇒ c̃π(f)− λj ≥ 0 ∀π ∈ Πj, ∀j ∈ {1, . . . , k} (1.16)

∂L(f , λ)

∂λj

= 0 =⇒
∑
π∈Πj

fπ = dj ∀j ∈ {1, . . . , k} (1.17)

fπ ≥ 0 ∀π ∈ Πj, ∀j ∈ {1, . . . , k}. (1.18)

Thus t̃e(xe) can be seen as the marginal cost incurred by all flow using the edge due

to a marginal increase in flow [152].

Let f∗ be an optimal flow that induces a set of optimal edge flows x∗ for system

optimal for the instance (G, d, t), then clearly f∗ satisfies (1.15) and (1.16). Replacing
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λj with the shortest path for commodity j in (G, d, t̃), c̃π∗
j
, the user equilibrium

conditions are recovered for (G, d, t̃) for the flow f∗ and edge flows x∗. f∗ is also a

feasible flow for (G, d, t̃) as the feasibility is not affected by the change to the edge

cost functions t to t̃.

Let f̂ be an optimal flow that induces an optimal set of edge flows x̂ for user

equilibrium for (G, d, t̃). Clearly, as above, f̂ is also a feasible flow for (G, d, t). For

every commodity j, every path π ∈ Πj if used should be equal to the shortest path

cost c̃π∗
j

=⇒ cπ (̂f) − c̃π∗
j
(̂f) = 0 and fπ > 0. Any unused path should be equal or

cost more than the shortest path and have zero flow =⇒ cπ (̂f) − c̃π∗
j
(̂f) ≥ 0 and

fπ = 0. Let c̃π∗
j

replace λj,∀j ∈ {1, . . . , k}, then f̂ simultaneously satisfies (1.15)

and (1.16)

It is interesting to note that by considering the instance (G, r, t̃), the objective

function (1.5a) for (1.5) follows trivially,

t̃e(xe) =
d

dxe

(xete(xe)) (1.19)∫ xe

0

t̃e(ω)dω = xete(xe) (1.20)∑
e∈E

∫ xe

0

t̃e(ω)dω =
∑
e∈E

xete(xe). (1.21)

The connection between the two instances (G, d, t) and (G, d, t̃) provide a simple

means of marginal cost taxation applied to the edges. Tax each edge xet
′
e(xe), edges

belonging to (G, d, t) now cost t̃e(xe) and thus a state of user equilibrium under the

prescribed taxation rule results in system optimal for the instance (G, d, t).

The consequence of this should not be understated as it allows any method

developed to solve (1.5) to also solve (1.6)

1.3.5 Multi-commodity Flow Model

Network equilibrium can be modelled as a multi-commodity flow problem (MCFP)

whereby the cost function on an edge te adheres to the restrictions placed upon it

in Section 1.3.1.

The decision variables of the optimisation problem are the flow on each of the

edges. It is assumed that the flow that is routed between a commodity is homogenous

and fractional. A consequence of this is that it can be split across multiple paths
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between commodities source and sink. A major issue with the formulation is that

it suffers with an combinatorial explosion of supply/demand constraints as the size

of the network increases.

Let K be the set of k commodities K = {(r1, s1), (r2, s2), . . . (rk, sk)} which each

route a demand of dk. Let E+
i represent the set of outgoing edges of vertex i and

E−
i the set of incoming edges of vertex i. The multi-commodity flow model is then

given as:

minimise U(x) =
∑
e∈E

∫ xe

0

te(ω)dω (1.22a)

subject to

∑
e∈E−

i

xj
e −

∑
e∈E+

i

xj
e =


dj i = rj

−dj i = sj

0 otherwise

, ∀i ∈ V

(1.22b)

xe =
k∑

j=1

xj
e, ∀e ∈ E

(1.22c)

xj
e ≥ 0, ∀e ∈ E,∀j ∈ {1, . . . , k}.

(1.22d)

The supply and demand balance constraints given by (1.22b) ensure that for a

given vertex the incoming flow and outgoing flow is appropriately balanced with the

demand leaving or entering vertex. The bundle constraints (1.22c) ensure that the

total flow on an edge is the sum of all induced flows by all commodities on edge e.

1.4 Atomic Selfish Routing

An atomic selfish routing game is defined as follows. Let G be a directed graph

G = (V,E) and for each player i ∈ N associate a commodity (si, ri) and positive

traffic demand di. Let te(xe) be the congestible cost function for edge e that are

non-negative, continuous and non-decreasing. A player’s strategy set Πi is the set

of possible paths from source to sink, i.e. a strategy π ∈ Πi is a path consisting
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of edges e ∈ E. Therefore the cost to a given player choosing a particular path is

dependent on the number of players choosing paths which share edges in the graph.

An atomic routing game is given by the triple (G, d, t), where d = (di)i∈N > 0

and t = (te)e∈E.

The difference between atomic and nonatomic selfish routing is that whereas a

commodity in nonatomic routing games represents many agents (users) controlling

a negligible (fractional) amount of traffic, a commodity in an atomic instance rep-

resents an agent who controls a non-negligible amount of traffic [127]. Loosely they

can be seen to represent the continuous and discrete routing cases.

1.4.1 Weighted Atomic Selfish Routing Game

A weighted atomic selfish routing game is an atomic selfish routing game where play-

ers do not control an equal amount of traffic demand di. Awerbuch et al. (2005)

provided an example that showed that equilibrium is not guaranteed in such in-

stances [7].

1.4.2 Unweighted Atomic Selfish Routing Game

An unweighted atomic selfish routing game is an atomic routing game given by

(G, d, t) where each player routes an equal demand di = D [146]; however, only the

case when a player routes him or herself is considered, i.e. di = 1, ∀i ∈ N .

1.4.2.1 Existence of Nash Equilibrium

Theorem 1.4.1. (Rosenthal) Unweighted atomic selfish routing games, di = 1, ∀i ∈
N , possess at least one pure-strategy Nash equilibrium

Proof. An instance of an unweighted atomic selfish routing game (G, d, t), di =

1, ∀i ∈ N , is clearly an unweighted congestion game by the mapping:

• N = N

• E = E, the edges of the graph G.

• A - All feasible flows f over all paths Π =
⋃

i Πi, all paths for all commodities.
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• l = (te)e∈E, the cost of an edge in the graph subject to the flow on the edge.

Thus by Theorem 1.2.1 a Nash equilibrium can be found by the strategy a which

minimises the potential function Φ =
∑

e∈E
∑xe

i=1 te(xe).

1.4.3 Non-uniqueness of Nash Equilibrium

Whilst Theorem 1.4.1 guarantees at least one pure-strategy Nash equilibrium, it

does not provide any guarantees that this is unique. In fact Rosenthal showed via a

simple counter-example that this is indeed the case [142].

1.4.4 Path-based Model

The following optimisation problem captures the unweighted atomic selfish routing

game where di = 1, ∀i ∈ N .

minimise U(x) =
∑
e∈E

xe∑
i=0

te(i) (1.23a)

subject to ∑
π∈Πi

fπ = 1, ∀i ∈ N (1.23b)

n∑
i=1

∑
π∈Π:e∈π

fπ = xe, ∀e ∈ E (1.23c)

fπ ≥ 0, ∀π ∈ Π (1.23d)

fπ ∈ {0, 1}, ∀π ∈ Π. (1.23e)

Given the assumption that players are homogeneous and route 1 unit of flow, let

i represent the group of players routing flow between (ri, si). This can then be

considered as commodity i and the subsequent demand di is the number of players

attached to i. Let k be the number of commodities (groups), then the optimisation

problem can be recast to mirror the optimisation problem given for the nonatomic

selfish routing model.

32



Chapter 1

minimise U(x) =
∑
e∈E

xe∑
i=0

te(i) (1.24a)

subject to ∑
π∈Πj

fπ = dj, ∀j ∈ {1, . . . , k} (1.24b)

∑
π∈Π:e∈π

fπ = xe, ∀e ∈ E (1.24c)

fπ ≥ 0, ∀π ∈ Π (1.24d)

fπ ∈ Z, ∀π ∈ Π. (1.24e)

Note that the solution to this problem is the equilibrium found by the potential

function (1.24a), but others may exist.

System optimal can be found by replacing the objective functions (1.23a) and

(1.24a) by

T (x) =
∑
e∈E

xete(xe). (1.25)

1.4.5 Connection to Nonatomic Selfish Routing

By comparing the optimisation problems given by (1.5) and (1.24) it is clear to see

that (1.24) is a discretisation of (1.5), that is, it is the discrete traffic assignment

problem in which flow is discretised into integers, i.e. the corresponding Riemann

sum over the domain [0, xe],∑
e∈E

∫ xe

0

te(ω)dω =
∑
e∈E

lim
∆ω→0

n∑
i=1

te(ω
∗
i )∆ωi.

1.5 Multi-objective Optimisation

Many authors have discussed multi-objective selfish routing (traffic assignment)

whereby users consider two or more objectives simultaneously. Two objectives were

studied as early as Schneider (1968) [151] and Dial (1979) [54], albeit that these ob-

jectives are flow-independent. Two or more flow-dependent objectives were studied

by Dafermos [42], Leurent [98, 99], Dial [55, 56]. Multiple objectives and classes

of vehicles are considered by Nagurney [115], Nagurney and Dong [117], Yang and

Huang [171], Han and Yang [74] and Sun et al [157]. For a further discussion on
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the history see Raith [140]. A key cornerstone of this work is that the objectives

are desirable when viewed from the perspective of the user and thus are optimised

based on their preferences. In general, these have sought to minimise a weighted

linear combination of the original criteria, converted into units known as value of

time (VoT).

Although the weighted sum method is widely recognised as one of the key scalar-

isation techniques in multi-objective optimization (see, e.g. Ehrgott [59], Göpfert

et al. [70] and Jahn [82], and the references therein), this method has its own lim-

itations when modelling more complex network flow optimisation problems, where

one considers competing objectives which road users are not necessarily motivated

to optimise, such as fuel consumption. An alternative approach is to formulate a

bi-level optimisation problem whereby an upper-level objective is to be optimised,

but is subject to the optimisation of a set of lower-level objectives. For example,

the upper-level objective could be the reduction of emissions and the lower-level ob-

jective would be to solve the traffic assignment problem under the current fixed set

of variables for the upper-level problem. An example is the bi-level transportation

network design problem with environmental considerations (BTPE) (see Szeto et al

[158]).

Multi-objective optimisation problems naturally have numerous candidates for

an optimal solution and in general the best that can be done is to classify the set of

solutions that are Pareto optimal [59]. There are also the concepts of the ideal and

nadir solutions, which are the theoretical bounds on the Pareto set and generally

unattainable [59, 172, 173].

Methods for solving multi-objective optimisation problems are normally tailored

to the problem at hand. As noted above, one approach is to combine the multi-

objectives into a weighted single objective and attempt to solve via common single

objective optimisation techniques. Another approach is to use a heuristic method,

such as a meta-heuristic, e.g. an evolutionary algorithm, to find solutions to the

problem, although the solutions found may be suboptimal and not represent the

true Pareto set [48]. The multi-criteria optimisation in this thesis was done from a

principle view of modelling options and proof of concepts, not to develop state of

the art methods for solving multi-objective optimisation methods. Chapter 2 covers
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single criteria methods which can then be used to solve multi-criteria problems using

the weighted sum approach.

The price of anarchy and the price of stability are both defined for single objec-

tive optimisation problems, i.e. a utility function C : S 7→ R. Chen, Kedong, et al

[37] provided a bound for the price of anarchy for a multi-class and multi-criteria

traffic problem; however, this relied on the VoT and using a weighted sum to provide

a single objective for both the equilibrium and system optimal cases. Assessing the

suboptimality and efficiency of an equilibrium solution against the system optimal in

a multi-criteria Pareto context has not been explored and requires careful consider-

ation of the following: What is a socially optimal solution?; What is an equilibrium

solution?; How are these compared to assess the degradation of the network?; How

are they measured?

1.6 Importance Measures in Selfish Routing

Given the nature of selfish routing games and their representation via a network of

edges and vertices, it is natural to consider how the changes to network infrastructure

affect flow in the network.

The field of studying networks dates back to Euler’s original work on the Seven

Bridges of Königsberg which spawned the field of graph theory. More recently,

owing to the prevalence of networks within the modern developed world, there has

been an increasing desire and need to better understand the properties of networks

applicable to such diverse fields as computer science, socio-economics, neuroscience

and biology to name a few [100]. The field of network science attempts to statistically

classify particular phenomena within networks, such as their topology and routing

properties . Measures exist such as centrality, degree and clustering, which can give

a means to ranking edges and vertices are a good insight into particular questions

that arise that involve networks. Saxana and Iyengar provide a recent survey of

network science measures [149].

In recent years, much research has been done in considering the importance of

network components within the context of selfish routing, that is, what effect changes

to the network infrastructure have on the flow? Within the transportation sector,
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much emphasis has been given to ranking the network components (edges/vertices)

by their importance to provide insight into how the removal of these components

impacts the network’s ability to perform the function of selfish routing.

The term network criticality, used to describe the ordering of the network com-

ponents by their importance, was given by Jenelius, Petersen and Mattsson in 2006

[84], who proposed and applied three edge importance measures to road transporta-

tion networks in Sweden. There have been uses of other terms such as reliability,

vulnerability and importance analysis [102]. Numerous metrics have been proposed

and discussed and these mainly fall into three categories of functionality, assessing

travel cost, connectivity and accessibility [81].

With respect to assessing the travel cost, Wang, Chan and Li [165] consider the

unweighted case, which does not take into account the demand within the network

itself. Demand weighted measures have been studied by Balijepalli and Oppong [11];

Dehghani, Flintsch and McNeil [49]; Du, Kishi, Aiura and Nakatsuji [58]; Gauthier,

Furno and El Faouzi [66] and effectively weight the the travel cost by the associated

demand on the network. Aydin, Duzgun, Wenzel and Heinimann [8]; Demirel,

Kompil and Nemry [50]; Kermanshah and Derrible [86]; Wang and Cullinane [166]

all studied a weighted betweenness centrality metric which measures the fraction of

all-pairs shortest paths (based on travel cost) passing through a given vertex of the

network.

The study of connectivity within selfish routing has been undertaken by Mishra,

Welch and Jha [107] who consider the OD k-connectivity of a network which mea-

sures the decrease in the number of distinct OD paths. Baroud, Barker, Ramirez-

Marquez and Rocco [16]; Qiang and Nagurney [138] looked at the unsatisfied demand

which quantifies the amount of demand that cannot be routed due to the change in

the network infrastructure.

Jafino, Kwakkel and Verbraeck (2019) [81] provide a survey and empirical com-

parison of the metrics and their performance on multimodal freight transport net-

works in Bangladesh as a case study, finding a high degree of correlation between

many of the metrics and outlining a guideline for their selection.
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1.7 Aims and Objectives

To condense the goal of this thesis into a single aim is a difficult task as, in the

development of this work, a number of different but interrelating work on selfish

routing games were undertaken. However, this thesis sets out:

1. To investigate and implement methods for the use in further analysis of nonatomic

selfish routing concepts and atomic selfish routing concepts

2. To consider multi-criteria selfish routing and understand/extend the use of the

Price of Anarchy/Stability in multi-criteria scenarios

3. To analyse the existing means of assessing the criticality of network compo-

nents under equilibrium against the primary function, total travel cost.
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Network Equilibrium: Models and

Methods

Chapter Preface

Algorithms that solve the nonatomic selfish routing problem have been of great inter-

est for over 60 years because of their use in traffic planning. Several new methods

have emerged which have allowed the problem to be solved in a much shorter time-

frame for vastly large networks. Atomic selfish routing is also an active area of

interest and can be viewed as a integer/discrete version of the problem.

This chapter introduces the models and methods that solve nonatomic and atomic

selfish routing problems and those that are used in the remainder of this thesis for

the purpose of analysis.

Section 2.3 is based on work from the paper by Bagdasar, Berry, O’Neill, Popovici

and Raja [9] (Appendix A.1) and Section 2.4 is based on work from the paper by

O’Neill, Bagdasar and Liotta [132] (Appendix A.2).

Chapter Keywords

Nonatomic Selfish Routing, Atomic Selfish Routing, Traffic Assignment, Link-based,

Path-based, Bush-based, Dynamic Programming, Metaheuristic, Online Learning
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2.1 Introduction

After Beckmann, McQuire and Winsten had presented their seminal ideas in Studies

in Economics of Transportation [19], it took over a decade before algorithms were

proposed by Almond [3], Bruynooghe et al [34] and Dafermos and Sparrow [43]

to solve the Traffic Assignment Problem (Nonatomic Selfish Routing). The first

algorithms which solved the problem on small test networks were given by Leblanc

[95] and Nguygen [124, 123]. Leblanc also introduced the classic Sioux Falls network

(see Appendix C.3) to the literature, which has been a starting test case for any

proposed novel algorithms. Boyce [31] categorises algorithms into 3 broad categories,

link-based, path-based and bush-based.

Link-based algorithms were first proposed by Almond in 1967 [3], who provided

a method of averaging successive all-or-nothing assignments (see Definition 2.2.1).

Leblanc [95] amended the Frank-Wolfe algorithm (convex combination algorithm) by

replacing the step that considers the linear approximation of the objective function,

with a shortest path problem. Mitradjieva and Lindberg [108] provided an updated

Frank-Wolfe algorithm by insisting that the current search direction should be either

conjugate or bi-conjugate to the previous search directions.

Path-based algorithms can be traced back to a working paper by Bothner and

Lutter [27]; however, the first major appearances in the literature are Larsson and

Patriksson [93] who proposed disaggregated simplicial decomposition and Jayakr-

ishnan et al [83] who proposed a gradient projection method in 1994. Fifteen years

later Florian et al [63] proposed an algorithm based on Rosen’s projected gradient

algorithm.

In the early 2000s two algorithms, Origin-Based Assignment (OBA) (Bar-Gera

[13]) and Algorithm B (Dial [57]) were developed. Both algorithms reported excel-

lent results when solving the Chicago Regional network [161], consisting of 1,790

commodities, 12,982 vertices, 39,018 edges and a total demand of 1,360,427, com-

pared with link-based and path-based algorithms, Dial reported that Algorithm B

reached a relative gap (defined in Section 2.2.1) of 10−4 in approximately 30 minutes

as compared to OBA’s 175. As of 2017, Dial reports solving the Chicago Regional

network in just 18.5 minutes on a single core to a relative gap of 10−10 [52].

These two algorithms were also the genesis for Local User Cost Equilibrium
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(Gentile [68]), QBA - a revised OBA which circumvents line search (Nie [126]) and

Traffic Assignment by Paired Alternative Segments (TAPAS) (Bar-Gera [15]). For

a more detailed history see Boyce [31].

Algorithms and methods for solving the Atomic Selfish Routing game are scarce,

owing to their combinatorial nature and historical lack of practical application [88].

They do however share a large amount of structure with the MCFP (see Section

5.5), the major differences being that that the flows in the MCFP are splittable,

that is, they do not require that the demand for a given commodity is routed on

a single path and edge costs are fixed and do not depend on the flow on the edge

[127, 2].

This chapter is organised as follows. In Section 2.2 algorithms for nonatomic self-

ish routing are reviewed and outlined. Section 2.3 presents dynamic programming,

tabu search metaheuristic and piecewise linear approximation approaches developed

to solve unweighted atomic selfish routing games. Finally Section 2.4 introduces a

set of novel probabilistic online learning algorithms for the atomic selfish routing

games based on the idea of bandit machines and semi-bandit and bandit feedback.

2.2 Algorithms for Nonatomic Selfish Routing

2.2.1 Convergence Measures

In the case of nonatomic selfish routing, it is important to establish the convergence

measures required to determine that an algorithm has been successfully.

This section presents the common ones used in the literature [154] and settles

on the use of the Average Excess Cost (AEC) for the remainder of the thesis.

Relative Gap (GAP)

The Relative Gap is defined as:

GAP =

∑
e∈E xete(xe)∑
j∈{1,...,k} λjdj

− 1,

where k is the number of commodities, λj is the shortest path for commodity j and

dj is the demand for commodity j.
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The GAP is the ratio of the total travel time of the network and the cost of

routing the demand dj for each commodity j on the shortest path λj. As the network

tends to equilibrium, all used paths for a commodity will tend to the shortest path

cost λj. Thus, the GAP tends to 0.

Average Excess Cost

The Average Excess Cost is defined as:

AEC =

∑
e∈E xete(xe)−

∑
j∈{1,...,k} λjdj∑

j∈{1,...,k} dj
,

where k is the number of commodities, λj is the shortest path for commodity j and

dj is the demand for commodity j.

The AEC is the excess cost experienced when the network is not at equilibrium.

It is the difference between the total travel time and the cost of routing the demand

dj for each commodity j on the shortest path λj. Again, as the network tends to

equilibrium, all used paths for a commodity will tend to the shortest path cost λj.

Thus, the AEC tends to 0.

2.2.2 Link-based Algorithms

Link-based algorithms can be summarised as algorithms that maintain edge (link)

flows x and iteratively attempt to move the edge flows closer to an equilibrium

solution. This is generally done by using a convex combination of the current feasible

edge flows x and a new feasible target set of edge flows y.

Variants of link-based algorithms tend to differ on two courses of action. First

on how the choice of target solution y is generated and second, how the current

solution x and the target solution y are combined, i.e. the choice of weighting given

for the convex combination. A full treatment is given by Patriksson [135].

A key step in the algorithms is the all-or-nothing assignment of network flow

which is often used to obtain the target set of edge flows y and is defined as follows.

Definition 2.2.1 (All-or-nothing Assignment). Given a routing game (G, d, t), an

all-or-nothing assignment assigns, for all commodities i, the entire demand di to the

time-dependent shortest path π∗
i .
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2.2.2.1 General Iterative Scheme for a Link-based Algorithm

Link-based algorithms can be summarised by the following 5 steps.

1. Initialisation: Generate initial edge flows.

• Generate x1 = (x1
1, . . . , x

1
|E|) via an all-or-nothing assignment for OD

demands based on initial edge costs t0 = (t1(0), . . . , t|E|(0)).

• Set k = 1.

Note: An all-or-nothing assignment assigns all demand to the time-dependent

shortest path.

2. Update: Update travel times for edges.

• tk = (t1(x
k
1), . . . , t|E|(x

k
|E|)).

3. Direction Finding: Generate the target flows.

• Generate yk = (yk1 , . . . , y
k
|E|) based on tk.

4. Move:

• xk+1 = (1− αk)xk + αky
k.

Note: This is a convex combination of xk and yk. As xk ∈ X and yk ∈ X
are in the set of feasible flows X , then xk+1 ∈ X is also a feasible flow.

5. Convergence Test: If convergence met, stop. Else set k = k + 1 and return

to Step 2.

2.2.2.2 Method of Successive Averages

During each iteration the method of successive averages generates the target solution

yk via an all-or-nothing assignment and simply takes a weighted average by setting

αk = 1
k+1

. Hence αk takes successive values from the sequence (1
2
, 1
3
, 1
4
, . . . ).
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2.2.2.3 Frank-Wolfe

Named after the convex combination algorithm proposed by Frank and Wolfe in

1956 [65], the Frank-Wolfe method also generates the target solution yk via an all-

or-nothing assignment. However, for the the move step of the algorithm αk is found

by a line search that solves the following optimisation problem,

min
αk∈[0,1]

(
U((1− αk)xk + αky

k)
)
.

As U(x) is generally a nonlinear function, this can be done by a root-finding method

such as a bisection search.

2.2.2.4 Conjugate Frank-Wolfe

The target solution yk should be conjugate to the previous target yk−1, i.e.

(yk−1 − xk)THk(yk − xk) = 0, (2.1)

where,

Hk = diag
(
t1(x

k
1), . . . , t|E|(x

k
|E|)
)
,

is the positive definite Hessian of the Beckmann function U(x) (1.5a).

Let yk be a convex combination of the the previous target solution yk−1 and an

all-or-nothing assignment ŷk,

yk = (1− θ)ŷk + θyk−1. (2.2)

Substituting equation (2.2) into equation (2.1) and solving for θ,

θ =
(yk−1 − xk)THk(ŷk − xk)

(yk−1 − xk)THk(ŷk − yk−1)
. (2.3)

Thus, the target solution yk is calculated by equation (2.2) using the value of θ

given by equation (2.3).

The move step proceeds according to the standard Frank-Wolfe method, i.e. αk

is found by a line search.

2.2.2.5 Bi-conjugate Frank-Wolfe

Bi-conjugate Frank-Wolfe extends Conjugate Franke-Wolfe by considering the pre-

vious two target solutions yk−1 and yk−2. yk is chosen to be conjugate to both yk−1
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and yk−2, that is it solves the pair of equations,

(yk−1 − xk)THk(yk − xk) = 0 (2.4)

(yk−2 − xk)THk(yk − xk) = 0, (2.5)

and is a convex combination of the previous target solutions,

yk = β0ŷ
k + β1y

k−1β2y
k−2. (2.6)

Full details of both conjugate and bi-conjugate Frank-Wolfe are given in [108].

2.2.3 Path-based Algorithms

Path-based algorithms are more closely related to traditional gradient based opti-

misation methods and follow a similar iterative scheme. This section presents the

general iterative scheme and two variants from Jayakrishnan et al (1994) [83] and

Florian et al (2009) [63].

2.2.3.1 General Iterative Scheme for a Path-based Algorithm

1. Initialisation:

• For each commodity i (OD pair (ri, si)):

– Find the shortest path π∗
i based on initial edge costs t0 = (t1(0), . . . , t|E|(0))

– Initialise the set of used paths Π̂i ← {π∗
i }

– Assign all demand di to path π∗
i

• Π̂← ⋃
i Π̂i

• k ← 1

2. Update:

• Calculate xk based on all used paths Π̂

• tk = (t1(x
k
1), . . . , t|E|(x

k
|E|))

• For each commodity i (OD pair (ri, si)):

– Find the shortest path π∗
i based on the edges costs tk
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– Add the path to the set of used paths (if not already used)

Π̂i ← Π̂i ∪ {π∗
i }

3. Move:

• For each commodity i (OD pair (ri, si)):

– Shift flow between used paths, π ∈ Π̂i, to bring closer to equilibrium

fk+1
i ← fki + αk∆fki

Note: travel times may also be updated after shifting flow for each OD pair.

4. Convergence Test: If convergence met, stop. Else set k = k + 1 and return

to Step 2.

2.2.3.2 Gradient Projection [Jayakrishnan 1994]

Jayakrishnan et al proposed a quasi-newton method of the form fk+1 = fk −
αkB

−1∇fU(fk) [83]. The Move step of the algorithm proceeds by shifting flow

to the shortest path for a commodity i from the other used paths.

Gradient projection effectively computes the gradient, takes a step in that direc-

tion and then projects back onto the feasible set of solutions.

Noting that the flow fπ∗
i

on the shortest path π∗
i can be expressed in terms of

the demand di and the other used paths for commodity i,

fπ∗
i

= di −
∑

π∈Π̂i:π ̸=π∗
i

fπ, (2.7)

the shortest path flow variable can be eliminated and the gradient and Move step

computed as follows.

Let δπe be an indicator variable that represents whether edge e is on path π, i.e.

δπe = 1 represents that edge e is on path the π,

xe =
∑
i∈K

∑
π∈Π̂i:π ̸=π∗

i

δπe fπ +
∑
i∈K

δ
π∗
i

e fπ∗
i

=
∑
i∈K

∑
π∈Π̂i:π ̸=π∗

i

δπe fπ +
∑
i∈K

δ
π∗
i

e

di −
∑

π∈Π̂i:π ̸=π∗
i

fπ

 (2.8)

∂U(x(f))

∂fπ
=
∑
e∈E

∂U

∂xe

∂xe

∂fπ
=
∑
e∈E

te(xe)[δ
π
e − δ

π∗
i

e ] = cπ(f)− cπ∗
i
(f) (2.9)
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The diagonal entries of the Hessian are given by,

∂2Ū

∂f 2
π

=
∂

∂fπ

(
∂Ū

∂fπ

)
=

∂

∂xe

∂xe

∂fπ

(∑
e∈E

te(xe)[δ
π
e − δ

π∗
i

e ]

)

=
∑
e∈E

dte(xe)

dxe

[δπe − δ
π∗
i

e ]2 (2.10)

Let Eπ represent the edges on path π and not on π∗
i , i.e. δπe = 1, δ

π∗
i

e = 0 and

Eπ∗
i

represent the edges on path π∗
i and not on π, i.e. δπe = 0, δ

π∗
i

e = 1. Then the

approximation to the Hessian B consists of diagonal entries,

∂2Ū

∂f 2
π

=
∑

e∈Eπ∆Eπ∗
i

dte(xe)

dxe

,

Eπ set of edges on path π

Eπ∗
i

set of edges on path π∗
i

,

and is a positive definite diagonal matrix and therefore computing the inverse is not

computationally intensive.

Utilising the iterative scheme fk+1 = fk−αkB
−1∇fU(fk), the Move step is given

by:

Move: Calculate the new path flows.

• For each commodity i (OD pair (ri, si))

fk+1
π = max{0, fk

π −
αk

bkπ
(ckπ − ckπ∗

i
)}, ∀π ∈ Π̂i : π ̸= π∗

i

where,

ckπ − ckπ∗
i

=
∂Ū

∂fk
π

, ∀π ∈ Π̂i : π ̸= π∗
i

bkπ =
∑

e∈Eπ∆Eπ∗
i

dte(x
k
e)

dxk
e

, ∀π ∈ Π̂i : π ̸= π∗
i

fk+1
π∗
i

= di −
∑

π∈Π̂i:π ̸=π∗
i

fk+1
π

and αk is a scalar step-size.

The final stage of the Move is to calculate the new edge flows xk+1
e ∀e ∈ E. Note

that this can either be done after flow is shifted for each commodity i or after all flow

has been shifted for all commodities. The later is preferred as it requires computing
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the shortest paths once per iteration, this can be done using a single-source all

destinations algorithm such as Dijkstra’s algorithm and updating the edges flows

once. The former, for n commodities, requires updating the edge flows n times and

computing single shortest paths n times.

2.2.3.3 Projected Gradient [Florian et al 2009]

Projected gradient differs from gradient projection in that the gradient is computed

and then projected onto a feasible direction, thus when a step is taken the new point

is within the feasible set of solutions, whereas gradient projection potentially leaves

the feasible set of solutions to then be projected back.

The algorithm essentially shifts flow given by the average cost of the working

paths to maintain feasibility. The partial derivatives of U(f) with respect to the

flow on a path fπ, ∂U(f)
∂fπ

are given by (Section 1.3.2),

∂U(f)

∂fπ
= cπ(f),

and therefore the gradient vector ∇fU is,

∇fU = (cπ)Tπ∈Π.

Considering only the used paths of commodity i, the direction of steepest descent q

is given by,

qi = −(cπ)T
π∈Π̂i

.

The idea of the algorithm is to take a step ∆f in the direction of qi whilst remaining

in the feasible set. This requires that the following equation holds,∑
π∈Πi

(fπ + ∆fπ) = di,

and given, ∑
π∈Πi

fπ = di,

from equation (1.5b) then, ∑
π∈Πi

∆fπ = 0.

Therefore, project qi onto the set ∆F = {∆f :
∑

π∈Πi
∆fπ = 0}, this has a simple

closed form and full details on the derivation and proof can be found in [63]. The
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projection of steepest descent for commodity i is given by,

∆fi = (cπ − c̄π)T
π∈Π̂i

,

and at iteration k by,

∆fki = (cπ(fk)− c̄π(fk))T
π∈Π̂i

,

note that the cost of the path π at iteration k is a function of the flow on the network

at iteration k, i.e. cπ(fk).

The flows are then updated accordingly,

fk+1
i ← fki + αk∆fki .

To maintain non-negativity the following condition must also hold,

fk
π + αk∆fk

π ≥ 0, ∀π ∈ Π̂i.

Therefore, for any path ∆fk
π < 0,

αk ≤
fk
π

∆fk
π

.

Letting

ᾱk = min
π∈Π̂i:∆fk

π<0

fk
π

∆fk
π

,

then αk is found via a line search for the interval [0, ᾱk].

2.2.4 Bush-based Algorithms

As aforementioned in Section 2.1, two new algorithms were developed in the early

2000s, Origin-Based Assignment (OBA) (Bar-Gera [13]) and Algorithm B (Dial [57])

and would subsequently be categorised as bush-based algorithms (Nie [126]). There

is some debate over the exact timeline of these two algorithms, Dial reports that his

original submission to the Transportation Research Board (TRB) annual conference

was in 1999 in which Bar-Gera also submitted his PhD thesis on OBA. Official

publication of Algorithm B would not happen until 2006 [52].

Bush-based methods are label correcting algorithms that rely on the concept of

a bush and shifting flow between paired alternative segments (PAS) (see Section

2.2.4.2). Algorithm B and OBA differ in the way that they both equilibriate a
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bush and the iterative scheme in which they operate. The efficiency of bush-based

methods is due to the fact that bushes (see Section 2.2.4.1) are an extension of

directed acyclic graphs (DAGs) and thus computation of shortest and longest paths

can be done in linear time due to their topological ordering.

Bush-based algorithms have not been implemented for use in this thesis, but

an overview of Dial’s method is given and some notes on the others. Due to the

complexity of these algorithms and the required space for correct presentation, a

description of their workings is opted for. Full details of the algorithms can be

found in the original publications as mentioned in each corresponding section.

2.2.4.1 Bush

Dial first introduced bushes in 1971 [53] on work related to probabilistic multipath

traffic assignment. His initial definition of a bush was based on the concept of

efficient paths, paths that contained only edges whereby the tail vertex is closer

to the origin node, i.e. paths do not backtrack, between an origin vertex and all

other vertices. Later definitions do not enforce backtracking and instead simply

use the shortest path definition. Boyce [31] refers to a bush as including shortest

paths between an origin and all destinations; for some bush-based algorithms this

is sufficient, but for others paths from the origin to all other vertices in the network

may required for efficient updating of the labels. The following definition of a bush

assumes the more general case as all algorithms are unaffected by this definition.

Definition 2.2.2 (Bush). A bush is a connected, acyclic network which includes

paths from an origin vertex to all other vertices.

For the directed graph given in Figure 2.1, an example of a bush is given for

vertex 1 in Figure 2.2.

1

2

3

4

5

6

1 1

1
1

1
1

1
1

1
1

1 1 1 1

1
1

Figure 2.1: Directed network example.
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Figure 2.2: Example bush for vertex 1.

2.2.4.2 Paired Alternative Segment

The term ‘paired alternative segment’ was coined by Bar-Gera in 2010 [15], although

the concept is utilised in both Dial [57] and Bar-Gera’s [13] earlier work, who pro-

posed an algorithm that satisfied a proposed ‘proportionality condition’ which stated

that ‘the proportion of travelers on each of the two alternative segments should be

the same regardless of their origin or their destination’ [15].

Definition 2.2.3 (Paired Alternative Segments). For a given origin vertex i and

destination vertex j in a bush, and shortest and longest paths, let a be the last vertex

common to both paths. Then the shortest and longest path segments from a to j

form a PAS.

On inspection of Figure 2.2 the shortest and longest paths for vertex 1 to vertex

6 are 1-3-6 and 1-3-5-6, respectively. The last common vertex is vertex 3 and the

segments 3-6 (shortest) and 3-5-6 (longest) form a pair of alternative segments.

2.2.4.3 General Iterative Scheme for a Bush-based Algorithm

1. Initialisation: For each origin, find initial bush (acyclic network) and feasible

flow (all or nothing assignment)

2. Update: For each bush, update bush labels

3. Equilibrate Bush: For each bush, shift flow such that the path costs between

all used paths for an origin and destination within the bush is minimal.

4. Improve Bush: For each bush, introduce cheaper edges such that bush re-

mains acyclic and flows are feasible.

5. Convergence Test: If convergence met, stop. Else return to step 2.
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2.2.4.4 Algorithm B

The idea behind Algorithm B can be summarised as iteratively shifting flow between

maximum and minimum path PAS segments based on Newton’s method. Algorithm

B can be seen as a label correcting algorithm and a general description is presented

here, for full details see [57].

For each origin, create a bush and label the vertices in topological order, label

each vertex j with the shortest possible path Lj and longest path Uj.

Let i be the vertex with highest topological order within the bush, find the last

vertex a where the minimum and maximum travel times do not differ, the segments

between a and i form a PAS. Equilibriate the PAS (i.e. the time for the minimum

and maximum path for vertex i are the same) using a Newton step similar to the

step used in gradient projection until either costs are the same or the flow (within

the bush) on the maximum path is empty. Repeat for all vertices in the bush.

To improve a bush, drop any empty edge that does not affect connectivity of the

bush and add edges (i, j) whereby Li + tij < Lj (tij is the time experienced on edge

(i, j)), that is add a edge which provides an improvement on the shortest path to j.

Nie [126] points out that whilst it can be shown that if the bushes are at equi-

librium this guarantees that a cycle is not introduced to the bush, as bushes will

only be epsilon equilibriated, introducing a cycle is theoretically possible. However,

there does not appear to be any practical evidence of this happening in Dial’s im-

plementation and results. Nie suggests a slightly different approach whereby edges

are added based on Ui + tij > Uj which guarantees that a cycle will not be intro-

duced. It does however require additional calculation of all the longest path labels

to vertices, which are not required in Dial’s and may have a detrimental impact on

performance.

2.2.4.5 Origin Based Assignment (OBA)

Introduced by Bar-Gera in 2002, OBA differs from Algorithm B by attempting to

shift flow among many paths simultaneously as opposed to Dial’s Algorithm B which

shifts flow between the PAS on the shortest and longest paths to a given node. For

full details of the algorithm see [13].

To achieve this, the algorithm uses routing variables to represent the proportion
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of the flow entering a vertex i from each of the incoming edges. Then, using a

combination of labels, which keep track of the average travel time to a vertex and

estimates of the derivative with respect to the the routing variables, i.e. the rate

of change of the average travel time based on changes to an incoming edge, flow is

shifted according to a Newton step.

2.2.4.6 Traffic Assignment by Paired Alternative Segments

As aforementioned in Section 2.2.4.2, Bar-Gera proposed an algorithm that uniquely

determines path flows based on a ’proportionality condition’. The concept of the

algorithm is to maximise the path entropy, that is to find the most likely configura-

tion of paths for a given optimal edge solution. Maximisation of path entropy was

studied by Bar-Gera in [14]. TAPAS is much more efficient on large scale networks

than OBA, but still lags behind Algorithm B [52].

2.2.5 Computational Efficiency and Discussion

Link-based and path-based algorithms rely on shortest path algorithms, such as

Dijkstra’s algorithm during each iteration, which are computationally expensive.

Recent work into shortest path algorithms has seen some major advances in the

computational efficiency of finding shortest paths. Critically the development of

contraction hierarchies [67] has resulted in a dramatic speed up of these algorithms.

Schnek and Nokel found that on the largest test networks, contraction hierarchies

resulted in a speedup factor of 42 [150].

The current fastest algorithms for solving the nonatomic selfish routing problem

are all bush-based, taking advantage of the acyclic nature of the bush and the speed

in which shortest and longest paths can be found through the manipulation of labels.

Table 2.1 summarises link-based, path-based and bush-based methods in terms of

their convergence speed, space requirement and accuracy. For a detailed analysis of

the computational efficiency of algorithms for nonatomic selfish routing see [154].

The algorithms presented in Section 2.2.2.2, 2.2.2.3 and 2.2.3.2 were implemented

(implementations can be found at [129]) and Figure 2.3 gives a computational com-

parison for Sioux Falls (see Appendix C.3) for the implemented methods. Whilst the

speed per iteration is much the same, clearly the convergence behaviour of the path-
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Figure 2.3: Comparison of implemented algorithms for solving Sioux Falls.

based method which uses gradient descent is far superior. The other observation

is the tailing of successive averages and Frank-Wolfe which, due to using extreme

points in the direction finding step (all-or-nothing assignment), bounces around the

search space.

Whilst not implemented for the purposes of this thesis, as aforementioned, bush-

based algorithms remain the fastest known algorithm for solving nonatomic selfish

routing games and the advances in shortest path technology mean that very large

networks can now be solved in a fraction of the previous time.

2.2.5.1 A Note on the Convergence of Networks with Symmetry

Figure 2.4a illustrates a case in which the path-based approach fails to converge in

a reasonable number of iterations with a step size of α = 1. Figure 2.4b displays

different values of α.
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Figure 2.4: Analysis of gradient projection performance for solving Dial’s network.

Method Type Convergence Speed Space Requirement Accuracy

Link-based Slow Low Low

Path-based Medium High Medium

Bush-based Fast Medium High

Table 2.1: Comparison of nonatomic selfish routing method types

Given the symmetry of the network, the sensitivity of the algorithm to the step

size is likely due to the following. Whilst the minimum is globally optimal in terms

of edge flows, in terms of paths it is not and therefore it is likely that due to the

number of similar paths available to each commodity pair, the path-based algorithm

finds it difficult to focus in a particular subset of the paths that lead to the minimum

and is also overshooting the minimum in the cases of the larger step sizes.

2.3 Algorithms for Unweighted Atomic Selfish Rout-

ing

In general, all the algorithms presented in the previous section can be amended

to restrict the flow to be integral by enforcing the amount of flow that is shifted

between paths and edges to be integral. As minimising the potential function of

(1.24) tracks the moves of best response dynamics, shifting integral flow that results

in better value of the objective function can be seen as moving the current solution
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towards a Nash equilibrium.

However, in addition this section presents a number of novel algorithms which

solve (1.24) or a restricted version of the problem. Implementation of these algo-

rithms can be found at [129].

2.3.1 Dynamic Programming

Bagdasar, Berry, O’Neill, Popovici and Raja [9] introduced a polynomial time dy-

namic programming method to solve the unweighted atomic selfish routing game

(1.24) with objective (1.25) on a single commodity, parallel edge network. A brief

explanation of this algorithm is presented along with the extension of how to find

exact solutions to (1.24).

For (1.24) with objective (1.25), with m resources and n players, cost functions

t1(x1), . . . , tm(xm) and total cost T (x) =
∑m

i=1 xiti(xi), define gi(xi) = xiti(xi) re-

cursively the Bellman functions G1, . . . , Gm : [0, n] ∩ N→ R for all c ∈ [0, n] ∩ N

G1(c) = g1(c);

Gk(c) = minx∈[0,c]∩N [gk(x) + Gk−1(c− x)] , k = 2, 3, . . . ,m.

(2.11)

Then, the optimal value of the problem is given by

min{T (x) | x = (x1, . . . , xm) ∈ Nm, x1 + · · ·+ xm = n} = Gm(n). (2.12)

An optimal solution x0 = (x0
1, . . . , x

0
m) of the problem can be deduced by the back-

ward recursive procedure:

Let c := n and choose x0
m ∈ argminx∈[0,c]∩N [gm(x) + Gm−1(c− x)] ,

Let c := n− x0
m and choose x0

m−1 ∈ argminx∈[0,c]∩N [gm−1(x) + Gm−2(c− x)] ,

· · ·

Let c := n− x0
m − . . .− x0

3 and choose x0
2 ∈ argminx∈[0,c]∩N [g2(x) + G1(c− x)] ,

Let x0
1 := n− x0

m − . . .− x0
3 − x0

2.

A full explanation of this method and examples are given in [21].

To find a solution to (1.24), i.e. a Nash equilibrium, replace gi(xi) =
∑xi

i=1 ti(xi),

the potential function of atomic selfish routing game.
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2.3.1.1 Time Complexity

The time complexity of dynamic programming depends on the main recursive op-

erations given in Section 2.3.1. For fixed k ∈ {1,m} and c ∈ [0, n], the number of

operations required to compute Gk(c) is c + 1 by (2.11). Therefore, the number of

operations required to compute Gk(c) for c ∈ [0, n] ∩ N is,

n∑
c=0

(c + 1) =
(n + 1)(n + 2)

2
.

Evaluating for m roads, the total number of operations required will be,

m

[
(n + 1)(n + 2)

2

]
,

thus resulting in a complexity of,

O
(
mn2

)
.

2.3.2 Tabu Search

For the standard atomic selfish routing game the metaheuristic method of a tabu

search can be employed. A detailed explanation of the general tabu search method

is given by Bandaru and Deb [12] in their survey of metaheuristics. Bagdasar,

Berry and O’Neill [9] presented a tabu search with variable step size for solving

the unweighted atomic selfish routing game (1.24) with objective (1.25) on a single

commodity, parallel edge network. When compared with the dynamic programming

method whose solution is optimal, the tabu search method performed favorably [9].

For user equilibrium, a variance-based formulation was used in which the costs of

all available strategies is minimised. This resulted in good results for demands high

enough that all resources (e.g. roads) are chosen by at least one player (e.g. vehicle).

Algorithm 1 presents an outline for a tabu search in the format presented in

[12] that can be used with atomic selfish routing games with a finitely tractable

strategy space for finding the minimum social cost and user equilibrium. For an

exponentially large strategy space, feasible strategy profiles that may improve the

solution can be added after each iteration similar to column generation used in the

likes of Danzig-Wolfe decomposition [46].

For this method to be effective, it requires an understanding of parameter tuning

and convergence criteria (true convergence requires a local polynomial search to
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check that the solution is indeed a pure Nash equilibrium, see section 1.2.5.5). The

parameters N , τ , k are the allowed neighbourhood size, the number of iterations a

solution is banned and the maximum size of the tabu list, respectively. A solution

is the strategy profile a = (ai, . . . , an) of the strategies currently played by each of

the n players. The fitness function f : A 7→ R for finding the minimum social cost

is defined as, ∑
e∈E

xele(xe),

and, utilising the potential function of the atomic selfish routing game, the fitness

function f : A 7→ R for finding a Nash equilibrium,

∑
e∈E

xe∑
k=1

le(k)

where the number of players xe using resource e is,

n∑
i=1

∑
ai∈Ai:e∈ai

fai = xe.

2.3.2.1 Time Complexity

As the tabu search method is a metaheuristic it is not possible to give a time com-

plexity and one must be careful as to how to determine whether the algorithm has

converged, the simplest option being to stop after a specified number of iterations

whereby the best solution has not improved. Figure 2.5 presents the performance

comparison of the dynamic programming method and tabu search method in solv-

ing a 3 edge and 10 edge parallel edge network. Inspection of Figure 2.5 and the

associated fitted curves showcase the quadratic nature of the dynamic programming

method in terms of n and that the tabu search can be approximated as linear.

2.3.3 Linear Programming - Piecewise Linear Convex Func-

tion

As the objective function given in the optimisation problem (1.24) is evaluated

at discrete intervals, the objective function can be modelled as a piecewise linear

approximation (Figure 2.6) matching the discrete potential function of the atomic

selfish routing game. As the feasible region is also a set of linear equalities and
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Algorithm 1 Tabu search for a atomic selfish routing game

1: Require N , τ , k

2: t = 0

3: Initialise random solution s0

4: Initialise tabu list T

5: Add s0 to the tabu list T

6: Set sbest = s0

7: repeat

8: Evaluate fitness of st

9: Set N (st) = [ ]

10: repeat

11: Find a neighbour s′t

12: if s′t is in T then

13: Discard neighbour

14: else

15: Add neighbour to N (st)

16: end if

17: until |N (st)| = N or no more neighbours exist

18: Find best solution s′t in N (st)

19: if f(s′t) < f(st) then

20: sbest = s′t

21: end if

22: Add s′t to T

23: Remove solutions older than τ from T

24: if |T | > k then

25: Remove oldest solution from T

26: end if

27: until Stopping criteria is satisfied
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(a) Dynamic Programming (b) Tabu Search

Figure 2.5: Computational efficiency for 3 and 10 parallel edges.
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Figure 2.6: Piecewise linear approximation of example edge function te(xe) = 2+x4
e.

inequalities, the optimisation problem 1.24 can be solved via the following mixed-

integer linear programming problem (MILP).

Let D =
∑

j∈{1,...k} dj, that is the upper bound on the amount of flow that can

be induced on an edge.
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minimise
∑
e∈E

ye (2.13a)

subject to

D∑
i=0

λi
ei = xe, ∀e ∈ E (2.13b)

D∑
i=0

λi
e

i∑
j=0

te(j) = ye, ∀e ∈ E (2.13c)

D∑
i=0

λi
e = 1, ∀e ∈ E (2.13d)

∑
π∈Πj

fπ = dj, ∀j ∈ {1, . . . , k} (2.13e)

∑
π∈Π:e∈π

fπ = xe, ∀e ∈ E (2.13f)

fπ ≥ 0, ∀π ∈ Π (2.13g)

fπ ∈ Z, ∀π ∈ Π (2.13h)

λi
e ∈ {0, 1}, ∀i ∈ {1, . . . , D},∀e ∈ E (2.13i)

xe ≥ 0 (2.13j)

ye ≥ 0. (2.13k)

Constraints (2.13b), (2.13d) and (2.13i) guarantee that only λxe
e = 1 for a given

edge e. Thus, ye =
∑xe

i=0 te(i) and therefore the objective function (2.13a) is∑
e∈E
∑xe

i=0 te(i) as per the objective function given in (1.24), e.g. if for edge a,

xa = 5, λ5
a = 1 and ya =

∑5
i=0 ta(i).

This is a variant of the standard linear programming trick for converting a non

linear function into a piecewise linear approximation. The difference here is that

the additional constraint (2.13i) stipulates that the function is evaluated at integer

points, not a combination of contiguous end points of piecewise linear segments, as

per those specified when using the special order sets of type 2 (SOS2) [169]. The

optimal solution of the MILP is therefore an optimal solution to (1.24).

In addition the constraints (2.13h) and (2.13i) can be removed and the constraint

that λi
e ∈ SOS2,∀i ∈ {1, . . . , k},∀e ∈ E added. Amending (1.24c) to be discretised

at N points, ∆D = D/N ,
∑N

i=0 λ
i
e

∑i
j=0 te(j ·∆D) ·∆D = ye,∀e ∈ E. As N →∞

and ∆D → 0, ye will approach the Beckmann integral (1.5a) and thus the optimal

solution of (1.5a) is approached.
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Whilst sacrificing some accuracy for solving (1.5), the MILP model allows for

interesting extensions to be undertaken such as edge capacity constraints, a limit on

the number of edges, etc. via the use of binary variables. Solutions to non-convex

functions via the use of piecewise linear approximations can also be guaranteed.

An implementation of this approach using Gurobi [73] can be found at [129].

2.4 An Online Learning Approach to Unweighted

Atomic Selfish Routing

The final algorithms are based on an online probabilistic approach which utilises the

concept of bandit machines.

In the advent of big data and deep learning it is interesting to consider ap-

proaches to the problem in which algorithms can learn to route based on selfish user

input (in this case represented as bandits). An important question, within the con-

text of selfish routing, is whether these algorithms tend to the equilibrium solution

found by solving the problem using traditional methods and the user equilibrium

objective function (i.e. the potential function of the game). Work on online learning

algorithms using multi-armed-bandits is already prevalent in many areas such as

online experiment design and A/B testing, for surveys into practical applications

see [35, 28, 29].

2.4.1 Background

The multi-armed bandit (MAB) problem has received much attention in recent years

within the online and machine learning community due to its appropriateness for

demonstrating the fundamental trade-off between exploration and exploitation in

online learning. The basic MAB problem is for an agent to maximise the cumula-

tive reward received after playing a number of rounds (finite or infinite). In each

round the agent is required to choose one of K bandits and subsequently receives an

associated reward. For an agent to be successful it must employ a strategy which

balances the trade-off between exploration and exploitation. Explore too little and

the agent’s preferred choice may remain sub-optimal, explore too often and the

agent fails to exploit the most optimal choices. Numerous algorithms have been
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studied for variants of the MAB problem and a popular measure of an algorithm’s

performance is the notion of expected regret, whereby the agent’s received reward is

compared with the expected reward that would have been received for the optimal

choices [20].

In strategic repeated games, a natural approach towards equilibrium is to em-

ploy an online learning algorithm in which the expected regret of the player(s) is

minimised over the time horizon [36]. Whilst expected regret analysis and conver-

gence of equilibrium are important and rich areas of research, they make some key

assumptions that could, in certain modelling scenarios, be deemed too restrictive.

First, when bounding the regret of an algorithm it is necessary that the utility re-

ceived by a player is itself bounded, therefore restricting the types of utility function.

Second, convergence to a state of equilibrium does not take into account the capri-

cious nature of certain individuals and that a player’s rationality is often bounded

by both the intractability of the decision making process and the player’s preference

for exhaustive search [69]. Therefore, the best one may be able to do is express a

player’s belief in the most preferable choices over a set of tractable strategies.

The above concepts are particularly inherent in routing games, a form of strategic

repeated game in which multiple players (e.g. drivers of vehicles) simultaneously

route flow across a network in an attempt to minimise their own cost. Routing

games belong to the larger class of congestion games which possess the property

of emitting at least one pure strategy Nash equilibrium [141] and have received

much attention within the field of algorithmic game theory [127]. However, due to

the underlying graph structure, the strategy set for these games suffers from the

“curse of dimensionality” whereby the strategy set for a source sink pair (available

paths) grows exponentially with the size of the underlying graph. Traditionally,

methods have employed a centralised approach in which full information of the

costs associated with all strategies is known, and flow is shifted globally between

paths so as to satisfy a set of constraints representing a state of equilibrium for the

given problem [135]. Such approaches fail to consider both the decentralised nature

of the decision making processes within the system and that individual players have

a particularly myopic view of the system and, therefore, tend to make decisions on

very little information.
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Motivated by the concepts of bounded rationality and random/deliberate sub-

optimal choices, the focus of this section is to model unweighted atomic routing

games under a restricted subset of strategies via noisy feedback, i.e. the utility may

vary due to external factors. An investigation into a exponential weights algorithm

is undertaken in which at each time step (round) uses feedback as a mechanism for

a player to update their personal beliefs (probability distribution) of the best course

of action and an ϵ-greedy algorithm in which the best course of action is selected

greedily with probability p = 1 − ϵ. Variants of both algorithms are implemented

for the semi-bandit and bandit feedback scenarios.

2.4.2 Learning Under Bandit Feedback

An N-player congestion game consists of a finite number of players N = {1, · · · , N},
a set of congestible elements E with associated cost (latency) functions le : N 7→ R

for each element e ∈ E and a set of playable strategies Ai for each player i, where a

given strategy ai ∈ Ai is a set of congestible elements ai ⊆ E . The number of players

choosing element e is xe =
∑

i∈N
∑

ei∈ai 1(ei = e), where 1 is the indicator function.

The associated cost to player i playing strategy ai is ui(ai; a−i) =
∑

e∈E
∑

ei∈ai 1(ei =

e)·le(xe). That is, each player picks a set of congestible elements and their associated

costs are dependent not only on their own strategy, but on those played by the other

players. The total cost U under strategy profile a = (ai)i∈N is then,

U(a) =
∑
i∈N

ui(ai; a−i) =
∑
i∈N

∑
e∈E

∑
ei∈ai

1(ei = e) · le(xe) =
∑
e∈E

xele(xe).

Let A =
∏

iAi to be the set of all strategy profiles and l = (le)e∈E the vector of

cost functions associated with each e, then the congestion game is described by the

tuple (N , E ,A, l).
For an unweighted atomic routing game, let the set of congestible elements E be

the edges in the graph G = (V,E) and for each player i ∈ N associate a source/sink

pair (oi, di) and traffic demand ki = 1, i.e. players route themselves. In general an

unweighted traffic rate routes the same quantity ki = k, ∀i ∈ N . A player’s strategy

set Ai is the set of possible paths from source to sink, i.e. a strategy ai ∈ Ai is a

path consisting of edges e ∈ E [144]. Therefore, the cost to a given player choosing

a particular path is dependent on the number of players choosing paths which share
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edges in the graph.

As a bandit problem, an unweighted atomic routing game consists ofN players, a

set E of functional bandit machines (edges), with corresponding congestion functions

l. Each player i ∈ N then pulls a combination of bandit machines ai ⊆ E (path)

from the strategy set Ai (set of available paths for (oi, di) pair) and receives feedback

given the strategy profile of played actions a = (ai)i∈N .

The following section introduces the exponential weights and ϵ-greedy algorithms

for both semi-bandit and bandit feedback.

For each player i let W t
i = (W t

iai
)ai∈Ai

be a set of weights associated with the

player’s available strategies at a given round t. Denote the probability of a player

selecting strategy ai as,

Pt
iai

=
W t

iai∑|Ai|
j=1W

t
ij

,

and the probability distribution over all strategies Ai as Pt
i = (Pt

iai
)ai∈Ai

.

2.4.2.1 Semi-bandit Feedback

Under semi-bandit feedback, the player has access to the entire payoff vector of

playable strategies. The noisy feedback for a given strategy ati played by player i in

round t is,

r̂iai(a
t
−i) = ui(a

t
i; a

t
−i) + ξtiai ,

and the entire payoff vector for all strategies available to player i is then,

r̂ti = (r̂iai(a
t
−i))ai∈Ai

.

For each player i, the exponential weights algorithm (see Algorithm 2) maintains

the probability distribution Pt
i = (Pt

iai
)ai∈Ai

reflecting the beliefs about player i’s

best strategy from the strategy set Ai. At time t, player i samples an action ati ∼ Pt
i

and updates the distribution Pt+1
i based on the semi-bandit feedback it receives [38].

Note that due to the interdependence of the congestion functions, all players’ actions

must be selected and played before players receive their corresponding feedback.

The ϵ-greedy algorithm (see Algorithm 3) updates the average reward for all

player strategies via the feedback vector and greedily selects the best known strategy

with probability p = 1− ϵ and randomly selects an action with probability p = ϵ
Ai

.
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Algorithm 2 Exponential weights with semi-bandit feedback [EW-SB]

Require: γt = t−
1
α ∀t ∈ [1, . . . , T ], W 0

i ∈ 1|Ai| ∀i ∈ N
1: for t = 1, . . . , T do

2: for each player i in N do

3: Pt
i =

W t
i∑|Ai|

j=1 W t
ij

▷ Calculate probability distribution for strategies

4: ati ∼ Pt
i ▷ Sample action from probability distribution

5: end for

6: for each player i in N do

7: r̂ti = (r̂iai(a
t
−i))ai∈Ai

▷ Observe estimated reward for strategies

8: W t+1
i = W t

i · exp
(

γtr̂ti
|Ai|

)
▷ Update weights

9: end for

10: end for

2.4.2.2 Bandit feedback

Under bandit feedback the player only has access to feedback for the strategy played

in round t and therefore a player must attempt to estimate the cost of strategies

over time. The exponential Weights algorithm can be amended (see Algorithm 4)

by utilising the importance sampling estimator.

The feedback for strategy ati received in round t is the individual cost incurred

by the player,

ût
i = ui(a

t
i; a

t
−i) + ξti ,

and the full feedback vector rti (a
t
−i) can be estimated by r̂ti = (r̂tiai)ai∈Ai

, where,

r̂tiai =


ût
i

Pt
iai

, if ai = ati.

0, otherwise.

∀ai ∈ Ai.

It can be shown [38] that under certain probabilistic assumptions , r̂tiai results

in an unbiased estimator of the feedback received by player i playing action ai

calculated over the joint probability of all other strategy profiles a−i ∈
∏

j ̸=iAj,

Pt
−i = (Pt

−ia−i
)a−i∈A−i

,

namely,

Et[r̂
t
iai

] = ui(ai;P
t
−i) =

∑
a−i∈A−i

Pt
−ia−i

ui(a
t
i; a

t
−i).
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Algorithm 3 ϵ-greedy with semi-bandit feedback [ϵG-SB]

Require: W 0
i ∈ 0|Ai| ∀i ∈ N

1: for t = 1, . . . , T do

2: for each player i in N do

3: if ϵt ∼ unif(0, 1) < ϵ then

4: ati ∼ unif{1, |Ai|} ▷ Choose at random with probability p = 1
|Ai|

5: else

6: ati = arg max
ai∈Ai

(W t
iai

)

7: end if

8: end for

9: for each player i in N do

10: r̂ti = (r̂iai(a
t
−i))ai∈Ai

▷ Observe estimated feedback for strategies

11: W t+1
i = W t

i + 1
t+1

[̂rti −W t
i ] ▷ Update average feedback

12: end for

13: end for

For the ϵ-greedy algorithm (see Algorithm 5) amend the update of the average

rewards W t+1
i to only update the strategy that has been played at time t.

2.4.3 Results

Algorithms 2-5 were tested on a bidirectional lattice network with 16 vertices and

48 edges. Given the stochastic nature of the algorithms, 10 randomly generated

instances of the lattice network were generated and 250 players were routed between

4 origin destination pairs. The results were averaged over 10 episodes per network -

each episode consisting of a 100 rounds (T = 100). Implementation and results can

be found at [129]. Figure 2.7 (a) plots the total cost U averaged over the data set

and for comparison, the total cost UΦ experienced at the equilibrium given by the

potential function Φ. Figure 2.7 (b) plots the regret of each algorithm defined to be

the cumulative sum of the difference between the total cost of the played strategy

profile at at time t and the equilibrium total cost UΦ,

Rt =
t∑

i=t

[
U(at)− UΦ

]
.
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Algorithm 4 Exponential weights with bandit feedback [EW-B]

Replace lines 7− 8 in algorithm 2 with:

ût
i = ui(a

t
i; a

t
−i) + ξti ▷ Observe estimated feedback for played strategy

r̂tiai =


ût
i

Pt
iai

, if ai = ati.

0, otherwise.

∀ai ∈ Ai

▷ Estimate feedback vector r̂ti

W t+1
i = W t

i · exp
(

γtr̂ti
|Ai|

)
▷ Update weights

Algorithm 5 ϵ-greedy with bandit feedback [ϵG-B]

Replace lines 10− 11 in algorithm 3 with:

ût
i = ui(a

t
i; a

t
−i) + ξti ▷ Observe estimated feedback for played strategy

r̂tiai =


1

t+1

[
ût
i −W t

iai

]
, if ai = ati.

0, otherwise.

∀ai ∈ Ai

▷ Estimate feedback vector r̂ti

W t+1
i = W t

i + r̂ti ▷ Update average rewards

Finally Figure 2.8 plots the individual costs for the players at the initial and the

final (T ) round. Clearly, a more uniform cost has emerged at time T for the 4 OD

pairs and this compares well with the costs at equilibrium given by minimising Φ

(indicated in red).

2.5 Chapter Summary

Algorithms for nonatomic selfish routing are still widely used in software such Emme

[80] and PTV VISUM [137] for traffic planning means. The recent advances in bush-

based methods present a major advance and efficiently make use of the concept of

bushes and paired alternative segments. Their uptake in commercial software is
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Figure 2.7: Log-lin plots of total cost and cumulative regret for the 4 algorithms

averaged over all test data.
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Figure 2.8: Log-lin plots illustrating the convergence of players costs for the 4 ori-

gin/destination pairs.

not universal due to their complexity, with software still preferring variants of the

Frank-Wolfe method, reasons for this may be historical.

The gradient descent method implemented for the purpose of this thesis is a

good option for analysis of mid-sized networks and is much faster than the Frank-

Wolfe variants, although one should be mindful of the step size in networks with

symmetric structure.

Algorithms for the atomic selfish routing games are sparse, perhaps due to their

lack of a commercial application unlike their nonatomic counterpart. In this chapter

a dynamic programming approach for parallel unweighted atomic selfish routing

games was introduced which utilised the games potential function. For the standard
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unrestricted network a tabu search metaheuristic and piecewise linear approximation

method were proposed.

In addition some novel probabilistic algorithms based on the concept of bandit

machines were outlined and experimental results demonstrated how these algorithms

converge towards the equilibrium solution found by solving the corresponding game

using the potential function. It is of interest that, with no knowledge of the under-

lying game and merely a probability distribution to assess the quality of the known

paths, independent decision making has led to a reasonably stable state, mirror-

ing how human decision making would happen and underlining the idea of user

equilibrium.

2.5.1 Future Work

The major advances in shortest path technology present a burgeoning area of re-

search and have large implications for nonatomic routing algorithms used in traffic

planning. More work is required to analyse how much the shortest path technology

can speed up these algorithms.

Whilst the concept of bounded rationality justified the idea of using a restricted

path set for each user in an unweighted atomic routing game, a natural question

to ask in the context of both nonatomic and atomic routing games is - how does

restricting a commodity to a maximum of k paths affect both the speed and the

quality of the solution?

The mixed-integer linear programming program with piecewise linear approxi-

mation as an objective provides a possible way to extend the routing game to include

constraints on edges, vertices etc through the use of binary variables. Work is re-

quired to understand whether solving this is a viable option via conventional solvers

using parallelisation. It is also worth considering models and methods which solve a

mixed-integer nonlinear programming (MINLP) problem variant as recent research

into solvers has greatly advanced, Section 5.1 provides more details.
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Multi-criteria Network

Equilibrium: Efficiency and

Suboptimality

Chapter Preface

Multi-criteria decision making is a powerful tool when considering optimisation of

multiple and sometimes conflicting objectives. When dealing with the solutions to

a multi-criteria problem, one must consider a set of solutions known as the set of

Pareto optimal solutions.

This chapter presents work from the paper by O’Neill, Bagdasar, Berry, Popovici

and Raja [131] (Appendix A.3) and its motivation is to investigate whether small

changes to “free” network parameters result in a reduction of fuel consumption at

user equilibrium, which in turn would result in monetary savings and reduced pollu-

tion. It also attempts to classify the suboptimality of the equilibrium solutions with

respect to the Pareto front generated by a weighted sum model which is akin to the

system optimal solution.

Chapter Keywords

Network Flow; User Equilibrium; Traffic Assignment; Multi-criteria Optimisation,

Pareto Optimality, Price of Anarchy, Price of Stability
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3.1 Introduction

Much work has been done in investigating the suboptimality of states of equilibrium

arising from selfish routing. A key concept is the Price of Anarchy (PoA) (Section

1.2.1.5) which considers the ratio between the UE and SO, in effect it measures

the degradation of the system state due to selfish behaviour. When the equilibrium

solution is unique this measure is well-defined; however when multiple equilibria exist

the best known equilibrium solution is compared to the system optimal solution,

known as the Price of Stability (PoS) (Section 1.2.1.6). As stated in Section 1.2.2,

the term selfish routing was coined by Roughgarden and Tardos [147] and the PoA

was first introduced by Koutsoupias and Papadimitriou [89] to analyse the effects

of selfish routing. The PoS was introduced by Anshelivich et al [5].

As aforementioned in Section 1.5, there are a number of difficulties in attempting

to compare the equilibrium solutions given by a multi-criteria selfish routing problem

and the corresponding social optimal solutions. Even if the assumptions given in

Section 1.3.1, which result in a unique equilibrium solution, are adhered to, the PoA

needs redefining when considering multi-criteria for the socially optimal solution as

this will produce a Pareto set of optimal solutions. Therefore, there is not a unique

value for the socially optimal problem and thus no unique PoA. If the assumptions

in Section 1.3.1 are relaxed and there are now multiple equilibrium candidates,

the aforementioned situation will become more difficult to define as there will now

be a Pareto set of equilibrium solutions alongside a Pareto set of socially optimal

solutions in n dimensional space (n being the number of criteria considered). It is

important that the following questions are considered within the context of multi-

criteria optimisation: What is a socially optimal solution?; What is an equilibrium

solution?; How are these compared to assess the degradation of the network? Also,

how are they measured?

This chapter is organised as follows. A simplified traffic assignment problem is

introduced in Section 3.2.1 along with accompanying speed and fuel consumption

estimation formulas. Proposed modelling approaches are discussed in Section 3.2.2,

highlighting some of the associated issues. Section 3.2.3 outlines the models and

algorithms used in this study and Section 3.2.4 discusses the computational results.

Section 3.3 generalises the concept based on the PoA discussed and defined in Section
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3.2.3.2. Finally Section 3.4 concludes the chapter, outlining potential future work.

3.2 A Study into a Multi-criteria Selfish Routing

Problem Considering Fuel Consumption

3.2.1 Preliminaries

For convenience the nonatomic selfish routing game presented in Section 1.3.1 is

recalled and assumption A3 is amended for the purposes of this Chapter.

3.2.1.1 Nonatomic Selfish Routing Game

Given a network G = (V,E) and a set K of k OD pairs

{(r1, s1), . . . , (rk, sk)}. For each commodity (ri, si) there is an amount of traffic di to

be routed between ri and si, the set of used paths by commodity (ri, si) is denoted

by Πi. The set of all paths used for all commodities is then Π =
⋃

i Πi. Let fπ to

to be the amount of flow routed along path π and xe to be the amount of flow that

induced onto edge e, xe =
∑

π∈Π:e∈π fπ. The cost of an edge te(xe) is a function of

the flow on the edge e, which is the aggregated flow from all paths that use edge e.

A feasible flow f induces a flow x = (xe)e∈E and therefore the cost of a path π is

cπ = cπ(f) =
∑

e∈π te(xe).

An instance of a nonatomic selfish routing game is given by the triple (G, d, t)

where d = (dj)j∈{1,...,k} is a vector of demands and t = (te)e∈E is a vector of edge

travel time functions.

The fixed demand user equilibrium problem can be stated as the following opti-

misation problem [135]:

minimise U(x) =
∑
e∈E

∫ xe

0

te(ω)dω (3.1a)

subject to ∑
π∈Πj

fπ = dj, ∀j ∈ {1, . . . , k} (3.1b)

∑
π∈Π:e∈π

fπ = xe, ∀e ∈ E (3.1c)

fπ ≥ 0, ∀π ∈ Π, (3.1d)
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subject to the three assumptions:

A1. The network is strongly connected.

A2. The traffic demand dj is positive for all j ∈ {1, . . . , k}.

A3. The travel time function te : [0,∞)→ (0,∞) only depends on the flow on edge

e, is twice differentiable, and satisfies the conditions t
′
e(xe) > 0 and t

′′
e (xe) ≥ 0,

hence it is strictly increasing and convex.

To find a solution to Wardrop’s second principle one can replace the objective

function U(x) with the objective function T (x) =
∑

e∈E xete(xe), i.e. minimise the

total travel time.

Assumption A3 ensures the uniqueness of the solution in terms of edge flows (see

Section 1.3.3). It is common in the literature for a weaker variant of A3 to be used

which guarantees uniqueness for the equilibrium problem, but not system optimal

problem [135, 152].

3.2.1.2 User Equilibrium on a Single Commodity with Parallel Edges

Consider a multigraph G consisting of a single commodity (pair of vertices) con-

nected by parallel edges. For this specific problem, the set of paths Π is equal to

the set of edges E. This condition simplifies the optimisation problems and allows

a solution via conventional convex optimisation, or in the discrete case, dynamic

programming [9].

The graph given in Figure 3.1 consists of a set of m edges E = {1, 2, . . . ,m},
that connect, in parallel, the single commodity between the starting and terminal

pair of vertices (s, t).

Figure 3.1: Single commodity with parallel edges.
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For a demand r, the solution to the user equilibrium problem x∗
UE displayed in

Figure 3.1 can be found by solving the following optimisation problem:

minimise U(x)
def

=
∑
e∈E

∫ xe

0

te(ω)dω (3.2a)

subject to ∑
e∈E

xe = d (3.2b)

xe ≥ 0, ∀e ∈ E. (3.2c)

Replacing the objective (3.2a) with T (x) minimises the total travel time and x∗
SO is

a solution to the system optimal problem.

3.2.1.3 Price of Anarchy

The PoA measures how suboptimal UE is compared to SO by comparing their

respective total travel times for all vehicles. Let x∗
UE be the optimal solution to UE

and x∗
SO be the optimal solution to SO, the price of anarchy is then defined as:

PoA =
S(x∗

UE)

S(x∗
SO)

(3.3)

3.2.1.4 Travel Time Function

Traditionally, the most common choice for the travel time function has been a curve

satisfying the assumption A3 given in (3.1), fitted by the Bureau of Public Roads

[162]

te(xe) = ae

(
1 + 0.15

(
xe

ce

)4
)
, (3.4)

where ae is the free-flow time on a given edge e, ce is the practical capacity as derived

from the congestion conditions, and xe denotes the current volume of traffic. The

parameter values 0.15 and 4 are calibrated from the data.

3.2.1.5 Speed as a Function of Edge Flow

Denoting by de the length of edge e, the average speed at free-flow me is given by

the formula me = de
ae

. The speed se as a function of the edge flow xe is then given

by

se(xe) =
de

te(xe)
=

aeme

ae

(
1 + b

(
xe

ce

)n) =
me

1 + b
(

xe

ce

)n . (3.5)
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Given that te(xe) is positive, continuous and strictly increasing, for a fixed de the

function se(xe) is strictly decreasing on the interval [0,∞), from the maximum

se(0) = de
se(0)

to the minimum limxe→∞ se(xe) = 0.

3.2.1.6 Fuel Consumption Curve

Consider a simplified fuel consumption model adapted from [122], which reflects

the fundamental idea that in order to reduce fuel consumption, vehicles must drive

within a given range, too slow or too fast resulting in increased fuel consumption.

The free-flow speed values me (kph) in the model given in Table 3.1 correspond

to common speed limits in the United Kingdom: 70, 60 and 40 miles per hour,

respectively.

Edge (e) me de ce

1 110 160 600

2 95 130 500

3 65 80 300

Table 3.1: Edge travel time parameters.

Inspired by the general shape in Figure 1 in [122] and Figure 3 in [155], the fuel

consumption curve is modelled by a strictly convex quadratic y = Ax2 + Bx + C.

The coefficients satisfy A > 0, C > 0, and −2
√
AC < B < 0, as in Figure 3.2. This

function attains a minimum value y∗ = C − B2

4A
, attained for x∗ = − B

2A
.

This model is largely consistent with the fuel consumption of an engine: larger

for extreme values of speed, and optimal for moderate speed. For the purpose of

the simulations, one assumes that all vehicles in the current model have the same

parameters A, B, C. However, other parameter values would have to be considered

for electric, hybrid, diesel, or petrol cars, of for engines of different sizes.

The speed se(xe) of a car travelling on edge e decreases from me = se(0) (free-

flow) to nearly 0, as the number of vehicles xe increases. Correspondingly, the fuel

consumption is given by

Fe(se(xe)) = A[se(xe)]
2 + B[se(xe)] + C, (3.6)

there have two cases. If me ≤ x∗ = − B
2A

(maximum allowed speed below optimum
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Figure 3.2: Fuel consumption curve Fe(se) for A = 0.0019, B = −0.2784 and

C = 17.337. The dotted lines indicate Fe(se(xe)) (from right to left). The squares

show (me, Fe(me)) for m1 = 110, m2 = 95 and m3 = 65 kph (see Table 3.1).

speed for fuel consumption) as in Figure 3.2 squares 1 and 2, then the fuel con-

sumption of individual vehicles will only increase with traffic. For x∗ = − B
2A

the

fuel consumption actually decreases as the traffic builds up to a moderate value,

after which it increases as seen in Figure 3.2 square 3. The total fuel consumption

on an edge e with xe vehicles is then given by xeFe(se(xe)), while the total fuel

consumption of the network across all edges is

F (x) =
∑
e∈E

de
100
· xeFe(se(xe)). (3.7)

It should be noted that the purpose of these models and the fuel consumption curve

given by Figure 3.2 is to investigate the questions listed in the introduction of this

chapter. As aforementioned the quadratic curve is inspired by the general shape

of Figure 1 in [122] and Figure 3 in [155] (full data and explanations are given in

[122, 155] and the references therein) and is simplified to aid the computational

approach to solving the models presented in this chapter. Given the absence of real

data points for the simplified quadratic curve, an estimation of the errors is not

possible and the quadratic should be seen as a means to exploring the ideas in this

chapter.

To demonstrate the interplay between the travel time, speed and fuel consump-

tion experienced by a single vehicle, the edge functions te(xe), se(xe), Fe(se), xeFe(se)

are plotted in Figs. 3.3a, 3.3b, 3.3c, 3.3d respectively, for the values of me, ce and
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de given in Table 3.1.

Figure 3.3c illustrates that the edges 1, 2, both have the characteristic of exhibit-

ing a minimum for fuel consumption for a demand xe > 0 (the optimal speed zone

which is optimal for fuel consumption is below the free-flow speed). On edge 3 fuel

consumption strictly increases as vehicles can never make it into the optimal zone,

hence the optimum fuel consumption is achieved for xe = 0 (free-flow). In compar-

ison the total fuel consumption (Figure 3.3d) along an edge is strictly increasing;

however, it is noticeable from x1F1(x1) and x2F2(x2) that the rate of change slows

for a demand 500 ≤ xe ≤ 1250, corresponding with the region in which the speed

enters the optimal zone.

One must also be careful drawing conclusions for this simplified model as the

saturation of the edge could, in reality (or a more complicated simulation), lead

to increased congestion (and thus increased fuel consumption) because of braking,

over-revving, etc. Also, as aforementioned, one would need to use different fuel

consumption curves for different classes of vehicles (small cars, vans, trucks, etc).

3.2.2 Discussion of Potential Modelling Approaches

The following section looks at two possible approaches one may consider in relation

to this problem: a weighted sum model (Section 3.2.2.1) and a constrained traffic

assignment model (Section 3.2.2.2), for which the features, merits and flaws are

discussed. Section 3.2.2.3 details two possible approaches one could use in order to

overcome some of the issues raised.

3.2.2.1 Weighted Sum Model

To examine the interplay between the total travel time T (x) and fuel consumption

F (x), given the differences in scale, consider a normalised weighted sum model [163].

To this aim, given a scalar function ϕ : D → (0,∞), it will be convenient to consider

the normalisation ϕ̃ : D → [0, 1) defined by

ϕ̃(x) = 1− infy∈D(ϕ(y))

ϕ(x)
, (3.8)

where it is understood that infy∈D(ϕ(y)) is computed a priori.
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Figure 3.3: Interplay between edge flow functions.

One may consider the weighted sum involving T̃ (x) and F̃ (x), given by

λT̃ (x) + (1− λ)F̃ (x), λ ∈ [0, 1], (3.9)

and try to minimise its value. Clearly, for λ = 1, the total travel time T (x) is

minimised, while for λ = 0 the total fuel consumption is minimised.

Another weighted sum involving normalised values of U(x) (user equilibrium)

and F (x) (total fuel consumption) can be defined as

λŨ(x) + (1− λ)F̃ (x), λ ∈ [0, 1]. (3.10)

Whilst this is valid as an objective, it ceases to make sense in the context of user

equilibrium as the introduction of fuel consumption will have the effect of shifting

the optimal solution away from user equilibrium (i.e. the travel times will not be

equal according to Wardrop’s first principle), it will in some senses act as central

control. As aforementioned in the Introduction, this raises the question as to how
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one might model user equilibrium with a competing objective; one idea that has

been employed is by using the concept of VoT; however, this requires a conversion

which is dependent on the opinions of individuals and careful consideration should

be given as to whether one should include such normative (value) judgements.

3.2.2.2 Constraining by Total Fuel Consumption

An obvious extension to the problem is to include a constraint that limits fuel

consumption.

minimise U(x)
def

=
∑
e∈E

∫ xe

0

te(ω)dω (3.11a)

subject to ∑
e∈E

xe = r (3.11b)

∑
e∈E

Fe(se(xe)) ≤ C (3.11c)

xe ≥ 0, ∀e ∈ E. (3.11d)

The optimisation problem defined above can be viewed as a side constrained model

[135], which satisfies a generalised Wardrop principle; however, difficulties are en-

countered with its interpretation as the constraints placed on the problem by the

fuel consumption are not necessarily something an individual driver would consider

when selfishly routing. In effect it will result in a new optimal point where travel

times are now unequal, thus again Wardrop’s first principle is violated.

3.2.2.3 Incentives to Change Behaviour

To overcome the issues presented in Sections 3.2.2.1 and 3.2.2.2, methods must be

examined whereby individuals are coerced into making a different path choice which

results in lower total fuel consumption. In a sense, similar to incentives in the market

economy, somehow the selfish nature of individuals must be leveraged (preserving

Wardrop’s first principle) to reduce fuel consumption. Therefore, one must attempt

to answer the question; why has anyone got any incentive to change routes?

Two possible approaches that can be considered:
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• Change the network, e.g. add/remove new edges (i.e. Network Design).

• Adapt the controllable parameters of the network, e.g. change the free-flow

speed limits of existing roads (edges).

In the remainder of this study, the second approach is considered; however, the

first approach is a rich area of research with much work done in network design

under budgetary constraints utilising such techniques as bi-level optimisation as

aforementioned in the Section 1.5.

3.2.3 Models

To address the second approach outlined in Section 3.2.2.3, two models presented,

the first a weighted sum model which can be used to analyse the interplay between

total travel time and total fuel consumption; the second utilises a change in the

travel time function, allowing a search to be undertaken for the set of free-flow

speeds for which solutions satisfy user equilibrium.

3.2.3.1 Weighted Sum Model

As previously noted form a normalised weighted sum and minimise:

minimise λT̃ (x) + (1− λ)F̃ (x), λ ∈ [0, 1] (3.12a)

subject to ∑
e∈E

xe = r (3.12b)

xe ≥ 0, ∀e ∈ E. (3.12c)

Given the definition in equation (3.8), the normalised minimum values of F̃ (x) and

T̃ (x) are 0. The utopian (ideal) point [59, 172, 173] z ∈ R2 is defined as

z =
(

min
x

(F̃ (x)),min
x

(T̃ (x))
)

= (0, 0).

If x∗
λ is the optimal solution for a given value of λ to (3.12), then denote the

solution which is nearest to the utopian point by x∗
λ0

. This satisfies the condition

x∗
λ0

= arg min
x

(∥∥∥(F̃ (x), T̃ (x)
)
− z
∥∥∥
2

)
= arg min

x

(∥∥∥(F̃ (x), T̃ (x)
)∥∥∥

2

)
. (3.13)
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An approximation of x∗
λ0

can be found by computing the set Xλ of N solutions to

(3.12), namely x∗
λ, ∀λ ∈ [0, 1

N
, 2
N
, . . . , 1]. An approximation is then given by

x∗
λ0
≈ arg min

x∈Xλ

(∥∥∥(F̃ (x), T̃ (x)
)
− z
∥∥∥
2

)
= arg min

x∈Xλ

(∥∥∥(F̃ (x), T̃ (x)
)∥∥∥

2

)
. (3.14)

3.2.3.2 Measuring the Inefficiency of User Equilibrium against theWeighted

Sum Model

The inefficiency of the user equilibrium solution x∗
UE can also measured for a given

configuration of the network by comparing it to the solution that is nearest, in

Euclidean distance, to the solution within the Pareto set x∗
λ0

(note that normalised

functions are used to allow comparison across network configurations). Define the

measure ρ to be the ratio

ρ =

∥∥∥(F̃ (x∗
λUE

), T̃ (x∗
λUE

)
)
− z
∥∥∥
2∥∥∥(F̃ (x∗

λ0
), T̃ (x∗

λ0
)
)
− z
∥∥∥
2

. (3.15)

The minimum value of this ratio is 1 and is achieved when x∗
λUE

= x∗
λ0

.

As this measure is analogous to the PoA/PoS in a single criteria context, similar

behaviour is expected in a multi-criteria context. However, unlike the single criteria

scenario, equilibrium solutions at low demand and high demand may not converge

with the system optimal solution.

The following explanation provides an insight into why this is the case. It is

clear that in an sparsely populated network (i.e. little demand) users will not have

an incentive to switch paths as the shortest path will not change. In the case of an

over saturated network (i.e. very high demand above the capacity), users will not

have an available option to switch as all available paths will be congested and thus

at equilibrium. Without intervention, the equilibrium solution will likely remain

suboptimal with respect to any criteria that is in opposition of the total travel time.

Clearly, the objective of user equilibrium is for each user to selfishly minimise their

travel time, i.e. there may exist paths that are more costly in terms of travel time

but satisfy the other criteria, e.g. save fuel, cut down emissions.

While situations in which x∗
λUE
≈ x∗

λ0
=⇒ ρ ≈ 1 are likely to occur more

frequently at low or high demand due to either users not wanting to switch or

having no choice, the additional condition required is that the network is designed
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such that the path choices for equilibrium are good path choices for all criteria

examined. In reality some criteria are always likely to be suboptimal and a value

of ρ ≈ 1 will scarcely be attainable. A more reasonable interpretation is that low

values of ρ suggest that a network is configured in such a way that the equilibrium

solution is a good solution to all the criteria examined. Section 3.2.4.2 explores

this reasoning and provides an example which shows that this is not necessarily the

case and one should be careful in the interpretation of ρ when comparing different

networks.

3.2.3.3 Adjusting the edge free-flow speed

Define the optimisation problem by adjusting the travel time function to allow differ-

ent values of the free-flow time ae (note the distance de is fixed and cannot change).

Utilising the relationship me = de
ae

, then ae = de
me

and the travel time function can

be written as

te(xe) =
de
me

(
1 + b

(
xe

ce

)n)
. (3.16)

The values me can now be manipulated and, for a given value the optimisation

problem given by 3.1 can be solved. The optimisation problem is considered as a

sub-problem of the main search which seeks to minimise the total fuel consumption

by manipulating the values of me.

Algorithm 6 Steps for generating global minimum UE solutions

Step 1 → Set me, ∀e ∈ E

Step 2 → Solve user equilibrium sub-problem

Step 3 → Store solution

Step 4 → Repeat 1-3 until all desired combinations of {me}e∈E have been ex-

plored.

In Step 2 of algorithm 6, me is fixed and the sub-problem is just a specific case

of 3.1 and has a unique global solution.

It should be noted that this method is not tractable in larger networks as the

number of configurations is |E|k, where k is the number of choices me for a given

edge e; however, it is easily parallelisable and does allow exploration into the pattern

of behaviour.
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3.2.4 Results and Discussion

In the first part of this section results are presented that are generated for the

weighted sum model which demonstrates the interplay between travel time and

fuel consumption. Results are then presented, utilising the same network, for the

adjusting of the edge free-flow speed limits me to analyse the impact this has on the

total travel time and total fuel consumption for solutions solved for user equilibrium.

Results were generated using the 3 edge parallel network, with values of de and

ce given by Table 3.1, and for a demand value r = 1500, i.e. 1500 vehicles should

be routed across the network. The fuel consumption curve (3.6) had values of

A = 0.0019, B = −0.2784 and C = 17.337 and is depicted in Figure 3.2.

3.2.4.1 Weighted Sum Model

The results of the optimisation for values of λ ∈ [0, 1] and the three configurations of

m = (m1,m2,m3), m
1,m2,m3 are given in Table 3.2. Figure 3.4 shows a comparison

of the normalised results for m1 and the results in the original scale. Figure 3.5 plots

results for m1,m2,m3 in the original scale, in addition to the weighted sum model,

the minimum total travel time, minimum fuel consumption and user equilibrium are

also plotted. The point (F (x∗
λ0), T (x∗

λ0)) is also included as a means of measuring

how far the user equilibrium is from a more idealised point in the Pareto set.

m x x1 x2 x3 T (x) F (x) λ0 ϕ(x) ρ

m1 x∗
λ0

715.02 450.7 334.28 2666.13 14744.0 0.3 11120.64 1.33

x∗
UE 661.79 444.67 393.54 2666.21 14975.43 - - -

m2 x∗
λ0

499.22 585.28 415.51 2470.71 13957.74 0.14 12349.56 2.26

x∗
UE 425.83 583.19 490.98 2622.48 14077.74 - - -

m3 x∗
λ0

732.13 495.34 272.53 2941.01 15287.75 0.34 11089.86 2.09

x∗
UE 764.47 567.52 168.01 3044.31 15441.731 - - -

Table 3.2: Comparison of weighted sum model solutions for m1 = (110, 80, 65),m2 =

(95, 95, 95) and m3 = (110, 80, 40).

The Pareto set has extreme values corresponding to the minimum values of

T (x) and U(x) and in each case the user equilibrium solution is dominated by
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Figure 3.4: Comparison of normalised and original scale plots.
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Figure 3.5: Weighted sum model for 3 different configurations of m.

solutions of the weighted sum model. This is not surprising as the average time

drivers experience by selfishly routing (user equilibrium) can never do better than

the minimum total travel time found by minimising the total travel time or the

minimum fuel consumed by minimising fuel consumption. Whilst it can be the case

that for certain demand levels, i.e. extremely low or extremely high, the total travel

84



Chapter 3

time for selfishly routing is equal to the minimum total travel time; the solution to

user equilibrium, at best would correspond to a point in the Pareto set.

3.2.4.2 Inefficiency of User Equilibrium against theWeighted SumModel

One should be careful not to conclude that a configuration where the user equilibrium

solution is close to this point is better (ρ is smaller) as they are different problems for

each configuration. On inspection of Figs. 3.5a, 3.5b and 3.5c, the user equilibrium

solution x∗
UE that is furthest from the solution x∗

λ0
is given by configuration m2 with

the largest value of ρ = 2.26 (Figure 3.5b); however, Figure 3.5d clearly shows that

this solution dominates both configurations m1 and m3 whose value of ρ is smaller

than the one given by m2. To summarise, whilst ρ measures the inefficiency of user

equilibrium when compared with system optimal within a given network, clearly it

does not provide a means as to evaluating the quality of the solution with respect

to the objectives T (x) and F (x).

3.2.4.3 Adjusting the Edge Free-flow Speed

A simple iterative search was used to generate a set of user equilibrium solutions,

furthermore, the Pareto set for the solutions that are efficient for total travel time

and fuel consumption were identified. For each solution, the variance of the edge

travel time functions, which have positive flow (i.e. those used), was also generated

to demonstrate the validity of the user equilibrium claim. The maximum value of

the variance over all solutions was 3.87× 10−10.

The results are displayed in Figure 3.6 and clearly show the trade-off between

total travel time and total fuel consumption. Points 1, 2, 3 on the graph indicate

the increase in allowable speeds on the edges; at point 1 for low speeds the total

fuel consumption and total travel time are both high, as the speeds increase and

approach point 2, the optimal zone of the fuel consumption curve is entered, thus

the total fuel consumption is minimised. Finally, as point 3 is approached, speeds

increase and the optimal zone is exited, allowing the total travel time to be lowered,

but severely impacting the total fuel consumption.

Two additional points are plotted showing how a reasonable adjustment in the

values of me can result in a new user equilibrium solution that strictly dominates in
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terms of both total travel time and total fuel consumption. Figs. 3.7a and 3.7b plot
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Figure 3.6: Total fuel consumption vs total travel time for varying free-flow speeds

me.

the total fuel consumption and the total travel time against the mean edge speed

m = 1
|E|
∑

e∈E me, respectively. Each of the figures are intuitive with the expected

behaviour, in the case of Figure 3.7a, the total fuel consumption, it can be seen

that this mirrors the fuel consumption curve Fe(se), when the mean speed is too

low or too high there is an increase in the total fuel consumption, the best results

are obtained between the values of m = 60 and m = 80. In Figure 3.7b, the total

travel time can be seen to decrease as the speed limit is progressively lifted.
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3.3 Measuring the Inefficiency of Equilibrium

Motivated by the ideas expressed in Section 3.2.3.2 and defined in equation (3.15), a

more general outline of the inefficiency measure for multi-criteria nonatomic selfish

routing games is given.

Given a congestion game (G, d, t) for which there exists a set of equilibrium

solutions XE, and a set of n functions by which the quality of the solution can be

measured, the general multi-criteria optimisation problem is stated as,

min(f1(x), f2(x), . . . , fn(x)) (3.17)

s.t. x ∈ X,

where X is the set of feasible set of solutions.

A feasible solution x1 ∈ X dominates x2 ∈ X if:

1. fi(x1) ≤ fi(x2), for all i ∈ 1, 2, . . . , n, and

2. fi(x1) < fi(x2) for at least one index j ∈ 1, 2, . . . , n

The set of Pareto optimal solutions contains all feasible solutions x∗ which are not

dominated.

The ideal solution is defined to be z = ( inf
x∈X

f1(x), inf
x∈X

f2(x), . . . , inf
x∈X

fn(x)). Let

f(x) = (f1(x), f2(x), . . . , fn(x)), be the n-dimensional vector of functions evaluated

at x and d(p,q) be a distance measure between the n-dimensional vectors p and q.

Therefore, the point closest to z as measured by d(p,q) is x∗
z = argmin

x∈X
d(f(x), z)

and ρd can be defined for a given user equilibrium solution xE ∈ XE as the ratio

of - the distance between the ideal point and user equilibrium; and the distance

between the ideal point and the feasible solution closest to the ideal point. Figure

3.8 illustrates the concept for a two function multi-criteria problem using Euclidean

distance. The inefficiency of an equilibrium solution xE, ρd(xE) is defined as

ρd(xE) =
d(f(xE), z)

d(f(x∗
z), z)

. (3.18)

The definition given in Section 3.2.3.2 and given by equation (3.15) is recovered by

letting d(p,q) = ∥p− q∥2, f(x) = (F̃ (x), T̃ (x)) and xE be the unique solution to

the optimisation problem (3.2).
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Figure 3.8: Illustration of the ratios described by equation (3.18) using Euclidean

distance between points.

It is important to note that in Section 3.2.3.2 the solution to equilibrium xE

is unique and therefore ρd is uniquely defined. In the more general case, whereby

multiple equilibrium solutions exist, the PoA and PoS as defined in Sections 1.2.1.5

and 1.2.1.6 can be mirrored by considering the following Pareto set of solutions.

1. The Pareto set of equilibrium solutions Xmin
E ⊆ XE that are not minimally

dominated, i.e. A feasible solution x1 ∈ X minimally dominates if

(a) fi(x1) ≤ fi(x2), for all i ∈ 1, 2, . . . , n, and

(b) fi(x1) < fi(x2) for at least one index j ∈ 1, 2, . . . , n

2. The Pareto set of equilibrium solutions Xmax
E ⊆ XE that are not maximally

dominated, i.e. A feasible solution x1 ∈ X maximally dominates if

(a) fi(x1) ≥ fi(x2), for all i ∈ 1, 2, . . . , n, and

(b) fi(x1) > fi(x2) for at least one index j ∈ 1, 2, . . . , n

Thus, one can measure any equilibrium point within either set using ρd(xE). Con-

sidering the PoA (Section 1.2.7) which considers the maximum equilibrium the fol-

88



Chapter 3

lowing can be defined as a candidate for multi-criteria,

ρmax
d = ρd(xE ∈ Xmax

E )

and for the PoS (Section 1.2.8),

ρmin
d = ρd(xE ∈ Xmin

E ).

As above it is possible to give these a unique candidate by choosing the clos-

est solution to z as measured by d(p,q). That is define the minimum equilib-

rium candidate xmin
E = argmin

x∈Xmin
E

d(f(x), z) and for the maximum candidate xmax
E =

argmax
x∈Xmax

E

d(f(x), z). This is visually illustrated in Figure 3.8.

The choice of the ideal point z as a point to which to measure from is a natural

candidate; however, it should be noted that in some situations the ‘ideal’ solution

to (3.17) (or the one chosen in practice) may be different and careful consideration

would be needed in defining means of measuring the inefficiency of equilibrium.

3.4 Chapter Summary

In this chapter a bi-criteria extension of a simplified single OD pair connected with

parallel edges to alleviate fuel consumption was presented alongside a discussion of

the issues with the multi-criteria approach of converting criteria to Value of Time,

i.e. when such a conversion can be deemed difficult to make sense of within the

context of selfish routing.

Further, two approaches were presented, the first, a weighted sum model, allowed

the interplay between the competing objectives of total fuel consumption and total

travel time to be explored and a means of measuring the inefficiency of the equi-

librium solutions with the weighted sum model demonstrated; the second, through

the manipulation of the free-flow speed of an edge, demonstrated the Pareto set

of solutions and the possibility of non-invasive traffic planning to reduce the total

fuel consumption whilst still maintaining a respectable total travel time under the

notion of selfish routing, i.e. adjusting the existing speed limits to reach the desired

goal.

Finally, a more general definition of the PoA and the PoS in the context of

multi-criteria problems was discussed and concepts illustrated.
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3.4.1 Future Work

In future work, to explore the second approach further, one can use a larger test

network that is not limited to parallel edges, e.g. Sioux Falls [96]. This would re-

quire the development of a more tractable approach to allow a further investigation

into the effect that the changes to free-flow speeds through either a meta-heuristic

approach to bi-level optimisation or a MILP whereby a subset of edges would be se-

lected that represented an optimal solution to the problem. A basic implementation

of this approach can be found at [129]. The basic nonatomic selfish routing formu-

lation could be expanded to include edge-capacity constraints [125] and emissions

modelling via pricing schemes [104].

Finally, the concept presented in Section 3.3 requires further analysis and inves-

tigation within both the context of congestion games and the wider area of game

theoretic concepts.
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Nonatomic Selfish Routing:

Assessing Demand-Based

Importance Measures

Chapter Preface

In applications such as traffic routing, there is a need to assess the network resilience

and identify components that may have a detrimental impact on the routing of net-

work flow. As the travel cost in selfish routing games is dependent on the equilibrium

flow, standard network science measures which do not account for network flow do

not necessarily provide insight into which components of the network are important.

This chapter analyses appropriate existing measures for selfish routing games

based on travel cost and proposes an alternate measure. It also queries the necessity

of these measures and their use.

Chapter Keywords

Importance Criticality, Robustness, Vulnerability, Resilience, Network Science
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4.1 Introduction

The pervasiveness of networks within our daily lives naturally leads to the question

of robustness of a network in performing its main function. In the case of nonatomic

selfish routing games, this can be framed as assessing the degradation of the net-

work’s ability to route demand when changes are made to the network, i.e. can the

importance of network components be predicted ahead of time? It is also natural

to consider when changes improve the ability to route demand.

In view of the statement above, two key questions arise: what is meant by

assessing the ability to route demand?; what is meant by changes to the network?

When considering the first question, in the case of nonatomic selfish routing

games and their equilibrium, there is an obvious (albeit not unique) choice, the total

congestion (e.g. total travel time). The principal idea of equilibrium in a nonatomic

selfish routing game is that commodities are routed such that they seek to minimise

their own personal total congestion and adhere to Wardrop’s first principle.

The journey times on all the routes actually used between an origin and

a destination are equal, and less than those which would be experienced

by a single vehicle on any unused route.

Therefore, it is natural to consider the change in total travel time at equilibrium

due to some change in the network.

In this chapter, the focus will be on the state of equilibrium in a nonatomic

selfish routing game and the associated total travel time found from solving the

optimisation problem outlined in Section 1.3.1. Whilst the focus is on equilibrium,

this work could be applied to the state of system optimal if the situation so required.

It is also noted that the consideration of the total travel time is not particularly

special, and this work could be applied to anything that can be represented as a

congestible function, like server latency etc.

The second question has a number of candidates, namely: demand profile, edge

congestion functions and the underlying network topology, i.e. vertices and edges.

Whilst changes to the demand and edge congestion functions are valid areas of

investigation, large changes to the demand profile, or improvements to edge capacity

etc are not overly common compared with possible outages of the network vertices
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and edges, that is when the vertices or edges that are no longer functioning, e.g.

road closures, computer vertex failures, electrical cables. Therefore, the focus here

is on assessing how a network holds up when there are disruptions to the underlying

network topology.

It seems intuitive that an edge that carries a lot of flow is critical to the network,

that is, does the removal of the edge hinder the users of the network in terms of

their travel time (average travel time is just a function of the total travel time).

Assessing vertices is also important and there are two types of vertex that need to

be considered. Vertices that either emit or absorb flow (belonging to a commodity)

and those that do not. Those vertices that do not emit or absorb flow can be

measured in the same manner as the edges; understanding what to measure in

terms of the vertices that belong to a commodity is important and more challenging

owing to the question of what to do with the demand associated with them.

This chapter is organised as follows. In Section 4.2 some network science mea-

sures, which are not demand-based, are introduced and demonstrated via a case

study of all UK major cities and towns (excluding London due to its size). These

measures are also analysed to ascertain whether they can be utilised to predict

the importance of network components. Section 4.3 outlines and analyses existing

demand-based measures for network equilibrium flows and details the issues present

in these measures. Section 4.4 proposes an alternate measure and related theorems

and a statistical analysis of relevant measures is given to ascertain the usefulness of

these measures when applied to nonatomic selfish routing games. Section 4.5 ex-

amines some paradoxical effects. Finally Section 4.6 utilises the proposed measure

to assess whether the positioning of external demand on a grid-based network has

an impact on the importance of the edges and vertices. All analysis undertaken

in Section 4.3, 4.4 and 4.6 was done using the Python libraries Pandas [159] and

Seaborn [78, 168] and full data and implementation of results can be found at [129].

Equilibrium solutions for networks analysed were solved using the gradient projec-

tion algorithm outlined in Section 2.2.3.2 to an AEC of 10−5 or a maximum of 500

iterations.
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4.2 Network Science Measures

Network science is a continually burgeoning field that studies the means to sta-

tistically classify particular phenomena within networks, such as their topology.

Measures exist such as centrality, degree and clustering, which can be useful to

rank edges and vertices and provide a good insight into pertinent questions such

as network connectivity, network resilience, importance of vertices (e.g. Google’s

PageRank) and the spread of information or disease [106, 149].

4.2.1 Local Measures

The following measures act to describe the structure at a local (micro) level.

• Clustering coefficient - how close its neighbours are to being a clique

• Weighted clustering coefficient - as above but taking edge weighting into account

• Centrality measures (normalised)

– Degree - how many edges are adjacent to the node

– Closeness - how close a vertex is to any other vertex in the network

– Betweenness - how many shortest paths pass through the node

• Eccentricity - maximum shortest path between a vertex and any other node, i.e

the distance of a vertex from the vertex most distant to it

4.2.2 Global Measures

The following measures act to describe the structure at a global (marcro) level.

• Average degree - mean of all the vertex degrees

• Average clustering coefficient - mean of all the clustering coefficients

• Average weighted clustering coefficient - mean of all the weighted clustering

coefficients

• Degree distribution - fraction of vertices in the network with degree k

94



Chapter 4

• Radius - minimum of all vertex eccentricities

• Diameter - maximum of all vertex eccentricities, i.e. the maximum of all

shortest paths

4.2.3 Relevant Measures

Measures which are used in analysis are defined in this section; for all these measures

assume that, for a commodity j with OD pair (u, v), the shortest path distance

d(u, v) is the weighted path given by,

d(u, v) = min
π∈Πj

∑
e∈π

te(xe), (4.1)

where Πj is the set of paths available between u and v.

A full explanation of the measures presented can be found in [23, 25].

4.2.3.1 Vertex Measures

Degree Centrality

Definition 4.2.1 (Degree Centrality). For a graph G = (V,E), the degree centrality

for the vertex v is the number of edges incident.

CD(v) = deg(v).

In the case of a directed graph, the number of edges incident is the sum of the

incoming and outgoing edges.

Definition 4.2.2 (Normalised Degree Centrality). For a graph G = (V,E), the

normalised degree centrality for the vertex v is the fraction of vertices it is connected

to.

ĈD(v) =
CD(v)

|V | − 1
.

Closeness Centrality

Definition 4.2.3 (Closeness Centrality). For a graph G = (V,E), the closeness

centrality for vertex v is the reciprocal of the sum of the shortest path distances for

the n− 1 reachable vertices for vertex v,

CC(v) =
1∑

u d(u, v)
,
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where d(u, v) is the shortest path distance for vertices u and v.

Definition 4.2.4 (Normalised Closeness Centrality). For a graph G = (V,E), the

normalised closeness centrality for vertex v is the reciprocal of the average shortest

path distance for the n− 1 reachable vertices for vertex v,

ĈC(v) = (n− 1) · CC(v).

Betweenness Centrality

Definition 4.2.5 (Betweenness Centrality). For a graph G = (V,E), the between-

ness centrality for vertex v is the fraction of all-pairs shortest paths passing through

vertex v,

CB(v) =
∑

s,t∈V :s ̸=t̸=v

σst(v)

σst

,

where σst is the number of shortest paths from vertex s to vertex t and σst(v) is the

number of shortest paths passing through vertex v.

Definition 4.2.6 (Normalised Betweenness Centrality). For a directed graph G =

(V,E), the normalised betweenness centrality for vertex v is the fraction of all-pairs

shortest paths passing through vertex v,

ĈB(v) =
CB(v)

(n− 1)(n− 2)
,

where (n− 1)(n− 2) is the number of s, t pairs in the graph G

Note that this allows comparison between strongly connected directed graphs.

However, in a directed graph where there exists no path between some pair of

vertices, s and t, σst = 1 and σst(v) = 0. In this case one should be careful of

comparing networks.

Clustering Coefficient

Definition 4.2.7 (Clustering Coefficient). For a directed graph G = (V,E) the

clustering coefficient is given by,

CW (v) =
1

CD(v)(CD(v)− 1)− 2C⇐⇒
D (v)

T (v),

where T(v) is the set of directed triangles through vertex v and C⇐⇒
D (v) is the number

of neighbouring vertices for which a bi-directional edge exists, i.e. edge (u, v) and

(v, u) are present.

96



Chapter 4

Note that the denominator counts all possible directed triangles that can be

formed; in the case of a undirected graph this is just the number of pairs of vertices

that are incident to v, CD(v)(CD(v)−1)
2

. In the case of a directed graph, this is replaced

by the denominator and 2C↔
D (v) is a correction factor which accommodates for false

triangles which have been counted by CD(v)(CD(v)− 1) [61].

Eccentricity

The eccentricity of a vertex v is the maximum distance from v to all other vertices

in the network G,

ϵ(v) = max
u∈V

d(v, u).

4.2.3.2 Edge Measures

Edge Betweenness Centrality

Definition 4.2.8 (Edge Betweenness Centrality). For a graph G = (V,E), the edge

betweenness centrality for edge e is the fraction of all-pairs shortest paths passing

through edge e,

CB(e) =
∑

s,t∈V :s ̸=t̸=v

σst(e)

σst

,

where σst is the number of shortest paths from vertex s to vertex t and σst(e) is the

number of shortest paths passing through edge e.

Definition 4.2.9 (Normalised Betweenness Centrality). For a directed graph G =

(V,E), the normalised edge betweenness centrality for edge e is the fraction of all-

pairs shortest paths passing through edge e,

ĈB(e) =
CB(e)

(n− 1)(n− 2)
,

where (n− 1)(n− 2) is the number of s, t pairs in the graph G

4.2.4 A Case Study Using OpenStreetMap

To showcase the aforementioned measures and also provide insight into the structure

and size of one of the most widely used applications of nonatomic selfish routing

games, urban traffic networks (traffic planning purposes), an analysis of 111 major

cities and towns in England and Wales is given.
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The data for this study was extracted from OpenStreetMap (OSM) via the

python libraries NetworkX (NX) and OSMNX, a Python package to retrieve, model,

analyze, and visualize street networks from OSM [24]. The borders used for each

major city and town is based on the built-up areas (BUA) 2011 census definitions

[128]. This provided better boundaries for urban areas when compared with the

traditional local authority district (LAD). The convex hull of the boundary was

used to extract a connected directed graph of the roads which was then used in the

statistical analysis. All data can be found at [129]

A major omission from the dataset is London as it is an outlier because of its

density and size and dramatically skews the results. Figures 4.1a and 4.1b illustrate

the BUA boundary for the town of Chesterfield and the corresponding extracted

network from OSM used for analysis. Figure 4.2 illustrates four local vertex measures

for Chesterfield which are coloured low (light green) to high (dark blue). Table 4.1

summarises a comparison between the town of Basildon and Chesterfield. Table 4.2

displays the overall central tendency and dispersion measures for all towns and cities

and Figure 4.3 presents a Pearson correlation matrix assessing the linear association

between the central tendency and dispersion measures. For a detailed explanation of

the Pearson correlation coefficient see Chapter 7 of [26]. Finally, Figure 4.4 provides

examples of degree distributions for selected towns and cities.
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4.2.4.1 Example City Analysis

(a) Chesterfield BUA. (b) Chesterfield road network.

Figure 4.1: Chesterfield BUA and network extracted via OSNMX.
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(a) Degree centrality. (b) Closeness centrality.

(c) Betweenness centrality. (d) Weighted clustering coefficient.

Figure 4.2: Vertex measures for Chesterfield.
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Table 4.1: Global averages of measures for Basildon vs Chesterfield.

4.2.4.2 Analysis on all England and Wales Cities

Table 4.2: Central tendency measures for UK.
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Correlation Matrix

Figure 4.3: Pearson correlation matrix for selected measures for UK BUA’s.
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Degree Distributions

Figure 4.4: Degree distributions of selected cities.

1 2

(a) Vertex 2 is a terminating vertex with a

degree of 2

1

2

3

(b) Vertex 1 is a three-way junction with a

degree of 6.

Figure 4.5: Explanation of vertex degree values of 2 and 6.
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4.2.4.3 Conclusions and Future Work

Table 4.2 and Figure 4.4 illustrate that the UK road networks are sparse networks

when considering the mean vertex degree and other such measures. On inspection

of the degree distributions, it is apparent that the most frequent vertex degrees are

2 and 6, and this is supported by the mean vertex degree µ = 4. The explanation

for the frequency of a value of 2 is due to the ending of roads as illustrated in Figure

4.5a. One can postulate that the value of 6 is also easily explained by the presence

of three-way junctions (Y junction or T junction) as illustrated in Figure 4.5b. It

is also notable that a value of 8 is less common which would be attributable to a

four-way junction (intersection).

Whilst networks that have organically grown, such as those in the UK road

network, are somewhat unstructured, the analysis here supports a suggestion that

there is a pseudo grid-like topology. It also establishes the mean size of the network

equilibrium problem for urban transportation networks in the UK with a mean value

of 15,249.38 and 6,766.28 for the number of edges and nodes, respectively (see Table

4.2). Section 5.3.6 outlines the current state of shortest path technology in large

network problems, easily dealing with ∼200K vertices and ∼1M edges. This puts

the size of the problem into context and demonstrates that at some point in the

future there may be less of a reliance on the need for bespoke methods as outlined

in Chapter 2.

It is possible, given the data that has been extrapolated, to classify the road

network using supervised or unsupervised learning. In particular, cluster analysis

could be used to attempt to classify networks into categories within the UK, or

even globally. Of note are networks which are designed and therefore exhibit much

greater structure. Examples include grid plan networks such as those used in the

US (e.g. Manhatten) or in the UK (e.g. Milton Keynes).

Additional questions can also be asked with regard to selfish routing, in conjunc-

tion to these classifications, as to whether a more structured network has benefits

with regards to robustness and traffic management.
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4.2.5 Statistical Analysis of Network Science Measures on

Sioux Falls

This section analyses how the local centrality network science measures presented in

Section 4.2.3 correlate with the change in total travel time ∆T , when either an edge

or a vertex is removed, to assess whether these measures can be used as a predictor

for ranking which edges or vertices are important to the network.

Analysis is done for the Sioux Falls network (Appendix C.3) and the network

proposed by Dial [57] (Appendix C.4) and includes the following measures. Note

that, given the analysis in Section 4.2.4, urban transportation networks are sparse

and, therefore, clustering measures are not included in this analysis; however, in

denser networks they may prove useful. Three of these measures require the edge

weight (cost) and are computed for three different cases, i = 1, 2, 3 representing:

1. Edges have equal cost

2. Edge costs are the congestible edge functions computed on an empty network

3. Edge costs are the congestible cost of edge functions when the network is at

equilibrium.

Edge Measures

• Ĉi
B(e) - Normalised Edge Betweenness Centrality

Vertex Measures

• Ĉi
B(v) - Normalised Betweenness Centrality

• Ĉi
C(v) - Normalised Closeness Centrality

• ĈD(v) - Normalised Degree

Figures 4.6a and 4.7a display the Pearson correlation matrix for Sioux Falls for the

removal of a vertex and the removal of an edge, respectively. Figures 4.6b and 4.7b

display the Pearson correlation matrix for Dial’s Network. Figures 4.6a and 4.6b

indicates a low positive correlation between Ĉ1
B(e), Ĉ3

B(e) and ∆T on removal of an
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edge. Similarly for the removal of a node, Figures 4.7a and 4.7b suggest that Ĉ2
B(v),

Ĉ3
B(v) and Ĉ3

C(v) correlate well with ∆T .

∆T Ĉ1
B(e) Ĉ2

B(e) Ĉ3
B(e)

∆
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Ĉ
1 B
(e

)
Ĉ

2 B
(e

)
Ĉ

3 B
(e

)

1 0.45 0.26 0.57

0.45 1 0.17 0.11

0.26 0.17 1 0.41
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0.7

0.8

0.9

1.0

(a) Sioux Falls network.
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−0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b) Dial’s network.

Figure 4.6: Pearson correlation matrix for network science measures (removal of an

edge e).
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∆T Ĉ1
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(a) Sioux Falls network.
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C(v) ĈD(v)

∆
T

Ĉ
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(b) Dial’s network.

Figure 4.7: Pearson correlation matrix for network science measures (removal of a

vertex v).
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4.3 Demand-based Measures

Section 4.2.5 motivates the need for measures that correlate better with both the

change in total travel time ∆T and the flow on an edge xe. Whilst the measures

demonstrated in Section 4.2.4 can potentially provide answers for many questions

involving networks, they do not take into account the resulting flow present on a

network due to the routing of demand. Therefore, they are unlikely to be able to

fully answer questions around robustness and criticality.

It is, therefore, important to consider measures that take demand and flow into

account and what the desirable properties of these measures should be. This section

outlines these considerations and presents existing demand-based measures that

provide a means of assessing the importance of a component with regards to ∆T

and the flow in the network.

4.3.1 What Should a Reasonable Measure Involving Con-

gestible Flow Show?

The following are six desirable properties of an effective measure:

1. Reflects the importance of the removal of a set of vertices/edges from a net-

work;

2. Normalised to allow comparison between different networks;

3. Bounded;

4. Weighted by the demand profile to allow comparison with different demand

loadings;

5. Identify if the removal of the set of vertices/edges has resulted in a disconnect

in the demand;

6. Reflects changes to demand.

4.3.2 Existing Demand-based Measures

As aforementioned in Section 1.6, a comprehensive overview of such measures can

be found in the survey done by Jafino, Kwakkel and Verbraeck (2019) [81].
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The measures presented in this section make use of the shortest path distance,

d(u, v), between a pair of vertices u and v given by (4.1).

4.3.2.1 Importance

The importance is defined in different ways [84, 102]; however, it can be loosely

defined as the impact that the removal of a given component or set of components

have on a network.

More precisely, it will measure the change in a given network measure EM(G)

for the network G to the revised network G′.

Definition 4.3.1 (Normalised Importance of a Set of Network Vertices and Edges).

Given a nonatomic selfish routing game (G, d, t) and a subgraph (G′, d, t), let S

represent the set of removed vertices and edges from G = (V,E) and G′ = (V ′, E ′),

S = {V \ V ′ ∪ E \ E ′}.

The importance of the set S, I(S) is measured by the relative network efficiency drop

after S is removed from the network G:

I(S) =
∆EM

EM

=
EM(G, d)− EM(G′, d)

EM(G, d)
,

where EM(G, d) and EM(G′, d) are the network efficiency measures for the nonatomic

selfish routing game (G, d, t) before and after the removal of S.

It is important to note that if the denominator of EM(G, d) and EM(G′, d) is the

same, then it plays no part in the measure. Therefore, it is important to clarify if

and how a denominator changes.

4.3.2.2 Latora and Marchiori (L-M) Measure

Latora and Marchiori [94] introduced a measure to assess how efficiently a network

exchanges information. Studies of the measures are provided on neural networks,

man-made communication (internet) and transportation systems (Boston subway

transportation system). The first two are considered as unweighted graphs, i.e. edges

do not have a weight (distance), whereas the transportation system is a weighted

graph that uses the physical distance of the geographical locations between stations.

The L-M measure is defined as follows.
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Definition 4.3.2 (L-M Measure). The network efficiency measure ELM(G) for a

given network G = (V,E), is defined as:

ELM(G) =
1

n(n− 1)

∑
u,v∈V :u̸=v

1

d(u, v)
,

where n = |V |. If there is no path between u and v, d(u, v) =∞.

If vertices are removed in a subgraph G′ then the original number of vertices n

is still used.

Note that this is a more general definition and does not take into account the

demand profile of a nonatomic selfish routing game. Therefore, the point at which

shortest paths d(u, v) are computed must be determined. To compare with the

other measures, d(u, v) will be computed after the network has been loaded and is

at equilibrium.

4.3.2.3 Demand-weighted Total Travel Time

The following measure was proposed by Zhu in 2006 [174] and is fairly straightfor-

ward. That is, weight the total travel time by the demand routed in the network.

Definition 4.3.3 (Zhu et al). The network efficiency measure EZ(G, d) for a given

network G = (V,E), is defined as:

EZ(G, d) =

∑
k∈K λkdk∑
k∈K dk

,

where for a given commodity k = (u, v), λk = d(u, v), i.e. the shortest path for

commodity k.

At equilibrium, all demand for a commodity k ∈ K will be routed on the shortest

path and, therefore, the numerator is equal to the total travel time,∑
k∈K

λkdk =
∑
e∈E

xete(xe).

Thus, at equilibrium EZ(G, d) can be seen as measuring the demand weighted total

travel time of the network.

As per the L-M measure, the above is computed after the network has been

loaded and in the case that a commodity k is disconnected, the measure is undefined,

EZ =∞.
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Given that it is improbable (Braess Paradox) that the removal of a set of network

vertices/edges S results in an improvement to the overall total travel time. The

normalised importance for EZ(G, d) is defined as,

IZ(S) =
∆EZ

EZ

=
EZ(G′, d)− EZ(G, d)

EZ(G, d)
=

∑
c∈K λ′

kdk −
∑

c∈K λkdk∑
c∈K λkdk

thus as EZ(G′, d)→∞, the measure is unbounded above,

lim
EZ(G′,d)→∞

EZ(G′, d)− EZ(G, d)

EZ(G, d)
= lim

EZ(G′,d)→∞

EZ(G′, d)

EZ(G, d)
− 1 =∞.

4.3.2.4 Edge Importance Adapted from Jenelius, Petersen, and Mattson

(2006)

The original definitions given in [84] are limited to edges, but can be extended to fit

with the notion of removing a set of vertices/edges from the network.

Definition 4.3.4 (Global Importance).

IG(S) =
1

nK

∑
k∈K

(λk(G′)− λk(G)) ,

where λk(G) is the shortest path for commodity k for network G and nk is the number

of commodities |K|.

The global importance is the difference between the total sum of the shortest

paths weighted by the number of commodities. A major omission to this measure

is that it does not account for the demand in the network and, therefore, it is not

considered for analysis.

Definition 4.3.5 (Demand-Weighted Importance).

IDW (S) =

∑
k∈K dk (λk(G′)− λk(G))∑

k∈K dk
,

where λk(G) is the shortest path for commodity k for network G.

The demand-weighted importance is merely the difference between the total

travel time at equilibrium, it shares the numerator with the Zhu importance (IZ),

but is weighted by the total demand for the network. Whilst similar to the Zhu im-

portance, this measure is not normalised and does not adhere to the second desirable

property outlined in Section 4.3.1 and is not part of the subsequent analysis.
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Definition 4.3.6 (Relative Unsatisfied Demand).

IUD(S) =

∑
k∈K uk(G′)∑

k∈K dk
,

where uk(G′) is the resulting unsatisfied demand in G′ from removing a set S of

network vertices/edges from G.

The relative unsatisfied demand is an important concept and will be invaluable

in determining the reasons for improvements in total travel time and ensuring the

delivery of demand. It measures the fraction of the demand that has not been routed

due to a disconnect in the network or removal of a vertex attached to a commodity.

4.3.2.5 Nagurney-Qiang (N-Q) Measure

Nagurney and Qiang introduced their demand-based measure in 2008 [119] in an

attempt to provided an importance ranking measure which considered the demands

and flows on a network. Further considerations were given in their text on fragile

networks [120].

Definition 4.3.7 (N-Q Measure). The network efficiency measure ENQ(G, d) for a

given network G = (V,E), is defined as:

ENQ(G, d) =

∑
k∈K

dk
λk

nK

,

where for a given commodity k = (u, v), λk = d(u, v), i.e. the shortest path for

commodity k and nk is the number of commodities in the network |K|.
If a commodity k ∈ K becomes disconnected, all demand of the commodity k, dk

is assigned to a path of infinite length, λk =∞.

If a commodity is removed, all demand of the commodity k, dk is assigned to a

path of infinite length, λk =∞ and nK is the original number of commodities in the

network |K|

The last part of the definition which specifies the case for a disconnect of a com-

modity is necessary to ensure that the measure is well defined. As the limλk→∞
dk
λk

=

0, a disconnected commodity can be seen to contribute nothing to the measure.

ENQ(G, d) can be seen to represent the average demand per unit cost over the

set of commodities. The bigger the increase to the values of λk, ∀k ∈ K in G′, the

smaller the value of ENQ(G′, d). By definition as ENQ(G′, d)→ 0, INQ(S)→ 1.
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4.3.3 Some Motivating Examples

To demonstrate the importance measures ILM , IZ , INQ and IUD and provide insight,

the following examples are given for the removal of either a single vertex or a single

edge. The change in total travel time is reported as ∆T , with a value of ∆T > 0

corresponding to a worsening of the total travel time and ∆T < 0 corresponding

to an improvement of the total travel time. The unsatisfied demand IUD is also

given. As the section develops, issues with the existing demand-based measures

are mentioned and, motivated by this, solutions to these issues are sought. When

removing an edge, a comparison will also be made with the flow on an edge xe at

equilibrium in the original network (no removal of edges). In the case of a vertex v,

a comparison with all the flow incident to v in the original network with be made.

Let Ev be the set of edges incident to vertex v, then the flow incident to vertex v is

given by xv
e =

∑
e∈Ev

xe.

4.3.3.1 Braess Network

Figure 4.8 displays the Braess network which consists of single commodity (1, 4). A

full description of the network and edge cost functions can be found in Appendix

C.1.

The Braess network is an important example as the adding of an edge can worsen

the travel time at equilibrium, ∆T > 0. The converse is also true, i.e. starting with

the edge present and removing the edge results in a improvement of the total travel

time (∆T < 0) at equilibrium. Therefore, a measure should be able to detect this.

Results are summarised in Tables 4.3 and 4.4.

u v xe ILM IZ INQ IUD ∆T

1 2 4000.00000 0.25345 0.06250 0.05882 0.00000 20000.00000

1 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

2 3 4000.00000 -0.42070 -0.18750 -0.23077 0.00000 -60000.03815

2 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

3 4 4000.00000 0.25345 0.06250 0.05882 0.00000 20000.00000

Table 4.3: Edge importance measures for Braess network.
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Figure 4.8: Braess network.

v xv
e ILM IZ INQ IUD ∆T

1 4000.00000 1.00000 N/A 1.00000 1.00000 -320000.00000

2 8000.00000 0.47567 0.06250 0.05882 0.00000 20000.00000

3 8000.00000 0.47567 0.06250 0.05882 0.00000 20000.00000

4 4000.00000 1.00000 N/A 1.00000 1.00000 -320000.00000

Table 4.4: Vertex importance measures for Braess network.

In Table 4.3 note that the removal of an edge results in a value of ∆T > 0 and

is reflected in the measures ILM , IZ and INQ which are all positive. Similarly, when

∆T < 0 each of these measures is negative, i.e. the removal of edge (u, v) = (2, 3)

results in a improvement of the total travel time at equilibrium ∆T = −60000 < 0.

It is also of note that IUD = 0 for all edges, and, thus, the resulting travel times are

based on the same demand being routed (i.e. no demand has been removed due to

a disconnected commodity).

Inspection of Table 4.4 provides a few key insights. First the removal of vertices

1 and 4 have disconnected the single commodity so all demand is no longer routed,

IUD = 1. This results in a total travel time of 0 and, thus, there is (if viewed

purely by value) an improvement in travel time. Whilst this may seem somewhat

a fabricated or fictitious scenario, it is in fact a reasonable phenomenon. One can

easily imagine a situation whereby the removal of a large building, e.g. a hospital or

school, results in demand being removed from the network and, thus, travel times
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Figure 4.9: Network from Qiang and Nagurney [139].

improve.

The measures (excluding IZ which is not defined for vertex removal), while re-

flecting that these vertices are indeed of the utmost importance (i.e. in this case

they sever all demand for the network), do not provide an indication that the total

travel time has actually improved as they did with the removal of the edge (2, 3) in

Table 4.3. Indeed, it can be argued that the measures should reflect the importance

for both cases, improvement and worsening of the total travel time.

4.3.3.2 One Origin, Multiple Destinations

The following example (Figure 4.9) is from Qiang and Nagurney [139] and allows

confirmation of the results obtained. A full description of the network and edge

cost functions can be found in Appendix C.2. It also flags another issue with the

removal of vertices that result in a disconnected commodity. The network has two

commodities (1, 4) and (1, 5) with respective demands d14 = 100 and d15 = 20.

Results are summarised in Tables 4.5, 4.6, 4.7 and 4.8.
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u v xe ILM IZ INQ IUD ∆T

1 2 60.00000 0.73030 1.00000 0.50000 0.00000 12400.00105

1 3 60.00000 0.73030 1.00000 0.50000 0.00000 12400.00105

2 4 50.00001 0.49446 0.67742 0.16304 0.00000 8400.00105

2 5 10.00000 0.51189 0.02419 0.04220 0.00000 299.99987

3 4 49.99999 0.49446 0.67742 0.16304 0.00000 8400.00105

3 5 10.00000 0.51189 0.02419 0.04220 0.00000 299.99987

Table 4.5: Edge importance measures for network in Figure 4.9.

u v xe Rank ILM Rank IZ Rank INQ Rank ∆T Rank

1 2 1 1 1 1 1

1 3 1 1 1 1 1

2 4 2 4 2 2 2

2 5 3 3 3 3 3

3 4 2 4 2 2 2

3 5 3 2 3 3 3

Table 4.6: Edge importance measure rankings for network in Figure 4.9.

v xv
e ILM IZ INQ IUD ∆T

1 120.00000 1.00000 N/A 1.00000 1.00000 -12399.99895

2 120.00000 0.73030 1.00000 0.50000 0.00000 12400.00105

3 120.00000 0.73030 1.00000 0.50000 0.00000 12400.00105

4 100.00000 -0.51663 N/A 0.16304 0.83333 -11999.99971

5 20.00000 0.69667 N/A 0.16304 0.16667 -2400.00014

Table 4.7: Vertex importance measures for network in Figure 4.9.
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v xv
e Rank ILM Rank IZ Rank INQ Rank IUD Rank ∆T Rank

1 2 1 N/A 1 1 4

2 1 2 1.00000 2 4 1

3 3 2 1.00000 2 4 1

4 4 4 N/A 4 2 3

5 5 3 N/A 3 3 2

Table 4.8: Vertex importance measure rankings for network in Figure 4.9.

Table 4.5 and Table 4.6 compare the measures given by the removal of individual

edges against ∆T . Table 4.6 clearly shows how the edges have been ranked by the

measures and illustrates the issue of using the L-M measure with nonatomic selfish

routing games, that is the rankings are incorrect when compared with ∆T .

The removal of vertices 1, 4 and 5 (see Table 4.7) result in a disconnect of com-

modities. Vertex 1 disconnects both commodities (1, 4) and (1, 5), i.e. IUD = 1,

whilst vertex 4 disconnects (1, 4) and vertex 5 disconnects (1, 5). Comparing the

removal of vertices 4 and 5, clearly the removal of vertex 4 removes more demand

from the network, IUD = 0.8333 > 0.1667, and the total travel time is also improved

to a greater extent, ∆T = −11999.9997 < −2400.0001. Again, there are issues with

the measures, ILM has opposite signs and INQ provides an equal importance value

of INQ = 0.16304. None of the measures fully capture all the information necessary

to distinguish that: demand has been removed; the travel time has improved; the

difference in how much the travel time has improved. Put simply, it is impossible

to determine the cause of the effect by the values given by the measures.

4.3.3.3 Multiple Origins, Multiple Destinations

To examine the measures on a larger network with multiple commodities, the Sioux

Falls network (Appendix C.3) is used and the effect of removing each edge and each

vertex is examined.

Figures 4.10, 4.11, 4.12, 4.13 present the results for removal of edges and Figures

4.14, 4.15, 4.16, 4.17 the results for the removal of vertices. Figures 4.10, 4.11, 4.16,

4.17 display the value given by the measures, whereas Figures 4.12, 4.13, 4.14, 4.15

display the ranking of the component. Note that IZ is undefined for the removal
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of a vertex with an associated demand. In the case of the Sioux Falls network this

applies to all vertices, hence no results can be given for IZ for the removal of vertices.

Inspection of Figures 4.11 and 4.13 show that all three measures INQ, ILM and

IZ exhibit a positive correlation with the flow on an edge xe with correlation values

of 0.76, 0.84 and 0.89, and correlation rank values of 0.9, 0.82 and 0.82, respectively

from the removal of an edge e. The measures also exhibit a strong correlation

with the change in total travel time ∆T , with correlation values of 0.85, 0.9 and

1, and correlation rank values of 0.88, 0.91 and 1, respectively. In particular, IZ is

perfectly correlated with the change in total travel time ∆T - this is as expected as

for equilibrium IZ is just a form of normalised ∆T that differs by a constant factor

(see Theorem 4.4.1). It is also of note that the flow xe and the change in total travel

time ∆T have a strong correlation. and that the amended version of ILM also has

a higher correlation value than the INQ measure. Figure 4.10c and 4.12c also show

that for IZ the spread of measure is wider and less bunched than ILM and INQ. This

may account from some of the errors in correctly correlating the rank.

Figures 4.15 and 4.17 display the correlation results from removing a vertex v.

INQ and ILM have positive correlation values of 0.89 and 0.69, respectively for the

flow incident to the vertex v - xv
e . With regards to the total travel time ∆T the values

are 0.72 and 0.94, respectively. This suggests that while INQ is a good predictor of

the flow incident to a vertex, it is less successful as a predictor of the change in total

travel time due to the removal of a vertex when compared with ILM .

Therefore, the INQ measure does not appear to provide a strong enough case to

distinguish itself from the standard ILM measure.
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Figure 4.10: Comparison of INQ, ILM and Iz for the removal of an edge e.
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Figure 4.11: Pearson correlation matrix for removal of an edge e.
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Figure 4.12: Comparison of INQ, ILM and Iz for the removal of an edge e (Ranking).
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Figure 4.14: Comparison of INQ, ILM and Iz measures for the removal of a vertex

v.
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Figure 4.15: Pearson correlation matrix for removal of a vertex v.
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Figure 4.16: Comparison of INQ, ILM and Iz for the removal of a vertex v (Ranking).
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Figure 4.17: Pearson correlation matrix for removal of a vertex v (Ranking).

4.3.4 Summary of Issues Pertaining to Demand-based Mea-

sures

Section 4.3.3 identified issues with the ILM , IZ and INQ measures. The following

list summarises the issues:

1. If there is a disconnect in the network, i.e. a commodity can no longer route

the specified demand, then IZ is undefined.

2. IZ(S) = ∆E
E

= EZ(G′,d)−EZ(G,d)
EZ(G,d)

is not bounded above.

i.e. limEZ(G′,d)→∞ IZ(S) = EZ(G′,d)−EZ(G,d)
EZ(G,d)

= EZ(G′,d)
EZ(G,d)

− 1 =∞
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3. INQ(S) and ILM(S) are not bounded below.

i.e. limEM (G′,d)→∞ I(S) = EM (G,d)−EM (G′,d)
EM (G,d)

= 1− EM (G′,d)
EM (G,d)

= −∞

4. Other than IUD measures do not identify that demand has been removed.

5. Do not correctly reflect an improvement or worsening of total travel time in

cases where there is a disconnect in the network.

6. Do not correctly reflect the magnitude of the improvement of total travel time

due to a change in demand, e.g. the example given by the removal of vertices

4 and 5 in Section 4.3.3.2.

7. Denominator is not relevant when used by the normalised importance (Defi-

nition 4.3.1).

Comparing these with the desirable properties listed in Section 4.3.1, there are a

number of deficiencies that need addressing.

4.4 An Improved Measure

Section 4.3.4 motivates the need for the development of a normalised measure which

does not suffer with the issues presented in Section 4.3.4.

The new measure will be the reciprocal of the total travel time and, with some

additional definitions, will resolve the aforementioned issues. The reciprocal is cho-

sen to allow the definition of the normalised importance to be defined as it is defined

for ENQ and ELM , that is, there is not a requirement for a switch in sign.

The measure will also not be weighted by the number of commodities, possible

connections or demand, as these are effectively a constant factor in the definitions

of other demand-based measures. That is, it does not contribute to the normalised

importance as noted in Section 4.3.2.1.

Definition 4.4.1 (Reciprocal of the Total Travel Time). The network efficiency

measure ER(G, d) for a given network G = (V,E), is defined as:

ER(G, d) =
1∑

k∈K λkdk
,

127



Chapter 4

where for a given commodity k = (u, v), λk = d(u, v), i.e. the shortest path for

commodity k.

In the case that a commodity k ∈ K becomes disconnected, all demand of the

commodity k, dk is assigned to a path of no length, λk = 0.

In the case that all commodities are disconnected in G′ then ER(G′, d) = 1
ϵ
.

The rationale for ER(G′, d) = 1
ϵ

is that in the case that all commodities are

disconnected,
∑

k∈K λkdk = 0 and the measure would be undefined. This also has

the nice property that

I =
ER(G, d)− ER(G′, d)

ER(G, d)
= lim

ϵ→0

ER(G, d)− 1
ϵ

ER(G, d)
= −∞.

The total travel time,
∑

k∈K λkdk = 0, is viewed, at least from a purely sign-based

perspective, as an improvement. That is, the value of −∞ corresponds to the

maximum improvement possible in the total travel time. Ideally this would be

bounded below by -1 to allow a more reasonable comparison across networks.

To address this issue an updated definition of the normalised importance is pre-

sented.

4.4.1 Revised Normalised Importance

Definition 4.4.2 (Revised Normalised Importance of a Set of Network Vertices and

Edges). Given a nonatomic selfish routing game (G, d, t) and a subgraph (G′, d, t), let

S represent the set of removed vertices and edges from G = (V,E) and G′ = (V ′, E ′),

S = {V \ V ′ ∪ E \ E ′}.

The revised importance of the set S, I(S) is measured by the relative network effi-

ciency drop after S is removed from the network G:

Î(S) =
∆E

E
=

E(G, d)− E(G′, d)

max(E(G, d), E(G′, d))
,

where E(G, d) is the network efficiency measure for the nonatomic selfish routing

game (G, d, t).

For the reciprocal measure,

Î =
ER(G, d)− ER(G′, d)

max(ER(G, d), ER(G′, d))
= lim

ϵ→0

ER(G, d)− 1
ϵ

1
ϵ

= −1.
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4.4.2 A Few Theorems

The following section outlines some theorems about the chosen existing measures

outlined in Section 4.3.2 and the newly defined measure given in the previous section.

Theorem 4.4.1. At equilibrium IZ(S) differs from ∆T by a constant factor of

− 1∑
k∈K λkdk

.

Proof.

ÎZ(S) =

∑
k∈K λ′

kdk∑
k∈K dk

−
∑

k∈K λkdk∑
k∈K dk∑

k∈K λkdk∑
k∈K dk

=

∑
k∈K λ′

kdk −
∑

k∈K λkdk∑
k∈K λkdk

= − 1∑
k∈K λkdk

∆T

Theorem 4.4.2. The revised normalised importance ÎZ(S) of EZ(G, d) is equal and

opposite in sign to the normalised importance ÎR(S) of ER(G, d) when defined, i.e.

all commodities are connected when the set S is removed from G.

Proof. Let ÎZ(S) and ÎR(S) denote the importance of EZ(G, d) and ER(G, d) re-

spectively.

ÎZ(S) =

∑
k∈K λkdk∑
k∈K dk

−
∑

k∈K λ′
kdk∑

k∈K dk

max
(∑

k∈K λkdk∑
k∈K dk

,
∑

k∈K λ′
kdk∑

k∈K dk

) ,
and,

ÎR(S) =

1∑
k∈K λkdk

− 1∑
k∈K λ′

kdk

max
(

1∑
k∈K λkdk

, 1∑
k∈K λ′

kdk

) .
Considering the two cases:

Case 1:

If ∑
k∈K λkdk∑
k∈K dk

>

∑
k∈K λ′

kdk∑
k∈K dk

,

then,

ÎZ(S) =

∑
k∈K λkdk∑
k∈K dk

−
∑

k∈K λ′
kdk∑

k∈K dk∑
k∈K λkdk∑
k∈K dk

=

∑
k∈K λkdk −

∑
k∈K λ′

kdk∑
k∈K λkdk

.

Noting that,
a− b

a
=

1
b
− 1

a
1
b
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ÎZ(S) =

1∑
k∈K λ′

kdk
− 1∑

k∈K λkdk

1∑
k∈K λ′

kdk

= −
( 1∑

k∈K λkdk
− 1∑

k∈K λ′
kdk

1∑
k∈K λ′

kdk

)
= −ÎR(S),

where,
1∑

k∈K λ′
kdk

>
1∑

k∈K λkdk
=⇒

∑
k∈K λkdk∑
k∈K dk

>

∑
k∈K λ′

kdk∑
k∈K dk

.

Case 2

If ∑
k∈K λkdk∑
k∈K dk

<

∑
k∈K λ′

kdk∑
k∈K dk

,

then,

−ÎZ(S) = ÎR(S)

follows by substituting into the steps for case 1.

Theorem 4.4.3. (Nagurney 2007) If positive demands exist for all vertices in G and

the demand for each of these pairs is equal to 1 and λuv = d(u, v) then ENQ(G, d)

and ELM(G) are equivalent.

Proof. Let n be the number of vertices in G, then the number of commodities is

given by n(n− 1). Furthermore, by assumption that dk = 1, ∀k ∈ K then ELM(G)

is given as follows:

ELM(G) =
1

n(n− 1)

∑
u,v∈V :u̸=v

1

d(u, v)
=

∑
u,v∈V :u̸=v

1
d(u,v)

nK

=

∑
k∈K

dk
λk

nK

= ENQ(G)

Theorem 4.4.4. If the network G only has one commodity c1, then the normalised

importance of ÎNQ(S) and ÎR(S) are the either the same or opposite in sign (due to

the disconnect of the demand).

Proof. As the network has a single commodity c1, there is a single demand d1.

Assume that there exists a shortest path for c1 in both G and G′, then:

Case λ1 > λ′
1:

ÎR(S) =

1
λ1d1
− 1

λ′
1d1

max( 1
λ1d1

, 1
λ′
1d1

)
=

1
λ1d1
− 1

λ′
1d1

1
λ1d1

=

1
λ1
− 1

λ′
1

1
λ1

=

d1
λ1
− d1

λ′
1

d1
λ1

= ÎNQ(S)

Case λ1 < λ′
1:

follows as above.
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Case λ1 = λ′
1:

ÎR(S) = 0 = ÎNQ(S)

Assume that there no longer exists a shortest path for c1 in G′, then by definition

ER(G′, d) = 1
ϵ

and limλ′
1→∞ENQ(G′, d) = 0. Thus,

ÎR(S) =
ER(G, d)− ER(G′, d)

max(ER(G, d), ER(G′, d))
= lim

ϵ→0

ER(G, d)− 1
ϵ

1
ϵ

= −1

ÎNQ(S) =
ENQ(G, d)− ENQ(G′, d)

max(ENQ(G, d), ENQ(G′, d))
= lim

λ′
1→∞

ENQ(G, d)− 0

ENQ(G, d)
= 1

Theorem 4.4.5. ÎR(S) < 0 if and only if the total travel time has been improved.

Proof. This follows trivially from the definition of ÎR(S).

⇐=

ÎR(S) < 0 =⇒ ER(G′, d) > ER(G, d) and therefore 1∑
k∈K λ′

kdk
> 1∑

k∈K λkdk
=⇒∑

k∈K λ′
kdk <

∑
k∈K λkdk. i.e. the total travel time for G′ is less than that of G.

=⇒
Assume that the total travel time for G′ is less than that of G, then:∑

k∈K λ′
kdk <

∑
k∈K λkdk =⇒ 1∑

k∈K λ′
kdk

> 1∑
k∈K λkdk

=⇒ ER(G′, d) >

ER(G, d) =⇒ ÎR(S) < 0

The consequence of theorem 4.4.5 is that something has caused the total travel

time to improve despite the removal of network components. There are two possibil-

ities, either a commodity has been disconnected and thus the corresponding demand

has been assigned to a fictitious path, i.e. it has not contributed to the total travel

time, or the removal of S from G has resulted in a Braess Paradox.

A stronger condition for theorem 4.4.5 would have been to claim that if a network

commodity is removed, then ÎR(S) < 0; however, as the Section 4.5 shows, this need

not necessarily be the case.

4.4.3 Comparison and Analysis Against Existing Measures

Using the same networks given in Section 4.3.3, the ÎR measure is compared against

the other demand-based measures.
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4.4.3.1 Braess Network

Results for the Braess network given in Figure 4.8 are summarised in Tables 4.9 and

4.10. Whilst the results given in Table 4.9 (removal of an edge) are similar to the

other measures, the results in Table 4.10, (removal of a vertex) illustrate the first

difference. The removal of vertices 1 and 4 result in the same sign for ÎR as ∆T ,

this is important as these are the vertices associated with the single commodity and

thus disconnect the network (reflected by IUD = 1). Thus, the ÎR has indicated not

only that these vertices of the utmost importance, but also that they disconnect the

network and demand is removed.

u v xe ILM IZ INQ ÎR IUD ∆T

1 2 4000.00000 0.25345 0.06250 0.05882 0.05882 0.00000 20000.00000

1 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

2 3 4000.00000 -0.42070 -0.18750 -0.23077 -0.18750 0.00000 -60000.03815

2 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

3 4 4000.00000 0.25345 0.06250 0.05882 0.05882 0.00000 20000.00000

Table 4.9: Edge importance measures for Braess network given in Figure 4.8.

v xv
e ILM IZ INQ ÎR IUD ∆T

1 4000.00000 1.00000 N/A 1.00000 -1.00000 1.00000 -320000.00000

2 8000.00000 0.47567 0.06250 0.05882 0.05882 0.00000 20000.00000

3 8000.00000 0.47567 0.06250 0.05882 0.05882 0.00000 20000.00000

4 4000.00000 1.00000 N/A 1.00000 -1.00000 1.00000 -320000.00000

Table 4.10: Vertex importance measures for Braess network given in Figure 4.8.

4.4.3.2 One Origin, Multiple Destinations

Results for the network given in Figure 4.9 are summarised in Tables 4.11, 4.12,

4.13 and 4.14. From inspection of the tables, ÎR correctly ranks the change in total

travel time ∆T and, on the removal of vertices which may disconnect commodities,

has a sign that matches ∆T . It also addresses the issue of not correctly reflecting

the magnitude of the improvement of total travel time due to a change in demand,
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namely the values given in Table 4.13 reflect how much demand has been removed,

i.e they correlate with IUD.

u v xe ILM IZ INQ ÎR IUD ∆T

1 2 60.00000 0.73030 1.00000 0.50000 0.50000 0.00000 12400.00105

1 3 60.00000 0.73030 1.00000 0.50000 0.50000 0.00000 12400.00105

2 4 50.00001 0.49446 0.67742 0.16304 0.40385 0.00000 8400.00105

2 5 10.00000 0.51189 0.02419 0.04220 0.02362 0.00000 299.99987

3 4 49.99999 0.49446 0.67742 0.16304 0.40385 0.00000 8400.00105

3 5 10.00000 0.51189 0.02419 0.04220 0.02362 0.00000 299.99987

Table 4.11: Edge importance measures for network given in Figure 4.9.

u v xe Rank ILM Rank IZ Rank INQ Rank ÎR Rank ∆T Rank

1 2 1 1 1 1 1 1

1 3 1 1 1 1 1 1

2 4 2 4 2 2 2 2

2 5 3 3 3 3 3 3

3 4 2 4 2 2 2 2

3 5 3 2 3 3 3 3

Table 4.12: Edge importance measure rankings for network given in Figure 4.9.

v xv
e ILM IZ INQ ÎR IUD ∆T

1 120.00000 1.00000 N/A 1.00000 -1.00000 1.00000 -12399.99895

2 120.00000 0.73030 1.00000 0.50000 0.50000 0.00000 12400.00105

3 120.00000 0.73030 1.00000 0.50000 0.50000 0.00000 12400.00105

4 100.00000 -0.51663 N/A 0.16304 -0.96774 0.83333 -11999.99971

5 20.00000 0.69667 N/A 0.16304 -0.19355 0.16667 -2400.00014

Table 4.13: Vertex importance measures for network given in Figure 4.9.
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v xv
e Rank ILM Rank IZ Rank INQ Rank ÎR Rank IUD Rank ∆T Rank

1 2 1 N/A 1 4 1 4

2 1 2 1.00000 2 1 4 1

3 3 2 1.00000 2 1 4 1

4 4 4 N/A 4 3 2 3

5 5 3 N/A 3 2 3 2

Table 4.14: Vertex importance measures for network given in Figure 4.9.

4.4.3.3 Multiple Origins, Multiple Destinations

Results for the Sioux Falls network (Appendix C.3) are summarised in Figures 4.18,

4.19 and 4.20. Figures 4.18 and 4.19 show correlation plots for the removal of edges

and vertices respectively. Figure 4.20a and 4.20b display the importance of each

of the edges and vertices, respectively. Finally, the edge importance values are

displayed on the network itself in Figure 4.21 with the bidirectional edges (10,15)

and (4,11) being the most important and least important edges, respectively, i.e.

removal of these edges have the largest and smallest impact on the total travel time

∆T .

For the removal of an edge, Figure 4.18 shows a perfect correlation between

ÎR and ∆T for the value measure and the ranking given by the measure. ÎR also

exhibits a strong correlation with the flow on an edge, xe.

Similarly, for the removal of a vertex, Figure 4.19 shows a perfect correlation

between ÎR and ∆T for the value measure and the ranking given by the measure.

ÎR is exhibits a strong correlation with xv
e .

There are two key observations. First, ÎR has higher correlation values than

both the ILM and INQ. This raises the question as to what benefit the INQ measure

provides over the change in total travel time ∆T or a measure which provides a

similar correlation such as IZ or ÎR. Second, the measure is defined for the removal

of a vertex and, therefore, can provide a means of measurement whereas IZ cannot.

Figure 4.20b displays both positive and negative values of ÎR. There are 13

vertices (positive value of ÎR) whose removal worsen the total travel time and 11

vertices (negative value of ÎR) whose removal improves the total travel time.
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135



Chapter 4

50000

100000

150000

x
v e

0

2

4

∆
T

×106

0 200000
xve

−0.2

0.0

0.2

M
ea

su
re

V
al

ue

0 5
∆T ×106

0.0 0.5
Measure Value

Measure

INQ

ILM

ÎR
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Figure 4.20: Edge and vertex importance measures for Sioux Falls.
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Figure 4.21: Sioux Falls - Network edges coloured by importance ÎR.

4.5 A Paradoxical Effect

Based on the motivating examples (Section 4.4.3) and intuition, it is easy to make the

assumption that, when disconnecting a commodity and thus the resulting demand,

the total travel time of the network will be reduced. Whilst most of time this may

the case it is not true for all nonatomic selfish routing games. The following example

(Figure 4.22) demonstrates this, although it is noted that it is the rerouting of the

demand for commodity (1, 2) that causes the travel time to increase irrespective

of the size of the demand for commodity (3, 2). It does however counter such a

statement as “A disconnected commodity results in a decrease in total travel time

and thus ÎR(S) < 0”.
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Figure 4.22: Amended Pigou network.

The example has two commodities (1, 2) and (3, 2) with respective demands,

d12 = 10 and d32 = 10. The cost functions of the edges are t12(x12) = x12, t13(x13) =

x13

10
and t23(x23) = x23

10
. Given that there is only one path between OD pair (3, 2)

the flow on the path must be f32 = 10 and thus the edge cost t32(x32) is now given

by t32(x32 + 10). For OD pair (1, 2), let x represent the amount of flow on the lower

path π−
12 consisting of vertices 1−3−2 and d12−x be the amount routed on path π+

12

consisting of vertices 1− 2, then the equilibrium costs can be computed by solving

the equation:

c+12 = c−12

t12(d12 − x) = t13(x) + t32(x + 10)

10− x =
x

10
+

x + 10

10

x =
15

2

Equilibrium occurs when the flow on path π+
12 is f+

12 = 5
2
, the flow on path π−

12 is

f−
12 = 15

2
and the flow on path π32 is f32 = 15

2
+ 10 = 35

2
. The cost of the paths is

therefore c+12 = c−12 = 5
2

and c32 = 7
4
.

Therefore, the total cost is∑
k∈K

λkdk = c+12d12 + c32d32 =
5

2
· 10 +

7

4
· 10 =

85

2
.

Consider the consequence of the removal of edge (3, 2). Upon removal of this edge,

OD pair (3, 2) is disconnected and d32 can no longer be routed. More worryingly it

now disconnects the lower path π−
12 between OD pair (1, 2) and thus all demand d12

is routed on the upper path π+
12 incurring a cost of c+12 = 10. The total travel time
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in the network is now given by∑
k∈K

λkdk = c+12d12 = 10 · 10 = 100.

Clearly, the removal of demand of the network (due to the disconnect of the com-

modity) has resulted in a worsening of the total travel time.

4.5.1 Removal of a Vertex Without Associated Demand

A similar question to pose is whether the removal of a vertex (and the edges incident)

with no associated demand always results in a worsening of the total travel time?

It is trivial to produce an example that rejects this by a simple amendment to the

Braess network. Consider the Braess network and amended Braess network given

in Figure 4.23. Clearly the removal of vertex 5 results in the removal of edges (2, 5)

and (5, 3) and the disconnect of vertices 2 and 5. This is the same as the removal

of edge (2, 3) in the original network which results in an improvement of the total

travel time. Therefore, the removal of vertex 5 in the amended network results in

an improvement of the total travel time.

(a) Braess network. (b) Amended Braess network.

Figure 4.23: Amended Braess network.
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4.6 Results: Impact of Changes on Importance

The following section considers two possible scenarios that can impact a network

and demonstrates the use of the measure proposed in Section 4.4 to identify critical

edges and vertices.

4.6.1 Positioning of External Demand

To demonstrate the use of the proposed measure, consideration is given to the

scenario in which demand enters a network at a single point and leaves at another

single point with results presented and analysed. A motivating example is the case

of Manhatten Island which has a fairly uniform grid like structure and just a few

major entry/exit points. It can also be viewed as external demand which passes

through a network.

The network used for this analysis can be found in Appendix C.5 and is a grid

network with uniform congestion functions. Two scenarios are analysed, first de-

mand enters and exits from the middle, i.e. a single commodity (11, 15). Second,

from the corners, i.e. a single commodity (1, 25). These are depicted in Figures

4.26a and 4.26b, respectively.

Figures 4.24, 4.25 display the edge and vertex importance measure in order of

their ranking ÎR for the middle and corner situations respectively. Note edges with

an importance of 0 are not shown. Figure 4.26 displays the network with edge labels

corresponding to their importance, the edges have also been shaded from light to

dark to visually represent the importance. Note that the values present in Figure

4.26 are the values generated by ÎR and are not normalised. Whilst there may be

a case for normalising the values for ease of analysis within a single network, when

comparing the two similar networks, the non-normalised values provide more insight

into how the change in commodity location affects the importance of the edges.

The corner-to-corner network has only two entry edges and two exit edges and

due to the uniformity of the grid these have equal importance, there is also a sym-

metry across the network, with edges further towards the opposite corners having a

lower importance, this symmetry can be explained by two observations. First, the

shortest path hop length is 8 and any path that that gets closer in Euclidean dis-
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tance to the exit results in a hop length of 8. Second, edges have a certain number

of paths of length 8 that pass through them. For example, the two extreme cases

are the entry and exit edges, i.e. half the paths must pass through edge (1,2), (1,6),

(20,25) and (24,25) and, the edges incident to the corner vertices 5 and 21, i.e. (4,5),

(5,10), (16,21) and (21,22), which have only one path of hop length 8 (traversing

the outer vertices) that passes through them. Therefore, the removal of edges that

are used by smaller number of shortest paths will have less of an impact on the total

travel time.

The side-to-side network has three edges for entry and exit and for the given

demand these are almost of equal importance as the number of paths passing through

these edges are almost uniformly distributed. Edges which are parallel to the centre

path 11-12-13-14-15 have an importance value that decreases the further from this

path they are. This is due to the increase in hop length of the paths that deviate

from the centre path. It is also apparent from Figures 4.24a and 4.25a that the

magnitude of the importance values differ for the entry/exit edges of both networks

with the four most important edges in the corner-to-corner network having a higher

importance value than the six most important edges in the side-to-side network.

This is easily explained as the importance generated by the demand is effectively

distributed across more edges in the side-to-side network and thus lower.

On inspection of Figures 4.24b and 4.25b it is apparent that the two vertices

attached to the single commodity in both networks result in a negative value of ÎR

due to the disconnect in the commodity and the removal of the demand for the

network.
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Figure 4.24: Edge and vertex importance measures for side-to-side external demand.
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Figure 4.25: Edge and vertex importance measures for corner-to-corner external

demand.
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Figure 4.26: Network edges coloured by importance ÎR.
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4.6.2 Changes to Localised Demand

Clearly, a dramatic change in the demand for every commodity will result in a

different flow pattern for the routed demand. It is worth, though, examining the

situation when localised demand is reduced/increased; does this change the order of

importance?

Figure 4.27 displays the results of varying demand on the network found in Ap-

pendix C.5 when it is enters and exits from the side. There a couple of observations.

First, clearly the order is predominantly the same, with the same sets of edges in-

curring the same importance and the differences between these sets maintained, i.e.

the same edges are generally important irrespective of the demand. Second, not

only does the importance measure rank the edges, it also provides a magnitude of

difference; in the case of the first 6 edges, they are more important in the original

and increased demand than in the reduced demand.
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Figure 4.27: Demand changes for side-to-side network.

4.7 Chapter Summary

Answering the question of how critical components of a network are is a difficult

task and is dependent on first answering the question of what matters, that is what

should be measured?
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In this chapter a number of existing network science and demand-based measures

were analysed to assess how they correlated and performed with respect to the

change in total travel time. The results generated show that the demand-based

measures correlate well because of their strong connection with the change in total

travel time. These measures also correlated well with the edge flow xe, which is

somewhat expected as the change in edge flow has a direct impact on the change in

total travel time, i.e the two are not independent and tend to correlate highly. The

high correlation with the change in total travel time also brings into question their

merit, why use one of the measures? The normalised measures do, however, allow

for comparison between problems and indicated the strength of one component with

another, thus allowing the comparison between different topologies. The standard

network science measures do not provide a strong enough correlation to be reliable

in making meaningful predictions.

Issues were also identified with the demand-based measures and a new measure

and revised normalised importance were presented which solve these issues and

provide more context to the situation at hand. The issues identified were mainly

due to a commodity or commodities being disconnected in the network, thus leading

to the question of what it means to disconnect (remove) demand from the network.

The answer to this question is one of interpretation; however, it was argued that it

is natural to consider demand displacement (perhaps temporarily) due to some edge

or vertex closure. Therefore, it is necessary that the importance measures reflect

these situations.

Based on the Braess paradox, it was noted that it is impossible to determine

whether a commodity had been disconnected purely from the proposed measure

or the change in total travel time. Therefore, it is important to consider other

measures in conjunction to this measure (and similar measures) which reflect changes

in demand or path connectivity such as the Unsatisfied Demand and the OD k-

connectivity.

An amended Pigou network was also used to demonstrate a paradoxical effect

that disconnecting a commodity which removed demand from the network may

actually increase the total travel time, that is, less users on the network, yet they

experience a worse travel time. Another effect was also demonstrated on an amended
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Braess network that showed that the removal of a vertex which had no associated

demand can actually improve the total travel time at equilibrium.

Reciprocal and revised normalised importance allows for comparison across net-

works and correlates correctly with ∆T ; however, it must be used in conjunction

with a measure such as the unsatisfied demand to fully understand why for certain

vertices, removal results in an improvement of travel time. One should be careful

making comparisons across topologies and should use a robust change in demands

and congestion functions to assess the importance of edges and vertices.

4.7.1 Future Work

To establish the extent to which measures can help predict both the flow and the

change in total travel time, a more significant statistical analysis is required. Further

analysis can be done on different topologies, e.g. in terms of their density, i.e. high

average degree.

Examining the way in which the number of paths are reduced for particular

topologies is also of interest as a more uniform grid structure is likely to have more

similar paths (hop length) available per commodity than a less symmetric structure.

In particular, examining paths which do not share edges, i.e. have paired alternative

segments, is of interest and may have underlying connections with Menger’s theorem

[105] and other such interesting ideas related to networks.

The OD k-connectivity also represents another area of interest and the question

of whether the number of paths that are shut down, or relative percentage shut

down, by an edge/vertex removal is correlated with the change in total travel time.

Finally, robust optimisation techniques and supervised and unsupervised ma-

chine learning techniques could be employed on larger scale networks to ascer-

tain whether a model can be trained that is able to predict the importance of an

edge/vertex with a particular selfish routing network.
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Atomic Selfish Routing: An

Application of Mixed-Integer

Linear Programming

Chapter Preface

The standard multi-commodity flow problem (MCFP) shares a number of character-

istics with the atomic selfish routing game and can be adapted to solve multi-channel

routing.

This chapter presents a simplified model of a multi-channel transportation net-

work and solves the routing/planning problem via a MILP. Such models are becoming

more feasible for large scale problems, such as the MILP model developed and solved

for modular 3-dimensional bin packing of plant equipment by O’Neill, Wrigley and

Bagdasar [131] (Appendix A.4).

The problem presented in this chapter is to illustrate that this approach is an ex-

tension of the standard multi-commodity flow problem whereby the flows are discrete

and unsplittable and considered over a multigraph.

Chapter Keywords

Multi-commodity Flow Problem, MCFP, Multi-channel Routing, Mixed-integer Lin-

ear Programming, MILP, Unsplittable Flow, Atomic Selfish Routing
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5.1 Introduction

The multi-commodity flow problem is the basis of pre-planned routing of demand

through a fixed cost network and is a fixed cost version of the system optimal

nonatomic routing game [62, 2, 88]. In recent years there has been a huge advance

in MILP solvers, such as Gurobi [73], taking advantage of parallelisation techniques

and processing in the cloud. The industry leader, Gurobi, now reports only failing to

solve 118 of its internal test set of over 6000 models compared with 716 and approx-

imately a 50 times speed up in solution time in 8 years [73]. For a comprehensive

benchmarking of discrete optimisation software and its history see [109, 110]. Work

on large MILP models is now viable such as the MILP model developed and solved

for 3-dimensional packing of plant equipment by O’Neill, Wrigley and Bagdasar [133]

(Appendix A.4). Alongside traditional techniques there is much work being done

into deep learning for combinatorial optimisation problems [76, 103, 71, 77, 170],

such as network optimisation. The recent advances in deep learning [6], such as

deep reinforcement learning and the stunning results of Deepmind [111] and Open

AI [10] provide real possibilities of new intelligent routing for combinatorially large

network problems.

The problem presented in this chapter is an interesting extension of the standard

multi-commodity flow problem whereby the flows are discrete and unsplittable and

considered over a multigraph. When the costs on the edges of the network are

congestion functions, through a transformation, the presented problem is an atomic

selfish routing game.

This chapter is organised as follows. The multi-channel problem is outlined in

Section 5.2 and an example given. In Section 5.3 the path-based MCFP is given

and the column generation technique explained. Section 5.4 presents the solution

methodology along with pros and cons of the proposed method and example results.

The problem is then considered with congesitible edge functions in Section 5.5.

Finally, Section 5.6 concludes the chapter.
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5.2 Problem Statement

Consider an undirected network G = (V,E) for which each pair of vertices (i, j)

may have multiple edges, each edge e ∈ E has a fixed cost ce and an identifier l, e.g.

there may be 3 edges between vertices (2, 5) represented as (2, 5, 1), (2, 5, 2), (2, 5, 3)

and the identifiers would be 1, 2, 3 respectively. There are a set of commodities

(vertex pairs) K and for each k ∈ K an associated atomic (unsplittable) demand

dk, referred to as goods, to be routed. The routing of these goods will be referred

to as a delivery.

Two constraints are imposed on the problem. First each edge has a capacity ue

for transporting flow (demand) and, second, the routing of a commodities demand

must make use of the same identifier on its path through the network, e.g. if a

commodities demand is routed on an edge with identifier 1, it must only make use

of other edges with identifier 1 in forming a path to route the demand. The objective

of the problem is to minimise the cost of routing all demand between commodities.

The above is summarised in the following list:

• The network is an undirected multigraph, i.e. there can be multiple edges

between two vertices.

• Each edge has a fixed cost ce.

• For each pair of vertices the edges between them have a unique identifier.

l = {1, . . . , n}, where n is the maximum number of edges between any pair of

vertices.

• Each commodity k ∈ K must route the goods which have a demand (weight)

of dk.

• There can be multiple goods on each edge, but the total weight of the goods

must be less that the edge capacity ue.

• Each delivery must use edges with the same identifier when routing.

• The objective is to minimise the total cost.

Figure 5.1 shows a very simple example network with 3 possible edges between each

vertex. There is a single commodity (1,4) for which goods must be routed.
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Figure 5.1: Multigraph with a single commodity (1, 4).

5.2.1 Relevance to Delivery Route Planning and Telecom-

munications

Large scale transportation and logistics companies may have multiple existing de-

livery routes in place which have a given capacity. Therefore, there is a need for

pre-planned delivery route optimisation to optimise the use of the existing infras-

tructure.

Alongside this, the continued growth of globalised communication networks and

the ever present desire for faster routing has led to the advent of 5G technology and

the potential for greater control and optimisation through network slicing.

The above could be seen as a very simplified high transportation network whereby

the routing of demand is planned ahead of time, or is a time snapshot of demand to

be routed all at a particular time. Goods can be seen as packets of data (required

services) and the edges seen as a particular slice of the 5G network.
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5.3 Methodology

5.3.1 Multi-commodity Flow Problem

The basic MCFP can be stated as a linear programming problem either in terms of

the flow on edges or the flow on paths. Due to its combinatorial nature, the edge flow

formulation quickly becomes unmanageable in terms of the number of constraints

for even industry leading solvers [2]. Whilst the path-based formulation can have

an exponential number of paths, column-generation techniques provide a means of

finding a solution in the search space. The MCFP is given by:

minimise
∑
k∈K

∑
π∈Πk

ckπf
k
π =

∑
e∈E

cexe (5.1a)

subject to ∑
π∈Πk

fk
π = dk, ∀k ∈ K (5.1b)

∑
k∈K

∑
π∈Πk:e∈π

fk
π ≤ ue, ∀e ∈ E (5.1c)

fk
π ≥ 0, ∀π ∈ Π (5.1d)

Note that the objective 5.1a can be either the path based formulation∑
k∈K

∑
π∈Πk

ckπf
k
π ,

that is the cost of the path flows, or ∑
e∈E

cexe,

the cost of the edge flows. For more detail see [2, 144].

5.3.2 Column Generation Method

Due to the exponential growth of the number of possible paths, the following column

generation technique can be utilised.

1. Initialise a subset of paths Sk ⊆ Πk for each commodity k ∈ 1, . . . K.

2. Solve the restricted master problem for paths S =
⋃

k Sk to obtain a solution.
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Figure 5.2: Example multi-commodity flow problem.

3. Check to see if the solution is optimal (see optimality conditions for the MCFP

[2]) If not, find new paths to add to S and return to step 2.

The means by which the paths are initially obtained in step 1 and new paths selected

in step 3 is a problem in of itself.

5.3.3 Illustrative Example

To demonstrate the column generation method the example given in Figure 5.2

from [2] is presented. Note, this example uses a directed graph but this causes no

issues with the model given by (5.1), which can handle both undirected and directed

networks. In the case that an undirected edge is represented by bidirectional directed

edges, care would be needed when considering the capacity constraints of the original

undirected network, that is the flow on both bidirectional edges would need to be

summed and compared with the capacity of the original undirected edge.

For this example, each edge has an unordered 2-tuple containing the cost and

the capacity of the edge, i.e. for a given edge e, (ce, ue). There are four possible

paths for the two commodities, π1, 1−5; π2, 1−3−4−5; π3, 2−6; π4, 2−3−4−6

with respective costs 1, 11, 5, 3.

To illustrate the column generation method, the paths will be generated via the

k shortest paths for each commodity. For iteration 1, generate the shortest path, for

iteration 2 generate the 2 shortest paths, etc. Clearly as there are a maximum of 2

paths per commodity, the column generation method will take at most 2 iterations.

For the first iteration paths 1− 5 and 2− 3− 4− 6 are chosen; the capacity of
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1− 5 is only 5 units and, thus, the 10 units cannot be routed for commodity (1,5),

i.e. the restricted master problem is unfeasible.

In iteration 2, the 2 shortest paths for each commodity are generated for the

restricted master problem. In this case, this is the entire set of paths, the restricted

master problem is feasible and its optimal solution is the optimal solution of the

master problem (see Figure 5.3).

1

3

2

4

5

6

10 units

20 units

10 units

20 units

Flow = 5

Flow = 5

Flow = 15

Flow = 5

Figure 5.3: Optimal path flow solution for example given in Figure 5.2.

5.3.4 Extending MCFP with Integer Constraints

Using an additional set of binary variables to represent path use, the standard MCFP

can be extended to limit the paths per commodity.

For each path π ∈ Πk introduce a binary variable δkπ ∈ {0, 1} and the inequalities

given by (5.2g) and (5.2h). This ensures that, for any path with positive flow,

fk
π > 0 =⇒ δkπ = 1 and δkπ = 0 otherwise. The binary variables essentially state

whether a path is used or not. Equation (5.2f) sums the used paths for a commodity

and requires them to be equal to Nk.
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The extended MCFP with integer constraints is given by the following optimi-

sation problem:

minimise
∑
k∈K

∑
π∈Πk

ckπf
k
π =

∑
e∈E

cexe (5.2a)

subject to ∑
π∈Πk

fk
π = dj, ∀k ∈ K (5.2b)

∑
k∈K

∑
π∈Πk:e∈π

fk
π = xe, ∀e ∈ E (5.2c)

xe ≤ ue, ∀e ∈ E (5.2d)

fk
π ≥ 0, ∀π ∈ Πk,∀k ∈ K (5.2e)∑

π∈Πk

δkπ = Nk, ∀k ∈ K (5.2f)

δkπ ≤Mfk
π , ∀π ∈ Πk,∀k ∈ K (5.2g)

fk
π ≤Mδkπ, ∀π ∈ Πk,∀k ∈ K (5.2h)

δkπ ∈ {0, 1}, ∀π ∈ Πk,∀k ∈ K (5.2i)

Nk ∈ Z, ∀k ∈ K. (5.2j)

Note that the equation (5.2c) is not necessary if the objective used is the path-based

formulation, ∑
k∈K

∑
π∈Πk

ckπf
k
π ,

and thus constraint (5.2d) can also be rewritten as,∑
k∈K

∑
π∈Πk:e∈π

fk
π ≤ ue, ∀e ∈ E. (5.3)

Figure 5.4 updates the example given by Figure 5.2 by increasing the capacity

of edge (3, 4) from 10 to 30, this slight change helps better illustrate the solution

to the problem defined by (5.2) with Nk = 1, k ∈ {1, . . . , K}, i.e. one path per

commodity.

Clearly, it is infeasible to route all 10 units between vertices 1 and 5 on path 1−5

as the capacity is only 5 units, thus 10 units are routed on path 1−3−4−5, leaving a

residual capacity of 20 units for edge (3, 4). Examining the 20 units that need to be

routed between vertices 2 and 6, the shortest is 1−3−4−6 and the minimum capacity

on any edge of the path is the 20 units left on edge (3, 4). Therefore, the 20 units
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can be routed along path 1− 3− 4− 6. The solution is displayed in Figure 5.5 with

fπ1 = 0, fπ2 = 10, fπ3 = 0 and fπ4 = 20 and respective costs cπ1 = 5, cπ2 = 11, cπ3 = 5

and cπ4 = 3. Thus, the total cost
∑

k∈K
∑

π∈Πk
ckπf

k
π = 170.

It is clear that if the capacity of edge (3, 4) had been less than 30, then the

20 units would have been forced to be routed along path 2 − 6. This illustrates

that, even in one path routing, the edge capacities play a key role in determining

the optimal solution. Had all the edges had an infinite capacity, then the solution

would have been the trivial one of just picking the shortest path for each commodity,

namely fπ1 = 10, fπ2 = 0, fπ3 = 0 and fπ4 = 20 and a total cost of 70.

As in the example above, if the allowed paths per commodity Nk are all equal to

one, then the formulation given by (5.2) can be utilised to solve the multi-channel

problem by the transformation outlined in Section 5.3.5, converting the multigraph

network into a graph.

Again a solution can be found by applying the column generation method pre-

sented in 5.3.2; however, the addition of the binary variables means that the opti-

mality conditions are no longer valid. Therefore, different stopping criteria must be

proposed. A simple solution is to stop after a fixed number of iterations whereby

no improvement has been observed.
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Figure 5.4: Edge (3,4) capacity increased from 10 to 30.
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Figure 5.5: Optimal path flow solution for (5.2) with Nk = 1, ∀k ∈ {1, . . . , K}.

5.3.5 Transformation of the Network from a Multigraph to

a Graph

A simple transformation can be made to transform the multigraph into a graph that

allows the for standard MCFP given by (5.1) or the amended integer constrained

problem given by (5.2) to be utilised. The transformation has the following rules:

1. For each edge identifier l, create a copy of the network which contains only

edges with the identifier l.

2. For each commodity (i, j), create a dummy pair of vertices (si, tj) and connect

si to i and tj to j in every copy of the network.

Figure 5.6 transforms the multigraph example given by Figure 5.1. This illustrative

example showcases the simplicity and elegance of this transformation, that is, once a

delivery chooses an edge to leave the dummy source s, it is constrained to the relevant

copy of the network and can only reach the dummy sink t by a path through this

network.
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Figure 5.6: Transformation of multigraph into a graph via introduction of dummy

vertices for commodities.

5.3.6 Shortest Path Technology

A key component to the column generation method given in Section 5.3.2 is that it

requires the determination of a set of paths, an obvious choice in a network optimisa-

tion problem, where the objective is to minimise the total cost, is the shortest paths

between commodities. In this particular problem, unlike selfish routing games, the

cost of the edges are fixed and thus the shortest path per commodity will not change.

Therefore, multiple shortest paths must be generated per commodity during further

iterations by utilising an appropriate algorithm, for example Yen’s Algorithm for

the k shortest paths [40].

Owing to the size of networks it is important to consider the speed at which

shortest paths can be found, as for n commodities, at least n shortest paths are

needed per iteration of the column generation method. In recent years, the preva-

lence of graph libraries such as NetworkX, igraph, graph-tool and the continued

increase in interest and usage of graph databases such as Neo4j, vast networks of

millions of vertices can be processed extremely quickly. Speeds are reported of 0.06

seconds for processing a graph of ∼200K vertices and ∼1M edges [97, 156, 160].
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As aforementioned in Section 2.2.5 Schnek and Nokel found that on the largest test

networks, contraction hierarchies resulted in a speedup factor of 42 [138].

For urban transportation networks in the UK, the average number of vertices

was ∼6.5K and the average number of edges, ∼15K, see Table 4.2. Thus, even for

a large number of commodities, the time required for computing the shortest paths

is likely more than manageable in most cases.

5.3.7 Pros of the Proposed Methodology

The following is a list of pros of the proposed methodology:

1. Solution to restricted master problem is optimal.

2. Column generation method allows a tractable means of exploring the search

space.

3. Problem now fits into a standard fertile area of research, which allows advance

techniques for solving MCFP problems to be utilised.

5.3.8 Criticisms of the Proposed Methodology

The following is a list of criticisms of the proposed methodology:

1. Whilst the restricted master problem is optimal, the extensions to the problem

mean the optimality conditions of the standard MCFP are no longer usable.

2. An iteration of the column generation method is subject to solving the MILP

restricted master problem which, for a large enough network, would prove

costly.

3. Creates a much larger network because of the network copies required.

4. How are the paths selected in each iteration? That is, how to effectively explore

the path search space.

5.3.8.1 Quantifying the Size of the Problem

Criticism 2 motivates a discussion on the size of the problem generated by this

methodology and the practical implications.
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Given the complexity of solving LP and MILP problems increases as the number

of constraints and, in the case of MILP, integer variables increase it is worth consid-

ering the number of constraints for the formulations (5.1), (5.2) and the additional

integer variables required for (5.2).

Denote the number of paths generated by nΠ =
∑

k∈K
∑

π∈Πk
1, then the number

of constraints for the MCFP given by the formulation (5.1) is |K| + |E| + nΠ, where

|K| and |E| are the number of commodities and edges, respectively. The integer

formulation given by (5.2) has 2|K| + |E| + 3nΠ constraints with an additional

nΠ + |K| integer variables.

For an average of n paths per commodity this would result in a total of nΠ =

n|K| paths and thus |E|+ (3n+ 2)|K| constraints and (n+ 1)|K| integer variables.

Clearly, the number of constraints grows by an order O(|E|+|K|) and the number of

integer variables by an order O(|K|). In general (see Section 4.2.4.3) transportation

networks are sparse in terms of the number of edges; however, given a number of

origin/destination vertices (that either emit or receive flow) Nod, the number of

ways to choose a commodity k ∈ K (origin-destination pair)
(
Nod

2

)
= Nod(Nod−1)

2
.

Therefore, the number of commodities has a significant influence on the size of the

MILP formulation.

If we consider the Chicago Regional network that is the standard for testing

methods and algorithms (see Section 2.2.4), seen in context as a reasonably large

network, we can quickly see that this would prove infeasible even for modern solvers

as the number of commodities is |K| = 1, 360, 427.

For problems of a smaller size, Dai and Zhang [44] conclude that the column gen-

eration method is good for solving the MCFP on small networks reporting solutions

to a Chinese airport network with 183 vertices and 2995 edges in 5186s and 5967s

for GLPK (GNU Linear Programming Kit) [4] and Gurobi, respectively. Clearly

through the use of distributed computing, this could be sped up.

With respect to MILP problems in general, Gurobi reports solving the MILP

seymour model which has 4944 constraints and 1372 (binary) variables in 633s on

32 machines [73]. This suggests that the methodology for small/medium problems

could prove feasible, although an experimental evaluation is required to conclude

what a feasible problem size is for a given number of distributed machines to solve
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in a reasonable time.

5.4 Preliminary Implementation and Results

The proposed column generation method given in Section 5.3.4 relies on solving the

restricted master problem given by (5.2). An implementation of this MILP using

Gurobi can be found at [129].

Table 5.1 displays the solutions for the problem given in Figure 5.2 with varying

edge capacities for the cases Nk = 1, k ∈ {1, 2} and Nk = 2, k ∈ {1, 2} given by the

Gurobi implementation. The solution given for the problem outlined by Figure 5.4

is displayed as case 3 of Table 5.1 and corroborates with the solution given in Figure

5.5. Even in this simple example, it is clear that not only do the edge capacities have

a key role in determining the path flow solution and cost but the number of paths

per commodity Nk is also instrumental and this is most obvious when comparing

cases 2 and 5 in which the objective cost is almost halved from 210 to 120.

Whilst this alone does not solve the problem outlined in 5.2, it is a key component

in the column generation method and a full implementation of the column generation

method requires a means of transforming a multigraph (Section 5.3.5) and iteratively

producing shortest paths (Section 5.3.6) for the restricted master problem to solve.

Case u13 u15 u23 u26 u34 u45 u46 Nk fπ1 fπ2 fπ3 fπ4 Cost

1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 10 0 0 20 70

2 ∞ 5 ∞ ∞ 29 ∞ ∞ 1 0 10 20 0 210

3 ∞ 5 ∞ ∞ 30 ∞ ∞ 1 0 10 0 20 170

4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 10 0 0 20 70

5 ∞ 5 ∞ ∞ 29 ∞ ∞ 2 5 5 0 20 120

6 ∞ 5 ∞ ∞ 30 ∞ ∞ 2 5 5 0 20 120

Table 5.1: Comparison of solutions for (5.2) with varying edge capacities.
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5.5 Extension to Atomic Selfish Routing Games

The problem stated in Section 5.2 and the MILP given by (5.2) can be seen as a fixed

cost version of a system optimal selfish routing game with the additional constraint

that the demand for each commodity is routed on at most Nk paths. To extend the

fixed cost to a nonatomic selfish routing game, let the cost of each edge e be given

by a congestible function te(xe).

In the case of unsplittable flow, i.e. Nk = 1, ∀k ∈ {1, . . . , K}, this is a weighted

atomic selfish routing game with fixed cost edge functions (see Section 1.4.1). For

the system optimal objective, small problems can be solved using the piecewise linear

approximation approached outlined in Section 2.3.3. The MINLP is given by:

minimise
∑
e∈E

xete(xe) (5.4a)

subject to ∑
π∈Πk

fk
π = dj, ∀k ∈ K (5.4b)

∑
k∈K

∑
π∈Π:e∈π

fk
π ≤ ue, ∀e ∈ E (5.4c)

fk
π ≥ 0, ∀π ∈ Π (5.4d)∑

π∈Πk

δkπ = Nk, ∀k ∈ K (5.4e)

δkπ ≤Mfk
π , ∀π ∈ Πk,∀k ∈ K (5.4f)

fk
π ≤Mδkπ, ∀π ∈ Πk,∀k ∈ K (5.4g)

Nk ∈ Z, ∀k ∈ K. (5.4h)

5.6 Chapter Summary

In this chapter, a multi-commodity flow problem with extensions to a multi-graph

and unsplittable flow was presented. The proposed solution methodology allowed

for the problem to be solved by conventional solvers without the need for a bespoke

method. It was noted that for large problems, even the current fastest solvers may

struggle to find a solution in a reasonable time when limited to a single or a limited

number of cores.
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It was also shown how the problem was a fixed cost version of a weighted atomic

selfish routing game,

5.6.1 Future Work

Whilst for the fixed cost problem presented in 5.2 the proposed solution presented

in this chapter is of interest, there is a need to test the solution methodology on a

large dataset using industry standard commercial solvers to assess its use and the

size of problem that is practicably solvable.

Consideration would need to be given to how paths are selected in the column

generation method to effectively explore the search space. Owing to the fixed cost

of the paths, the shortest paths would not change and therefore this is not a trivial

problem and there is not an obvious way in which to select additional paths.

The atomic routing formulation presented in Section 5.5 requires development of

bespoke methods as the edge cost functions are congestible. Methods such as those

presented in Section 2.3 can be utilised and further developed.

Finally, given the recent advances in deep learning and, specifically, combinato-

rial optimisation, such methods could be developed and benchmarked against the

state-of-the-art MILP solvers.
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Summary and Conclusions

Chapter Preface

This chapter summarises the work covered in this thesis. Each chapter is treated in

turn and highlighting work, highlights and contributions made within those chapters

areas of potential future research.

Chapter Keywords

Selfish Routing, Nonatomic, Atomic, Multi-criteria, Criticality, Congestion Games,

Multi-commodity Flow Problem, Network Flow

6.1 Introduction

The purpose of this chapter is to collate the work of this thesis. Chapter One

introduced the broader topics pertinent to selfish routing detailing preliminaries for

subsequent chapters, relevant literature and aims/objectives for this thesis.

Chapter Two surveyed and detailed algorithms for nonatomic/atomic selfish

routing games, including some novel algorithms. Algorithms given in this chapter

were then used for chapters three and four to provide the necessary analysis. Chap-

ter Three explored multi-criteria optimisation of selfish routing games and means

of measuring the efficiency against the social optimal solutions. Chapter Four ex-

plored the importance of selfish routing games and measures by which this could
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be assessed. Chapter Five presented a novel multi-channel problem associated with

the multi-commodity flow problem and proposed a solution methodology based on

mixed-integer linear programming.

6.2 Chapter One

Chapter One introduced the broader area of congestion games and in particular,

nonatomic and atomic selfish routing games. Preliminaries were given in Section

3.2.1 and previous work and definitions of nonatomic and atomic selfish routing

was presented in Sections 1.3 and 1.4. Section 1.5 surveyed the literature on multi-

objective optimisation with respect to selfish routing problems and Section 1.6 sur-

veyed literature on assessing how critical given components were in selfish routing

games.

Finally Section 1.7 set out the aims and areas to which this thesis makes contri-

butions.

6.3 Chapter Two

Chapter Two (based on work presented in [9, 132], Appendix A.1 and Appendix

A.2) starts by presenting the history of algorithms used to solve the nonatomic

selfish routing problem with reference to its history as a tool used in the transporta-

tion industry for planning. These algorithms were then grouped into three types;

link-based, path-based and bush-based and the general method for each presented

alongside some particular instances of each

Algorithms for the weighted atomic selfish routing game were then given, in-

cluding those proposed in Section 2.3. Finally, online learning algorithms involving

bandit machines were presented for solving the unweighted atomic selfish routing

game.

6.4 Chapter Three

Chapter Three (based on the work in [131], Appendix A.3) investigated how the

efficiency and suboptimality of equilibria with regards to the system optimal solution
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could be extended when considering multi-criteria. This chapter began with a study

into multi-criteria selfish routing which considered fuel consumption as an additional

criterion to travel time. Weighted sum models were explored and presented and then

results generated for a simple 3 edge parallel network. These results were used to

identify the set of Pareto optimal solutions and then classify the suboptimality of the

equilibrium solution with respect to the ideal point. In addition, through the use

of manipulating “free” parameters, equilibrium solutions that dominate the prior

solution were found and demonstrated.

The technique introduced to classify the suboptimality of the equilibrium solu-

tion with respect to the ideal point was then extended to allow for use of a general

distance metric.

6.5 Chapter Four

Chapter Four assessed and analysed metrics pertaining to nonatomic congestion

games and their use for providing information about the importance of network

components. Such information is useful in understanding the resilience and vulner-

ability of networks containing flow.

The chapter began by presenting some useful network science measures that

are not reliant on network flow and demonstrating them on a large case study of

flow networks, namely 111 major cities and towns in England and Wales. These

measures are then also correlated with the change in total travel time for the Sioux

Falls network and grid-based network.

Existing demand-based measures were then outlined and analysed and a number

of issues highlighted. A new measure based on the reciprocal of the travel cost was

then proposed and analysed and a number of associated theorems given.

Due to the nature of disconnecting a vertex and thus disrupting the demand,

it was noted that total travel cost tended to lower. A paradoxical effect was then

given which acted as a counter example, demonstrating that disconnecting a com-

modity and it’s associated demand could lead to an increase in total travel cost.

An amendment to the Braess network also provided an example that demonstrated

that removal of a vertex without associated demand could lead to an improvement
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in travel time.

Finally, the newly proposed measure was used to assess the impact on the im-

portance of network components by independently considering the positioning of

external demand in grid network and the change in demand for a single commodity.

6.6 Chapter Five

Chapter Five introduces an extension to the classic multi-commodity flow problem

whereby the routing operates on a multigraph and the the number of paths allowed

per commodity is restricted. When the number of paths is restricted to one for

a commodity then the flow is said to be unsplittable; if this is the case for all

commodities in the network then, given a transformation to the multigraph, this is

actually a weighted atomic selfish routing game.

The chapter begins by defining a network flow problem on a multigraph which

requires goods be transported on a single channel. The classic multi-commodity

flow problem is then given and the column generation method for the path-based

formulation presented. The classic problem is then extended to allow for a limit to

the number of paths that a commodity can use.

The method for solving the stated problem is then given, demonstrating how

a transformation to the multigraph allows the path-limited extension of the multi-

commodity flow problem to be utilised to solve the problem.

Finally, the model is extended to allow for congestible functions and, when paths

are limited to one for all commodities, the model solves the weighted atomic selfish

routing game.

6.7 Critical Reflection

This section highlights the contributions of this thesis and how these meet the initial

aims set out in Section 1.7. For clarity these are restated and addressed in order.
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1. To investigate and implement methods for the use in further analysis of

nonatomic selfish routing concepts and atomic selfish routing concepts.

Chapter 2 presented methods for solving both nonatomic and atomic selfish

routing problems. Gradient descent proved efficient enough to handle the problems

presented in this thesis, but larger problems would require an efficient implemen-

tation of a bush-based method. Methods presented for solving the atomic selfish

routing game present a means to solving moderate sized problems, but tractable

solutions are needed to deal with larger problems such as Chicago Regional.

The novel probabilistic algorithms based on the concept of bandit machines

demonstrated how independent decision making led to a reasonably stable state,

mirroring how human decision making would happen and underlining the idea of user

equilibrium. Applications of online learning algorithms and human behaviour offer a

potential avenue for interesting applications such as A/B testing. In such situations

were a large volume of data is generated over a period of time, the tractability of

these algorithms ceases to be an issue as the algorithm will progressively converge

towards a solution as the amount of data processed increases.

In situations were tractability matters, the algorithms/methods for atomic rout-

ing games makes larger scale problems difficult to tackle and work is required on

developing solutions that can converge quickly, perhaps through evolutionary means

or deep learning.

2. To consider multi-criteria selfish routing and understand/extend the use of

the Price of Anarchy/Stability in multi-criteria scenarios.

Consideration of a bi-criteria selfish routing problem was investigated, and this

provided insight into the nature of equilibrium solutions within a multi-criteria

space. Results were generated that demonstrated how “free” parameters could lead

to better equilibrium solutions that dominated within the multi-criteria space. The

importance of this is that real-world problems could be improved through simple

changes that prove to be cost effective whilst simultaneously satisfying multiple

criteria.
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In addition, novel work was done on the Price of Anarchy/Stability that provided

a definition of how to measure suboptimality for a multi-criteria problems using a

distance metric. This allows for classification of networks and their propensity to

be suboptimal when at equilibrium in a multi-criteria context. This work has nat-

ural extensions to consider within the wider game theoretic context and given the

number of choices one could make in the definition it requires further investigation

from a theoretical and practical standpoint.

3. To analyse the existing means of assessing the criticality of network compo-

nents under equilibrium against the primary function, total travel cost.

Chapter 4 provided two main studies, the first looked into the size, structure

and properties of the road networks of 111 major cities and towns in England and

Wales. The results demonstrated that although these networks were organically

formed, they exhibit particular structure and sparsity. This work motivates further

study into the structure of networks of a particular type (i.e. their use) and their

properties which could then be applied to classification work on the size of said

networks and the appropriate solution methodologies. The second study looked

into measures for assessing the criticality of network components with respect to

the total travel time, i.e. the effect of removing edges, vertices or a combination of

these. A number of issues were identified with existing measures and a new measure

was proposed that dealt with these issues. This measure was then demonstrated in

classifying the importance of edges and vertices.

Paradoxical effects were also presented that extended the seminal work of Pigou

and Braess. These have potential consequences for network planners in that careful

consideration must be given to the removal of a vertex irrespective of the demand

attached as it can have the opposite effect to the one desired. i.e. The expectation is

that removal of vertex with associated demand would intuitively improve the travel

time and that removal of a vertex with no associated demand would worsen the

network. Neither are guaranteed.
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6.8 Potential Applications of Work

The following section lists potential applications of the work presented in this thesis.

For clarity this is presented in order of chapter.

6.8.1 Chapter 2

• The mixed-integer linear programming program with piece-wise linear approx-

imation as an objective provides a possible way to extend the routing game to

include constraints on edges, vertices etc through the use of integer variables

• Provides models and methods which can be solved by a mixed-integer nonlin-

ear programming (MINLP) utilising the advancement in recent research into

solvers

• Online learning algorithms could be used in path like situations. e.g. an A/B

testing scenario whereby the choices are are connected via a network could be

modelled by an atomic routing game.

6.8.2 Chapter 3

• The basic nonatomic selfish routing formulation could be expanded to include

edge-capacity constraints and emissions modelling via pricing schemes

• When considering multi-criteria optimisation problems, the extensions to the

price of anarchy allow for classification of networks and their propensity to be

suboptimal when at equilibrium.

• The proof of concept that changes to small “free” parameters can have a

large positive effect on the solution could be utilised in a real-world scenario

for manipulation of a network to better cope with simultaneously satisfying

multiple criteria.

6.8.3 Chapter 4

• Analysis of urban topologies that can be used as a dataset to explore the

classification of these networks and extrapolate potential features.
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• Prediction of the importance of edges through machine learning techniques

utilising the measures and data.

6.8.4 Chapter 5

• Allows a complex multi-channel flow problem to be solved using MCFP. This

allows existing state-of-the-art solutions in combinatorial optimisation to be

utilised. Such transformations may prove practically useful in computer and

communication network optimisation.

6.9 Conclusion

This thesis has outlined a number of problems related to network equilibrium flows

which deal with the three objectives set out in Section 1.7. The main highlights

are methods for solving atomic selfish routing games (Chapter 2) [9, 132]; extending

equilibrium modelling to multi-criteria and dealing with efficiency measures in a

multi-criteria context (Chapter 3) [131]; identifying the size of the network problem

in urban transportation networks through the use of network measures and identify-

ing critical components pertaining to the total (average) travel cost (Chapter 4); and

extending the problem into a multi-channel (multigraph) instance via consideration

of the multi-commodity flow problem and atomic selfish routing (Chapter 5).

The work presented in this thesis was the subject of a number of publications

[9, 132, 131, 133, 130] and provides a solid foundation for future work with each

chapter outlining potential avenues of investigation to capitalise on.
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[38] J. Cohen, A. Héliou, and P. Mertikopoulos. Learning with bandit feedback

in potential games. In Proceedings of the 31st International Conference on

Neural Information Processing Systems, pages 6372–6381, 12 2017.

[39] J. E. Cohen and P. Horowitz. Paradoxical behaviour of mechanical and elec-

trical networks. Nature, 352(6337):699–701, 8 1991.

[40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. MIT press, 2009.

[41] J. R. Correa, A. S. Schulz, and N. E. Stier-Moses. Selfish routing in capacitated

networks. Mathematics of Operations Research, 29(4):961–976, 2004.

[42] S. Dafermos. A multicriteria route-mode choice traffic equilibrium model.

Bulletin of the Greek Mathematical Society, 24:13–32, 1983.

176



Bibliography

[43] S. C. Dafermos and F. T. Sparrow. The traffic assignment problem for a

general network. Journal of Research of the National Bureau of Standards,

Series B, 73(2):91–118, 1969.

[44] W. Dai, J. Zhang, and X. Sun. On solving multi-commodity flow problems: An

experimental evaluation. Chinese Journal of Aeronautics, 30(4):1481–1492, 8

2017.

[45] G. B. Dantzig, S. F. Maier, and Z. F. Lansdown. Application of decomposition

to transportation network analysis. Technical report, United States. Dept. of

Transportation. Office of the Secretary, 1976.

[46] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs.

Operations research, 8(1):101–111, 1960.

[47] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of

computing a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259,

1 2009.

[48] K. Deb. Multi-objective Optimization using Evolutionary Algorithms. John

Wiley & Sons, 2001.

[49] M. S. Dehghani, G. Flintsch, and S. McNeil. Impact of road conditions and

disruption uncertainties on network vulnerability. Journal of Infrastructure

Systems, 20(3):04014015, 9 2014.

[50] H. Demirel, M. Kompil, and F. Nemry. A framework to analyze the vulnera-

bility of European road networks due to Sea-Level Rise (SLR) and sea storm

surges. Transportation Research Part A: Policy and Practice, 81:62–76, 11

2015.

[51] S. Devarajan. A note of network equilibrium and noncooperative games.

Transportation Research Part B: Methodological, 15(6):421–426, 1981.

[52] R. Dial. Algorithm B: Accurate traffic equilibrium (and how to bobtail Frank-

Wolfe. Volpe National Transportation Systems Center, Cambridge, MA, 1999.

177



Bibliography

[53] R. B. Dial. A probabilistic multipath traffic assignment model which obviates

path enumeration. Transportation research, 5(2):83–111, 1971.

[54] R. B. Dial. A model and algorithm for multicriteria route-mode choice. Trans-

portation Research Part B: Methodological, 13(4):311–316, 1979.

[55] R. B. Dial. Bicriterion traffic assignment: Basic theory and elementary algo-

rithms. Transportation Science, 30(2):93–111, 1996.

[56] R. B. Dial. Bicriterion traffic assignment: Efficient algorithms plus examples.

Transportation Research Part B: Methodological, 31(5):357–379, 1997.

[57] R. B. Dial. A path-based user-equilibrium traffic assignment algorithm that

obviates path storage and enumeration. Transportation Research Part B:

Methodological, 40(10):917–936, 2006.

[58] Q. Du, K. Kishi, N. Aiura, and T. Nakatsuji. Transportation network vul-

nerability: Vulnerability scanning methodology applied to multiple logistics

transport networks. Transportation Research Record, 2410(1):96–104, 2014.

[59] M. Ehrgott. Multicriteria Optimization - 2nd Edition. Springer Berlin Hei-

delberg, 2005.

[60] A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure Nash

equilibria. In Proceedings of the thirty-sixth annual ACM symposium on The-

ory of computing, pages 604–612, 2004.

[61] G. Fagiolo. Clustering in complex directed networks. Physical Review E,

76(2):26107, 2007.

[62] M. C. Ferris and J. S. Pang. Engineering and economic applications of com-

plementarity problems. SIAM Review, 39(4):669–713, 1997.

[63] M. Florian, I. Constantin, and D. Florian. A new look at projected gra-

dient method for equilibrium assignment. Transportation Research Record,

2090(1):10–16, 2009.

178



Bibliography

[64] D. Fotakis and Dimitris. Congestion games with linearly independent paths:

Convergence time and price of anarchy. Theory of Computing Systems,

47(1):113–136, 2010.

[65] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval

Research Logistics Quarterly, 3(1-2):95–110, 3 1956.

[66] P. Gauthier, A. Furno, and N. E. El Faouzi. Road network resilience: how

to identify critical links subject to day-to-day disruptions. Transportation

Research Record, 2672(1):54–65, 2018.

[67] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierar-

chies: Faster and simpler hierarchical routing in road networks. In Interna-

tional Workshop on Experimental and Efficient Algorithms, pages 319–333.

Springer, 2008.

[68] G. Gentile. Local User Cost Equilibrium: a bush-based algorithm for traffic

assignment. Transportmetrica A: Transport Science, 10(1):15–54, 2014.

[69] G. Gigerenzer and R. Selten. Bounded Rationality: The Adaptive Toolbox.

MIT Press, 2001.
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Appendix: Networks

This appendix details networks used in this thesis, comprising of the network dia-

gram, link function table and origin-destination trip table. All data is presented as

was used in the code and generation of results for this thesis. All data can be found

at [129].
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C.1 Braess Network

C.1.1 Network Diagram

Note that edge (2, 3) is the optional edge which is added to demonstrate the Braess

Paradox.

Figure C.1: Braess network diagram.
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C.1.2 Link Functions

For a given edge e = (i, j), link functions are of the form,

tij(xij) = aij + bij

(
xij

cij

)nij

.

Note that edge (2, 3) in table C.1 simplifies to t23(x23) = 0.

i j aij bij cij nij

1 2 0 1 100 1
1 3 45 0 100 1
2 3 0 0 100 1
2 4 45 0 100 1
3 4 0 1 100 1

Table C.1: Link functions for Braess network.
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C.1.3 Origin-destination Table

1 2 3 4

1 0 0 0 4000

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

Table C.2: Origin-destination trip table for Braess network.
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C.2 Qiang and Nagurney Network

C.2.1 Network Diagram

1

2 3

54

Figure C.2: Qiang and Nagurney network diagram.
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C.2.2 Link Functions

For a given edge e = (i, j), link functions are of the form,

tij(xij) = aij + bijxij + cijx
nij

ij .

For this network the link functions are simply,

tij(xij) = xij

i j aij bij cij nij

1 2 0 1 0 1
1 3 0 1 0 1
2 5 0 1 0 1
3 4 0 1 0 1
2 4 0 1 0 1
3 5 0 1 0 1

Table C.3: Link functions for Qiang and Nagurney network.
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C.2.3 Origin-destination Table

1 2 3 4 5

1 0 0 0 100 20

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

Table C.4: Origin-destination trip table for Qiang and Nagurney network.
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C.3 Sioux Falls Network

C.3.1 Network Diagram

1 2

3 64

12

5

11

9 8 7

181610

15

17

14

13 24

23

19

22

2021

Figure C.3: Sioux Falls network diagram.
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C.3.2 Link Functions

For a given edge e = (i, j), link functions are of the form

tij(xij) = aij

(
1 + bij

(
xij

cij

)nij
)
.

i j aij bij cij nij

1 2 6 0.15 25900.20064 4
1 3 4 0.15 23403.47319 4
2 1 6 0.15 25900.20064 4
2 6 5 0.15 4958.180928 4
3 1 4 0.15 23403.47319 4
3 4 4 0.15 17110.52372 4
3 12 4 0.15 23403.47319 4
4 3 4 0.15 17110.52372 4
4 5 2 0.15 17782.7941 4
4 11 6 0.15 4908.82673 4
5 4 2 0.15 17782.7941 4
5 6 4 0.15 4947.995469 4
5 9 5 0.15 10000 4
6 2 5 0.15 4958.180928 4
6 5 4 0.15 4947.995469 4
6 8 2 0.15 4898.587646 4
7 8 3 0.15 7841.81131 4
7 18 2 0.15 23403.47319 4
8 6 2 0.15 4898.587646 4
8 7 3 0.15 7841.81131 4
8 9 10 0.15 5050.193156 4
8 16 5 0.15 5045.822583 4
9 5 5 0.15 10000 4
9 8 10 0.15 5050.193156 4
9 10 3 0.15 13915.78842 4
10 9 3 0.15 13915.78842 4
10 11 5 0.15 10000 4
10 15 6 0.15 13512.00155 4
10 16 4 0.15 4854.917717 4
10 17 8 0.15 4993.510694 4
11 4 6 0.15 4908.82673 4
11 10 5 0.15 10000 4
11 12 6 0.15 4908.82673 4
11 14 4 0.15 4876.508287 4
12 3 4 0.15 23403.47319 4
12 11 6 0.15 4908.82673 4
12 13 3 0.15 25900.20064 4
13 12 3 0.15 25900.20064 4
13 24 4 0.15 5091.256152 4
14 11 4 0.15 4876.508287 4
14 15 5 0.15 5127.526119 4
14 23 4 0.15 4924.790605 4
15 10 6 0.15 13512.00155 4
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i j aij bij cij nij

15 14 5 0.15 5127.526119 4
15 19 3 0.15 14564.75315 4
15 22 3 0.15 9599.180565 4
16 8 5 0.15 5045.822583 4
16 10 4 0.15 4854.917717 4
16 17 2 0.15 5229.910063 4
16 18 3 0.15 19679.89671 4
17 10 8 0.15 4993.510694 4
17 16 2 0.15 5229.910063 4
17 19 2 0.15 4823.950831 4
18 7 2 0.15 23403.47319 4
18 16 3 0.15 19679.89671 4
18 20 4 0.15 23403.47319 4
19 15 3 0.15 14564.75315 4
19 17 2 0.15 4823.950831 4
19 20 4 0.15 5002.607563 4
20 18 4 0.15 23403.47319 4
20 19 4 0.15 5002.607563 4
20 21 6 0.15 5059.91234 4
20 22 5 0.15 5075.697193 4
21 20 6 0.15 5059.91234 4
21 22 2 0.15 5229.910063 4
21 24 3 0.15 4885.357564 4
22 15 3 0.15 9599.180565 4
22 20 5 0.15 5075.697193 4
22 21 2 0.15 5229.910063 4
22 23 4 0.15 5000 4
23 14 4 0.15 4924.790605 4
23 22 4 0.15 5000 4
23 24 2 0.15 5078.508436 4
24 13 4 0.15 5091.256152 4
24 21 3 0.15 4885.357564 4
24 23 2 0.15 5078.508436 4

Table C.5: Link functions for Sioux Falls network.
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C.3.3 Origin-destination Table
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C.4 Dial’s Network

C.4.1 Network Diagram

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure C.4: Dial’s network diagram.

C.4.2 Link functions

For a given edge e = (i, j), link functions are of the form

tij(xij) = aij

(
1 + bij

(
xij

cij

)nij
)
.
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i j aij bij cij nij

1 2 3.72 0.15 300 4
2 1 3.72 0.15 300 4
2 3 5.4 0.15 300 4
3 2 5.4 0.15 300 4
3 4 3.3 0.15 300 4
4 3 3.3 0.15 300 4
4 5 4.98 0.15 300 4
5 4 4.98 0.15 300 4
6 7 4.17 0.15 300 4
7 6 4.17 0.15 300 4
7 8 4.02 0.15 300 4
8 7 4.02 0.15 300 4
8 9 5.55 0.15 300 4
9 8 5.55 0.15 300 4
9 10 4.53 0.15 300 4
10 9 4.53 0.15 300 4
11 12 1.23 0.15 200 4
12 11 1.23 0.15 200 4
12 13 1.85 0.15 200 4
13 12 1.85 0.15 200 4
13 14 1.89 0.15 200 4
14 13 1.89 0.15 200 4
14 15 1.03 0.15 200 4
15 14 1.03 0.15 200 4
16 17 3.09 0.15 300 4
17 16 3.09 0.15 300 4
17 18 4.5 0.15 300 4
18 17 4.5 0.15 300 4
18 19 5.94 0.15 300 4
19 18 5.94 0.15 300 4
19 20 2.97 0.15 300 4
20 19 2.97 0.15 300 4
21 22 5.76 0.15 300 4
22 21 5.76 0.15 300 4
22 23 4.44 0.15 300 4
23 22 4.44 0.15 300 4
23 24 5.1 0.15 300 4
24 23 5.1 0.15 300 4
24 25 3 0.15 300 4
25 24 3 0.15 300 4
1 6 3.72 0.15 300 4
6 1 3.72 0.15 300 4
2 7 4.02 0.15 300 4
7 2 4.02 0.15 300 4
3 8 1.37 0.15 200 4
8 3 1.37 0.15 200 4
4 9 3.09 0.15 300 4
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i j aij bij cij nij

4 9 3.09 0.15 300 4
9 4 3.09 0.15 300 4
5 10 4.59 0.15 300 4
10 5 4.59 0.15 300 4
6 11 4.32 0.15 300 4
11 6 4.32 0.15 300 4
7 12 4.11 0.15 300 4
12 7 4.11 0.15 300 4
8 13 1.41 0.15 200 4
13 8 1.41 0.15 200 4
9 14 4.11 0.15 300 4
14 9 4.11 0.15 300 4
10 15 3.42 0.15 300 4
15 10 3.42 0.15 300 4
11 16 4.35 0.15 300 4
16 11 4.35 0.15 300 4
12 17 5.49 0.15 300 4
17 12 5.49 0.15 300 4
13 18 2.15 0.15 200 4
18 13 2.15 0.15 200 4
14 19 5.46 0.15 300 4
19 14 5.46 0.15 300 4
15 20 6.09 0.15 300 4
20 15 6.09 0.15 300 4
16 21 5.58 0.15 300 4
21 16 5.58 0.15 300 4
17 22 4.02 0.15 300 4
22 17 4.02 0.15 300 4
18 23 1.79 0.15 200 4
23 18 1.79 0.15 200 4
19 24 5.85 0.15 300 4
24 19 5.85 0.15 300 4
20 25 4.05 0.15 300 4
25 20 4.05 0.15 300 4

Table C.7: Link functions for Dial’s network.
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C.4.3 Origin-destination Table
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C.5 Grid 5x5 Network

C.5.1 Network Diagram

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure C.5: Grid 5x5 network diagram.

C.5.2 Link functions

For a given edge e = (i, j), link functions are of the form

tij(xij) = aij + bij

(
xij

cij

)nij

.
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i j aij bij cij nij

1 2 2 0.5 1 2
2 1 2 0.5 1 2
2 3 2 0.5 1 2
3 2 2 0.5 1 2
3 4 2 0.5 1 2
4 3 2 0.5 1 2
4 5 2 0.5 1 2
5 4 2 0.5 1 2
6 7 2 0.5 1 2
7 6 2 0.5 1 2
7 8 2 0.5 1 2
8 7 2 0.5 1 2
8 9 2 0.5 1 2
9 8 2 0.5 1 2
9 10 2 0.5 1 2
10 9 2 0.5 1 2
11 12 2 0.5 1 2
12 11 2 0.5 1 2
12 13 2 0.5 1 2
13 12 2 0.5 1 2
13 14 2 0.5 1 2
14 13 2 0.5 1 2
14 15 2 0.5 1 2
15 14 2 0.5 1 2
16 17 2 0.5 1 2
17 16 2 0.5 1 2
17 18 2 0.5 1 2
18 17 2 0.5 1 2
18 19 2 0.5 1 2
19 18 2 0.5 1 2
19 20 2 0.5 1 2
20 19 2 0.5 1 2
21 22 2 0.5 1 2
22 21 2 0.5 1 2
22 23 2 0.5 1 2
23 22 2 0.5 1 2
23 24 2 0.5 1 2
24 23 2 0.5 1 2
24 25 2 0.5 1 2
25 24 2 0.5 1 2
1 6 2 0.5 1 2
6 1 2 0.5 1 2
2 7 2 0.5 1 2
7 2 2 0.5 1 2
3 8 2 0.5 1 2
8 3 2 0.5 1 2
4 9 2 0.5 1 2
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i j aij bij cij nij

9 4 2 0.5 1 2
5 10 2 0.5 1 2
10 5 2 0.5 1 2
6 11 2 0.5 1 2
11 6 2 0.5 1 2
7 12 2 0.5 1 2
12 7 2 0.5 1 2
8 13 2 0.5 1 2
13 8 2 0.5 1 2
9 14 2 0.5 1 2
14 9 2 0.5 1 2
10 15 2 0.5 1 2
15 10 2 0.5 1 2
11 16 2 0.5 1 2
16 11 2 0.5 1 2
12 17 2 0.5 1 2
17 12 2 0.5 1 2
13 18 2 0.5 1 2
18 13 2 0.5 1 2
14 19 2 0.5 1 2
19 14 2 0.5 1 2
15 20 2 0.5 1 2
20 15 2 0.5 1 2
16 21 2 0.5 1 2
21 16 2 0.5 1 2
17 22 2 0.5 1 2
22 17 2 0.5 1 2
18 23 2 0.5 1 2
23 18 2 0.5 1 2
19 24 2 0.5 1 2
24 19 2 0.5 1 2
20 25 2 0.5 1 2
25 20 2 0.5 1 2

Table C.9: Link functions for grid 5x5 network.

C.5.3 Origin-destination Table
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