
Approximation Algorithms for Distributed and
Selfish Agents

by

Vahab S. Mirrokni

B.S., Sharif University of Technology, 2001

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLO

Tlinp 90nn.

© Vahab S. Mirrokni, 2005. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

OK) /A 1
Author ................................... .... .

Department of Mathematics
d3 April 25, 2005

C ertified by ................................
_.7--

Michel X. Goemans
Professor of Applied Mathematics

"2 . ...............Thesis Supervisor

Accepted by ..................A ccep ted by ..................... ....................................
Rodolfo Ruben Rosales

Chairman, Applied Mathematics C,ommittee

Accepted by ............ ........... .........
Pavel I. Etingof

Chairman, Department Committee on Graduate Students

ARCHIVES





-,XJl Sh .5.1 5U 4

4 u sAW#:

3



4



Approximation Algorithms for Distributed and Selfish

Agents

by

Vahab S. Mirrokni

Submitted to the Department of Mathematics
on April 25, 2005, in partial fulfillment of the

requirements for the degree of
DOCTOR OF PHILOSOPHY

Abstract
Many real-world systems involve distributed and selfish agents who optimize their own
objective function. In these systems, we need to design efficient mechanisms so that
system-wide objective is optimized despite agents acting in their own self interest. In
this thesis, we develop approximation algorithms and decentralized mechanisms for
various combinatorial optimization problems in such systems.

First, we investigate the distributed caching and a general set of assignment prob-

lems. We develop an almost tight LP-based 1- - -approximation algorithm and
a local search - -approximation algorithm for these problems. We also design effi-
cient decentralized mechanisms for these problems and study the convergence of the
corresponding games.

In the following chapters, we study the speed of convergence to high quality solu-
tions on (random) best-response paths of players. First, we study the average social
value on best response paths in basic-utility, market sharing, and cut games. Then,
we introduce the sink equilibrium as a new equilibrium concept. We argue that, un-
like Nash equilibria, the selfish behavior of players converges to sink equilibria and
all strategic games have a sink equilibrium. To illustrate the use of this new concept,
we study the social value of sink equilibria in weighted selfish routing (or weighted
congestion) games and valid-utility (or submodular-utility) games. In these games,
we bound the average social value on random best-response paths for sink equilibria..

Finally, we study cross-monotonic cost sharings and group-strategyproof mech-
anisms. We study the limitations imposed by the cross-monotonicity property on
cost-sharing schemes for several combinatorial optimization games including set cover
and metric facility location. We develop a novel technique based on the probabilistic
method for proving upper bounds on the budget-balance factor of cross-monotonic
cost sharing schemes, deriving tight or nearly-tight bounds for these games. At the
end, we extend some of these results to group-strategyproof mechanisms.

Thesis Supervisor: Michel X. Goemans
Title: Professor of Applied Mathematics
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Chapter 1

Introduction

Over the past fifty years, computer scientists have been trying to overcome different

computational constraints in developing efficient algorithms. The main features tra-

ditionally characterizing efficient algorithms are their running time and space com-

plexity. 'However, real-world systems require other important features such as the

ability to run as a mechanism in the presence of selfish agents and the ability to run

as a decentralized algbrithm in a distributed setting. Complexity theory has taught

us that designing efficient algorithms'with these features is hard. Thus, it sometimes

becomes necessary to settle for approximate solutions. In this thesis, we focus on de-

veloping approximation algorithms for various combinatorial optimization problems

with these features.

With the Internet developing as the single most important arena for resource shar-

ing among parties with diverse and selfish interests, traditional algorithmic and dis-

tributed systems approaches are insufficient. The Internet embodies a new paradigm

in which distributed computation is performed by self-interested agents. Unable to

control the algorithms and strategies employed by distributed users, we must instead

design incentives to promote effective system-wide coordination. The goal of mecha-

nism design is to implement some rules so that a system-wide objective is optimized

despite agents acting in their own self interest. In this thesis, we consider various

distributed settings in the Internet and wireless networks and design efficient ap-

proximation algorithms and decentralized mechanisms with a provable performance
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guarantee in terms of a desired objective function. In this chapter, we first give an

overview of the results throughout the thesis. Then, we define some preliminaries that

we need throughout the thesis. We suggest unfamiliar readers to first read Section 1.2

to learn the definitions.

1.1 Results and the Structure of the Thesis

The thesis is organized in six chapters. In this part of the introduction, we survey the

main results of the other chapters (sometimes with informal definitions). Some formal

preliminaries are also given at the end of the introduction in Section 1.2. Each chapter

also contains an introduction and a set of preliminaries with formal definitions. We

emphasize that in order to understand the details of the results of each chapter, the

reader may need to read the formal definitions in the corresponding chapter.

In Chapter 2, we address the content distribution in service provider networks

and design approximation algorithms and decentralized mechanisms for a distributed

caching problem and a general set of assignment problems called the separable assign-

ment problems (SAP). Here, we give an informal definition of the distributed caching

problem1 . A service provider has a limited set of file caches. Each cache location

has a storage capacity and a bandwidth limit. There are a set of requests, each of a

particular file type, and a particular bandwidth. Given a set of requests for file types,

where each file type has a size, the job of the service provider is to decide 1) which file

types to store at each cache location, subject to storage capacity; and 2) which subset

of requests to answer, subject to file selection at the cache, and available bandwidth.

While the storage space for a particular type in a cache location is independent of

the number of requests for that type, the bandwidth required to serve requests of the

same type is the sum of bandwidth requirements for the individual requests. For each

potential assignment of cache to request, there is an associated profit: the profit of

assigning a request to a cache depends on the connection cost for the request to the

cache. The goal is to maximize the profit of providing requests. DCP is a special case

1 For formal definition, see Chapter 2.
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of a general class of assignment problems called the separable assignment problems.

In a separable assignment problem, we are given a set of n bins and a set of m items,

and a value fij for assigning item j to bin i. We are also given a separate packing

constraint for each bin i, i.e., a lower-ideal family Zi of feasible subsets of items for bin

i. The goal in the SAP is to find an assignment of items to bins with the maximum

aggregate value. We call this separate packing constraint for each bin, the single-bin

subproblem.

In an instance of the single-bin subproblem, we are given a bin i, a set of items with

value vj for each item j, and a packing constraint for bin i, i.e., a lower-ideal family i

of feasible subsets of items that can be packed in bin i. A -approximation algorithm

for 3 < 1 for the single-bin subproblem is an algorithm that outputs a feasible subset

of items whose value is at least p times the value of the feasible packing of items in

bin i with the maximum value.

Separable assignment problems include the distributed caching problems and the

well-known maximum generalized assignment problem (GAP): Given a set of bins and

a set of items that'have a different size and value for each bin, pack a maximum-valued

subset of items into the bins.

Given a -approximation algorithm for the single-bin subproblem, we design a

polynomial-time LP-based ((1- 1)/) - 6-approximation algorithm and a local search

combinatorial /i -5-approximation algorithm for SAP, for any > 0. This givesp+1

a (- - c)-approximation algorithm and a local search - c-approximation algo-

rithm for GAP and DCP, for any > 0, as the single-bin subproblem for GAP and

DCP admit a PTAS. This result is an improvement over the best previously known

approximation algorithm for GAP (an LP-based -approximation) by Shmoys and

Tardos [82] and Chekuri and Khanna [10]. Our algorithm is based on rounding a new

linear programming relaxation, with a provably better integrality gap.

At the end of Chapter 2, we also design decentralized mechanisms for the DCP

(that can be generalized for problems in SAP). In this part, we assume that caches are

selfish entities that want to maximize their own reward. This setting is particularly

justified in the context of 3G cellular networks. We define the following rewarding
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mechanism for the distributed caching problem: Let cache locations decide on the set

of file types and files that they can provide based on their constraints. We assume that

the profit of each file request goes to the cache location that has the least connection

cost to this file request and can provide it and prove that the price of anarchy of a

(mixed) Nash equilibrium of the corresponding games is at most 2. We also study the

convergence in the general DCP games and the complexity of finding Nash equilibria

in these games. We show that pure Nash equilibria may not exist in this game.

We prove existence of exponentially long best-response walks to equilibria using a

reduction from a PLS-complete problem.

In Chapters 3 and 4, we study convergence in competitive games. We study the

speed of convergence to approximate solutions in general classes of games including

the cut games, basic-utility games, market sharing games, selfish routing games, and

a general set of submodular-utility games (called the valid-utility games). We in-

vestigate the social value of states after a nunmber of,best responses of players as a

measure of the cost of the lack of coordination in such games. ThIis work deviates

from other attempts to study the outcome of the selfish behavior of players in non-

cooperative games in that we dispense with the insistence upon only evaluating Nash

equilibria. Our basic model uses the underlying best-response graph induced by the

selfish behavior of the players. In this model, we study the expected social value after

a random sequence of best responses or the value of the social function after multiple

rounds of best response behavior.

In Chapter 3, we study the speed of convergence in several subclasses of the

potential games, i.e., games in which selfish behavior of players converge to a pure

Nash equilibrium 2. First, we study the convergence in the cut game. We prove fast

convergence to constant-factor approximate solutions on random best-response walks

in these games. Then we exhibit exponentially long fair best-response walks with

poor social value in this game. In addition, we suggest a way to modify the game to

enforce fast convergence to constant-factor solutions after one round of best responses

of players in any order. In basic-utility games, we prove fast convergence to - -

2 For the formal definitions, see Section 1.2.
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approximate solutions after a polynomial-size random best-response walk. Finally, we

prove that in market sharing games, after just one round of iterative selfish behavior,

the social value is within (o) of the optimal social value.

In Chapter 4, we study convergence in games with cycles of best responses. In

these games, a sequence of best responses may converge to a sink equilibrium. A

sink equilibrium is a set of strategy profiles or a set of states that is closed under

the best responses of players. We introduce this new equilibrium concept and define

it formally and study the social value of sink equilibria in comparison to the opt-

mail social value. In particular, we measure the social value of states after a random

sequence of best responses of players and bound the expected social value of states in

sink equilibria 3. We study a weighted unsplittable selfish routing game and bound the

expected social value of states in any sink equilibrium of this game. An implication

of our result is that in weighted selfish routing games, if the delay functions of edges

of the network are bounded-degree polynomial functions and we let players play their

best responses in a;random order, after a polynomial number of best-response moves,

the total delay of players is a constant-factor approximation of the total delay of the

optimal routing. This is in contrast to the negative result of Fabrikant et al. [15]

that shows the existence of exponential best-response walks to Nash equilibria. Thus,

even though the convergence to pure Nash equilibria might be poor, the convergence

to approximately good solutions is fast. Finally, in Chapter 4, we show that even

though the price of anarchy for Nash equilibria in valid-utility games is , players

may converge to a set of states with social value of that of the optimum. This

shows that even in games with small price of anarchy for mixed Nash equilibria,

selfish behavior of players may converge to a set of states with poor social value. In

addition, using a reduction from a PLS-complete problem, we show existence of states

that are exponentially far from any sink equilibrium in valid-utility games.

In Chapter 5, we study cross-monotone cost sharings and group-strategyproof

mechanisms4 . A cost sharing scheme is a set of rules defining how to share the

3 For the formal definitions, see Chapter 4.
4 For the formal definitions of these concepts, see Chapter 5.
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cost of a service (often computed by solving a combinatorial optimization problem)

amongst serviced customers. A cost sharing scheme is cross-monotonic if it satisfies

the property that everyone is better off when the set of people who receive the service

expands. A main application of cross-monotonic cost sharing schemes is in the design

group-strategyproof mechanisms, i.e., mechanisms that are truthful for any coalition

of players. An example of the use of cost sharings in mechanism design is in sharing

the cost of multicast transmissions [44, 21]. We study the limitations imposed by the

cross-monotonicity property on cost-sharing schemes for several combinatorial opti-

mization games including edge cover, vertex cover, set cover, metric facility location,

maximum flow, arborescence packing, and maximum matching. We develop a novel

technique based on the probabilistic method for proving upper bounds on the budget-

balance factor of cross-monotonic cost sharing schemes, deriving tight or nearly-tight

bounds for each game that we study.

For the set cover garre, that generalizes many of the above games, we show that

no cross-monotonic cost sharing scheme can recover more than an O( fraction of

the total cost, and thus we can not hope to use a set-cover cost sharing scheme as

a black box for the cost sharing schemes of covering games. For the vertex cover

game, we show no cross-monotonic cost sharing scheme can recover more than a

O(n-1/3), demonstrating that cross-monotonicity is strictly harder to achieve than

the core property (vertex cover games have a solution in the core that is 1/2-budget

balanced). For the facility location game, we show that there is no cross-monotonic

cost sharing scheme that recovers more than a third of the total cost. This result

together with a recent 1/3-budget-balanced cross-monotonic cost sharing scheme of

Pal and Tardos [69] closes the gap for the facility location game.

1.2 Preliminaries

An a-approximation algorithm A for a maximization (minimization) problem is a

polynomial-time algorithm that for every instance of the problem computes a solution

whose cost is at least (at most) times the cost of the optimal solution on that
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instance. We say that is the approximation factor or the approximation ratio

of algorithm A. In particular, a > 1 for minimization problems and a < 1 for

maximization problems.

Now, we define game theoretic notations that we need in this thesis. For a more

complete description of these concepts, we refer to the text books [68] and [25].

Strategic Game. A strategic game is defined as a tuple (U, {Fili U},

{ai()li C U}) where (i) U is the set of n players or agents, (ii) Fi is a family of

feasible (pure) strategies or actions for player i and (iii) ai : IEUFi - R+ U {O} is the

(private) payoff or utility function for agent i, given the set of strategies of all players.

P'layer i's strategy is denoted by si Fi. A strategy profile or a (strategy) state,

denoted by S = (Si, 2.. ., s), is a vector of strategies of players. i corresponds to

a null or empty strategy for player i. Also let S s := (l,..., si_-1, si+1, k),

i.e., the strategy profile obtained from S if agent i changes its strategy from si to

s/. The vector of strategies of players except player i is denoted by by S-i

(s1,... ,si_1, ,si+1,... ,Sn). Also let F := liYvUFi be the set of all possible strat-

egy profiles.

Non-cooperative Game. In a non-cooperative game, it is assumed that each agent

wishes to maximize its own payoff. In other words, agents are selfish and given the

strategy profile for other players, they play a strategy that maximizes their own utility

function. For a strategy profile S = (sl, 2,..., sn), an improvement move of player i

is a strategy si such that ai(SEs'i) > Ci(S). For a strategy profile S = (si, 2,. .,s),

a strict improvement move of player i is a strategy s such that ai(S ® s) > cai(S).

Also, for a strategy profile S = (sl, s2,...,sn) a best response of player i in S is a

strategy s Fi such that for any strategy si C Fi, ai(S ® s) > i(S ® si). Note

that a best response is an improvement move.

(Pure) Nash equilibria. A pure strategy Nash equilibrium (PSNE) of a strategic

game is a strategy profile in which each player plays his best response. More formally,

S = (, 2,. . , s,) is a pure strategy Nash equilibrium (PSNE) if for all i U and

for any strategy sC e Fi, ai(S) > ai(S e s).

M/ixed Nash equilibria. A mixed (randomized) strategy for player i is a probability
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distribution ri : Fi - IWR+ U {0} over pure strategies where ESFi lri(Si) = 1. A mixed

strategy profile, denoted by P = (7r, 7r 2 ,... , rn), is a vector of mixed strategies of all

players. For a mixed strategy profile P the probability of realizing a pure strategy pro-

file S = (sl,..., s,) is pP(sl,.. ., s?) := IiEuTri(si). The expected payoff of player i in

the mixed strategy profile P is i (P) := Es1cF 1 ,...,snGFn pP(Sl,..., Sn)ai(s1, 2,... Sn).

Similar to the above definition of pure Nash equilibrium, we can define a mixed Nash

equilibrium. A mixed strategy Nash equilibrium is a mixed strategy profile in which

each player does not have an incentive to play a different mixed strategy and improve

her expected payoff. Nash [64] proved that any non-cooperative strategic game pos-

sesses a mixed Nash equilibrium. We denote Nash equilibrium by NE and the pure

strategy Nash equilibrium by PSNE.

State Graph. In order to model the selfish behavior of players, we use the underlying

state graph. Each vertex in the state graph represents a strategy profile or a state

S = (s1, 2 ... s n). The, arcs in the state graph correspond to best-response moves

by the players. Formally, the state graph, ) = (, E), of a strategic game g, is an

arc-labeled directed graph, where the vertex set F. correspondis to the set of strategy

profiles or states in 9, and there is an arc from state S to state S' with label i if the

only difference between S and S' is in the strategy of player i; and player i plays his

best response or one of his best responses in strategy profile S 5 .

Best-Response Walk. Observe that the state graph will contain loops. A best-

response walk is a directed walk in the state graph. We say that a player i plays in

the best-response walk 7', if at least one of the edges of P is labeled i.

Social Value. The social (utility) function or social value, denoted by : EuFi 

R, is defined for all strategy profiles in a strategic game. The optimal strategy profile

is the strategy profile that optimizes the social value. The optimal strategy profile is

called the optimal solution. Also, the social value of the optimal solution, denoted by

OPT, is the optimum. Also let y,(S) := y(S d s') - -'(S), i.e., the increase in the

5In the definition of the best-response moves and the state graph, we only consider the myopic

best responses. Other models can be considering nonmyopic players who can predict the responses

of other players and play a strategy that gives more payoff in the long-term and not only at the

current strategy profile.
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social value if player i plays s. The expected social value of a mixed Nash equilibrium

= (iT.. ..( ,rn.) iS y(P) ,):= SF...slF P (S1,.. Sn)Y(Sl,. ,S).
Price of Anarchy. The major tool for analyzing the lack of coordination for some

games is the notion of the price of anarchy in a game [53, 70]. Given a strategic game,

g(U, {Fili e U}, {c()i E U}), and a maximization social function y: iuFi -- I,

the price of anarchy, denoted by poa(g, y), is the worst ratio between the optimum

and the social value of a pure Nash equilibrium [70]6. Formally, if gf is the set of

all pure Nash equilibria, then poa(g,,y) := PT Similarly, if P is the set of

all mixed Nash equilibria, the price of anarchy for mixed Nash equilibria is equal to

OmiPT() Also, the price of anarchy for a minimization social function y is defined
rninpe-P Y( P) '
as maxpep Y(P)

OPT

Submodular Set Functions. A function f of the form 2 -, I + U {0} is called a

set function on the ground set V. A set function f : 2V - R+ U {0} is submodular if

for any two sets A, B C V, f(A) -f(B) > f(A n B) + f(A U B). A set function f,

is non-decreasing if f(X) < f(Y) for any X C Y C V.

Valid-Utility Game. One class of games that we consider in different chapters of

this thesis is the class of valid-utility games introduced by Vetta [87]. We will use

the definition of these games in Chapters 2, 3 and 4. Here, we describe an abstract

definition of these games and refer the reader to the paper by Vetta [87] and Goemans

et al. [29] for several examples of these games. In these games, for each player i, there

exists a ground set V1. Note that Vi's may intersect. We denote by V the union of

ground sets of all players, i.e., V = UiuvVi7. The feasible strategy set Fi of player i is

a subset of the power set of V1, 2i that contains the empty set 0 which corresponds

to having no action. Thus, the strategy si of player i is a subset of Vi (si C Vi). In

order to define these games, we need the following definitions.

Given a vector S = (s ,..., sn), where si is a subset of the ground set V (si C Vi), the

set 'Hs = {(i, j) : i U, j si} is called the pair set for vector S. Note that S may or

6In this thesis, we use the term, price of anarchy, for pure Nash equilibria. For mixed Nash
equilibria, we use the term, price of anarchy for mixed Nash equilibria. In some other places, the
price of anarchy is defined for mixed Nash equilibria.

7 We can define the valid-utility games by setting all ground sets Vi = V. But for later convenience,
we let the ground set of player i be V/.
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may not be a feasible strategy profile. Given a function f : · iEvu2v - R + U {O}, the

corresponding set function fS of f is a set function of the form 2 - R + U {O} where

-I = {(i,j) : i E U,j V} and f(7s) = f(S). In other words, for a set A C R,

fS(A) = f((al, a2 ,..., a)) if ai = {j (i,j) E A} Here, we assume that the social

function y is of the form ieU2v -- R+ U {O} instead of the form IIiuF -- R+ U {O}.

Let (U, {Fili c U}, {ai()li U}) be a non-cooperative strategic game where

Fi C 2¼v is a family of feasible strategies for player i. Let V = UiGuVi and let the

social function be y : Hiu 2 v R+ U {O}. is a valid-utility game if it satisfies the

following properties:

1) Submodular and Non-decreasing Social Function: -y, the corresponding set

function of y over the set N = {(i,j) : i E U,j E V}, is submodular and non-

decreasing.

2) Vickrey Condition: The payoff of a player is at least the difference in the social

function when the player participates versus when :it does not participate, i.e.,

ai(S) > '(S ® 0i). In basic-utility games, this is an equality, i.e., Ci(S)

,s (S D i).

3) Cake Condition: For any strategy profile, the sum of the payoffs of players

should be less than or equal to the social function for that strategy profile,

i.e., for any strategy profile S, Eiu cai(S) < (S).

This framework encompasses a wide range of games including the facility location

games, the traffic routing games, auctions [87], market sharing games (described in

Chapter 2), and distributed caching games (described in Chapter 2). Vetta [87]

proved that the price of anarchy for mixed Nash equilibria in valid-utility games is

at most 2. While proving theorems about valid-utility and basic-utility games, we

use the following notation: for two vectors S = (s ,..., s ) and S' = (si,.. ., s), we

define S U S' := (sl U s1,..., sn U s). Also we define S U s := (s, s2,.., si-1, Si U

Sir Si+1, · · · Sn).

Potential Game. Potential games are games in which any sequence of strict im-

provement moves by players converges to a pure Nash equilibrium. Equivalently, in
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potential games, there is no cycle of strict improvement moves of players. This is

equivalent to the existence of a potential function pot : liUVFi - R+ U {0 with

an upper bound that is strictly increasing after any strict improvement move. Exact

potential games are a subclass of potential games for which there exists a potential

function such that in any strict improvement move, the increase in the payoff of a

player is equal to the increase in the potential function.

Congestion Game. Consider a set U of n players and a set V of elements; these

elements are called factors in the original work of Rosenthal [76]. Let Fi C 2V be

a family of subsets of elements. For each element f V, let cf N -- R+ U {0}

be a congestion function. A strategic game g(U, {Fili U}, {ci()li C U}) is called

a congestion game if F C 2V, and for a strategy profile, S = (sl,..., sr), ai(S) =

LEfsi Cf (nf (S)) where nf (S) is the number of players that contains f in their strategy.

Rosenthal [76] proved that congestion games are exact potential games. For the sake

of completeness, we show the potential function for this game. The potential function

is pot(S) = f EfI(S ) cf(t). Let i be a player who changes his strategy from si

in S to s and increases his payoff. The change in the potential function is equal to

pot(SDs'i)-pot(S) = EZfsi cf(Ssi)-Efesis, i cf(S) -- Li(Ssi)-a i(S). Thus,
if player i increases his payoff by changing his strategy, the potential function also

increases by the same value. This shows that congestion games are exact potential

games. Monderer and Shapley [60] proved that congestion games are equivalent to

the class of exact potential games.

In the formulation of congestion games, instead of a congestion function, we may

consider a delay function, If : N -- R + U {0} for each element. In this case, given a

strategy S = (sI,.. ., s) of players, the delay of player i is li(S) = Efs,, If(nf(S))

where nf(S) is the number of players who has f in their strategy. The goal of

each player is to minimize his delay (instead of maximizing his payoff). By setting

cf(x) = -If(x) and ai(S) = -li(S), we can show that these two formulations of

congestion games are equivalent in that we can find a one-to-one correspondence O

between the vertices of the state graphs of these two games such that if there exists

an edge from S to S' with label i in the state graph of the first game, then there exists
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an edge between vertices V(u) and ~b(v) with the same label i. One of the well-known

congestion games is the selfish routing game [78]. In this game8 , the elements of the

game are edges of a directed network. Each player i wants to route a unit amount of

flow from a source si to a destination, ti. The set of feasible strategies of a player is

the set of directed paths from si to ti. The delay of an edge is a function of the total

number of players that use this edge in their path. The delay of a player is the sum

of the delay of the edges on its path.

Local Search Problems and the Class PLS. The class of Polynomial Local Search

problems (PLS) is introduced by Johnson, Papadimitriou, and Yannakakis [47]. A

local search problem is denoted by L and is given by a set of instances I(L). Each

instance I E I(L) is given by a tuple I = (i,y: i - R+ U {O},N : FI - 2' I )

where (i) FI is the set of feasible solutions to instance I, (ii) (F) is the value of

solution F E I, and (iii) N- Fi - 2 is a neighborhood function, that is, for

any feasible solution F FI, it gives a set of feasible solutions that are in the

neighborhood of F (in other words, this set of feasible solutions can be reached

from F only by one local operation). The local search problem is to find a local

optimal solution for any given instance of L, that is, given an instance I GE (L),

a feasible solution F CE F such that no feasible solution in the neighborhood of F

has value more than y(F). The global optimization problem is to find a feasible

solution F G Fi with the maximum value y(F) for any given instance I of L. A

local search problem L is in class PLS if for any instance I E I(L), (i) a feasible

solution in FI is polynomially computable, (ii) for any solution F GE F, y(F) can

be computed in polynomial time, and (iii) a polynomial function is given that for

any solution F CE F either determines that F is a local optimal solution, or returns

F' E NI(F) with y(F') > y(F). Therefore, for any local search problem in PLS, given

any instance I and any feasible solution F E F1 , it can be checked in polynomial

time if F is a local optimal solution or not, and if it is not, a solution F' in the

neighborhood of F (F' N(F)) can be found such that y(F') > 7y(F). Many well-

sIn fact, we describe the atomic version of the selfish routing game in which there are finite
number of players. The other variant of the selfish routing game is the nonatomic variant in which
there exist infinite number of infinitesimal players each with a small load.
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known local search problems are in PLS; For example, the Max-SAT problem with

the flip neighborhood, and the Max-Cut problem with the swapping neighborhood.

The Max-Cut local search problem with swapping neighborhood is as follows: Given

an edge-weighted graph G and a cut, the local operations are to switch one node from

one side of the cut to the other side. The class PLS has its own type of reduction

and its own complete problems. Formally, a local search problem L in PLS is PLS-

complete, if using a polynomial-time algorithm to find a local optimal solution of any

instance of L, we can design a polynomial-time algorithm to find the local optimal of

any problem in PLS. Johnson, Papadimitriou, and Yannakakis [47] introduced this

class of problems and proved that the Max-SAT problem with flip neighborhood is

PLS-complete. They also introduced the concept of the PLS reduction by which one

can prove that a local search problem L' is PLS-complete by reducing a PLS-complete

problem to L'. It is not known if PLS-complete problems are hard to solve or not.

In fact, Johnson et al. [47] proved that if a problem in PLS is NP-Hard, then NP=

co-NP. As a result, it seems unlikely that these problems are NP-Hard, even though

no polynomial-time algorithm is known for them. A problem A is PLS-hard if when

we can solve A in polynomial time, then we can solve any instance of a PLS-complete

problem in polynomial time. In other words, if we can solve a PLS-hard problem in

polynomial time then we can solve any PLS problem in polynomial time.

Given any instance of a local search problem, the neighborhood search algorithm

to find the local optimal solution is the algorithm that starts from a given solution of

this instance, and does the following until it finds a local optimal solution: at each

step, it finds a feasible solution in the neighborhood of the current solution with a

better value, and moves to this solution. Papadimitriou et al. [71] and Schaffer and

Yannakakis [79] have shown that for several PLS-complete problems, the neighbor-

hood search algorithm takes exponential time. In fact, they proved that for some

PLS-complete local search problems such as the Max-2SAT with flip neighborhood,

and the Max-Cut problem with swap neighborhood, there are solutions that are ex-

ponentially far from any local optimal solution, i.e., it takes exponential number of

local improvements to get to a local optimal solution.
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Here, we formally define the PLS reduction. A PLS reduction from L to L' is

given by a pair (, M) where (i) R : (L) - I(L') is a polynomial-time computable

function that maps any instance of L to an instance of L', and (ii) M is a polynomial-

time computable function that maps any pair (F', I), where I is an instance of L

and F' E YF(I) is a solution of T(I), to a feasible solution F of I, and (iii) for any

instance I of L and for any local optimal solution F' E F(,) of R(I), M(F', I) is a

local optimal of the instance I of L.

30



Chapter 2

General Assignment and the

Distributed Caching Problems

2.1 Introduction

'The growth of the Internet, the World Wide Web and wide-area wireless networks

allow increasing number of users to access vast amount of information in different

geographic areas. Content delivery is one of the most important tasks of a service

provider in these systems. It is well known that content delivery can be done by

caching popular items in cache locations close to the users. In this chapter, we

address this issue by formalizing different variants of distributed caching problems as a

set of assignment problems and develop approximation algorithms and decentralized

mechanisms for these problems. The general distributed caching problem that we

formalize here is denoted by CaplBDC:

CaplBDC: Let U be a set of n cache locations with given available capacities Ai

and given available bandwidths Bi for each cache location i. There are k request

types; 1 each request type t has a size at (1 < t < k). Let H be a set of m requests

with a reward Rj, a required bandwidth bj, a request type tj for each request j, and a

connection cost cij for each cache location i to each request j. The profit of providing

request j by cache location i is fij = Rj -cij. A cache location i can service a set of

'Request type can be thought as different files that should be delivered to clients.
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requests Si, if it satisfies the bandwidth constraint: Zjes bj < Bi, and the capacity

constraint: Et{tjljES) at < Ai (this means that the sum of the sizes of the request

types of the requests in cache location i should be less than or equal to the available

capacity of cache location i). We say that a set Si of requests is feasible for cache

location i if it satisfies both bandwidth and capacity constraints for bin i. The goal

of the CapIBDC problem is to find a feasible assignment of requests to cache locations

to maximize the total profit; i.e., the total reward of requests that are provided minus

the connection costs of these requests.

We also consider the following special cases of the CaplBDC problem:

CapDC: The CapDC problem is a special case of CaplBDC problem without band-

width constraint. In other words, in the CapDC problem we assume that for each

cache location i, Bi is sufficiently large.

IBDC: The IBDC problem is a special case of CaplBDC problem without capacity.

constraint. In other words, in the IBDC problemn ;we assuine that for e.h cache

location i, Ai is sufficiently arge. From this definition, one can see that IBDC is a

special case of CapDC where there exists exactiy one request of each request type, the

available capacity of cache locations in CapDC is equal to the available bandwidth of

cache locations in IBDC, and the size of request types in CapDC corresponds to the

bandwidth requirement of requests in IBDC.

uniform CapDC: The uniform CapDC problem is a special case of the CapDC

problem where the size of all request types is the same, i.e., at = a for all 1 < t < k.

uniform IBDC: The uniform IBDC problem is a special case of the IBDC problem

where the bandwidth requirement of all requests is the same, i.e., bj = b for all j H.

We refer to all variants of the distributed caching problems as DCP.

In this chapter, we develop approximation algorithms and decentralized mech-

anisms for DCP, and a general class of assignment problems, called the separable

assignment problems (SAP):

SAP: In a separable assignment problem, we are given a set U of n bins and a

set H of m items, and a value fij for assigning item j to bin i. We are also given
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a, separate packing constraint for each bin i, i.e., a lower-ideal' family it of feasible

subsets of items for bin i. We call this separate packing constraint for each bin, the

single-bin subproblem. The goal is to find an assignment of items to bins with the

maximum aggregate value.

Separable assignment problems include all variants of the distributed caching prob-

lems described above. To see this we note that the family of feasible subsets of requests

for a cache location i in the CaplBDC problem is all subsets of requests that satisfy two

packing constraints: the capacity constraint and the bandwidth constraint. Thus, it

is clear that the family of feasible subsets for a cache location is lower-ideal. Moreover,

the profit of each request j to each cache location i is fij = Rj - cij and corresponds

to the value of item j to bin i in SAP. It follows that CaplBDC, and thus all vari-

ants of DCP are special cases of SAP. SAP also includes the well-known maximum

generalized assignment problem (GAP):

GAP: Given a set of bins and a set of items that have a (possibly) different size

and value for each bin, pack a maximum-valued subset of items into the bins.

Picture 2-1 depicts the problems that we consider and their relation to each other.

Figure 2-1: Assignment Problems. There is an arrow from problem A to problem B,
if A is a special case of B.

We design LP-based and local search approximation algorithms for SAP. Our

results depend on an algorithm to solve the single-bin subproblem in SAP. In an

instance of the single-bin subproblem, we are given a bin i, a set of items with value
2 A family I C 2 H of subsets of a set H is lower-ideal, if 0 C H, and for each two subsets S and

R such that R C S, if S E I then R E I.
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vj for each item j, and a packing constraint for bin i, i.e., a lower-ideal family i of

feasible subsets of items that can be packed in bin i. A /3-approximation algorithm

for/3 < 1 for the single-bin subproblem is an algorithm that outputs a subset of items

S CE 2i such that for any other subset S' C 2i of items, jEs v _ > P Ej es' vj.

In Section 2.2, given a -approximation algorithm for the single-bin subprob-

lem, we design a polynomial-time LP-rounding based ((1 - )/3 - 6)-approximation

algorithm 3. In Section 2.3, given a /3-approximation algorithm for the single-bin sub-

problem, we design a simple, polynomial-time local search (- )-approximation

algorithm 4. For GAP and all variants of DCP, there exists an approximation scheme

for the single-bin subproblem, thus we obtain an LP-based algorithm with (1 - -)

approximation and a local search algorithm with - approximation guarantee. To

complement these results, in Section 2.5, we show that SAP and DCP cannot be ap-

proximated within a factor better than 1 - I unless NPC DTIME(n°(l°gl°gn)), even

if there exists a polynomial-time exact algorithm for the single-bir subproblem.

We generalize the local search algorithm to yield an approximation algorithm for

the maximization version of the k-median problem with hard capacity constraints

(KMed):

KMed: Given a set U of n bins, a set H of m items with a value fij for each item

j and each bin i, and also a single-bin subproblem for each bin i, i.e., a lower-ideal

family i of subsets for bin i, choose at most K bins and pack a set of items in each

selected bin to maximize the total value packed.

In Section 2.4, for any > 0, given a -approximation algorithm for the single-

bin subproblem, we design an ( - - )-approximation algorithm for KMed. If the

single-bin subproblem is a knapsack problem, this yields a ( - c)-approximation

algorithm.

We discuss decentralized mechanisms for all variants of the distributed caching

problem in Section 2.6. For the decentralized mechanisms, we may assume that

3 We can set to be exponentially small, i.e., 6 = 1 for any constant c > 0. Throughout the
chapter, we say "for any 6 > 0" to illustrate this.

4 For the local search algorithm, we can set to be exponentially small, i.e., e = for any
constant c > 0.
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caches are selfish entities that want to maximize their own reward. This setting is

particularly justified in the context of 3G cellular networks [29] and this is formalized

in Goemans, Li, Mirrokni, and Thottan [29]. In this setting, resident subscribers are

cache locations that can provide content to clients. Clients ask for different requests

and the service provider wants to cache these requests at resident subscribers to pro-

vide them in a distributed manner. This helps the service provider to use the capacity

of the wireless network instead of relying solely on its own bandwidth. Goemans et

al. [29] formalize the protocol and the system architecture of such mechanisms. In

Section 2.6, we suggest a mechanism to induce selfish cache locations to serve the

set of requests with a good performance guarantee. All mechanisms extend to all

separable assignment problems, but we state the results for the distributed caching

problems since the main motivation of this setting comes from this problem.

Previous Work. For the special case of GAP, Shmoys and Tardos [82] present

an LP-rounding -approximation algorithm for the minimization problem. Chekuri

and Khanna [10] observed that a L-approximation for GAP is implicit in the paper

by Shmoys and Tardos [82]. Their method is based on an LP formulation with an

integrality gap of at least 2. Thus the LP we introduce here is provably stronger.

Chekuri and Khanna [10] develop PTAS's for a special case of this problem called

the multiple knapsack problem. In this problem, each item has the same size and the

same profit for all cache locations. They also classify the APX-hard special cases of

GAP.

Nemhauser, Fisher, and Wolsey, previously look at maximizing submodular func-

tions with and without cardinality constraints [65, 66]. They give a greedy algorithm

with approximation guarantee of 1- 1 for maximizing submodular functions, and

I-approximate local search algorithm for maximizing submodular functions with car-

dinality constraint. The latter paper actually looks more generally at restrictions to

matroids. These results do not extend to handle knapsack constraints, since feasible

sets for knapsack do not form a matroid. Sviridenko shows that the greedy algorithm

gives a 1 - -approximation for maximizing a submodular function subject to one
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knapsack constraint [85], but does not consider assignment type problems with sets

of packing constraints. Indeed the simple greedy algorithm does worse than 1 -
e

even for the multiple knapsack problem. Using LP techniques [1, 83], approxima-

tion algorithms with the guarantee of 1 - for some maximum coverage problems
e

are known. These techniques are different from ours and cannot handle SAP as the

packing constraints in SAP are more general.

Gomes, Regis, and Shmoys [33] use a exponential-size LP and a rounding scheme

similar to the one we use here but to obtain a 1 - -approximation algorithm to solve

the partial Latin square extension problem. In particular, their LP does not capture

knapsack packing constraints.

Baeve and Rajaraman [3] study a problem of data placement in networks. They

formalize a minimization version of our problem in which they need to place ob-

jects in caches to minimize the total connection costs. They give a constant-factor

approximation for this problem, which is iproied to fac'or 1.0 by Swainy [86]. ia

the conclusion of [3], they suggest considering the problem with bandwidth as an

important extension.

2.2 LP-Based Approximation Algorithms

In this section, for any > 0, we give a ((1 - ) - )-approximation for SAP

and its variants where 3 is the approximation factor of the algorithm for the single-

bin subproblem. The general approach is to formulate an (exponential-size) integer

program, solve the linear program relaxation approximately, round the solution to

the linear program, and prove that the rounded solution has this guarantee. There

are two main issues here: proving the quality of the rounded solution, and obtaining

a good solution to the large linear program in polynomial time. We first discuss the

approach in the context of SAP and then discuss some extensions.
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2.2.1 Separable Assignment Problems

Formulation. We give an exponential-size integer programming formulation for

SAP. Let i, for i U be the set of all feasible assignments of items to bin i; these

are the feasible solutions to the single-bin subproblem for bin i. For a set S i,

let Xs be the indicator variable that indicates if we choose S as the subset of items

for bin i. The first constraint is that we cannot assign more than one set to a bin

i, thus for all i U, sezl Xs = 1. Moreover, we cannot assign each item to more

than one bin: Ei,sezi:jcs Xs < 1. Our objective is to find an assignment of items

to bins to maximize the sum of profits, i.e., i, fXi where f s = j fij. By

relaxing the 0-1 variables to nonnegative real variables, we obtain the following linear

programming relaxation:

max EiEusel fXi (2.1)

s.t. iG,sEzi:js XI < 1 Vj C H

Zssz~ Xs = 1 Vi U

Xis > 0 i c U,S G Si

Let LP(SAP) denote the objective function value of this LP.

Rounding the Fractional Solution. Given a solution to the linear program (2.1),

independently for each bin i, assign set S to i with probability Xs. In the resulting

solution, some item j may be contained in the sets assigned to more than one bin. In

this case, item j is assigned to the bin among these bins with the maximum fij-value.

Note that the resulting assignment after this step is feasible, since the family i for

each bin i is lower-ideal.

Theorem 2.2.1 The expected value of the rounded solution is at least least (1 -

l)LP(SAP).

Proof. For item j, sort the bins i for which Yi = ESZI:jES Xi s is nonzero in the

non-increasing order of fij. Without loss of generality assume that these bins are
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1,2,...,1 and fl > f2j... > fj > O. With probability Y the set that is assigned

to bin 1 contains j, thus item j is assigned to bin 1. In this case, the value of item

j is flj. With probability (1 - Y1)Y2, bin 1 does not have item j in its subset and

bin 2 has item j in its set. In this case, the value of item j is f2j. Proceeding

similarly, we obtain that the expected value for request j in the rounded solution is

fljY + f2j(1 - Y1)Y2 + ... + fij(Hil(l - Yi))Y1. The contribution of item j in the

value of the fractional solution is l<i<l fijYi. This in conjunction with Lemma 2.2.2

below yields the result. E]

Lemma 2.2.2 fjY 1 + f2j ( -Y)Y 2+... + ftj(fl ( - Y))Y1 > ( - ) l<i<l fj

whenever Yi > O for all i and Ei Yi < 1 and fij > f2j > ... > fj > O

Proof. From the arithmetic/geometric mean inequality, one can derive (see Lemma

3.1 in [31]):

k k-1 k

1-( (1- Yi)) = Y + (1 - Y)Y2 + + (H(1 Yi))Yk > (1-) Yi,
i=l i=l i=l

for any k. Multiplying this inequality by fkj

summing over k, we derive the lemma.

- fk+l,j > 0 where f+l,j = 0 and

D

Solving the LP. The number of variables in the linear program (2.1) is exponential.

To solve this LP, we first solve its dual (2.2) given below.

min Eieu i + EjEH )

s.t. + EiGs A > fs

Aj > 0

(2.2)

Vi G U, VS cG i

Vj G H.
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The dual linear program (2.2) has a polynomial number of variables, but exponentially

many constraints. We rewrite it as a fractional covering problem as follows:

min ieu qi + EjEH AJ (2.3)

s.t. (qi, AX) Pi ¥i U S i

A _ O Vj H.

Here, Pi is the polytope defined by constraints of the form qi > jEs(fij - Aj)

for all S E i. To solve the LP, we will need a separation algorithm for Pi. We

define an -approximate separation algorithm for polytope Pi to be an algorithm

that given a point (qi, Alj E H) returns either a violated constraint, or guarantees

that (,A Ijl E H) is feasible for Pi. We let LP(Dual SAP) denote the objective

fimction value of the linear program (2.2).

Lemma 2.2.3 For-any 6 > 0, given a polynomial-time /3-approximate separation

algorithm for Pi, we can design a polynomial-time( - 6)'-approximation algorithm

to solve the linear program (2.2) and hence. the linear program (2. 1).

Proof. We run the ellipsoid algorithm on the linear program (2.2) using a -

approximate separation algorithm. More precisely, we move the objective into the

set of constraints by adding the constraint EiuE qi + LjEH Aj -< V* to the current

linear program. For a given v*, we use the ellipsoid algorithm to determine if this

LP is feasible; and use binary search to find the smallest feasible value v*. Using

the ellipsoid algorithm in this binary search framework with a -approximate separa-

tion algorithm, suppose that the process of the algorithm terminates with a solution

(q*, A* j H) such that v* = EiEu qi + EjEH A* Thus, we know that the linear

program (2.2) with the new constraint is infeasible for v* - 6' where 6' depends on the

precision of the binary search5. Thus, the optimal solution to the LP (2.2) is at least

v* - '. Since we use a -approximate separation algorithm, we are not guaranteed

that this solution is feasible. However, we know that (, A*j E H) is feasible. Thus,

5 We can set d' to be 12Z for any constant c > 0.
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the optimal solution to the LP (2.2) is at most . Thus the optimal solution to (2.2)

is between v* - ' and -

In the execution of the ellipsoid algorithm for v* - Y, we check a polynomial

number of constraints. This set of constraints is enough to show that the value of the

dual is greater than v* - 6'. The dual of this restricted LP is equivalent to the linear

program (2.1) restricted to the variables corresponding to this set of constraints (by

setting all other variables to zero). By LP-duality, the cost of the solution to this

program is at least v* - 6'. Thus, the solution to this polynomial-sized LP has value

at least v* - 6'. By setting 6' sufficiently small, this is an (/ - 6)-approximation

algorithm for the primal linear program, since LP(SAP) < LP(Dual SAP) < . l

The fact that, for a class of packing-covering linear programs, an approximate

separation oracle for the dual implies an approximate solution for the primal is also

observed by Carr and Vempala [9] and by Jain, Mahdi;an and Salavatipour [431. An

approximate solution to the linear programs (2.1) and (2.2) can also be obtained via

Lagrangian LP algorithms [73, 88, 27, 89].

We can use a /3-approximation algorithm for the single-bin subproblem for bin i to

design a 3-approximate separation algorithm for Pi. The /3-approximate separation

algorithm for Pi asks, given (qj, Aj Ij C H), find a set S GE i such that qi < jes(fii -

Aj). It is of course sufficient to find the set S CG i that maximizes 'jes(fij - Aj).

Since 2i is lower-ideal, we know that if qi < 0 then the set S = 0 violates the above

inequality. Moreover, we can consider only items j for which fij - Aj is positive. In

fact, we can set max(O, fij - j) as the value of item j in the single-bin subproblem and

use a /3-approximation algorithm for the single-bin subproblem, to find a subset S* C

i with value q* such that for any set S' E Zi, q* = jes (fij - Aj) > / js,(fi -

Aj). We know that either qi* > qi in which case we find a violated constraint, or qi* < qi.

In the later case, we know that for any subset S' C Zi, j s,(fij - Aj) < -<

Therefore, in this case (., Aj j C U) is feasible for 7Pi. Hence, a /3-approximation

algorithm for the single-bin subproblem is a /3-approximate separation algorithm for

Pi. The above and previous discussion yield the following general result.
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Theorem 2.2.4 For any constant c > 0, and - = 2, given a polynomial-time 3-

approximation algorithm for the single-bin subproblem, there exists a polynomial-time

((1 - 1)p - )-approximation algorithm for SAP.

2.2.2 Approximation Algorithms for DCP and GAP

In this section, we show that the single-bin subproblem for each problem class in SAP

discussed in the introduction has an approximation scheme. Thus, for all problem

classes, this yields polynomial-time 1 - - c-approximation algorithms.

GAP: The single-bin subproblem for GAP is a knapsack problem, for which an

efficient FPTAS is well-known.

CapDC: The items in the single-bin subproblem for CapDC correspond to request

types and the value of item t is equal to the sum of the profit of requests of request

type t in the. CapDC instance. The size of item t in the subproblem is the size of

request type t in the CapDC instance. The size of bin i is the available capacity of

cache location i. Therefore, the single-bin subproblem in CapDC is to pack request

types into bin i'(respecting the bin capacity) to maximize the value of the items that

can be assigned to the bin. Thus, the single-bin subproblem is a knapsack problem,

and has an FPTAS.

CaplBDC: The single-bin subproblem for CaplBDC is the following general 2-

dimensional knapsack problem: Bin i has Ai available space and Bi available band-

width. Item j S has value vj, type tj, and bandwidth consumption bj. Each type t

has size at. A feasible packing of items into bin i, satisfies the bandwidth constraint,

i.e., total bandwidth of items in bin i is at most Bi, and the capacity constraint, i.e.,

the total size of types of these items is at most Ai. The goal is to maximize the total

value of items packed in this bin. Shachnai and Tamir [81] formalize this general

2-dimensional knapsack problem and describe a PTAS for it.

As a result of the above discussion, we have:

Theorem 2.2.5 For any > 0, there exists a polynomial-time (1-e-e)-approximation

algorithm for GAP, CapDC, and CaplBDC.
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2.3 Local Search Algorithms

In this section, for any > 0, we give a simple local search (- - e)-approximation

algorithm for separable assignment problems given an -approximation algorithm

for the single-bin subproblem. This, in turn, gives the first combinatorial ( -)-

approximation algorithms for GAP and all variants of DCP. We then show how to

extend this algorithm to give a (1- )-approximation algorithm for the k-median

problem with hard capacities and packing constraints.

We first give a naive local search -approximation algorithm whose running time

might be exponential. Then, we refine the algorithm and change it to a polynomial-

time algorithm. Let S = (S 1,..., S,) be an assignment of items to bins, where Si is

the set of items in bin i. For an assignment S = (S1,..., Sn) of items to bins, we

denote the value of this assignment by v(S). Also, let ai(S) be the total value of

items satisfied by bin i in S. For an item j, let vj(S) the value of item j in S.

The naive algorithm repeatedly iterates over the bins. For bin i, it ;:uns procedure

Local(i). Local(i), given current solution S, finds a repacking S,' of bin i. 11 replacing

Si with S improves the solution then this replacement is made. When no further

improvements can be made on any bin, the algorithm halts. We call the result an

/3-approximate local optimal solution.

Specifically, Local(i) does the following:

1. For each item j, let valuej(S) be equal to fij if j is assigned to a bin i' -# i in

S, and be equal to zero if j is unassigned or is assigned to bin i in S.

2. For each item j, let the marginal value of j be wj = fij - valuej(S).

3. Use the -approximation algorithm for the single-bin subproblem for bin i to

pack a subset of items in bin i with the maximum marginal value.

Lemma 2.3.1 Let S = (S1,.. ., S) be a /3-approximate local optimal solution and

fQ = (w 1,.. ) be the optimal assignment. Then v(S) > v(a).

Proof. Let R be the set of items that are better served in the optimal solution than

in S and L be the rest of the items. Let Ri be the set of items in R served by bin
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i in the optimum Q. For any set T of items, let o(T) be the value of the items in T

in Q and 1(T) be the value of items of T in S. For all items j Ri, the marginal

value for bin i is positive (wj > 0), since the value of j for bin i is greater than the

current value of j in S. For each item j R, the marginal value of j for solution S

is fij - valuej(S) > fij - vj(S). Thus, the total marginal value of items in set R4 for

bin i is at least jER (fij- vj(S)) = o(R) - I(Ri). Since S is a P-approximate local

solution, the operation Local(i) cannot find a solution with marginal value greater

than oai(S), otherwise this operation could increase the total value. Since we use a

/-approximation algorithm for the single-bin subproblem and there exists a solution

with marginal value o(Ri)-I(Ri), it follows that oii(S) > P3(o(Ri)-l(Ri)). Therefore,

o(Ri) < I(R) + lai(S). Furthermore, for items in set L, o(L) < (L) < v(S) by

definition. Therefore,

OPT = v(l)

= o(L) + o(R)

= o(L) + o(Ri)
iEu

< (L) + ( (Ri) + i (S))
iEU

< (I + )v(S).

Thus, v(S) > 1 v(Q). E1

Lemma 2.3.1 shows that if we can find an 3-approximate local solution then we

have a -13-approximation algorithm. We prove it is PLS-hard to find a local solution.

The proof of this fact is very similar to the proof of Theorem 2.6.6. An implication

of the PLS-hardness of this problem is that there exists a set of instances for which

the above local search algorithm may take exponential time to converge to a local

optimal solution.

Below, we modify the naive algorithm to get a polynomial-time (-- -e)-approximation

algorithm. The analysis of this algorithm uses the following fact (which we prove in
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the proof of Theorem 2.3.3). Using this fact, we show that after a polynomial number

of local improvements the value of the solution is a good approximate solution.

Fact 2.3.2 If v(S) < -3 OPT then there is a bin i for which Local(i) finds a packing

with marginal value at least -OPT - +v(S).

Local Search Algorithm.

1. Start with the empty solution, i.e., S = (Si,..., Sn) and Si = 0 for all i G U.

2. For an appropriate ' > 0, run the following loop for 1n ln( ) times:

(a) Let the current assignment be S = (S1,, . , S).

(h) For each bin i, run Local(i). Let the marginal value of this solution for bin

i be W147 and et S b the set of items with marginal val vaue 

(c) For each bin i, let Ai -- a,-(S).

(d) Let bin i* be the bin with the maximum Ai, i.e.: Ai > Ai for any bin i.

(e) If Ai* > 0, change the set Si of items for bin i to Si.

Theorem 2.3.3 For any > 0, the above local search algorithm is a polynomial-time

(3 - c)-approximation algorithm for SAP.

Proof. Let Q be an optimal assignment, and let S be an intermediate assignment

obtained in the local search algorithm. Let R be the set of items that are better

served in Q than in S and L be the rest of the items. Let Ri be the set of items in R

satisfied by bin i in Q. For any set T of items, let o(T) be the value of the items in T

in assignment Q and (T) be the value of items of T in assignment S. Thus, we have

OPT = o(R) +o(L) and v(S) = l(R)+l(L). For each item j Ri, the marginal value

of j is fij - valuej(S) > fij - vj(S). Thus, the total marginal value of items in set Ri

for bin i is at least EjGRi(fij - v(S)) = o(Ri) - 1(Ri) and Ri is a feasible solution for

bin i. Since we use a /3-approximation algorithm to find Wi, Wi > P(o(Ri)- (Ri)).
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Therefore, Eiu Wi > Eieu (o(Ri) - I(Ri)) = P1(o(R) - 1(R)). Since o(L) < (L),

Eicu Wi > (o(R) - (R) + o(L) - I(L)) = P(OPT - v(S)). Thus,

iEU
= Zwi - Ei(S)

iEU iEU

> (OPT - v(S)) - v(S)

= OPT- (1 + )v(S).

In particular, Ai, > OPT - 1+fv(S). Let S' be the assignment after changing the

set of items of i* to Si'*, i.e., S' = (S1,S2, .., S*, si+ , . . ., Sn). As a result,

v(S') = v(S) +Ai*

> v(S) + -OPT- v(S)

= v(S)(1- 1+ )+ OPT.n nof Step 2. 
Let be the total value of the assignment after the kth execution of Step 2. Froir

the above discussion, yk > (1 - i)Yyk-_1 + OPT and y = .

get that for any 1 < i < k:

Using induction, we

Yk > (1 - )iYk-i

= (1 - )iYk-i
n

= (1 - )iyk-i

+ nOPT(-(1- n ))

+ 13OPT(-(I _ )i)

+ OPT(1-(1-
3+1

1 P)i)
n

> 0+ -(1-( + ) k) O PT
13 n

Therefore, by solving this recurrence relation, we get Yk (1 - (1 - )k)OPT

k = , we get Yk > (1- --- )OPT = 1(1 - ')OPT. Therefore,

for c' = ±eL, the value of the output of the above algorithm is at least ( - )OPT

45

By setting

as desired. E]



2.4 k-median with hard capacities

We can extend the local search algorithm for SAP to the k-median problem with hard

capacities and packing constraints(KMed). Recall that KMed is as follows: Given a

set U of n bins, a set H of m items with a value fij for each item j and each bin

i, and also a single-bin subproblem for each bin i, i.e., a lower-ideal family Zi of

subsets for bin i, choose at most K bins and pack a set of items in each selected

bin to maximize the total value packed. To the best of our knowledge, this is the

first constant-factor approximation algorithm for the the k-median problem with hard

capacity constraints.

The local search algorithm for the KMed problem is very similar to the local search

algorithm for SAP. At each step of the algorithm, we try to unpack a used bin, and

pack a (possibly different) bin to increase the total value. The formal description of

the algorithm is as follows:

Local Search Algorithm for KMed.

1. Start with the empty solution, i.e., S = (S 1,..., Sn) and S, --= 0 for all i ( U.

2. Let P= {1,2,...,K}.

3. For an appropriate ', run the following loop for 1K ln( ) times:

(a) Let the current assignment be S = (S 1,..., Sn) where Si = 0 for i , P.

(b) For each bin i P and bin i 2 G (U - P) U {il} do

i. For each item j, let valuej(S) be fij if j is assigned to a bin i' ii in

S, and be equal to zero if j is unassigned or is assigned to bin i in S.

ii. For each item j, let the marginal value of j (with respect to bins il

and i2) be wj = fi2j- valuej(S).

iii. Use the P-approximation algorithm for the single-bin subproblem for

bin i2 to pack a subset of items in bin i2 with the maximum marginal

value. Let the marginal value of this solution for bin i2 be Wili2 and

let S 2 be the set of items with marginal value Wili 2.Sili2
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(c) For every two bins il E P and i2 c (U-P)U{il , let Aili2 = Wili2-ail (S).

(d) Let bins i and i be the bins with the maximum Ali 2, i.e., Ajiq > Aili 2

for any bin il and i2.

(e) If Aii > 0, unpack bin i and pack the set SiT of items in bin i (i.e.,

set P = P - {i} U {i~} and set Si = 0 and Si = Si*i*) .

Theorem 2.4.1 For any c > 0, the above local search algorithm for KMed is a

polynomial-time (' - c) -approximation algorithm for SAP.

Proof. The output of the local search algorithm is a feasible solution of the KMed

problem, since the number of nonempty bins in the output is at most K. Let Q2

be an optimal assignment. Consider the current assignment S in the process of the

algorithm. Let Ps, and Ps be the set of used bins in Q and S respectively. The set of

used bins in Q2 and S are not necessarily the same. Let 7r: U -- U be a permutation

finction such that if i C U is used in both Q and S, then 7r(i) = i and if i is used in Q,

but not in S then r(i) = i' where i' is used in S, but not in Q. As the number of used

bins in Q is K, such a permutation exists. Let R be the set of items that are better

served in Q than in S and L be the rest of the items. Let Ri be the set of items in R

satisfied by bin i in Q. For any set T of items, let o(T) be the value of the items in T

in Q and (T) be the value of items of T in S. Thus, we have OPT = o(R) + o(L) and

v (S) = I(R)+l(L). For an item j, let vj (S) the value of item j in S. Consider two bins

wr(i) and i P. For each item j G Ri, the marginal value of j with respect to bins 7r(i)

and i is fij - valuej(S) > fij - vj (S). Thus, the marginal value of set R with respect

to bins r(i) and i is at least iEGR (fij - vj(S)) = o(Ri) - (Ri) and Ri is a feasible

solution for bin i. Since we use a /3-approximation algorithm to find W=(i)i, W,7 (i)i >

f3(o(R)-I (Ri)). Therefore, EiP, W(i)i > 13 Eicp, (o(Ri)- (Ri)) = (o(R)-I (R)).

Since o(L) < (L), JEiPp Wr(i)i > 3(o(R) - I(R) + o(L) - (L)) = O/(OPT - v(S)).

Thus, (i)i = E W()-EiEPs ai(S) > P(OPT-v(S))-v(S) = /30PT-

(1 + )v(S). In particular, Aii > OPT- 1+K-v(S). Let S' be the assignment after
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setting Si. to 0 and changing the set of items of i to Si-. As a result,

v(S') = v(S) + Aii

v(S) + OPT- v(S)

v(S)(1 - )+ ± OPT.
K K

Now, let Yk be the total value of the assignment after the k'th execution of Loop 3b.

From above discussion, yk > (1- 1I)yk-l + OPT and yo = 0. Similar to the

proof of Theorem 2.3.3 and solving this recurrence relation, we get k > +(1 -

(1- +)k)OPT. By setting k = L1' ,we get Yk > 1 (- )OPT = l(1 -

e')OPT. Therefore, the value of the output of the above algorithm is at least ( --

e)OPT as desired. E

2.5 A Hardness Result

In this section, we show a hardness result for the CapDC problem and special cases

of SAP. We prove that the CapDC problem is not approximable better than a factor

of 1 - unless NP C DTIME(n0(l°gl°gn)) showing that the 1 - - -approximatione e

algorithm for CapDC is almost tight. This hardness result uses a hardness result by

Feige, Halldorson, Kortsarz, and Srinivasan [18] for the domatic number of graphs.

The domatic number of a graph is the maximum number of disjoint dominating sets

in the graph. A subset S of vertices of a graph G(V, E) is a dominating set if for any

vertex v , S, there exists a vertex u G S which is connected to v, i.e., (u, v) C E(G).

We first define a set of problems that are used in the reduction and restate the result

of Feige et al. [18].

The Max 3-colorability problem is as follows: Given a graph G(V, E) color the

vertices of C with 3 colors to maximize the number of legally colored edges (edges

whose endpoints are colored differently). The Max 3-colorability-5 problem is the

Max 3-colorability problem for 5-regular6 graphs. Petrank [72] proved that the Max

6A graph is 5-regular if the degree of each vertex is five.
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3-colorability problem is APX-hard. Using this proof, Feige et al. [18] proved that

the Max 3-colorability-5 problem is APX-hard. Formally, they showed that for some

number < 1, it is NP-hard to distinguish between 5-regular graphs that have a

legal 3-coloring, and 5-regular graphs in which every 3-coloring legally colors at most

6 fraction of the edges. The following claim is implicit in the hardness result of Feige

et al. [18]: Given an instance G(V, E) of the Max 3-colorability-5 problem, we can

construct an instance of a set cover problem with

m =O(IV(G) J(logloglV(°)I)E(G) (logloglV(G)I))

elements and

n = O(IV(G) 1(l°gl°g V(G)) IE(G)I °( loglog IV( ) ) )

sets of size where
P

_ O(IV(G) 1 log log IV(G)I) IE(() 10(logiogV I(G)I))
p

such that:

* If the vertices of graph G are (legally) 3-colorable, then there exist p- disjoint

set covers, each with p sets7 in the set cover instance.

* If any 3-coloring of G has less than 6E(G)l legally colored edges then any

collection of Op sets cover at most (1 - (1 - )' 3P)m elements s .

From an instance of the set cover problem with n sets and m elements, we construct

an instance of CapDC with p- types, m - requests, and n cache locations as follows:
p

7See Lemma 17 of [18]. In fact, Feige et al [18] present their result in terms of the dominating
set and the dornatic number problem. We restate their result for the set cover problem.

8 The proof of this claim comes from the proof of Lemma 18 of [18]. For the proof of Lemma
18 of [18], the authors refer to the hardness result for the set cover problem by Feige [17] (e.g.
see Proposition 4.3 of [17]). Essentially, the proof of our claim comes from the fact that in the
construction of Feige [17], in this case, any collection of ,3p sets cover at most (1 - (1 - )P)m
elements [16]. The reason is that the number of elements that p sets cover is less than the expected
number of elements that /3p random sets of size p cover where a random set is a set in which each
element is picked uniformly at random and independent of other elements. We also note that p is
not a constant. In particular, as V(G)j tends to o, p also tends to oo.
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For each element j in the ground set of the set cover, we put 7 requests jl, j 2, ... jn
p p

of different types in the CapDC instance. For each set i in the set cover instance, we

put a cache location i in the CapDC instance. The capacity Ai for cache location i

is Ai = 1 and the size of each request type is equal to 1. Thus, we can locate at

most one type in each cache location. The profit of assigning request je to cache

location i is 1 if the corresponding element j is in the corresponding set in the set

cover instance. If the set cover instance has disjoint set covers then in the instance
p

of the CapDC problem, we can satisfy all requests of a particular type using one

set cover and thus, we can find a solution to the instance of the CapDC problem

with a total profit of m . Moreover, we claim that if any collection of p sets in

the set cover problem, cover at most (1 - (1 - 1)P)m of elements then the profit
p

of any assignment to the CapDC problem is at most (1 - (1 - )P)m. Assume that
P p

in the set cover instance, any collection of Up sets cover at most ( - (1 - )P)m

of the elements. Consider a solution S with the maximllu profit for the CapDC

probiem. For I < t ' -, let atp be the number of cache locations that keep the
n

request type t in solution S. We know that P=l c = n Also from the inequality

(1 - p(1- Pp)+ -(1 1)tp) < (1 - (1 - )YP) (1 - (1 - ZP) where x < y < z < t

and x + t = y + z, it follows that the profit of S maximizes when all at for 1 < t < -

are the same, i.e., at = 1. By setting at = 1, we have that the profit of S is at most
n n

t_=1 -(l- (1- ) atP, 1 <- (1 (1 (1 p P .
Therefore, if we apply the Feige et al. reduction from Max 3-colorobality-5 to the

set cover and the above reduction from the set cover to the CapDC problem, we have

the following: Given an instance of Max 3-colorability-5 problem, we can construct

an instance of the CapDC problem with - types, m - requests, and n cache locations

such that:

* If vertices of graph G are (legally) 3-colorable, then there exists a solution with

profit m' for the CapDC instance.

* If any 3-coloring of G has less than 6 E(G)I legally colored edges, the maximum

possible profit of the CapDC instance is at most 1 - (1 - )P of the number of
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requests, i.e., (1- (1 - 1)P)m.

Note that (1-(1 - )P) tends to I - as p tends to oc. Therefore, for any c > 0,

there exists a sufficiently large p such that (1 - (1 - )P) < (1- ) + . Hence, for

any > 0, for any sufficiently large instance of Max 3-colorability-5 problem, we can

construct an instance of the CapDC problem with types, m. - requests, and n cache

locations such that:

* If vertices of graph G are (legally) 3-colorable, then there exists a solution with

profit mn for the CapDC instance.

* If any 3-coloring of G has less than 6E(G) I legally colored edges, the maximum

possible profit of the CapDC instance is at most 1 - + e of the number of

requests, i.e., (1 - + c)p.

This shows that for any > 0, if we can approximate the CapDC problem within

a factor better than 1 - +t e then we can distinguish between the aforementioned

cases of the sufficiently large instances of the Max 3-colorability-5 problem in time

O(V(G)(lglOgV(G))E(G)O(loglogV(G))) Since distinguishing between these two cases

of the Max 3-colorability-5 problem is NP-hard, if we can approximate the CapDC

problem in polynomial time within a factor of 1- ! + c' for c' < , then NPC

DTIME(n°(l°glo°gn)). Note that in the above reduction, we only used instances of

the CapDC problem with uniform sizes and uniform capacities, this shows that even

the uniform CapDC problem is not approximable within a factor better than 1 -

unless NP C DTIME(n(loglo°gn)). In particular, it means that there are instances

of SAP in which the single-bin subproblem is solvable in polynomial time, but the

multiple-bin SAP problem is not approximable within a factor better than 1- e unlesse

NP C DTIME(n(l°gl°gn)). Therefore, we get the following theorem:

Theorem 2.5.1 There are instances of the SAP problem in which the subproblem is

polynomially solvable that are not approximable better than a factor 1 - I unless NP C

DTIME(n(l°gl°gn)). In particular, the uniform CapDC problem is not approximable

better than a factor 1 - ! unless NP C DTIME(no(lo°glogn)).
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2.6 Decentralized Mechanisms

In this section, we explore methods to obtain decentralized algorithms for all variants

of the DCP problem with a good performance. Before stating the formal definitions

and results, we give an introduction on the applicability of the decentralized mecha-

nisms in distributed caching in cellular networks.

The 3G subscriber market can be categorized into groups with shared interest in

location-based services, e.g., the preview of movies in a theater or the scene of the

beach nearby. Since the 3G radio resources are limited, it is expensive to repeatedly

transmit large quantities of data over the air interface from the base station (BS). It

is more economical for the service provider to offload such repeated requests on to the

ad-hoc network comprised of its subscribers where some of them recently acquired a

copy of the data. In this scenario the goal for the service provider is to give incentives

for peer subscribers in the system to cache and forward the data t the requesting

subscribers. Since each data item is large in size and transit subscribers are mobile,

we assume that, the data, transfer occurs in a close range of a few hops.

In this system, we envision a system consisting of two groups of subscribers:

resident and transit subscribers. Resident subscribers are less mobile and mostly

confined to a certain geographical area. Resident subscribers have incentives to cache

data items that are specific to this geographical region since the service provider gives

monetary rewards for satisfying the queries of transit subscribers. Transit subscribers

request their favorite data items when they visit a particular region. Since the service

provider does not have knowledge of the spatial and temporal distribution of requests,

it is difficult if not impossible for the provider to stipulate which subscriber should

cache which set of data items. Therefore, the decision of what to cache is left to each

individual subscriber. The realization of this content distribution system depends on

two main issues. First, since subscribers are selfish agents, they may act to increase

their individual payoff and decrease the performance of the system. Here, we provide a

framework for which we can prove that in an equilibrium situation of this framework,

we use the performance of the system efficiently (below, we will describe the efficiency
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formally in terms of the price of anarchy of a game). The second issue is that the

payoff of each request for each agent must be a function the set of agents that have

this request in their strategy, since these agents compete on this request and the

profit of this request should be divided among these agents in an appropriate way.

Therefore, each selfish agent may change the set of items it cached in response to the

set of items cached by others. This leads to a non-cooperative caching scenario which

we model as the distributed caching game. Motivated from service provider cellular

networks, we assume that cache locations are selfish agents (resident subscribers) who

want to maximize their own profit.

Consider a distributed caching setting in which selfish cache locations decide which

types and which requests to provide, based on their limited space and bandwidth.

The service provider let cache locations decide on the set of requests they want to

satisfy, and run the following rewarding scheme: the profit of each request will go to

the cache location that provides this request with the maximum profit. The payoff

of a cache location is the total profit of the requests that are assigned to this cache

location. Cache locations compete with each other on getting more profit from sat-

isfying these requests. This defines a game - the CaplBDC game which is formally

defined below. The service provider is interested in maximizing the total profit, i.e.,

the social function is the total profit of the cache locations.

We define the distributed caching game in the setting of CaplBDC - with both

capacity and bandwidth constraints. Given an instance of the CaplBDC problem, we

define a strategic game 9(U, {Fii E U}, {aiIi C U}) as follows. The set of players U

is the set of cache locations. The family of feasible strategies Fi of a cache location i

is the family of subsets si of requests such that EjEs b < Bi and EtjljEsi} at < Ai.

Given a vector S = (slI , 2. . , sn) of strategies of cache locations, the favorite cache

locations for request j, denoted by FAV(j), is the set of cache locations i such that

.j E si and fij has the maximum profit among the cache locations that have request

j in their strategy set, i.e., fij > fi'j for any i' such that j si,. For a strategy

profile S = (SI,... ,) ai(S) = Ej:isEFAV(j) FAVj)j. Intuitively, the above definition

implies that the profit of each request goes to the cache locations with the minimum
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connection cost (or equivalently with the maximum profit) among the set of cache

locations that provide this request. If more than one cache location have the maximum

profit (or minimum connection cost) for a request j, the profit of this request is divided

equally between these cache locations. The payoff of a cache location is the sum of

profits from the requests it actually serves. We say that a player i serves a request j

if i FAV(j). The social value of strategy profile S, denoted by y(S), is the sum of

profits of all players. This value y(S) is a measure of the efficiency of the assignment

of requests and request types to cache locations.

We similarly define games for the other versions of the distributed caching prob-

lem. For problems, such as CapDC and uniform CapDC, that just have capacity

constraints, the strategy of player i is simply a subset of requests si and a strategy

si is a feasible strategy for player i if tE{(t3jIsji at < Ai. For IBDC, the strategy of

player i is a subset of requests si and the set si is a feasible strategy for player i if

EiE~b U, - Bi

In this section, we bound the price of anarchy for these games (Section 2.6.1),

study the existence of pure equilibria (Section 2.6.2) and demonstrate convergence

results for the more general versions of the game (Section 2.6.3). Picture 2-2 depicts

the games that we consider in this chapter and their relation to each other. Some of

these games are defined later in the chapter.

2.6.1 CapIBDC Game: Price of Anarchy

Since the CaplBDC game is a strategic game, it has mixed Nash equilibria [64]. We

prove that in a mixed Nash equilibrium of this game, the expected social value is at

least of the optimal social value. We can prove this by showing that the CaplBDC

game is a valid-utility game. First, we give a direct proof of this fact.

Theorem 2.6.1 The price of anarchy of the CaplBDC game for a mixed Nash equi-

librium is at most 2.

Proof. In a mixed Nash equilibrium, each player chooses a probability distribution

over its feasible pure strategies. We prove that the expected social value of this

54



Finding PSNE is PLS-hard

Finding PSNE is in P

Figure 2-2: Different classes of Games. There is an arrow from game A to game B, if
A is a special case of B.

equilibrium is at least of the optimum solution. Consider the optimum solution

Q (al,... ,an). Let the profit of request j in Q be pj. Consider a mixed Nash

equilibrium P. Let the expected payoff of player i in P be aci(P). For any request

j, let pj be the probability that j's profit in P is at least pj. It is easy to see that

E[-y(P)] > EjeH PPj, since with probability pj the profit of j is at least pj. We know

that the expected social value of P is equal to E[y(P)] = EijU oai(P). Let player i

change his strategy in P to the pure strategy ai. Consider a request j cE . With

probability 1 - pj the profit of request j is less than pj. When player i provides this
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request, the profit is pj. Thus, if player i changes his strategy to ai, his expected

payoff is at least jE,,(l - pj)pj. is a mixed Nash equilibrium, thus player i's

expected payoff in X is at least his expected payoff when he plays ai in . Therefore,

ai(P) > ZEji(l -pj)pj. Therefore,

OPT = y(Q)

= Pi
jEH

= ppj±+(1-pj)pj
jEH jGH

< E[y(P)] + E (1 -pj)pj
iEU jEai

< E[(P)] + Zi(P)

2E[d(P)]

as desired. i

In the following, we show that the CaplBDC gamne is a valid-utility game. By a result

of Vetta [87], this gives an alternative proof for the price of anarchy for mixed Nash

equilibria in CaplBDC game.

Theorem 2.6.2 The CaplBDC game is a valid-utility game.

Proof. We need to show the following three properties:

1) Nondecreasing and Submodular Social Function: First, it is clear that ?yS

is non-decreasing. To show its submodularity, we use an equivalent definition

of submodular functions: A set function f is submodular if for any two subsets

A and B such that A C B and for any element i B, f(A U {i}) - f(A) >

f(BU{i})-f (B) [26]. Thus, in order to prove that - s is submodular, it is enough

to prove that for two (possibly infeasible) strategy profiles S = (si,. .. , s) and

S' = (s:,... ,s ) such that si C s for all i E U, by adding a new request j

to the strategy set of any player i the increase in y8 for S is not less than the
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increase for S'. Let vj and vj be the profit of request j in S and S', respectively

(vj = 0 if j ' UiEusi and vj' = 0 if j UiEusi). As a result,

Vj. - max fiji:jEsif
> max fij

i:jEsi

= Vj.

Adding j to a strategy Sh and sh increases 7y for S and S' by max(0, fhj -vj) and

max(O, fhj - vj), respectively. From v > vj, it follows that max(0, fhj - vj) >

max(O, fhj - v). Hence, the increase in yS for S is greater than or equal to the

increase for S'. Thus in any case, the increase for S is not less than the increase

for S'.

2) Vickrey Condition: The difference in the social function when i plays si or

empty (does not play at all) is equal to Ej:iEFAV(j),IFAV(j)I=1 fij and this is indeed

less than or equal to ai(S) = Ej:iEFAV(j) IFAV()'

3) Cake Condition: By the definition of the social function, we have iu ai (S) =

y(S) and therefore the third property is satisfied as well.

The above theorems extend to the general setting for all separable assignment

problems. We can define the SAP game similar to the CaplBDC game: bins are selfish

agents and their strategy is to keep a feasible subset of items according to the lower-

ideal Zi. The profit of an item j goes to a player i that have this item in his strategy

and has the maximum profit for item j among all bins that have this item in their

strategy. The above proofs show that the SAP game is a valid-utility game and thus,

the price of anarchy for a mixed NE for this game is at most 2.
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2.6.2 DCP Games: Pure Nash Equilibria

In this section, we address various problems related to pure strategies in the DCP

games. We show that on the one hand, there are instances of CapDC and IBDC that

have no pure Nash equilibria; while the uniform IBDC games in which there are no

ties among the profit of the requests to cache locations have pure Nash equilibria. For

the uniform CapDC game, we demonstrate a cycle of strict best responses. A strict

best-response move for a player i is a best-response move in which player i strictly

increases his payoff.

Theorem 2.6.3 There are instances of the IBDC game that have no pure Nash equi-

librium.

Proof. Consider the following instance with 2 players and 4 requests. The bandwidth

consumption of requests are 8, 3, 5 and 6 respectively. The profit of requests to player

1 are 10, 2, 5.5 and 5.5 respectively. The profit of requests to player 2 ae 2, 3, 3 and

5.6 respectively. The available bandwidth of player 1 and 2 are 11 and 8 respectively.

The example is depicted in Table 2.1. The only possible best responses of player 1 to

any strategy of player 2 are sets {1,2} and {3, 4}. The only possible best responses

of player 2 are subsets 4} and {2, 3}. None of the 4 pairs of best responses is a pure

Nash equilibrium, thus this game does not have a pure Nash equilibrium.

The Profit of the Requests
1 2 3 4 Available Bandwidth

Cache Loc. 1 10 2 5.5 5.5 11
Cache Loc. 2 2 3 3 5.6 8

Table 2.1: The profit of request and available bandwidth for cache locations in the
IBDC game without pure Nash equilibria.

D

Since, IBDC is a special case of CapDC, the above theorem implies that there are

instances of the CapDC game that have no pure Nash equilibrium. In the above ex-

ample the bandwidth consumption of requests are not uniform, and this was essential
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in finding the example. In the following, we study the uniform variant of these games.

Note that we can easily change the above example to an example of the IBDC game

without tie among the profit of the requests and with no PSNE. In the following,

we prove that the uniform IBDC game in which there are no ties among the profit of

requests does not contain any cycle of strict best-response moves. As a result, the

subgraph of the state graph with strict best-response moves as arcs does not contain

any cycle. Therefore, this graph has a vertex without any outgoing arcs, and this

vertex is a PSNE.

Theorem 2.6.4 Any instance of the uniform IBDC game in which there are no ties

among the profit of the requests does not have any cycle of strict best-response moves

and thus, has a PSNE.

Proof. Given a strategy profile S = (sl,... ,s), and the resulting assignment of

requests to cache locations, order the set of all pairs (i;j)' of (cache i, request j) such

that cache i serves a request j'in non-increasing order of their profits. Consider the

vector p(S) of the profit of these pairs in the above order. We claim that this vector

is lexicographically increasing as players play a strict best-response move.

To see this, consider a player i that plays a strict best-response move from si to

si. Consider the first pair (i*,j*) of cache i* and request j* that disappears from

the vector of profits (i.e., fi*j* appears in vector p(S) and not in vector p(S ® s) ) .

Thus, the profit of all pairs in p(S) with a profit larger than fi*j* appear in the vector

p(S E si). Since request j* is not served by i* in S d si, either j* is served by player

i in S ® s, or i* = i and j is not in si.

In the first case, player i serves request j* instead of player i* and thus the profit

of i for j* should be more than fi*j*. Therefore, there exists the number fij* which

is strictly greater than fi*j* in vector p(S E s) instead of fi*j*; thus the vector is

lexicographically increasing. In the latter case, since (i,j*) = (i*,j*) is the pair with

the largest profit whose profit disappears from the vector p(S) and player i increased

his payoff playing his best response from si to s and the bandwidth requirement of

all requests are the same, there exists another request j' E s with profit fij, such that
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fij, is greater than fij*; and fijl appears in vector p(Ss') instead of fi*j*. Therefore,

in the latter case the vector is lexicographically increasing as well. [

We note that the existence of pure Nash equilibria for the uniform IBDC game

when there are no ties among profits can be derived from the existence of stable

matchings in a general setting with social choice functions with substitutability prop-

erty [22]. However, cycles of strict best-response moves are known even for stable

matching games [77] 9. Our proof for this variant of the uniform IBDC indicates that

not only PSNE exists, but also any sequence of strict best-response moves of players

converges to a PSNE.

For the uniform CapDC game, in the example below, we demonstrate a cycle

of strict best-response moves. We do not know if the uniform CapDC game or the

uniform IBDC game always have a PSNE or not.

Theorem 2.6.5 There exist cycles of trict best-response monves in the uniforrr CapDC

game.

Proof. Consider an instance of the distributed caching game with three players

Profit of the Requests to Players
Player 1 Player 2 Player 3

Al 2 0 1

A 2 3 0 4

B 1 0 6 5

B2 0 2 1

C1 1 7 0

C2 3 2 0

Table 2.2: The profit of the requests for the example of the CapDC game with a cycle
of strict best responses.

and three request types, two requests from each type. The available capacity of each

9In stable matching games, each player has an arbitrary preference list for each request, and each
request has an arbitrary preference list for the players. Players offer to a request in their preference
list, and each request j goes to a player with the highest priority among the players that offer to
j. Each player likes to get a request with a higher priority in his preference list. A cycle of strict
best-response moves is known for this game [77]. The IBDC game in which each cache location can
cache only one request can be formalized as a special case of the stable matching game.
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player is one and the size of each request type is one. Let players be 1, 2, and 3. Let

request types be A, B, and C. There are two requests of type A, i.e, Al and A 2, two

requests of type B, i.e., B1 and B 2, and two requests of type C, i.e., C1 and C2. In

each strategy profile, each player can choose both requests of only one request type.

The profit of all requests are depicted in Table 2.2. Since, each player can cache both

requests of only one type, we can refer to the strategy of a player as one type. In the

following, by a type as the strategy of a player, we mean the set of both requests of

that type.

In this instance, starting from the strategy profile (C, C, B) for players, if we let

players 2, 1, 3, 2, 1, and 3 play their best responses in this order, players will end up

with the same configuration (C, C, B). The complete cycle is depicted in Table 2.3.

In this table, we refer to the strategy of a player as a type and by that we mean both

requests of that type.

Players [1 Player's Type (Player's Payoff) 

1 C(3) C(4) - A(5) A(2) A(2) C(3)
2 31 C(7) -B B(8) (8) B(8')-- C(9) C(7)

3 B(6) B(O) B(O) - A(4) A(4) A(5)

Table 2.3: A cycle of size 6 of best-responses in the uniform CapDC game. Each

column represents the vector of request types that the players provide. The numbers
in parenthesis in each column are the payoffs of players. The arrow (-+) indicates
that a player plays his best response and changes his strategy to the request type in
the next column.

D

2.6.3 CapDC Game: Poor Convergence to Equilibria

In this section, we prove that there are instances of the uniform CapDC game in

which finding a pure Nash equilibrium is PLS-hard [47] (See the definition of PLS-

hard problems in Section 1.2).

We give a reduction from the Max-Cut local search problem with swapping neigh-

borhood to the problem of finding a PSNE in some instances of the uniform CapDC
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game. In turn, this implies that there are states of this game from which any path of

best response moves to the equilibrium has exponential length.

Recall that the Max-Cut local search problem with swapping neighborhood is as

follows: Given an edge-weighted graph G and a cut, the local operations are to switch

one node from one side of the cut to the other side if it can increase the value of the

cut. In this section, WLOG we assume that the graph G is connected.

Theorem 2.6.6 There are instances of the uniform CapDC game with pure Nash

equilibrial° for which finding a pure Nash equilibrium is PLS-hard.

Proof. We give a reduction from the local search Max-Cut problem with swapping

neighborhood to the uniform CapDC game.

Consider an instance G(V, E) of the Max-Cut problem with weights w E(G) -4

N on edges. We construct an instance R(G) of the CapDC game as follows: Each

player corresponds to a vertex of graph C(. There are two types of requests. The size

of each request type is equal to one and the capacity of eaclI cache location is, one.

For each edge, we define two requests. Edge uv has a request P,, of type one and

a request quv of type two. We assume that the connection costs of both requests on

edge uv to either u or v is zero. The connection costs of these two requests to any

other vertex is greater than w(uv). The reward of each of these two requests is w (uv).

Each player caches either requests of type one or requests of type two. If both u

and v cache requests of the same type then they each get profit (uv) from the requests

from edge (u, v). If they cache different types then they each get profit w(uv) for this

edge. Thus, given a strategy profile, the total profit obtained is exactly w(E) + w(C)

where C is the set of edges with one player caching type 1 and the other caching type

2. In other words, C is the cut set defined by the cut where all vertices that cache

type 1 are on one side and all vertices that cache type 2 are on the other.

From the definition of the game Z(G), if s is a best-response move of player i

in strategy profile S, we claim that either s' contains all requests of type 1 on edges

1°We can also say that finding a sink equilibrium is PLS-hard. A sink equilibrium is a set of
strategy profiles that is closed under best-response moves. A pure equilibrium is a sink equilibrium
with exactly one profile. This equilibrium concept is formally defined in Chapter 4.
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adjacent to i, or s contains all requests of type 2 on edges adjacent to i. The reason

is that if s' does not contain all requests of one type on edges adjacent to i then player

i can strictly increase his payoff by including the rest of requests of the same type

on edges adjacent to him in his strategy (here, we use the fact that G is connected.).

We let be the set of strategy profiles S of the instance R(G) in which each player

i plays a set si such that s either contains all requests of type one on edges adjacent

to player i, or si contains all requests of type two on edges adjacent to player i. From

the above discussion, it follows that any PSNE of game J(G) is in L2.

From a feasible strategy profile S C L of R(G), we construct a cut M(S, G) in

the Max-Cut local search problem on G. For a player u in the game 7Z(G) if u caches

requests of type one, then we put u in side one of the cut M (S, G), and if u caches

requests of type two, then we put u in side two of M(S, G).

In a strategy profile S c of game 1(G), player u can strictly improve his payoff

by playing switching from requests of type 1 to requests of type 2 (or vice-versa) if

and only if the value of the cut et M(S, G) strictly improves by moving u to the

other side of the cut. Thus, if a strategy profile S CG is a pure Nash equilibrium

in game 7Z(G), then M(S, G) is a local optimal solution of the Max-Cut local search

problem for graph G.

Thus, if we have a polynomial-time algorithm for finding a pure Nash equilibrium

S (or a sink equilibrium) in any instance of the uniform CapDC game, since this

pure Nash equilibrium is in L, this implies a polynomial-time algorithm for finding

a local optimum M (S, G) of any instance of the Max-Cut local search problem with

swapping neighborhood. The PLS-hardness follows from a PLS-completeness result

of Schaffer and Yannakakis [79]. []

Using the above proof and a result of Schaffer and Yannakakis [71, 79], we can show

that in some instances of the uniform CapDC game there are states from which all

paths of best; responses have exponential length.

Corollary 2.6.7 There are instances of the uniform CapDC game that have pure

Nash equilibria with states from which any sequence of best-response moves to any
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pure Nash equilibrium (or sink equilibrium) has an exponential length.

Proof. In [79], it is shown that there exists a weighted graph GC, and an initial cut C,

such that the length of any sequence of local operations for the Max-Cut local search

problem from C to any local optimal solution is exponential. Consider the CapDC

game R(G) defined in the previous proof and the set L of strategy profiles. From the

cut C of G, we can easily construct a strategy profile S cE L such that M (S, G) = C

by letting player u play all requests of type 1 or 2 in S, if vertex u is in the side 1 or

2 of the cut C, respectively. We claim that any sequence of best responses from S to

any PSNE in R(G) has exponential length.

Assume for contradiction that there is a sequence of strategy profiles So = S,

S1, ... , St where t < poly(n) and player ui plays his best-response move from Si

to S,+1 and St is a PSNE. Since So = S E L and ui plays his best-response move

from S, to S+ by induction it follows that Sic L for all < i < t. It is easy to

see that C A (, (CT) T M(S:, G), 2 -= .A (S2 ), (S'), 2 (is a.

sequence of cuts such that cut Ci+l results from the cut C, by the local operation

of vertex ui and Ct is a local optimal solution. Therefore, t < poly(n) implies that

there exists a sequence of local operations of polynomial length from cut C to a

local optimal solution. This contradicts the assumption that no such sequence of

polynomial length from cut C exists. D]

2.6.4 Market Sharing Game: Price of Anarchy

In this section, we formalize a special case of non-cooperative content distribution in

wireless networks as a market sharing game introduced in [29] and study these games.

This class of games is a subclass of both congestion games and valid-utility games.

Here, we define this set of games.

Market Sharing Game. Consider a set U of n agents and a set V of m markets.

For each agent i, we are given a limited budget Bi and a subset V of markets that

are of player i's interest (we write i is interested in market j, if j GE V). For each

market j C V, we are given a cost Cj and a value vj; this value depends on the

64



rate at which market i is requested per unit time. The strategy set, Fi C 2 of

player i is a family of subsets of V such that the sum of the cost of markets is less

than the budget of player i, i.e., si Fi if jsi,, Cj < Bi. The strategic game

G(U, {Fili c U}, {ai()li G U}) is called a market sharing game if for a strategy profile

S = (s1, . ., sn) i(S) = ji T(S where nj (S) is the number of agents that serve

market j in S. We also consider the social utility function y(S) = jU aj(S) for

this game. By definition, the market sharing game is a congestion game with the

congestion function cj(x) = L and thus, it is an exact potential game.X

Consider an instance g' of the IBDC game. Assume that the connection cost of

each request j follows the following pattern: the connection cost of j to a subset of

cache locations, denoted by Tj, is zero and the connection cost to the rest of cache

locations is a large number. Thus, the profit of request j for any cache location in Tj

is fij = Rj and the profit of j for other cache locations is fij = 0. Therefore, given the

strategy of players the profit of a request j is divided equally among the set of cache

locations in Tj that serve this request. We demonstrate a correspondence between

the game g' and a market sharing game g'(U, {Fi]ji U}, {(aii E U}), where Fi is a

family of subsets of markets in V, i.e., Fi C 2. The set of players U corresponds

to the set of cache locations. The set of requests in IBDC corresponds to the set of

markets, V = UiGuV in the market sharing game. We let V1 = {jli Tj}. The

available bandwidth Bi of cache location i in IBDC, corresponds to the budget Bi of

agent i in the market sharing game. The reward Rj and bandwidth bj of request j

correspond to the value vj and cost Cj of market j, respectively. If si is a strategy of

cache location i in g', it is implied Zj,,, bj < Bi. Equivalently, if agent i's strategy

is si in the market sharing game, 'j,,i Cj < Bi. This correspondence shows that the

market sharing game is a special case of the IBDC game, and thus, it is a valid-utility

game, and the price of anarchy for mixed Nash equilibria of any special case of this

game is at most 2. In this section, we study the market sharing game and prove

tighter results on the price of anarchy for PSNE in some special cases of this game.

In Section 2.6.5, we study the problem of finding a pure Nash equilibrium in these

games.
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As mentioned above, in the market sharing game, the value of market j corre-

sponds to the reward Rj of request j. In the distributed caching setting, the reward

of a request j depends on the rate at which clients ask for this request. Thus, vj

directly depends on the demand rate of clients for market j. It has been observed

that in many practical situations, demand curves follow the power law (Zipf) distri-

butions [8], namely vj = for a parameter 0 < 3 < 1. This motivates us to study

the special case of the market sharing game in which the value of markets follows

power law distributions. We prove that in a uniform market sharing game where the

cost of all markets is the same, i.e., Cj = C for all j, if all players are interested in all

markets, the price of anarchy (for PSNE) is less than 1.45 + o(1) in the worst case,

where o(1) depends on n, i.e. o(1) tends to 0 as n - o. Furthermore, for cases in

which V = V for each player i or markets have different costs, we prove that the

factor 2 for the price of anarchy is tight.

Theorem 2.6.8 Ir the uni'form7 market sharing game, if Vi -- J Jor each player i

and values are from a Zipf distribution with parameter /3, zt is implied that

• The price of anarchy (for PSNE) is less than or equal to o(1) for any

/ < 1. In particular, it is less than e + o(1) < 1.45 + o(1) for any P < 1 and

it tends to 1 + o(1) when/3 -* 1.

* For /3 = 1, the price of anarchy (for PSNE) is (1 + ln) (1 + (1))).

Proof. Consider a pure strategy Nash equilibrium and let p be the least index such

that the players do not select p but select all markets 1 to p- 1. No market beyond p

can be selected by any player, since otherwise such a player would have an incentive

to switch to market p, thus l > p or > for1 < j p - 1. Summing over all

markets 1 < j p- 1, we get Ej- > (j=l nj)p. Letting V(k) -= k1 a, we

get pV(p - 1) > n. As OPT can at best serve all markets, we have that the price

of anarchy is at most v,(n)VWe consider the two cases = 1 and < 1 separately. We start with = 1.
We consider the two cases p = 1 and p < 1 separately. We start with/3 = 1.
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We need to compute V(p-1) From ln(n) < VI(n) < ln(n) + 1, it is not hard to

see that p > n, for sufficiently large n. Therefore,

V1 (n) ln(n) + 1 ln(n) + In In(n) In ln(n)
V1(p -1) -ln((ln(n) - ln(n - n(n)) - lnln(n) ln(n) ln(n)

where the last step can be proved using L'Hopital's rule when n --+ o.

We now consider the case /3 < 1. Let L,(k) = -(k - 1), then it is easy to see

LO(k) < V3(k) < LO(k) + 1. Using this fact, we can bound the ratio limn , V(n)'

Observing the facts that p o and L (p- 1) -, oo and P is a positive constant less

than 1, we can compute the bound as follows:

lim V (n)
n-o V(p- 1)

lim L1 (n) + 1

= lirnoo L(p - 1)(l- -1im< lir (p VL(p -1))1- -
lim (L (p-1) + 1)1

p+ (]9- 1 ) l- 1

p-(1f 1 (p- f()1--1 S(1- Ili 1

lim

p--4 oo (p- 1) - -1

(1 _ )1-i3

Now, one can observe that this bound is less than e for any /3 < 1 and tends to 1 as

d tends to 1. E

Theorem 2.6.9 There are instances of the uniform market sharing games for power

law (Zipf) distribution in which the price of anarchy for PSNE is arbitrarily close

to 2. Moreover, the price of anarchy of some instances of the nonuniform market

sharing game where Vi = V for each player i is arbitrarily close to 2.
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Proof. We give an example with vj = . There are n2 + n markets and n2 players.

Players are partitioned in n groups of size n. Players in group k are interested in

markets k, kn + 1, kn + 2,..., kn + n. All budgets and costs are equal, i.e., for all

1 < j < n2 + n and 1 < << n2 , Bi = Cj = c. The strategy profile in which all

players of group k provide market k is a a Nash equilibrium and the social value of

this Nash equilibrium is Hn = 1 + .. + 1. However if we assign a new market to

each player, all markets are provided except n of them. The value of this assignment

is Hn2+n _- jn +n = Hn2+n - Hn Thus the ratio is /n2n I-1 which is equal1jn+n n+1' Hn n+l

to In(n2+n) = 2 as n - oo.

The proof that this bound is tight for general market sharing games where 14 = V

for all i E U is based on an example similar to the above one. Let Vi = V for

each player i. The budgets of players in group k are n - k. The cost of markets

k, kn + 1,kn + 2,... kn n - 1 is also n - k for 1 < k < n. The cost of the market

kn +n is large. 'The value of: market j is vj = 4. Similar te the previous eample if

all players of group k provide market k, no player has incentive to change his strategy.

It follows that the price of anarchy for this PSNE is arbitrarily close to 2. 1,

2.6.5 Market Sharing Game: Finding a Nash Equilibrium

By definition, the market sharing game is a congestion game and thus, a potential

game; and any sequence of strict improvement moves of players converges to a pure

Nash equilibrium (See Section 1.2 for definitions).

In a market sharing game with one player, finding a pure strategy Nash equilib-

rium corresponds to solving optimally a knapsack problem. Thus, the problem of

finding a Nash equilibrium in the market sharing game is NP-hard. However, a Nash

equilibrium always exists. In this section, we give a polynomial-time algorithm to

find a pure Nash equilibrium in a uniform market sharing game.

Recall that in the uniform market sharing game, we assume that Cj = C for

all markets j E V. One main feature of the uniform variant is that it is easy for

player i to determine its best response, given the set of strategies for other players.

Indeed, player i only needs to solve an easy maximization problem corresponding
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to selecting the ki most rewarding markets, where ki = ]. We could therefore let

players repeatedly and optimally improve their strategy, but the main issue is to show

that such a process converges to a Nash equilibrium in polynomial time. In fact, we

will not analyze this algorithm. Instead we analyze an iterative algorithm in which

each agent is restricted to a set of changes at each step. This proves that if players

change according to these restrictions, they will converge to a Nash equilibrium in

polynomially many steps. This implies that a Nash equilibrium can be found in

polynomial time. An iterative algorithm to find a Nash equilibrium seeks a sequence

of improvement movesll starting from an empty strategy profile.

Theorem 2.6.10 For the uniform market sharing game, a pure strategy Nash equi-

librium always exists and can be found in polynomial time. Furthermore, it can be

obtained by a sequence of length m 2n of improvement moves of players.

Proof.. Our algorithm for finding he sequence of improvement moves and finding

a pure strategy Nash equilibrium proceeds in rounds. The first round starts at the

strategy profile (01,. .. , 0) corresponding to the set of empty strategies. In each

round, the first improvement move corresponds to a player, say i, switching from si

to si (with the maximum increase) where si = si U {j}. In other words, player i

only adds precisely one market which gives the maximum increase in the payoff to its

strategy. We refer to this first improvement move as an add improvement move. After

this first improvement move, subsequent improvement moves in a round are change

improvement moves. These correspond to a player, say i, replacing si by si U {j} \ {k),

where j si and k C si; player i exchanges market k for market j. Furthermore, given

i and k, j is selected among all possible markets i of interest to i and not currently

in si in order to maximize i's payoff. A round finishes when there are no change

improvement moves from the current strategy profile. Subsequent rounds start at the

strategy profile where the previous round finishes, unless this strategy profile has no

add improvement move from it in which case this is the last round.

First, observe that when the last round finishes, the current strategy profile has

"See the definition of an improvement move in Section 1.2
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no add or change improvement moves and therefore must be a pure Nash equilibrium.

This implicitly uses the fact that we are dealing with a uniform market sharing game

and therefore any maximal strategy for player i can be obtained from any other

maximal strategy by exchanging in and out two markets at a time. Furthermore, at

the end of each round, the current state has no change improvement moves outgoing

from it, which implies that it corresponds to a pure Nash equilibrium if we suitably

modify the budgets of each player (so that they cannot add markets).

As one player adds a market at the beginning of each round, the number of rounds

cannot be greater than mn. We now show that each round ends after traversing at

most m - 1 change improvement moves (and one add improvement move).

Let us focus on one round and let nj be the number of players servicing market

j at the beginning of a round. For simplicity, we assume that the markets are sorted

in such a way that " > 2L >. > l . Consider any strategy profile in the

round after the first add improvement move. Let si be the markets currently served

by i and let Ti be the markets of interest to i not in si. For player i, let m(i) denote

min{j Ti}. We show by induction that the following properties hold throughout

the round:

1. For any player i, m(i) does not decrease during the round.

2. Every market j is covered by nj players, except one, denoted by p which is

covered by np + 1.

3. For any player i, any market j si and any market k T we have > .n - nk+l

Properties 1 and 2 are obviously true after the first add improvement move corre-

sponding to player, say 1, adding market p. Property 3 is also true after the first

add improvement move. Indeed, the condition reduces to the fact that the last round

ended in a pure Nash equilibrium except for the case where i = and j = p where it

follows from the choice of p: p > vP > > knp np+l - nk+1

We see now what happens when we traverse a change improvement move corre-

sponding to player 1 exchanging two markets. Condition 3 implies that 1 leaves market
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p since all other markets do not increase 's payoff. Thus property 2 is maintained

after the change (with a different value for p). Secondly, 1 will now serve market m(l)

by definition of m(l). This implies that T < vm() i.e. m(l) < p. This meansnp+l nm(1)I

that property 1 is also maintained. To verify that Property 3 is still maintained, we

only need to consider the cases in which i = 1 and either k = p or j = m(l). If

y = m(l), property 3 follows from the definition of m(l): m(l) > vm() > vk Ifim(l) nm(l)+l - nk+l'

k = p, it follows from > m(l) > pnj - nm()+lI np+l'

All three properties are maintained during the round. Furthermore, since player

1 replaces market p by market m(l) and m(l) < p, we have that p decreases as we

traverse change improvement moves. This implies that we have at most m- 1 change

improvement moves in a round. This proves our bound of nm 2 on the length of the

number of improvement moves that we need to reach a pure Nash equilibrium.

In order to run the algorithm, we actually do not need to construct the entire state

graph. We only need to be able to find the next improvement move to traverse, and

this can be done in O(m+n) time, resulting in a total running time of O((m+n)m 2 n).

2.7 Conclusions and Open Problems

In this chapter, we developed centralized 1 - - -approximation algorithms, -

approximate decentralized mechanisms, and local search - -approximation algo-

rithms for a broad class of maximizing assignment problems. As our main motivation,

we focused on variants of a distributed caching problem, but all algorithms in this

chapter work for separable assignment problems. We complement this result by prov-

ing that the uniform CapDC problem is not approximable better than a factor of

1 - d, unless NPC DTIME(no(O°gl°gn)). The most natural question is to improve the

approximation factor for GAP.

In the decentralized mechanism, we show a good price of anarchy for mixed Nash

equilibria, but we also show several negative results for the convergence of these

games. One interesting open question is to prove fast convergence to constant-factor
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solutions in the CaplBDC game 12 . Another interesting open question is to see if the

uniform CapDC game or the uniform IBDC game have a pure Nash equilibrium. In

this chapter, we showed that a special case of IBDC game has a PSNE and the CapDC

game contains a cycle of strict best-response moves.

12In Chapters 3 and 4, we see some examples of games for which we can prove fast convergence
to constant-factor solutions.

72



Chapter 3

Convergence in Potential Games

Traditionally, research in operations research has focused upon finding a global op-

timum. Computer scientists have also long studied the effects of lack of different

resources, mainly the lack of computational resources, in optimization. Recently, the

lack of coordination inherent in many problems has become an important. issue in

computer science. A natural response to this has been to analyze Nash equilibria, in

these games. Of particular interest:is the price of anarchy 1 in a game [70]. Clearly,

a low price of anarchy may indicate that a system has no need for a single regulatory

authority. Conversely, a high price of anarchy is indicative of a poorly functioning

system in need of some regulation.

In this chapter, we move away from only measuring the social value of Nash equi-

libria to evaluate the performance of a game. There are several reasons for this. The

first reason is that we are not guaranteed that the selfish behavior of players con-

verges to a Nash equilibrium. Moreover, if a sequence of selfish behavior of players

converges to a Nash equilibrium, the time it takes for this convergence even may be

extremely long. So, from a practical viewpoint, in order to analyze the decentral-

ized mechanism, it is important to evaluate the speed or rate of convergence of the

corresponding game.

As is clear, these issues are particularly important in games in which the use of

pure strategies and repeated moves are the norm, for example, auctions. For these

'Some of the definitions and notations that are used in this chapter can be found in Section 1.2.
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games, then, it is not sufficient to just study the value of the social function at

Nash equilibria. Instead, we must also investigate the speed of convergence (or non-

convergence) to an equilibrium. Towards this goal, we will not restrict our attention

to Nash equilibria but rather prove that after some number of improvements or best

responses the value of the social function is within a factor of the optimal social

value. We tackle this by modeling the behavior of players using the underlying state

graph on the set of strategy states. We consider best-response walks in this graph

and evaluate the social function at states along these walks. The rate of convergence

to high quality solutions (or Nash equilibria) can then be measured by the length of

the walk. We address these issues in two chapters of this thesis. In this chapter, we

study potential games in which any sequence of strict improvement moves of players

converges to a PSNE. In these games, we study the rate of convergence to approximate

solutions. In Chapter 4, we examine games in which selfish behavior of players does

; not necessarily converge to a PSNE. In fact, these games may not possess any pure

Nash equilibrium. We will define a new equilibrium concept for those games and

measure the social value of this new equilibrium concept (See Chapter 4).

In this chapter, we study convergence for three classes of potential games: Cut

games (See Section 3.2 for definitions and results), basic-utility games (Section 3.3)

and market sharing games (Section 3.4).

3.1 Preliminaries

In this chapter, we use the definitions and notations from Section 1.2. Given a

best-response walk starting from an arbitrary state in the state graph, we are most

interested in the social value of the last state on the walk. Notice that if we do not

allow every player to make a best response on a walk 1P, then we may not be able to

bound the social value of a state with respect to the optimal solution. This follows

from the fact that the strategy of a single player may be very important for producing

solutions of high social value. Hence, we consider the following models:

One-round walk: Consider an arbitrary ordering of all players il. . . , i. A walk P
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of length n in the state graph is a one-round walk if for each j E {1,2,..., n},

the jth edge of P has label ij.

Covering walk: A walk P in the state graph is a covering walk if for each player i,

there exists an edge of P with label i.

k-Covering walk: A walk P in the state graph is a k-covering walk if there are k

covering walks Pi,P 2,... ,Pk such that P = (Pl,P 2,... ,Pk).

Random walk: A walk P in the state graph is a random walk, if at each step the

next player is chosen uniformly at random and independently of the previous

players.

Random one-round walk: Let or be a ordering of players picked uniformly at ran-

dom from the set of all possible orderings. Then, the one-round walk P corre-

sponding to the ordering a, is a random one-round walk.

Note that a one-round walk is a covering walk. Also in the one-round walk we

let each player play his best response exactly one time, but in a covering walk we

let each player play at least one time. For a non-cooperative game g with a social

fiunction y, we are interested in the social value of states (especially the final state)

along one-round, covering, k-covering, and random walks.

Related Work. Here, we give a brief overview of related work in this area. The

consequences of the selfish behavior and the question of efficient computation of Nash

equilibria have recently drawn much attention in computer science [70, 67]. Moreover,

the use of the price of anarchy [70] as a measure of the cost of the lack of coordination

in a game is now widespread, with a notable success in this realm being the selfish

routing game [78]. A basic result of Rosenthal [76] defines congestion games for which

pure strategy Nash equilibria exist. Monderer and Shapley [60] proved that congestion

games are equivalent to the class of exact potential games2 . Milchtaich [55] studied

player-specific congestion games and the length of best-response walks in this set of

2See Section 1.2 for the definition.

75



games. Even-Dar et al. [14] considered the convergence time to Nash equilibria in

variants of a load balancing game. They bound the number of required steps to reach a

pure Nash equilibrium in these games. They consider a central policy that let agents

move in a certain order, and analyze different policies to choose such an ordering.

In contrast to this work, their interest is in the convergence time to a pure Nash

equilibrium and not to good approximate solutions. Fabrikant et al. [15] studied the

complexity of finding a pure strategy Nash equilibrium in general congestion games.

Their PLS-completeness results show that in some congestion games (including selfish

routing games), the length of a best-response walk in the state graph to a pure Nash

equilibrium might be exponential.

A Simple Example. Here, we illustrate the use of the above definitions by studying

covering walks in a simple load balancing game; The speed of convergence to Nash

equilibria in this games has been considered :by Even-Dar et al. [141. Coilsider n

jobs that can be scheduled on m machines. Assume that it takes pi units of time

for job i to run on any of he machines. Formally, :we define the strategic game

g(U, {Fi ic U}, {cili c U}) as follows: The set of players U is the set of jobs, and

the strategy set Fi of a player i is the set of all machines Fi = {j II < j < m}. Given

the strategy profile S = (Sl,..., sn), let Ij(S) be the total processing time or the load

of machine j. The payoff of player i is ai(S) = li(s) Thus, each job wants to be

scheduled on a machine with the minimum load. The social function is the maximum

load over all machines, i.e., y(S) = maxI<jml, j (S)

This game is a potential game. The potential function is as follows: Given a

strategy profile S, we sort the numbers lj(S) for all machines in a decreasing order.

Consider the resulting vector. We claim that this vector is a potential function for

this game. To see this, we can show that if a job moves from a machine to another

machine and decreases its payoff, this potential function decreases lexicographically.

Therefore, any sequence of strict improvement moves of players converges to a PSNE.

First, we show that the price of anarchy for PSNE in this game is at most 2. Let

OPT be the value of the optimal schedule. Consider a PSNE S of this game. As no
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job i has incentive to change machine and decreases the load of the machine that it

is scheduled on, we have: for any job i and any machine j, 1, (S) < Ij (S) +pi. Thus,

for any machine j and any job i such that si = j, all machines are busy at all times

before lj(S)-pi, thus, OPT > lj(S)-pi. Consider the machine j* with the maximum

load in S and a job i that is scheduled on j*. Hence, OPT Ij* (S) -p = y(S) -pi.

Clearly, OPT > Pi. Thus, (S) < 20PT as desired.

In addition, from any state there is a walk of length at most n to some pure

Nash equilibrium [80]. On an arbitrary best-response walk, it may, however, take

more than n steps to converge to a pure Nash equilibrium. Our goal is to show

that the social value of any state at the end of a covering walk is within a factor

2 of optimal. Consider a covering walk P = (S1, S2 ,... ,Sk). Let j* be the ma-

chine with the largest load at state Sk. Consider the last job i* that was sched-

uled on machine j*, and let the strategy profile after scheduling i* be St. Ig-

noring job i*, at time t the load of all the machines is at least 1* (Sk) - pi*. If

not, job i* would not have been scheduled on machine j*. Consequently, we have

El<i<npi > m(lj*(Sk) - pi*). Thus, OPT > El <i<npi/m > ij*(Sk) - Pi*. Clearly,

OPT > pi*. Thus, y(Sk) = l* (Sk) = lj*(Sk) - Pi* + Pi* < 20PT as desired.

3.2 The Max-Cut Game: Convergence

In this section, we study an illustrative potential game, called the cut game or the

Max-Cut game. First, we define this game formally. We are given an undirected

graph G(V, E), with n vertices and edge weights w : E(G) Q+. In this section, we

assume that G is connected, simple, and does not contain loops. For each v G V(G),

let deg(v) be the degree of v, and let Adj(v) be the set of neighbors of v. Let also w, =

EuEAdj(v) Wu,. A cut in C is a partition of V(G) into two sets T and T = V(G) - T,

and is denoted by (T, T). The value of a cut is the sum of edges between the two sets

T and T, i.e., EeT,uET WUV.

The Max-Cut game or the cut game on a graph G(V, E) is defined as follows:
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each vertex v G V(G) is a player, and the strategy of v is to choose one side of the

cut, i.e., v can choose s =-1 or s = 1. A strategy profile S = (sl,s 2,...,Sn),

corresponds to a cut (T,T) where T = {i s = 1}. The payoff of player v in a

strategy profile S, denoted by a,(S), is equal to the contribution of v in the cut, i.e.,

a(S) = -i:iS#v Wiq. It follows that the cut value is equal to ZEvv av(S). If S

is clear from the context, we use av instead of av(S) to denote the payoff of v. We

denote the maximum value of a cut in G, by c(G). We consider the cut value as the

social function.

The Max-Cut problem is a well-studied problem [30]. Simple greedy approxima-

tion algorithms are known for this problem with the performance guarantee of 2. A

greedy algorithm is as follows: start from an empty cut, add vertices of the graph one

by one, and add each vertex to the side that maximizes the contribution of vertex v in

the cut. The total weight of edges in the resulting cut is at least of the the total weight

of edges, thus, it is a, l-approxiimation algorithm. Goemans and Williamson [30] gave

a 0).87.8-approximation algorithm for the.Max-Cut problem which is the best known

approximation algorithm for this problem. Local search algorithms have been con-

sidered for this problem. At, each step of the local search algorithm for the Max-Cut

problem, we find a vertex such that if we move this vertex to the other side of the

cut, the value of the cut increases. It is known that the cut value of a local optimal

solution or equivalently the PSNE of the cut game of the cut game is at least of the

optimal solution. The reason is that in a PSNE, the payoff of each vertex is at least

2 of the total weight of the edges that are adjacent to this vertex. It follows that the

sum of the payoffs of players in a PSNE of this game is at least the total weight of

edges of the graph. Therefore, the cut value in a PSNE is at least of the maximum

cut.

The cut game is a potential game. The potential function for this game is the value

of the cut. As a result, selfish behavior of vertices will converge to a PSNE. But, it is

well known that finding a local optimal solution of the Max-Cut local search problem

or a PSNE of the cut game is PLS-complete [47, 79] and there are some configurations

that are exponentially far from any local optimal solution. In other words, there are
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strategy profiles in the cut game in which the shortest best-response walks to any

PSNE is exponentially long. On the positive side, Poljak [74] proved that for cubic

graphs the convergence time is at most 0(n2 ) steps.

3.2.1 Fast Convergence on Random Walks

First we prove positive results for the convergence to constant-factor approximate

solutions with random walks. We show that the expected value of the cut after a

random one-round walk is within a constant factor of the maximum cut.

Theorem 3.2.1 In weighted graphs, the expected value of the cut at the end of a

random one-round walk in the cut game is at least of the maximum cut.

Proof. It suffices to show that after a random one-round walk, for every v G V(G),

E[av] '8 §Wv,.

Consider a vertex v. The probability that v occurs after exactly k of its neighbors,.

is deg(v)+l for k = 0, 1, .. , deg(v). After v moves, the contribution of v in the cut is

at least -. Conditioning on the fact that v occurs after exactly k neighbors, for each

vertex u in the neighborhood of v, the probability that it occurs after v is deg(v) k

and only in this case u can decrease the contribution of v in the cut by at most wv.

Thus the expected contribution of v in the cut is at least max(, w( 2- dv) ))

Summing over all values of k, we obtain

dg 1 1 _ deg(v)- 
E[o] > E max deg() ))

k=Oadeg(v)± 1 2 deg(v)

deg(v) 2k - deg(v)
- deg(v) + 1 liv 2deg(v)

k=de2J+l

W> 

- 8

'The result follows by linearity of expectation. OE

The next theorem studies a random walk of best responses that is not necessarily

a one-round walk.
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Theorem 3.2.2 The expected value of the cut at the end of a random walk of length

3nlog n is at least a constant-factor of the maximum cut.

Proof. Let G(V, E) be a weighted graph, and let X = l, x2 ,. . . ,xk be a sequence,

where each xi is chosen uniformly at random from V(G). If k = 3nlogn, then

X contains each element of V(G) with probability 1 - 1. By the union bound, all

vertices occur in X with probability 1 - 1. Thus, it is sufficient to prove the assertion

conditioning on the fact that all vertices occur in X.

Assume now that X contains all the elements of V(G), and for each v G V(G) let

t(v) be the largest i, with 1 < i < k, such that xi = v. Consider now the subsequence

X' of X, such that X' contains only those elements xi, such that i = t(v), for some

v V(G). It is easy to see that X' induces a random one-round walk. Observe

that for xt(u), t(v) E X', with t(u) < t(v), we know that after vertex v plays, the

contribution of v in the cut that is due to the edge {u, v} cannot change. Therefore,

by applying the same argument as in the proof of Theoremr 3.2.1, the assertion fllows.

3.2.2 Poor Deterministic Convergence

We now give lower bounds for the convergence to approximate solutions for the cut

social function. First, we give a simple example for which we need at least Q(n) rounds

of best responses to converge to a constant-factor cut. The construction resembles a

result of Poljak [74].

Theorem 3.2.3 There exists a weighted graph G(V, E), with V(G)I = n, and an

ordering of vertices such that for any k > 0, the value of the cut after k rounds of

letting players play in this ordering is at most O(k/n) of the maximum cut.

Proof. Consider a graph G(V,E), with V(G) = {1,2,...,n}, and E(G) = {{i,i +

1}1 < i < n - 1}. For any i, with 1 < i < n, the weight of the edge {i,i + 1}, is

1 + (i - 1)/n2 . Since G is bipartite, the value of the maximum cut of G is c(G) =

Ei=1(1 + (i- 1)/n2 ) = Q(n). The graph G is depicted in Figure 3-1.
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Let a be an ordering of the vertices of G, with v(i) = i. Consider the execution

of the one-round walk for the ordering a. At the beginning,, we have T = V(G). It

is easy to see that in any round i > 1, when vertex j plays, if j < n - i, j moves to

the other part of the cut. Otherwise, if j > n - i, j remains in the same part of the

cut. Thus, after round i, we have

T {rn,n - 2,n - 4,..., n - i + 1} if i is odd

T {1,2,...,n-i-1} U {n,n-2,n-4,...,n-i} ifiiseven

It easily follows that the size of the cut after k rounds according to the ordering a, is

Zi=n-k 1 + (i- 1)/n2 0 O(k).

1 1+1/nA2 1+(n-l)/nA2

2 3 n-

Figure 3-l: A path of length n on which k rounds of best responses of vertices result
in a cut of value Q(k) of the maximum cut. The numbers on edges are the weight of
the edges.

We next combine a modified version of the above construction with a result of

Schaffer and Yannakakis for the Max-Cut local search problem [79] to obtain an

exponentially-long walk with poor cut value.

Theorem 3.2.4 There exists a weighted graph G(V, E), with V(G)I = (n), and a

k-covering walk P in the state graph, for some k exponentially large in n, such that

the value of the cut at the end of P, is at most 0(1/n) of the optimum cut.

Proof. In [79], it is shown that there exists a weighted graph Go(V, E), and an initial

cut (To, To), such that the length of any walk in the state graph, from (To0,To) to

a pure strategy Nash equilibrium, is exponentially long. Consider such a graph of

size (n), with V(Go) = {vo, v1,. .. ,VN}. Let Po be an exponentially long walk from
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(To, To) to a Nash equilibrium in which we let vertices v0, Vl,. , VN play in this order

for an exponential number of rounds. Let So, SI,..., SIpol be the sequence of states

visited by Po and let yi be the vertex that plays his best response from state Si to

state Si+l. The result of [79] guarantees that there exists a vertex, say vo that wants

to change side (i.e., strategy) an exponential number of times along the walk o (since

otherwise we can find a small walk to a pure Nash equilibrium). Let to = 0, and for

i > 1, let ti be the time in which vo changes side for the i-th time along the walk Po.

For i > 1, let Qi be the sequence of vertices Yti 1+l, . . , yti. Observe that each Qi

contains all of the vertices in Go.

Consider now a graph G, which consists of a path L = x1, 2 , . . ,X, and a copy

of Go. For each i c {1,..., n-1}, the weight of the edge {xi, xi+} is 1. We scale the

weights of Go, such that the total weight of the edges of Go is less than 1. Finally, for

each i E {1,... , n}, we add the edge {xi, vo0}, of weight , for some sufficiently small

e. Intuitively, we can pick the value of c, such that the moves made by the vertices in

Go; are independent of the positions of the vertices of the path L in the current cut.

For each i > 1, we consider an ordering 7Ri of the vertices of L, as follows: If i is

odd, then R7i = x,x 2,. .. ,xn, and if iis even, then Ri = x,,x ,_l,... l.

We are now ready to describe the exponentially long path in the state graph.

Assume w.l.o.g., that in the initial cut for Go, we have vo C To. The initial cut for G

is (T, T), with T= {x} U To, and T = {x 2,.. ., I U To. It is now straightforward to

verify that there exists an exponentially large k, such that for any i, with 1 < i < k,

if we let the vertices of G play according to the sequence Q1, R 1, Q2, R 2 ,..., Qi, Ri,

then we have (see Figure 3-2):

* If i is even, then {vo0,x1 } c T, and {x2,..., x} T.

* If i is odd, then {xl,... ,x_-} c T, and {vo,xn} c T.

It follows that for each i, with 1 < i < k, the size of the cut is at most O(1/n) times

the value of the optimal cut. The result follows since each walk in the state graph

induced by the sequence Qi and Ri is a covering walk. ]
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(a) i is even. (b) i is odd.

Figure 3-2: The cut (Ti, T) along the walk of the proof of Theorem 3.2.4 after playing
Qi and Zi.

3.2.3 Mildly Greedy Players

By Theorem 3.2.1, it follows that for any graph, and starting from an arbitrary cut,

there exists a walk of length at most n to an Q(1)-approximate cut. On the other

hand, Theorems 3.2.3 and 3.2.4, show that there are cases where a deterministic

ordering of players may result to very long walks that do not reach an approximately

good cut.

We observe that if we change the game by assuming that a vertex changes side in

the cut if his payoff is multiplied by at least a factor 1 + e, for a constant > 0, then

the convergence is faster. We call such vertices (1 + e)-greedy. In the following, we

prove that if all vertices are (1 + e)-greedy for a constant > 0, then the value of the

cut after any one-round walk is within a constant factor of the optimum.

Theorem 3.2.5 If all vertices are (1 + c)-greedy the cut value at the end of any

one-round walk is within a min{ +2, 42 factor of the optimal cut.

Proof. Consider a one-round walk P. For each vertex v, let ' be the payoff of v

right after its occurrence in P, and let Cav be the payoff of v at the end of P. Let

V be the set of vertices that did not change their side in the one-round walk and

V2 = V(G) \ V. For a vertex v G V2, let r be the total weight of the edges that are

removed from the cut at the time that v moves to the other side. Since vertices are

1 -+ c-greedy, w'-r' > 1 + e otherwise v would not change side. Thus, r, < 1 w. We
rv -2+c V

claim that the difference between EvEV(G) a' and EVc(G) Acv is at most ZvEv2 rv.
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To see this, we observe that when a vertex v G V2 changes side, it can decrease the

summation ZvV(G) Cav by at most rv. Moreover, if v V then a'(v) > 2+wv,

and if v E V2 then a'(v) > +wv. In the following, for a set T C V(G), we let

W(T) = ZvET wV. Thus,

E ° > -E rV
VEV(G) vGV(G) VEV2

=E + Z -
vEV1 vEV2 vE V

1 1VEV2 V1V2

> 2 W(V + + W(V 2) W(V2)-+ 2 + 2 +7
1 e

> min{2 + ' 2 + }W (V (G ) )'

Thus, the value of the cut after this one-round walk is at least a min(4+;, 42)-

approximation. The best bound is obtained when = 1, for which we obtain a

·- approxiInate cut after one round. ; L

3.2.4 Unweighted Graphs

In unweighted simple graphs, it is straight-forward to verify that the value of the cut

at the end of an n2 -covering walk is at least 1 of the optimum. The following theorem

shows that in unweighted graphs, the value of the cut after any Q(n)-covering walk

is a constant-factor approximation.

Theorem 3.2.6 For unweighted graphs, the value of the cut after an Q(n)-covering

walk is within a constant-factor of the maximum cut.

Proof. Consider a k-covering walk P = ( 1,..., Pk), where each Pi is a covering

walk. Let M0 = 0, and for any i > 1, let Mi be the size of the cut at the end of Pi.

Note that if Mi- Mi-1 > I(), for all i with 1 < i < k, then clearly Mk > k E(G)l
i0n 0n

and since the maximum size of a cut is at most E(G) , the lemma follows.

It remains to consider the case where there exists i with 1 < i < k such that

i - Mi- 1 < E(G) . Let V be the set of vertices that change their side in the cut10n
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on the walk Pi, and V2 = V(G) \ VI. Observe that when a vertex changes its side in

the cut, the size of the cut increases by at least 1. Thus, IV I < E(G), and since theI0n

degree of each vertex is at most n - 1, it follows that the number of edges that are

incident to vertices in VI, is less than IE(G).
10

On the other hand, if a vertex of degree d remains in the same part of the cut,

then exactly after it plays, at least d/21 of its adjacent edges are in the cut. Thus,

at least half of the edges that are incident to at least one vertex in V2, were in the

cut, at some point during walk Pi. At most IE(g) of these edges have an end-point

in V, and thus at most that many of these edges may not appear in the cut at the

end of Pi. Thus, the total number of edges that remain in the cut at the end of walk

Pi, is at least I()L-L()/1° - .1( Since the maximum size of a cut is at

most E(G) , we obtain that at the end of Pi, the value of the cut is within a constant

factor of the optimum. O

We complement the upper bound of Theorem 3.2.6, by exhibiting aij. example that

requires Q(v/-) rounds of best responses to converge to a constant-factor cut.

Theorem 3.2.7 There exists an unweighted graph G(V, E) with V(G)I = n and an

ordering of the vertices such that for any k > 0, the value of the cut after k rounds

of letting players play in this ordering is at most O(k/lV) of the maximum cut.

Proof. Let V(G) = {vi,jl < j < i < t} and E(G) = {vijVi+l,l1 < j i <

t- 1,1 < I < i + 1}. Clearly, G is bipartite, and thus the maximum cut value

c(G) = E(G) = Q(t3 ) = Q(n3 /2 ). The graph G is depicted in Figure 3-3. Vertex vij

for any 1 < i,j < n is labeled by (i,j). Let the subset {vijl1 < j < i} of vertices be

the layer i of vertices of this graph.

Consider now the ordering , such that for any i, j with 1 < j < i < t, (i(i-) +

j) = vi j. We start from the empty cut. By an argument similar to the one used

in the proof of Theorem 3.2.3, we obtain that after k rounds of letting players play

according to the ordering a, the size of the cut is at most O(kt2 ) = O(kn). In fact in

the ith round of best responses of players, all vertices in layers 1, 2,.. . , t - i change

side to the other side of the cut.
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t,3
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Figure 3-3: An unweighted graph G on which k rounds of best responses of vertices
result in a cut of value Q( ) of the maximum cut. The graph consists of t layers;
layer i consist of i vertices, and all vertices of layer i are connected to vertices of layer
i+1.

3.3 Basic-utility Games: Convergence

In this section, we study the social value of random and deterministic best-response

walks for basic-utility games. Recall that basic-utility games are a subclass of valid-

utility games (See Section 1.2 for the definition of valid-utility and basic-utility

games). Basic-utility games include a wide class of facility location games. These

facility location games are introduced by Vetta [87]. Vetta [87] observed that basic-

utility games are potential games. In fact, a potential function is the social utility

function. To see this, consider a strategy profile S = (sl,..., s) where si C Vi and

a player i who changes strategy from si to si and increases her payoff. Therefore,

oi(S ( s) > ai(S). The difference between the social value of S s and S is

y(S ED S') - y(S) = (y(S E Ds) - y(S D 0)) - (y(S) - y(S ¢ 0i))

= i (S ) - ~, (S)

> 0.

Therefore, the social utility function is a potential function for basic-utility games.

This shows that any sequence of strict improvement moves converges to a PSNE.
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Vetta [87] proved that the price of anarchy for (mixed) Nash equilibria for basic-

utility (and valid-utility) games is at most 2. This implies that in basic-utility games,

any sequence of strict improvement moves converges to a state with social value at

least OPT. In the following, we study the rate of convergence to states with high

social value on random walks.

Here, we prove that in basic-utility games, the expected social value of a state

after Q(n) random best responses is at least 2 - of the optimal social value, for any

constant > 0. In Chapter 4, we will show that this fast convergence does not hold

for valid-utility games.

Theorem 3.3.1 In basic-utility games, for any constant e > O, there exists a constant

c such that the expected social value of a state after cn log e random best responses is

at least -e of the optimum. Moreover, for any constant A' > O, there exist constants

e., c' > 0 such that after cn log n log random best responses, the social value is at

least - E of the optimum with high probability.

Proof. Let Q = (l,...,con) denote an optimal state, and T = (tl,t 2 ,...,tn) be

a strategy profile of agents. Let T i be the strategy profile resulting from T after

agent i plays its best response in T and let Qi = ( 1,...,aji, 0 i+1,.. , 0,n). Let Y =

1 Eju y(Ti) be the expected social value of the state after a random agent plays its

best response. Our goal is to lower bound Y.
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To do so, using submodularity, basicness and the cake condition we get:

nY - ny(T) = >((Ti) - (T))
i/U

= (y(T) - y(T · 0)) - y(y(T) - y(T 0i))
iEU iEU

= oi(T) - a(T) [by basicness]
iEU iEU

> aOi(T) - (T) [by cake condition]
iEu

>E ai(Ti D oi) - y(T) [since i plays his best response in Ti]

ieu

- > ', (Te ( ) - y(T) [by basicness]
iEU

> ,(7y(T · (i) - y(T · 0,)) - y(T)
ieU

> (~y(T U Qi) - )y/(T U Qi-L)) - y(T) [by submodularity]
icu
= y(T U Q) --- (T) ...:(T) [since it is a 'teiscopic sunmmation]

> OPT - 2y(T) [since y is non-decreasing].

The above inequalities show that Y > n2y(T) + 1OPT. Let Yo be the actual

social value of the initial state. At each step, a random agent is picked and plays its

best response. Thus, if Y is the social value of the state after step i, then E[YjIYi_l- 

y] > ()y + 1 OPT. Let pyy, be the probability that Yi_1 = y' given that Yi-2 = Y

Thus, E[Yi_1 Y_2 = y] = >Y py, y'. Therefore,

E[lYiY-2-= y] = pyyE[YilYi-2 = y, Yi-1 = y']
Y/

(n- 2, 1
> pyy,(( n )Y'- +OPT)

y'

fl-2 1
= ( )E[Y_lYi_2 = y] + -OPT

n-2 ( n-2 OPT) +Ž ( l )Y+ 1OPT)+ OPT

( n-)2y+ OPT(1 + ( ))
n n n
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Thus, E[YilYi- 2 = ] > (n-2) 2 y + 7OPT(1 + (n-2)). Similarly, we can prove that

E[YiYo = yo] > (n-2)iyo + OPT(1 + (n-2) + .. + (_-)-1 ) Since yo > 0, E[Y] >

,OPT( (1- 2)i)

This proves that for a sufficiently large constant c and by setting i = cn log f, the

expected social value after cnlog best responses is at least - of the optimum.

Moreover, since in basic-utility games the social value is non-decreasing as agents play

their best responses, we claim that for a sufficiently large c' = cc" > 0 and a sufficiently

small > 0, after c'nlognlog e random best responses, with high probability the

social value is at least - t' of the optimum. The reason is that we can partition the

best response walk of length cn log n log e into c" log n best-response walks of length

cn log e, and after each of these subwalks, the expected social value is at least - e

of the optimum. Thus, by Markov inequality, with a constant probability after each

of the subwalks of length cn log l, the expected social value is at least ( - c') of the

optimum. Hence, after cn log n log - best responses, the social value is at least -- /

of the optimum with high probability. EJ

3.4 Market Sharing Games: Convergence

In this section we consider the market sharing game. For the formal definition and

an introduction to these games, see Chapter 2. Note that in this game, to find the

best-response strategy, each player should solve a knapsack problem. Therefore, in

order to model computationally constrained agents, we may assume that the agents

apply A-approximation algorithms to determine their best-response strategies. More

precisely, when a player uses a A-approximation algorithm for his best-response move,

he changes his strategy if he does not decrease his payoff and his payoff after this move

is at least A times his payoff after any other move from this state. We then obtain

the following theorems concerning the social value after one round of best responses

moves. In the following we use the Harmonic number H, = 1 + + ... + .

Theorem 3.4.1 In market sharing games, the social value of a state at the end of

a one-round walk is at least 12H+ of the optimal social value (or at least +H+1 if
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the agents use A-approzimation algorithms).

Proof. Let Q = (l,... , a,) denote an optimal state. Here i C V is the set of

markets that player i services in this optimal solution; we may also assume that each

market is provided by at most one player in Q (we will use this fact later in the proof).

Let T = (t,.. , tn) and S = (Si,..., sn) be the initial and final states on the one-

round walk, respectively. We assume that the agents play best-response strategies in

the order 1,2,..., n. So in step r, using a A-approximation algorithm, agent r changes

its strategy from tr to sr; thus T r = (S, ... ., sr, tr+i, . . , tn) is an intermediate state

in the one-round walk P = T = {T ,T1,...,Tn = S}. The social value of state

S = T n is y(S) = ieu ai(S). We need to show that iCu ai(S) > l+ H OPT.

Towards this goal, we first show that -y(S) = EieU ai(Ti) -> Z Lieua ai(Ti).

We know that agent r does not change its strategy from sr after step r. Therefore

a market j has a nonzero contribution in y(S) if and only if market j has a nonzero

contribution in the summation Eieu ai (Ti). For any market j, if j appears in any of

strategies in Tn then the contribution of j to y(S) is qj. C)n the other hand, at most

n players use market j in their strategies. The payoff of the first player who serves

market j is at most qj. The payoff of the second player who served market j is at

most qj, since when he plays, at least one other player serve market j. Similarly, the

payoff of the ith player who serves market j is at most , since when he plays, at

least i - 1 other players serve market j. Consequently, the contribution of market j

in the summation EiEU ai(Ti) is at most

1 1
(1 + + +... +-)qj = Hqj.

2 3 n

It follows that aiEu i(Tn) > i Eicuai(Ti), as required. We denote by T the

summation EiGU a°i(Ti). Consider the optimal assignment Q, and let i be the set of

markets that are serviced by agent i in ai but that are not serviced by any agent in

S, that is, Yi = ai - UEusr. Now, y(S) is greater than the value of all the markets

in UrGU (ar - Y), since these markets are a subset of markets serviced in S. Hence,

using the notation q(Q) = EjeQ qj to denote the sum of the value of a subset Q of the
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markets, we have ?y(S) > C,,U q(r - Yr); here we use the fact that in the optimum

each market is served by at most one agent.

Next, we will prove that T > A ErEU q(Yr). Let Y' be the markets in Yi that are

not serviced in T i , that is, Y' = Yi - (l U .. U si U ti+l U ... U t). Then Y' is a

feasible strategy for agent i at step i. Thus, we have ai(T i ) > q(Yi'), since player i

uses a A-approximation algorithm. Therefore, T > A ErEU q(Y). Again, we use the

fact that Yi"s are disjoint.

Finally, we claim that T > iev q(Yi") where Yi" = Yi - Yi'. To see this, consider

a market j Yi". Market j is not in the strategy set of any agent in T n, but is in

the strategy set of at least one player in Ti . Therefore, somewhere on the walk P,

after Ti , some player must change its strategy and discontinue servicing market j.

Also note that if j E Yi" then j Yi' for any i' :~ i, since each market is serviced

by at most one player in Q. Let. bj be the time step such that TbJ is the first state

amongst Ti+l,... ,T' that does not service market j. Let M1 - {j Vlbj =. i be

the set of markets for which bj = i. It follows that UEUr/ = UrevMr. Notice that

A/i C ti and no other agents service any market in Mi in T i- l, since after player i

changes his strategy any market in Mi is not serviced in T i. Player i changes his

strategy from ti to si and does not service Mi in T i, thus the payoff of player i in T i

is at least ZjcEM qj (since j is only served by i in Ti-'). As a result, ai(T i ) > q(Mi)

(since player i changes his strategy only if he can increase his payoff). Therefore,

ZiEU q(Yi") = JiEU q(Mi) < EiEU ai(Ti ) = T. Hence we have,

OPT = q(i)
iEU

< E q(oi - Yi )+ q(Yi)
iEU iEU

< a(S)+ Y) + E q(Yi")
iEU iEU

1< (S)+ T+T
A+I

< (1 + Hn)y(S).
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Theorem 3.4.2 In market sharing games, the social value of a state at the end of a

one-round walk may be as bad as - of the optimal social value.

Proof. Consider the following instance of a market sharing game. There are m = n

markets, and the value of market j is qj = - c for all 1 < j < n where is

sufficiently small. The cost of market j is Cj = 1 + (n - j)e for 2 < j < n and

C1 = 1. There are n players and the budget of player i is equal to 1 + (n - i)e. As

a result, player i can only serve markets 1 and i, i + 1,..., n and we assume that

he is interested is serving all these markets. Consider the ordering 1,2,... , n and

the one-round walk starting from the empty set of strategies and letting each player

play once in this order. The resulting assignment after this one-round walk is that

all players provide market number 1 and the social value of this assignment is n - .

However, in the optimal solution, agent i services market i. This gives an optimal

social value of nHT - n. Thus, the ratio between the optimum and the value of the

resulting assignment is H,, at the end of a one-round walk. D

3.5 Conclusion and Open Problems

In this chapter, we introduced a framework for studying speed of convergence to

approximate solutions in potential games. We believe that in order to capture the

computational issues of the performance of systems under lack of coordination, instead

of just bounding the performance of a Nash equilibrium, it is necessary to bound the

performance of the system along walks induced by a polynomial number of movements

by players. We are especially interested in the performance of the system along fair

walks (e.g., random and covering walks) to equilibria, since we may hope for better

social functions along these walks. This, in turn, has implications in local search

method in optimization. In order to use local search to optimize a function, we do

not need to find the local optimum. We can find short walks to approximate solutions,

e.g., by randomizing over the choice of the next local operation. Similar questions
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can be asked about different classes of games and local optimization problems. In

Chapter 4, we will see another example of games in which the convergence to equilibria

is exponential, but we can show fast convergence to approximate solutions on random

walks.

Market sharing games are not yet well understood. In particular, it is not known

whether exponentially long best-response paths exist. Bounding the social value of a

state at the end of a k-covering path is another open question. In Chapter 2, we gave

a polynomial-time algorithm to find the pure Nash equilibrium in uniform market

sharing games. Finding such an equilibrium is NP-complete for the general case, but

the question of obtaining approximate Nash equilibria is open.

Among the problems for the convergence in cut games, we do not know if the

result of Theorem 3.2.1 for random one-round walks holds with high probability or

not. The complexity of finding an approximate Nash equilibrium in the above cut

game is not known to us. Another open problem is bounding the length of walks to

Nash equilibria in cut games in which all players are (1 + >)-greedy.
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Chapter 4

Sink Equilibria and Convergence

A standard approach in analyzing the performance of systems controlled by non-

cooperative agents is by the examination of Nash equilibria. Of particular interest is

the price of anarchy in a game [53]. This gives one measure of the cost to society of the

inherent lack of coordination in a game. As mentioned 'in Chapter 3, there are several

drawbacks in the use of Nash equilibria. For example, one issue relates to use of non-

randomized (pure) and randomized (mixed) strategies. Often pure Nash equilibria

may not exist, yet the use of a randomized (mixed) strategy is unrealistic in many

games. This necessitates the need for an alternative solution concept in evaluating

such games. Another issue arises from the observation that Nash equilibria represent

"stable" points in a system. Therefore (even if pure Nash equilibria exist), they

are a more acceptable solution concept if it is likely that the system does converge

to such stable points. In particular, the use of Nash equilibria seems more valid

in games in which Nash equilibria arise when players iteratively engage in selfish

behavior. However, in many games it is not the case that repeated selfish behavior

always leads to Nash equilibria. In these games it also seems that another measure

of the cost of the lack of coordination would be useful. Observe that these issues

are particularly important in games in which the use of pure strategies and repeated

moves are the norm, for example, auctions. We remark that for most practical games

these properties are the rule rather than the exception and this observation motivates

much of the work in this work. In this chapter, we address this issue by introducing
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a new solution concept in a game, namely sink equilibria and studying the (expected)

social value in these equilibria. We first formally define this equilibrium concept.

4.1 Sink Equilibria

We model the behavior of agents via a state graph. In many games with iterative

moves, the evolution of game-play may then be naturally modeled by a path in the

state graph. Such a path may or may not converge to a PSNE; observe that a

PSNE is a vertex in the state graph for which the best response move of each agent

corresponds to a self-loop. Clearly it may also be the case that there are no PSNE.

We may ask what happens in such games. Specifically, does some concept of stability

or equilibrium exist? The answer is yes, and we now describe such an "equilibrium".

Consider the strongly connected components of the state graph. If we contract the

strongly connected components to: singletons then we otain an acyclic graph. The

sinik nodes in this graph (nodes with out-degree equal to' zero) correspond to strongly

connected components with no out-going; arcs in the state graph. We call such a

strongly connected component a sink equilibrium 1. The reason for this terminology

is clear: if a best-response walk ever reaches a node in a sink equilibrium then it will

never leave that set of nodes. This justifies using the terms sink and equilibrium.

In addition, a long enough random walk in the state graph will converge to a sink

equilibrium with probability arbitrarily close to 1. (This model can be justified in

extensive games with complete information and is used in the economics literature

extensively in the context of studying convergence in these games.)

We denote by Q the set of sink equilibria in a game. We remark that the union

of states in sink equilibria correspond to the set of recurrent states in a Markov

chain that only has non-zero transitional probabilities on arcs in the state graph.

In a random sequence of best responses of agents, we choose an agent uniformly at

random at each step and independent of the previous players and let this agent play

'We can also call this equilibrium the myopic equilibrium, since we only consider myopic best
responses in the state graph
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his best response (if the agent has more than one best-response move, we may assume

that the agent arbitrarily chooses a move from the collection of best-response moves).

When this walk reaches a state in some sink we then have a random walk over the

states in that sink. For a sink Q Q, let rQ : Q E+ U {O} be the steady state

distribution of the random walk over states in Q. Let y(S) measure the social value

of a state S. The (expected) social value of a sink equilibrium Q E Q, denoted by

F(Q), is the expected social value of states given by the steady distribution of the

random walk over the states of Q, i.e., F(Q) = ZsQ 7rQ(S)y(S)2 We then define, the

price of sinking3 for a maximization social function as

Price of Sinking OPT OPT
min (Q) min ZSEQ 7rQ(S)1(S)
QEQ QEQ

In other words, the price of sinking is the worst ratio between the expected social

value of a sink equilibrium and the social value of the optimum. Similarly, the price of
max r(Q)

sinking for a minimization problem is QePT -. Given that sink equilibria are stable

solutions in such games, this is a more realistic measure of the cost of the lack of

coordination than the price of anarchy.

We illustrate the use of the price of sinking in Section 4.2 where we present an

n-player valid-utility game that always converges to states with social value a factor n

worse than optimal. Indeed, the price of sinking for this game is n. However the price

of anarchy is almost 1. Thus, the price of anarchy gives us a misleading confidence

in the social quality of an outcome that will result from selfish behavior.

As well as being a more appropriate solution concept than PSNE in many games,

the existence of sink equilibria has several nice implications. Since sink equilibria al-

ways exist, the price of sinking can always be calculated even in games without PSNE.

Unlike PSNE, sink equilibria also possess natural convergence properties. The price

of' sinking also has a close relation to the convergence to approximate solutions (states

2It is possible to define F(Q) = minsQ y(S). In fact, proving positive results with this definition
is harder and stronger. We chose the definition based on the expected social value on the random
walk, since it is closely related to the rate of convergence to approximate solutions on random
best-response walks which is the topic of Chapter 3 of this thesis as well.

3We may call this the price of myopia since we only consider myopic best responses of players.
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whose expected social value is within an approximation factor of optimal) in games.

In particular, our proof techniques to bound the price of sinking also imply bounds

on the speed of convergence to approximate solutions. We study two examples in

Section 4.3:

(1) Unsplittable Selfish Routing (and Weighted Congestion Games). We present in-

stances of the weighted unsplittable flow version of the selfish routing problem that

possess no PSNE (For the formal definition of the unsplittable selfish routing game,

see Section 4.3.1). However, we show that, for bounded-degree polynomial latency

functions of degree at most d, the price of sinking is at most 0(22dd2d+3). In addition,

our proof technique implies fast convergence to high quality solutions. This may be

compared to the negative result by Fabrikant, Papadimitriou, and Talwar [15] showing

the existence of exponentially long best-response walks to PSNE (in the unweighted

version of this game). For example, consider the case of linear latency functions. Here

it is known that PSNE exist [24]; it may be the case that the number of best-response

moves needed for convergence to a PSNE is exponential. Our results show that after

a polynomial number of random best-response moves, the social value of the flow is

within a constant factor of the optimal solution.

(2) Valid- Utility Games. Our second example concerns the class of valid-utility games;

Here, we show that the price of sinking is at most n + 1; thus the worst case price of

sinking in a valid-utility game is between n and n + 1.

We also present a hardness result concerning sink equilibria. In section 4.4 we

show that in general it is a PLS-hard problem to find a sink equilibrium (or PSNE)

in valid-utility games. This implies the existence of exponentially long best-response

paths to any sink equilibrium in valid-utility games.

We conclude this introduction with a very brief discussion on related work. In or-

der to deal with the stability and convergence problems of Nash equilibria, equilibrium

concepts other than Nash equilibria have been studied in the economics literature.

Among these concepts are stable equilibria [52], stochastic adjustment models [48],

iterative elimination of dominated strategies, the set of undominated strategies etc.

Convergence and strategic stability of equilibria in evolutionary game theory is a also
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central subject of study for many economists. However, in their studies the most

important factor is typically the stability of equilibria, and not measurements of the

social value of equilibria. In Chapter 3, we began our investigation into the impor-

tance of moving away from the use of Nash equilibria as the main solution concept

for measuring performance in a game.

4.2 Price of Sinking vs. Price of Anarchy

In this section, we present an n-agent game in which the price of sinking and the

price of anarchy give very different pictures as to the consequences of non-cooperative

behavior. In particular, the price of anarchy will be close to 1, suggesting that no

form of mechanism design is required to enforce socially good solutions. However,

every possible outcome of the game will result in a solution whose value is a factor n

smaller than that of the optimal social solution.

Here, we present an n-agent valid-utility) game for which the price of sinking is

n+~ but the price of anarchy is just 1 + for an > 0. The ground set V of agent in

consists of n + 1 elements = {, x, x. ., x }. For motivation, we can think of

strategy Yi as a socially responsible strategy for agent i. In contrast, all the strategies

{x,x2,.. . ,x} can be viewed as socially irresponsible strategies. Moreover, we will

see that in any situation one of these n irresponsible strategies provides a better

payoff for agent i than acting responsibly. Consequently, there is an incentive for

every agent to act anti-socially with extreme consequences for the social outcome. In

contrast, the price of anarchy is oblivious to this incentive for anti-social behavior.

The reason being that the payoffs to each agent are intrinsically linked to the behavior

of the other agents. Any specific irresponsible strategy may be beneficial in certain

circumstances but typically (given the other agents responses) that specific strategy

has smaller payoff than the responsible strategy. Consequently, unlike randomized

strategies, playing an irresponsible strategy is likely to lead to low private returns.

Thus mixed strategy Nash equilibria will require that most agents behave responsibly,

blissfully ignoring the fact that in every possible situation each agent has an incentive
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to behave irresponsible.

The family of feasible strategies Fi for each agent i is the set of singletons of his

ground set and the empty set, i.e., Fi = {s C : IsJ < 1}. Let Xi = {xlx2, n

and X = UiXi. Let S = (Sl,S 2 ,... ,s) be a vector of subsets si C Vi for all

i = 1,2,..., n. For a vector S = (sl,...,sn), we let S = Uiusi. We construct

a non-decreasing, submodular social utility function y on rIiUvi in the following

manner.
(S) = Su\XI if SU n X = 0

I Su\XI + 2 otherwise.

With this social utility function, we construct a valid-utility game. To do this we need

to specify the private utilities of each agent at any state. In order to define the payoff

functions, we define a function i*(S) for each strategy profile S. We set i*(S) = null

for any strategy profile S in which no player plays an irresponsible strategy. If in

a strategy profile S some players play irresponsibly, i*(S) is the index of a plaver

who plays irresponsibly. In addition, i*(S)' satisfies the following property: given

the stategies of the other agents, any agent i can always choose some irresponsible

strategy so that after i's playing i*(S) = i. In the following, we give one example of

a function i* that satisfies these properties.

Let Xij(S) be the indicator variable for the event that agent i plays the irrespon-

sible strategy xi . That is

I if X' G SU

0 ( otherwise.

Next let

null if SU n X = 0 (no one plays irresponsibly)

i*(S) = i if Su Xi 0 for i {il,... .,ik}

and I = [Eiu(E'= I ' Xij(S)) mod k] + 1

Observe that if i*(S) = null then i can play the irresponsible strategy s = {xi} and
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make i*(S E si) = i. Otherwise, there exists a strategy s =- {x} such that if i plays

Si = {x} it makes i*(S s) = i.

We are now ready to give a payoff function cai for each agent i.

ai(S)= 

0 if yi si and i ! i*(S)

1 if yi E si and i i*(S)

2 if yi si and i = i*(S)

3 if yi si and i = i*(S).

So agent i gets utility 1 for playing the responsible strategy and another 2 units of

utility if i = i*(S). We will see in Section 4.3.2 that this is a valid-utility game with

a non-decreasing social utility function. Thus we may apply the following result from

[87].

Theorem 4.2.1 The price of anarchy in a valid-utility game with a non-decreasing

social utility function is at most 2. L-

If fact, it is easy to see that the price of anarchy in this game actually tends to 1 as

the number of agents increases. In particular, it is easy to see that a socially optimal

solution has n - 1 of the agents playing their responsible strategies while exactly

one of the agents plays an irresponsible strategy. Such an outcome has value n + 1.

Moreover, note that by playing responsibly an agent can guarantee that they receive

1 unit of utility. Thus, it must be the case that in a Nash equilibrium4 every agent

has an expected payoff of at least 1. Since y(S) > ZiEU ai(S) for any state S, we

have that the expected social value of a Nash equilibrium is at least n. Thus the price

of anarchy is at most 1 + .

Now we consider the price of sinking in this game. Given any strategy profile S,

the best response of each agent is to play the specific irresponsible strategy that gives

it a payoff of 2. To see this, note that agent i always has a move that sets i*(S') = i.

Thus a responsible strategy i is never a best-response strategy. In fact, the best
4 One Nash equilibrium is the following. Each agent i plays strategy i with probability p and

each bad strategy with probability -P. It is easy to check that letting p = -2 (1 - 1 ) gives a
Nash equilibrium.
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response of each player is to play an irresponsible strategy to get the payoff of 2,

but each player makes the payoff of other players who are playing the irresponsible

strategy 0. It follows that there is a unique sink equilibrium consisting of every

strategy profile in which each agent plays an irresponsible strategy. Thus, every state

in the sink has social value exactly two. Hence the price of sinking is exactly n1

We remark that even if we start at an optimal solution, if each agent makes a single

best-response move in turn then we end up with a solution of value 2! Moreover, we

can then never leave this sink if players play their myopic best responses.

Notice also that we could alter the payoffs in the game slightly so that the payoff

resulting from the first irresponsible move is 1 + 6 rather than 2. Clearly the price of

sinking is then R-~ which tends to n. Thus we have

Lemma 4.2.2 There are valid-utility games, with non-decreasing social utility func-

tions, for which the price of sinking is almost n while the price of anarchy is almost

1, . .

Thus the price of anarchy underestimates the social cost of the lack of coordination

by a factor n. The reason for this is that the good strategy always gives a good return.

Any bad strategy can give a high return but only in a small number of situations, thus

any bad strategy performs badly against randomized strategies and players tend to

play their good strategies in the mixed Nash equilibria. Hence the price of anarchy is

good. This type of issue often arises in games, and explains why the price of anarchy

will often significantly under-estimate the social cost of the lack of coordination in

such games.

Finally, note that this game has no PSNE so focusing here upon sink equilibria is

essential. Surprisingly, Lemma 4.2.2 is also almost tight; we will show in Section 4.3

that the price of sinking in a valid-utility game is at most n + 1.

4.3 Price of Sinking and Convergence

PSNE are special cases of sink equilibria. We have already seen that games in which

agents repeatedly react to the other agent's strategies via the use of pure strategy
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best responses will converge to sink equilibria and not necessarily to PSNE. Moreover,

many classes of games have instances for which no PSNE exists. In these games,

we can still measure the cost to society of the lack of coordination using the price

of sinking. Moreover, in bounding the price of sinking for sink equilibria we may

obtain bounds on the expected social value of states after a random sequence of best

responses.

4.3.1 Unsplittable Selfish Routing and Weighted Congestion

Games

Consider the "unsplittable flow" version of the selfish routing game. We have a

directed network G = (V, E) with a flow dependent latency function , : R IR+U{O}

on each arc e c E. There is a set U of n agents; agent i wishes to route flow at a rate

ri from a source si to a sink ti. Each agent aims to incur as small a latency as possible.

In the unsplittable flow version,, an agent may not split its flow. Hence each agent

picks a unique si - ti path and routes all its flow along the path. The latency of an

agent is equal to its traffic size multiplied by the sum of the latencies of arcs along the

path that it chooses. The latency of an arc e is a non-decreasing and non-negative

function of the total load on arc e. In this chapter, we consider bounded-degree

polynomial latency functions. In particular, for an arc e, we let 4e(x) = o<j<d ae,jxJ

be a non-negative and non-decreasing delay function for arc e. For a strategy profile

P = (PI, P2, .. ., Pn) where Pi is a si - ti path, let the load of arc e be f, = i:eEPi ri.

Then, the latency of agent i is li(f) = ri ZeEPi (fe) and the total latency of flow f

is (f) EiU i(f) = ZeE(G) e(fe)fe.

Before stating our results on weighted unsplittable selfish routing games, we note

that all our results on these games extend to the general class of weighted congestion

ganes. Weighted congestion games are the generalization of weighted unsplittable

selfish routing game in which the family of feasible strategies of players are arbitrary

family of subsets of arcs (and not necessarily paths from a source to a destination).

This definition extends the definition of congestion games defined in Section 1.2. In

103



none of the proofs for the price of sinking and convergence, we use the fact that

the feasible strategy is a path. Therefore, all the results hold for general weighted

congestion games.

Recently Awerbuch, Azar, and Epstein [2] proved that the price of anarchy in

such games is exactly 2.618 for linear latency functions and is at most 0(2ddd+l)

for polynomial latency functions of degree at most d. They extended their results

to mixed Nash equilibria, since the existence of pure Nash equilibria for these games

with polynomial latency functions was not known. For linear latency function Fotakis,

Kontogiannis, and Spirakis [24] proved that the game is a potential game. Here, we

exhibit an instance of this game with quadratic latency functions that does not possess

any PSNE. This, in turn, provides additional motivation for analyzing the price of

sinking in these games. Our example is shown in Figure 4-1. It depicts a network with

4 yertices and 6 arcs. Arcs are labeled from 1 to 6. The latency functions of arcs are

el(x) x + 33, 2(x) = 13x, £3() = 3x2, F4 (x) - 6 2 , 4s(x) = x2 +q 44, and. 6(x) --

47x. There are two agents with traffic r -1 and r2 = 2. The source of both agents

is vertex 1 (s1 = s2 = 1) and the destination of both agents is vertex 4 (tl = i2 = 4).

Consider four paths P1 = (6), P2 = (3,5), P3 = (3,4,2), and P4 = (1,2) where the

numbers within the parentheses are the labels of arcs on the path. It is not hard to

check that the only sink equilibrium of the weighted unsplittable selfish routing game

on this network is the set of strategy profiles {(P1, P2), (P3, P2), (P3, P4), (P1, P4)}. To

see this, one can check the following inequalities5:

11(Pl, P2) = 46(r1 ) = 47 >
46 = 3(ri + r 2) + f4 (r1) + f2(r1) = 1l(P3, P2)

12(P3 , P2) = 2(C3(ri + r2) + e5(r2)) = 150 >
148 = 2(l1(r2) + f2(r1 + r2)) = 12(P3 , P4)

/1(P3, P4) = 63(rl) + 4(rl) + 2(rl + r2) = 48 > 47 = 6(rl) = 11(Pl, P4)
12(P1, P4) = 2(f1 (r2)+ 2(r2 )) = 122 > 120 = 2(e3(r2) + 4(r 2)) = 12(P1, P2)

Using the above inequalities, we can show that {(P1 , P2), (P3, P2 ), (P3, P4), (P1 , P4)}

is a sink equilibrium. The only feasible strategies of players are paths P1, P2, P3, P4.

5In fact, we have found this example by solving a program to find a solution that satisfy these
inequalities using CPLEX.
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Figure 4-1: A weighted unsplittable selfish routing game without PSNE Vertices are
labeled from 1 to 4. Arcs are labeled from 1 to 6. Four paths (P1, P2 , P3, P4) are
highlighted from vertex 1 to vertex 4. Two players with traffic loads 1 and 2 send
traffic from vertex 1 to vertex 4.

Moreover, if player 2 plays one of the paths, the best response of player 1 is one of

the paths P and P3. Also, if player 1 plays one of the paths, the best response of

player 2 is one of the paths P2 and P4 .

Table 4.1 depicts the best-response move from any strategy profile in which players

play one of the four paths. This table shows that no PSNE exists in this game and

the only sink equilibrium of this game is {(P1 , P2), (P3, P2 ), (P3 , P4 ), (PI, P4)}.

The key to obtaining bounds on the price of sinking is that any agent making

a best-response move cannot cause too much cumulative harm to the other agents.

Consequently, if an agent can make a move that significantly increases its private

welfare, then the overall social welfare must rise. This will be an important factor in

allowing us to prove that we have a low price of sinking in these routing games.

Theorem 4.3.1 The price of sinking for a weighted unsplittable selfish routing game
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P1 P2 P3 P4

P1 (2, P2) (1, P3 ) (2, P2 ) (2, P2)

P2 (2, P4) (1, P3 ) (2, P4) (1, P1 )

P3 (2, P4) (2, P4) (2, P4) (1, P1)
P4 (2, P4) (1, P3) (1, Pi) (1, P1 )

Table 4.1: The table corresponding to the weighted unsplittable selfish routing game
without PSNE. Rows correspond to the strategy of the first player. Columns cor-
respond to the strategy of the second player. The pair (i, P) in a cell of the table
indicates that player i's best response in this strategy profile is P.

(or a weighted congestion game) is at most 0(22dd2d+3).

Proof. We need the following three lemmas for the proof.

Lemma 4.3.2 Let f be the flow corresponding to the current strategy profile P =

(P 1 ,..., P). Suppose agent i changes its flow path from Pi to P', to give a new flow

f'. Then l(fi') < I(f) + (d + 1)li(fi) - li(f). In particular, if agent i decreases its

latency by changing to Pi', then l(fi) < (f) + dli(f) < (d + 1)1(f).

Proof. The latency incurred by agent i is then

li(fi ) = ri SE ae,j(fi,e)j = ri
eCP' O<j<d

( Pi ae,Ojf +
eEP'fnPj O<j<d

E: E ae,j(fe
eEP'-Pi O<j<d

Note that for e P'- Pi, we have fi,e = fe + ri. Moreover, we know that

I(fi) < I(f) + (i(fi) - li(f)) + (aeje)

eEP'-Pi <_<

the last term corresponding to the increase in latency for agents other than i due

to the rerouting of agent i. We can get an upper bound on the increase in latencies
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faced by the other agents by noting that

po(ZdE (aejfi,e) - (ae,,
ee ,'-pi O<j<d

- E E (aej(fie -
eGP -Pi O<j<d

- E (OE aej (fie -
eseP-Pi < j<d

< E ('- ae,jr
eeXP'-Pi O<j<d

Ji feJ)) (f;,e - ri)

f, ) fe)

f ) ( E fie-f -1)
f)

(l< (fj + ri) (fe + r))
l<t<j'

< ri E (E jaej(fe +ri)j)
eGP,'-Pi O< j<d

< dl (fi').

Thus, the total latency after agent i changes its strategy is at most l(f)+(d+ 1)li(fi')-

li(f). Since, li(fJ') < li(f), this shows thati l(fJ') - 1l(f) + dli(f) < (d + 1)/(f)

Lemma 4.3.3 Let f be the flow corresponding to the current strategy profile. Con-

sider the following random process: choose an agent i at random and let it play its

best response. If f' is the new flow after this change, then E[l(f')lf] < (1 + d)l(f).

Proof. Let f be the flow after agent i plays its best response to f.

Lemma 4.3.2, we have:

Then, using

E[l(f')lf] = l El(f)
iEU

I1z
n 

iEu
(1(f) + dli(f))

= -(nl(f) + dl(f))
d

= ( + -)l(f).
n

The third lemma we need is below. Its proof is inspired by the work of Azar et

The third lemma we need is below. Its proof is inspired by the work of Azar et
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al. [2].

Lemma 4.3.4 Let f be the flow corresponding to the current strategy profile. Con-

sider the following random process: choose an agent i at random and let it play its best

response. If f' is the new flow after this change, then either E[l(f')lf] < (1 )l(f),

or l(f) < 0(22d(d + 1)2d+2) OPT.

Proof. Assume that the best

resulting in the flow fi'. Thus,

two cases:

response of agent i is to switch from path Pi to P/'

E[l(f') f] = EiU l (fi). We consider the following
· ..~

Case 1: ZiJ 2(d + 1)li(f') < YiZs li(f). In this case, by Lemma 4.3.2,

E[l(f')lf] = (fi)

< - >3 (I(f) + (d + 1)li(f) - li(f))
iEU

<-( (f)n (± + li(f) - li(f)
icU iEU iEU

_

= (1- )l(f).2n

Thus, we obtain E[l(f')Ifl < (1 - I)l(f).

Case 2: ieu 2(d + )li(fi) > Eicu li(f). Let P* = (PI*,. .. , P*) be the optimal

solution and let f* be the flow corresponding to P*. Set J*(e) = {i: e C Pi*}. Let

fi* be the flow resulting from the switch of agent i from Pi to Pi*. Since Pi' is i's

best response, we have li(f*) > li(fi'). Thus, in this case, ivU 2(d + 1)li(fi*) >
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Eiu li,(f) = (f). Consequently,

I(f) < )E2(d+l)li(fi*)
iEU

< (2d + 2) ri E ee(fe + ri)
iEU eEP*

d

- (2d+2) ri y E ae,j(fe +ri)j
iGU eEP?* j=O

d

= (2d + 2)E E 
e j=O iEJ*(e)

ae,j(fe + ri)jri.

The rest of the proof of this case is based on the proof of Lemmas Al, A2, and A3

in [2]. First, we use the following inequality from

for any c > 1. Thus, we get:

d

1(f) (2d+2)1 5e E a,j(fe+ri)ri
e j=O iJ*(e)

d

< (2d+2)e E ae,j
e j=O

E (cfJri+
ieJ*(e)

d (

e j=O

d

= c(2d + 2) E E
e j=O

d

= c(2d+2)EE =
e j=O

d
Inc

ae,jfff + (2d + 2)

a,jfe fe* + (2d + 2)

+1) d+ )

d
ln c

d
ln c

f*j+l1)

d d

+ I ) aeif 1
e j=0

d

E e (fe ) f

where the second inequality comes from the fact that ZiJ*(e)ri d < fe*d and the

function f(x) = ( + 1)x is an increasing function for x > O. Holder's inequality

states:

E abl- <
i

1-a
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Applying this, with aj = a,jf j+ l bj = ae,jf'*j +, = J+i yields

d

1(f) < c(2d + 2) E a,jfEjf +
e j=o

d /

< 2c(d+1)E 
j=0 e

+2(d + 1) dlnc

d

< 2c(d + 1) ( e(fe)
j=o e

+2(d + 1) c

d d

- + )E (f ) f7
e

a ,j+i/(j+l)

), j/(j+l)
f) 1/(j+l)

f *

i) d

+ t,(fe) f
e

1/(d+l)

< 2c(d + 1)5 ( (fe)f) /(fd))
j=0 e eI )( d

-F2(d- c) Ic-- I1< el V e '
e 

< 2c(d + 1)2 d/(del)E fe (fe ) fe ( e (fe *)
ee

+2(d + 1) Ic

fe*)

d

+ (f*) ff
e

where the fourth inequality is from the inequality xy 1- a > xa'y - a for x > y > 0

and 1 > a > a' > 0 with x = -e 'e(fe)fe and y = Ze e(f:*)f*. By letting

1

l(f)d+l
1

OPT d+

we get

xd+1 < 2c(d + 1)2 xd + 2(d + 1)
(d
ln c

+l) d

After dividing both sides by xd, we get:

x < 2c(d + 1)2 + 2(d + 1)
d i

d
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We claim that if we set c = 2 - c for = d+l 2 (d+l), then we have x < 4(d + 1)2.

Assume for contradiction that x > 4(d + 1)2. Then,

4(d + 1)2 < x < 4(d + 1)2 -2(d + 1)2 + 2(d + 1)

Thus,

(d 1)d
(d+ 1) < n c

< 2d [since Inc > 0.5]

4(d + 1)2 )

< 2(d + 1)

= (d+t 1).-

which is a contradiction. Therefore, by setting c 2 2- , we get x < 4(d+ 1)2. Hence,

I(f) = xd+lOPT < O(22d(d + 1)2d+2 )OPT. E

From Lemma 4.3.4, we can bound the price of sinking as follows. Consider a

sink Q. Let fo be a flow in Q. Consider a random walk starting from fo in which

we let a random agent play his best response at each step. Let fo, fl, f2,..., fN

be a sequence of observed flows in Q. Recall that the value for sink Q is equal to

F(Q) = CESQ FrQ(S)l(fs) where fs is the flow corresponding to the state S and 7FQ is

the steady distribution for the random walk on Q. Since Q is strongly connected, this

is equal to F(Q) = limN, °<J<N E[l(f)] . In order to upper bound this value, it isN

sufficient to upper bound E[l(fj)] for each 0 < j < N. Lemma 4.3.4 shows that there

exists a state in any sink Q with total latency less than 0(2 2 d(d + 1)2d+2 )OPT. Note

that, as Q is strongly connected the value of the sink is independent of the choice

of fo. Therefore, we can set fo such that l(fo) < c'22d(d + 1)2 d+2OPT. Let ci be

the coin toss of step i in the random walk. More precisely, we want to upper bound
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aj El,C2,.,Cj[I(fj) ]. By Lemma 4.3.4 and Lemma 4.3.3, we have

* Either Ecj+ [l(fj+,l)fj] < (1- )l(fj) or l(fj) < 22d(d + 1)2d+2OPT.

· Ej+[l(fj+l)fj] < (1 + )l(fj)

Let E1 be the event that l(fj) < 22d(d + 1)2d+2 and E2 be the event that l(fj) >

c2 2d(d + 1)2d+2)OPT. Let p be the probability that event E2 happens. Furthermore,

let Y = E[l(fj)lE] < c2 2d(d + 1)2d+2 and X = E[l(fj)lE 2]. Thus, aj = E[l(fj)] =

pX + (1 - p)Y. Now,

aj+l = E[l(fj+l)]

< (l- )X+(i-p) 1+ Y

< 1- 2 )(pX + (- )Y)+ + Y
• ( n)kJ2n ( 2n

a( ) 2d+ 2n}. 2n

•<( -1 a3 2 c122(d± 1)2d+0 prp

Combining the above recurrence relation and ao < (fo) < 2c2 2d(d + 1)2 d+30PT,

we can prove aj+l < 2c122d(d + 1)2 d+3OPT by induction. Thus, E 1,C2,...,Cj[l(fj)] <

0(2 2 d(d + 1)2d+3oPT). Hence, the price of sinking is at most 0(22 d(d + 1)2d+3) by

the linearity of expectation. As (d + 1)2d+3 - O(d2 d+3), we have the desired bound.

We can also use the lemmas used in the proof of Theorem 4.3.1 to bound the

rate of convergence to states with good social value in unsplittable (weighted) selfish

routing games. We can prove that starting from a flow of latency C, after O(n log OPT)

random best responses, the expected social value is less than 70 OPT for linear latency

functions for any c > 0, and is less than 0(22dd2d+3)OPT for polynomial latency

functions of degree at most d. This is in contrast with the negative convergence result

of Fabrikant, Papadimitriou, and Talwar [15], in which they exhibit exponentially long

best-response paths to PSNE (or sink equilibria) in these games. Our bounds show
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that, even though convergence to PSNE (or sink equilibria) may be exponential, a

random sequence of best responses of agents converges to a state with good social

value after polynomial number of best responses. Here, we prove a tighter bound

for convergence in the weighted unsplittable selfish routing game with linear latency

functions. We assume that the latency function of arc e is a linear function. In

particular, we let the latency function for arc e E E(G) be e(x) = aex + be with

ae, be > .

Theorem 4.3.5 In the weighted unsplittable selfish routing game with linear latency

functions, starting from any state with total latency C the expected latency of the flow

after O(nlog T) random best responses is at most 70 OPT for any c > 0.

Proof. Let f be the current flow, and suppose agent i changes its flow path from Pi

to.PiJ, to give a new flow fl. From Lemma 4.3.2, l(,) < I(f) + 2i(f) - li(f). We

will use the following refinement to Lemr-a 4.3.4.

Lemma 4.3.6 Let f be the flow corresponding to the current strategy profile. Con-

sider the following random process: choose an agent i at random and let it play its best

response. If f' is the new flow after this change, then either E[l(f')lf] < (1 - ) I(f),

or l(f) < 23.32 OPT.

Proof. Assume that the best response of agent i is to switch from path P to Pi'

resulting in the flow fi'. Thus, E[l(f')lf] = 1 EiEu l(fi). We consider the following

two cases:

Case 1: Eju 41i(fi) < EiEU li(f). In this case, similar to Case 1 of the proof of

Lemma 4.3.4, it follows that E[l(f')lf] < (1 - )l(f).

Case 2: ZiEu 41i(fi') > iEu li (f)· Let P* = (P*,... , Pn*) be the optimal solution

and let f* be the flow corresponding to P *. Set J*(e) = {i: e G Pi*}. Let fi* be the

flow resulting from the switch of agent i from Pi to Pi*. Since Pi' is i's best response,

we have li(fi*) > li(fi'). In this case, we can apply the method of Azar et al. [2] as
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follows:

(ri (aefe + b))
i eEPi

< E41i(f1 )
iEU

< 41i(fi) [since player i play his best response to f4]
iEU

< 4ri (ae(f + ri) + b)
iEU eEPi*

= 4 E C [(aefe + be)ri + aer2]
iEU ePi*

4 [(afe + b)ri + aeri.
e i:eEPi

It follows that

l(f) < 4 f,*(ef + b) + 4 5 aef 2
e e

= 4 f*afe + 4 (aef + be)f*
e e

= 4 E f*aefe + 4 OPT
e

,f )(vea7f))
e

a f2) (

+ 4 OPT[Cauchy-Schwartz inequality]

ae f*2) +4 OPT

< 4/(ae,
e

fe + be)fe S(aefe* + be)f* + 4 OPT

= 4/(f)PT+ 4 PT.

By setting x = (f)T we have x < 4(Vx+ 1). This gives x < 23.32. Hence, in this

case, (f) < 23.32 OPT. D

Proof of Theorem 4.3.5. Let ao = C be the social value of the initial flow. Assume

that at each step we choose an agent at random and let it play its best response. Let
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aj be the expected latency of the flow after j's step. From Lemma 4.3.6, we have

for any j > 0, aj < 23.32 OPT or aj+l < aj(1 - ). Moreover, from Lemma 4.3.3,

aj+l < aj(1 + l) for any j > O. Now, let p be the probability that aj > 23.32 OPT.

Let X be the expected value of aj given that aj > 23.320PT and Y be the expected

value of aj given that aj < 23.320PT. Thus,

aj+l p (1-+ ( -(1 -)(1 + -)Y
_< 1

< ((1-2 (PX+(I-P)Y)+3 Y

( 1 69.96
< l-2 ) a + 2 OPT.

It follows that

69.96 OPT(-(1- 2n)
a- 2n9 2n2n

fori < j. Asaresult, aj < ao (1 - n) +69.96 (1- (1- )) OPT < C (1 J -

69.96 OPT. Thus, for j > n log log C, we get a < (69.96 + ) OPT. Therefore,

after O(n log OT) steps the expected value of aj is at most 70 OPT. D

Finally, we note that all our results on the price of sinking and convergence for

weighted unsplittable selfish routing games extend to weighted congestion games,

since we never used the fact that the strategy of players is a path from the source to

the destination, and the feasible strategies could be any subset of arcs of the network.

It follows that these results hold for general weighted congestion games.

4.3.2 Valid-Utility Games

Valid-utility games are formally defined in Section 1.2. This class of games are in-

troduced by Vetta [87] for which he proved that the price of anarchy for mixed Nash

equilibria is at most 2. Here we prove bounds on the worst-case price of sinking in
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valid-utility games. First, we show that our bad example in Section 4.2 is a valid-

utility game. Thus the price of sinking in valid-utility games can be as bad as n.

Then, we will prove that this lower bound for valid-utility games is almost tight. In

particular, we will show that the price of sinking in a valid-utility game is at most

n+ 1.

In order to prove that the bad example in Section 4.2 is a valid-utility game, we

need to verify three conditions:

1) Non-decreasing and Submodular Social Function: First, it is clear that the

corresponding set function of the social function ys is non-decreasing. To show

its submodularity, we use an equivalent definition of submodular functions: A

set function f is submodular if for any two subsets A and B such that A c B

and for any element i ~ B, f(A U {i})-f (A) > f(B U {i)-f (B) [26]. Thus, in

order to prove that yS is submodular, it is enough to prove that for two (possibly

infeasible) strategy profiles S -= (asl S' · ...., ad s) such that

si C s for all i U, by adding a new element j to the strategy of any player i

the increase in -s for S is not less than the increase for S'. First, we consider

the case that j -= x If Su n x = 0 then SU n X = 0, and thus x (S' ® 0) = 2

and y( (S 0i) =2. If SU n x 0 then yx(S' ® Di) =O < 0 (S 0 •i)

Hence if j = xi, the desired condition for submodularity holds. Also, if j = yi

it is implied that 7y,(S' E 0) = 1 if and only if S'U n {y) = 0, otherwise

y (S' ® 0i) = 0. It follows that -,i(S' 0j) < 4, (S i 0). Therefore, -y is

submodular.

2) Vickrey Condition: If player i plays Yi then she gets 1 and the social value

changes by 1. If player i plays an element of Xi and increases the social value

by 2, then she is the only player who plays an irresponsible strategy. Thus,

i = i*(S) and so she receives those two utility units. Otherwise the playing of

an element of Xi has no effect on the social value. Thus, the Vickrey condition

is trivially satisfied.

3) Cake Condition: It is straightforward to check that ¢Eiu ai(S) = y(S) and the
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cake condition holds.

Now, we prove that this bound is almost tight.

Lemma 4.3.7 Given a strategy profile T = (tl,.. . t) in a valid-utility game, let

the best response of agent i be i. Set T i = (tl,...,ti-l,si,ti+l,...,tn). Then

EiEv ai (Ti) > OPT - y(T).

Proof. Let Q = (,,... , ,n) be the optimum state. Let

Qi = ( 1, 2,... , i, i+1,) i+2,... n).

Given that si is a best-response strategy, we have ai(TV) > y,(T 0Gi). Combining

this with the submodularity of ',. we obtain

a (T) > Z (TED i)
icU iEU

= Z(y(T (ai) -- (T d i))
icU

> C(y(T U a) - (T))
iGU

> A(y(T U Qi) - y(T U Qi-1))
isU

= f(T U Q) - y(T).

Since y is non-decreasing, it follows that Eicu ai(Ti) > OPT - y(T). O

Theorem 4.3.8 The price of sinking in a valid-utility game is at most n + 1.

Proof. Consider a sink equilibrium Q. Let T = (t1 ,. .. , tn) be a state in Q. Let the

best response of agent i be si at state T, and set Ti = (tl,..., ti-l, siti+l,... ,tn).

Let Y be the expected social value of the state after a random best-response move
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from T. By the cake property and Lemma 4.3.7, we have

Y =

n iEU

n> -(OPT - 7(T)).

Observe that the price of sinking is equal to the expected social value on a sufficiently

long random walk. Now take a long random walk To, T,..., Tk. Let ei be the expected

value of y(Ti) where the expectation is over the random coin tosses of the random

walk. We know that as i tends to oo, (Q) = ei. We need to prove that e >

i OPT as i tends to o. Let Pi,y be the probability that y(Tj) = y. Thus, ei =

EyPi,uY and ei+l = Eypi,yE[?(Ti+l)7(T) = y]. The above inequality shows that

E[y(T+,) l(Ti) y] > (C)oT -- y). Therefore,

c';i+ > - piy(OPT - y)
Y

-= (OPT- EPi,yY)
y

- -(OPT- ei).
n

Hence, e+l > OPT - . Since as i goes to o, (Q) = e = ei+l, we get r(Q) >

OPT - r(Q). Therefore, F(Q) > OPT as desired. [I

Thus the worst case price of sinking in a valid-utility game is between n and n + 1.

4.4 A Hardness Result

In Section 2.6.3, we showed that finding a PSNE for some instances of the uniform

CapDC game is PLS-hard (Theorem 2.6.6). Moreover, we proved that this result

implies the existence of exponential best-response paths to equilibria in this game

(Corollary 2.6.7). In Chapter 2, we proved that the CaplBDC games (and in particular
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the CapDC games) are special cases of valid-utility games (Theorem 2.6.2). These

results from Chapter 2 imply the following corollary:

Corollary 4.4.1 Finding a sink equilibrium (or a state in a sink equilibrium) is PLS-

hard for some instances of valid-utility games. In addition, in some instances of valid-

utility games, there exist states that are exponentially far from any sink equilibrium

in the state graph. E
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Chapter 5

Cross-Monotonic Cost Sharing

Methods and Group-Strategyproof

Mechanisms

Consider a situation where a group of customers (which we call agents) wish to

buy a service such as connectivity to a network. The total cost of this service is

a function of the group of customers that are serviced: a group of customers in

distant towns might incur a larger cost than a group of customers in the same town.

The service provider must develop a pricing policy, or cost-sharing scheme, that,

given any group of customers, divides the cost of the service amongst them. For

example, one plausible cost-sharing scheme divides the cost of the service evenly

amongst the customers. However, in the case of network connectivity, this scheme

seems to undercharge distant customers with high connection costs and overcharge

other customers. Developing a fair and economically viable cost-sharing scheme is a

central problem in cooperative game theory. One commonly explored condition is that

of cross-monotonicity [62, 63]. Intuitively, cross-monotonicity requires that the price

charged to any individual in a group decreases as the group expands. Thus customers

have an economic incentive to promote the service. In this chapter, we study this type

of cost sharing schemes for different combinatorial optimization problems. Before

stating the known results and the main contribution of this chapter, we state the
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formal definitions that are used in this chapter.

5.1 Preliminaries

Let / denote a set of n users who are interested in a service. The cost of providing

service to a set S C of users is denoted by C(S). A cost allocation for a set S C o

is a function : S i- R+ U {0}, that for each user i C S, specifies the share b(i)

of i of the total cost of servicing S. A cost-sharing scheme is a collection of cost

allocations for every S C Sd. More formally, a cost sharing scheme is a function

: x 2 i- 1R+ U {0}, such that for every S C .~0 and every i ' S, (i, S) = 0.

Intuitively, we think of (i, S) as the share of i of the total cost if S is the set of

agents receiving the service.

Ideally, we want cost sharing schemes (and cost allocations) to be budget-balanced,

i.e., for every S C X, 5',Es (i, S) -= C(S). owever, it is not always possible to

achieve budget balance in combination with other properties, or even if it is possible,

it might be computationally hard to compute the cost shares. Therefore, we relax

this notion to the notion of a-budget balance (for some a < 1), which means that for

every S C ', aC(S) < Ies (i, S) < C(S).

In addition to budget balance, we usually require cost allocation and cost sharing

schemes to satisfy additional properties. One property that is extensively studied in

the cooperative game theory literature is the property of being in the core (see, for

example, Bondareva [7] and Shapley [84]), which intuitively says that no subset of

users should be overcharged for the service.

Definition 5.1.1 A cost allocation b for a set S C ' is in the a-core if and only

if it is a-budget balanced and for every T C S, EiCT(i) < C(T). A cost sharing

scheme J is in the a-core if and only if for every S, (., S) is in the a-core. We refer

to 1-core as core.

Another property, which was studied by Moulin [63] and Moulin and Shenker [62] in

order to design group-strategyproof mechanisms (see the definition below), and has
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recently received considerable attention in the computer science literature (see, for

example, [49, 46, 44, 69]), is cross-monotonicity. This property captures the notion

that users should not be penalized as the serviced set grows. Namely,

Definition 5.1.2 A cost sharing scheme ~ is cross-monotone if for all S, T c o and

i E (i, S) (i, SU T).

It is a simple exercise to show that every a-budget-balanced cross-monotonic cost

sharing scheme is in the a-core, but the converse need not hold. Therefore, cross-

monotonicity is a strictly stronger requirement than being in the core.

The main application of cross-monotonic cost sharing schemes is in the design of

cost sharing mechanisms, defined in the following setting: Each user i has a willingness

to pay or a true bid bi E IR+ U {O} for the service, i.e., she is willing to pay up to bi

dollars to get the service. We further assume that the happiness of user i is given by

biqi -xi, where q is an indicator variable which indicates whether she has received the

service or not, and xi is the amount she has to pay . A cost sharing mechanism. (also

'known as a social choice function) is an algorithm that elicits a bid bi C R+ U {O} from

each agent, and based on these bids, decides which agents should receive the service

and how much each of them has to pay. More formally, a cost sharing mechanism is

a function that associates to each vector b of non-negative bids a set Q(b) C a of

agents to be serviced, and a vector x(b) E IRn of non-negative payments. When there

is no ambiguity, we write Q and x instead of Q(b) and x(b), respectively. Throughout

this chapter, we assume that a mechanism does not charge an agent who does not

receive the service (i.e., xi = 0 for i ~ Q), does not charge an agent who receives the

service more than her bid (i.e., xi < bi for i E Q), and for each agent i, there is some

bid ooi such that if i bids ooi, she will get the service, no matter what others bid2 .

Furthermore, we would like the mechanisms to be approximately budget balanced.

We call a mechanism a-budget balanced if the total amount the mechanism charges

the agents is between aC(Q) and C(Q) (i.e., aC(Q) < iEQ xi < C(Q)).

1As noted by Moulin and Shenker [62], this assumption is without loss of generality
2 For a discussion about these properties see Moulin [63] and Moulin and Shenker [62].
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The main property that we want a mechanism to satisfy is incentive compatibility.

We want our mechanism to encourage participants to submit their true willingness

to pay as their bid. Agents should not be able to benefit from lying about the

prices they are willing to pay. Ideally, not even a group of users should be able

to benefit by cooperatively lying, thus discouraging complicated bidding strategies.

More precisely, we look for mechanisms, called group-strategyproof mechanisms which

satisfy the following additional property. Let S C v be a coalition of users, and b, b

be two vectors of non-negative bids satisfying bi = bi for every i X S (we think of b

as the true willingness to pay of users, and b as a vector of strategically chosen bids).

Let (Q, x) and (Q', x') denote the outputs of the mechanism when the bids are b and

b, respectively. We say that the mechanism is group strategyproof if for every such

S, b, b, if the inequality biq - x' > biqi - xi holds for all i E S, then it holds with

equality for every i G S.

We call the vector (b,..., bn) of true bids a scenario. A coalition S with bid

vector b of players is a lying coalition for a scenario b if when members of S announce

b instead of b (their true willingness to pay) as their bids, every member of the

coalition S is at least as happy as in the truthful scenario in which S announce their

true bid b, and at least one person is happier. Notice that we do not allow members

of the coalition to sacrifice their own happiness to benefit the group's total happiness.

For a group-strategyproof mechanism, any coalition of players with any bid vector is

not a lying coalition for any scenario.

For the important class of services with submodular cost functions 3, various

cross-monotonic cost-sharing schemes were studied by Moulin and Shenker [62] and

further by Jain and Vazirani [46]. For submodular cost functions, there are cross-

monotonic cost-sharing schemes that are budget-balanced. There are many other

interesting classes of cost functions that arise from NP-hard optimization problems.

For example, the cost of providing the service for a set of agents S could be expressed

as the cost of building the cheapest rooted Steiner tree that covers a given root

vertex r and all the elements of S, or the minimum cost of opening facilities and

3In a service with submodular cost function, C(S) is a submodular set function.
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connecting each member of S to an open facility4 . These two games, and many others

of practical importance, are instances of covering problems. For such problems, it is

usually impossible for a cross-monotonic cost sharing scheme to be budget-balanced.

Moreover, even if a budget-balanced cross-monotonic cost sharing scheme exists, it

might be hard to compute. Therefore, it is natural to consider cost sharing schemes

that are approximately budget balanced. Such schemes have been studied by Kent

and Skorin-Kapov [49], Feigenbaum et al. [20], Jain and Vazirani [44], and Pal and

Tardos [69].

Among the covering combinatorial optimization problems, a fundamental problem

is the (fractional) set cover problem. Given a family of subsets A C 2V, a family

A C A of subsets is a set cover for a set S, if any element v c S is contained in at

least one set T A (v T). The minimum set cover of a set S is a set cover of S with

minimum number of sets. Given a family of subsets f C 2V, a fractional set cover

for a subset S C V is a collection of fractional numbers aT for each T E YF, such that

(i) 0 < aT < 1, and (ii) for each element v S, ZTG:VET aT > 1. The minimum

fractional set cover for a set S is a fractional set cover in which ZTE. aT is minimized.

We refer to Tc.F aT as the cost of the fractional set cover. The corresponding set

cover and fractional set cover games are defined as follow:

Definition 5.1.3 Let .F C 2V be a collection of subsets of the universe V. The set

of agents in the set cover game defined on F is the set of elements of the universe V.

Given a subset S C V of the agents , the cost of S is the minimum size of a set cover

for S. In the fractional set cover game, the cost of a subset S C V is the cost of the

minimum fractional set cover for S.

It is easy to show that if there is an -budget balanced cross-monotonic cost-

sharing scheme for the fractional set cover game, then for any special case of the set

cover problem of integrality gap at most /i, there is an a-budget balanced cross-

monotonic cost-sharing scheme. For example, if we could get a constant-factor for

fractional set cover game, it would have implied a constant-factor for metric facility

4See the formal definition of the facility location game in Section5.2.3.
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location and generalized Steiner tree games. Unfortunately, our result shows that no

cross-monotonic cost-sharing scheme for fractional set cover game with a reasonable

budget-balance factor exists, and thus this approach for designing cross-monotonic

cost-sharing schemes fails to recover much of the cost. This raises the natural question

of whether it is possible to design well budget-balanced schemes for these combina-

torial optimization games.

We can derive simple bounds on the budget-balance factor of combinatorial op-

timization games using the integrality gaps of the "natural" LP-relaxations. The

cross-monotonicity of a cost sharing scheme implies that for every set of agents the

cost shares form an allocation in the core of the game. Therefore, the best budget-

balance factor achievable by a cross-monotonic cost sharing scheme cannot be better

than that of a cost sharing in the core. This, together with the folklore theorem

that the best budget-balance factor for a cost sharing in the core of integer covering

games is equal to the integrality gap of the "natural" LP-relaxation of the problem;.

gives us upper )ounds for the best cross-monotonic cost sharing scheme for various

combinatorial optimization problems. For example, this argument implies that cross-

monotonic cost sharing schemes for metric facility location, vertex cover, and set

cover games cannot recover more than a 1,' ' and 1 fraction of the total cost,

respectively. Prior to this work, this was the only method known for upper bounding

the cross-monotonic cost sharing schemes. In this chapter, we show stronger upper

bounds for several combinatorial optimization problems using a novel technique based

on the probabilistic method that will be explained in Section 5.2.1. In particular, we

prove that the best budget-balance factor achievable for the facility location game is

1/3. This matches a lower bound recently given by Pal and Tardos [69]. Also, for

the vertex cover and set cover games, we show that no cross-monotonic cost shar-

ing scheme can recover more than an O(n- 1 /3 ) and 0(l) fraction of the total cost,

respectively. Previously, Devanur et al. [13] give a strategyproof Q(1/ log(n))-budget

balanced cost-sharing mechanism in the core for the set cover game, but their un-

derlying cost-sharing scheme is not cross-monotonic. We also apply this technique

to several other cost or profit sharing problems including edge cover, maximum flow,
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maximum matching, and arborescence packing.

Cross-monotonic cost sharing schemes are mainly used to obtain group-strategyproof

mechanisms using a method developed by Moulin and Shenker [63, 62]. In fact, almost

all known group-strategyproof mechanisms are Moulin-Shenker mechanisms. There-

fore, one might hope that our negative results on cross-monotonic cost sharing schemes

might imply similar negative results for group-strategyproof mechanisms. However,

we observe that for almost any problem there are trivial group-strategyproof mech-

anisms that recover all the cost. These mechanisms completely ignore the structure

of the problem and can therefore be unfair and inefficient. This suggests that new

conditions should be added to the definition of group-strategyproofness to exclude

such mechanisms. We study a few such conditions, and prove that with the extra

assumptions of no free riders and upper continuity5 , group-strategyproof mechanisms

give rise to cross-monotonic cost sharing schemes, and hence our upper bounds hold

for group-strategyproof mechanisms with these extra assumptions. We also consider;

subsidy-freeness '[61], which is a stronger fairness condition and prove the equiva-

lence of budget-balanced cross-monotone cost sharing schemes and budget-balanced

group-strategyproof mechanisms with this property.

The rest of this chapter is organized as follows. Section 5.2 contains a description

of our upper bound techniques, our upper bounds for the covering game and the

facility location game, and the statement of some other results that we have been

able to prove using this technique. In Section 5.3 we present several trivial group-

strategyproof mechanisms and study some of the axioms that can be added to the

definition of group-strategyproof mechanisms to eliminate such trivial mechanisms.

5.2 Upper bounds for cross-monotonic cost shar-

ing schemes

In this section we present the main idea behind our upper bound technique and prove

several upper bounds for the games defined based on edge cover, vertex cover, and
5See the definitions in Section 5.3.
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facility location. In Section 5.2.1 we explain the technique with a simple example of

the edge cover game. Sections 5.2.2 and 5.2.3 contain the proofs of the upper bounds

for the vertex cover and facility location games. Finally, in Section 5.2.4 we state

(without proof) several other upper bounds that can be proved using our technique.

5.2.1 A simple example: the edge cover game

In this section, we explain our technique using the edge cover game as a guiding

example. The edge cover cost function is defined as follows.

Definition 5.2.1 Let G(V, E) be a graph with no isolated vertices. The set of agents

in the edge cover game on G is the set of vertices of G. Given a subset S of vertices,

the cost of S is the minimum size of a set F C E of edges such that for every v E S,

at least one of the edges incident to v is in F. Such a set F is called an edge cover

for S.

It is easy to see that for every set S, one can obtain .a minimum edge cover of S by

taking a maximum matching on S and adding one.edge for every vertex that is not

covered by the maximum matching (see [12]). Using this fact, we can give a cost-

sharing scheme that is in the 3-core of the game: charge each vertex that is covered

by the maximum matching 1, and other vertices . Let v be the amount that vertex

v is charged. Thus, for any two vertices u and v of G, if av = u = , then there is

no edge between u and v. Consider any subset S of vertices. Consider an optimal

edge cover T C E(G) of S. For any edge {u, v} G T, we know that av + au < 1, since

Av + 2 or a, 2. Therefore, TI > s a,,. Thus, this cost-sharing scheme satisfies

the core property. Furthermore, it is easy to see that the sum of the cost shares

is at least times the edge cover for S. Therefore, there is a cost-sharing scheme

satisfying the core property with a budget-balance factor of 3. In fact, Goemans [28]

showed that for every graph there is a cost sharing scheme in the -core. However,

in the following, we show that no cross-monotonic cost-sharing scheme can achieve a

budget-balance factor better than '
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Theorem 5.2.1 For every e > O, there is no ( +c)-budget balanced cross-monotonic

cost sharing scheme for the edge cover problem.

Here's the high-level idea of the proof: We assume, for contradiction, that there is a

cross-monotonic cost sharing scheme that always recovers at least a ( + e) fraction

of the total cost. We explicitly construct a graph G (or in general the set of agents

v and the structure based on which the cost function is defined), and look at the

cost-sharing scheme on this graph. For edge cover, this graph is simply a complete

bipartite graph Kn,n, with n large enough. Then, we need to argue that there is a

set S of agents such that the total cost shares of the elements of S is less than + c

times the size of the minimum edge cover for S. This is done using the probabilistic

method: we pick a subset S at random from a certain distribution and show that in

expectation, the ratio of the recovered cost to the cost of S is low. Therefore, there

is a manifestation of S for which this ratio is low. In the edge cover example, we pick

one vertex v of G uniformly at random and let S be the union of v and the set of

vertices adjacent to v. We now need to bound the expected value of the sum of cost

shares of the elements of S. We do this by using cross-monotonicity and bounding

the cost share of each vertex u S by the cost share of u in a substructure T of

S. Bounding the expected cost share of u in T is done by showing that for every

substructure T, every u T has the same probability of occurring in a structure S

in which T = T. This implies that the expected cost share of u in T (where the

expectation is over the choice of S) is at most the cost of T, divided by the number

of agents in T. Summing up these values for all u gives us the desired contradiction.

Proof of Theorem 5.2.1. Assume that there is a ( + c)-budget-balanced cross-

monotonic cost sharing scheme . Let G be the complete bipartite graph K,,n, where

n will be fixed later, and consider on G. For every v V(G), we let S be the union

of v and the set of vertices adjacent to v (i.e., vertices of the other part). We pick a

set S of agents by picking v uniformly at random from V(G) and letting S = S. By
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the definition of the edge cover problem,

C(S) = n for every S. (5.1)

On the other hand,

Es [ (i,S)] = E [(v,Sv) ] + Ev [ E(,Sv)]
iES uGSv\{v}

< 1 + E (Uu, 'v})],
uCSv\{V}

where the last inequality follows from the facts that for every vertex u and every set

S, (u, S) < 1, and that for every v C V(G) and u G Sv \ {v}, (u, Sv) < (u, {u, v}).

Both of these facts are consequences of the cross-monotonicity of . By the definition

of expected values, we have

E [ ' L - u, {uv})]= E,, {(u. vi)] (5.2)
ulSV\{lJ}

where the second expectation is over the choice of v from V(G) and u in S \ {v}.

However, choosing a vertex v and then a neighbor u of v at random is equivalent to

choosing a random edge e in G at random, and letting u be a random endpoint of e

and v be the other one. By the budget-balance condition, the sum of the cost shares

of the endpoints of e is at most one. Therefore, for every e, if u is a random endpoint

of e and v is the other endpoint, E[~(u, u, v})] < . Thus, the right-hand side of

Equation 5.2 is at most . Therefore, by Equations 5.1 and 5.2, we have

El Ees ~ s) < < +
s C(S) - n 2

for n > 1/c. Therefore, there is a set S satisfying iE(S) < + e, which is a

contradiction with the assumption that ~ is ( + c)-budget balanced. ]

It is not difficult to see that for any instance of the edger cover game, the cost-sharing

scheme satisfying (i, S) = for every i S is cross-monotonic and -budgetscheme~~~~~~~ 2 aifig (,S
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balanced. Therefore, the bound given in the above theorem is tight. Also, one can

think of the edge cover problem as a special case of the set cover problem in which the

size of each set is 2. It is not difficult to generalize the above result (using k-partite

k-uniform complete hypergraphs) to the special case of set cover in which the size of

each set is k, and prove that for k constant, no cross-monotonic cost-sharing scheme

for this problem can recover more than a fraction of the cost. Similar argument

shows that for the general case of the set cover game, no cross-monotonic cost-sharing

scheme can recover more than a 0(1) of the total cost. This result is also tight up

to a constant multiple.

Theorem 5.2.2 There is no cross-monotonic cost-sharing scheme ~ for the set cover

game such that for every set S C X, d recovers more than a fraction of the cost

of S.

Proof. Assume that there is such a cross-monotonic cost sharing scheme ~. Consider

the following instance of the set cover problem. Let .' be a set of n2 agents that

can be partitioned as = Al U A 2 U ... U A,, where Ai's are disjoint sets each of

size n. Define F as the collection of all sets S c v' such that IS n Ail = 1 for every

i = 1,.. ., n. An alternative way to look at this is that ' and F are sets of vertices

and edges of an n-uniform n-partite complete hypergraph.

We pick a random set S of agents in the above instance as follows: Pick a random

i from {1,...,n}, and for every j 4 i, pick an agent aj uniformly at random from

Aj. Let T = {aj : j ~ i} and S = Ai U T. The cost of the optimal set cover solution

on S is always at least n, since no set in F contains two distinct elements of Ai, and

therefore each element of Ai must be covered with a distinct set in F.

We now bound the average recovered cost over the random choice of S.

Es [ (x,S)] = E [I E(x,S)] + E [I 3(a, S)]
xe zxcAi jii

xEAi j)i
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Since all elements of T can be covered by one set, the second term in the above

expression is at most 1. We write the first term as nEs, [(x, {x} U T)] where the

expectation is over the random choice of S and the random choice of x from Ai. As

in the proof of Theorem 5.2.6, the expected value of ((x, {x} U T) in this experiment

is equal to the expected value of Ej.=l (aj, a ,..., an}) in an experiment that

consists of choosing an agent aj from each Aj uniformly at random. By the budget-

balance property, we always have En=l (aj,{a,... ,an}) < C({al,...,an}) = 1.

Therefore, the first term in the right-hand side of the inequality (5.3) is at most one.

This means that the expected total cost share recovered from the set S is at most

two. Therefore, the ratio of recovered cost to total cost of S is at most 2/n < 4/lSl.

5.2.2 The vertex cover game

The vertex cover game is defined on a graph G(V F). The set of agents is the set of

edges of G, and the cost of serving a set S C E is equal to the minimum size of a

set A of vertices such that for each e G S, at least one of the endpoints of e is in A.

Such a set is called a vertex cover for the set S. It is well-known that the integrality

gap of the LP relaxation of vertex cover is 2, and therefore no allocation in the core

can recover more than half the cost of the solution in the worst case. We show in the

following theorem that if we require the cost-sharing scheme to be cross-monotonic

then no constant-factor budget balanced scheme exists.

Theorem 5.2.3 For every > O, there is no cross-monotonic cost sharing scheme

for vertex cover that on every set S of n agents, recovers at least a (2+c)n-1 /3 fraction

of the cost of S.

Proof. Assume, for contradiction, that such a scheme exists. We let G be a

complete graph on m + 2f vertices, where m and e (m < () are numbers that will be

fixed later, and consider the cost-sharing scheme J on G. We show that there is some

set S of edges of G for which recovers at most a IS-1/ 3 fraction of the cost. We

do this by picking S randomly from a distribution described below, and showing that
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Figure 5-1: The structure S in the vertex cover game

the above statement holds in expectation, and therefore there should be a particular

S satisfying the above statement.

Let 7r be a permutation of the m + 2f vertices. Let A be the set of the first m

vertices, B be the set of the next f vertices, and C be the set of the remaining 

vertices. We denote the i'th vertices of B and C (based on the ordering given by 7r)

by bi and ci. Let S, denote the set of all m£ edges between A and B, union the set

of edges bici for i = 1, . . , f. We pick S by picking the permutation 7r uniformly at

random and letting S = S,. See Figure 5--i for an example.

If we denote the set of edges between A and B by T', we have

E [ (e, S) ]< E [ (e, T) < (5.3)
eET eET

where the first inequality follows from the cross-monotonicity of J and the second

inequality is implied by the budget balance assumption and the fact that the cost of

the minimum vertex cover in T is m. We also let T/ be the set of all m + 1 edges in S

that have bi as an endpoint (see Figure 5-1). Equation 5.3 and the cross-monotonicity

of ( imply the following.

Es [ (i, S)]= E [E(eS)1ZE [(bici, S)1
ieS eET i=l

< m + E [(bc,T T] (5.4)
i=l

We now need to analyze the expectation of (bici,Ti) over the random choice of

r. Notice that the only elements of 7r that are important in (bici,Ti) are the first
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m elements and the m + i'th and m + e + i'th elements (bi and ci). Therefore, the

expectation of ~(bici, Ti) over the choice of ir is equal to the expectation of (Vm+2vm+l,

{VlVm+l, V2Vm+1,... , VmVm+l, m+2Vm+1}) over the random choice of an ordered list

vI, V2 ,. .. , Vm+2 of m+ 2 different vertices of G. However, in this experiment it is clear

by symmetry that the expected cost share of vivm+l is the same for i = 1,..., m, m+2,

and therefore by the budget balance condition each of these expected cost shares is

at most 1 This, together with Equation 5.4 imply the following.

Es [,(i,S)] <m+ m+Es [ sk ) <m + (5.5)
iES

On the other hand, the size of the minimum vertex cover in S is always . Therefore,

the expected value of the ratio of i s (i, S) to C(S) is at most + 1L Thus,

there is a set S for which this ratio is at most e-+ . Taking m = V, we see that

the allocation on S recovers at most a < (2 4- e)IS/3 fraction of the cost. O

We-can show the following positive result for cross-moonotonic cost sharing schemes

for the vertex cover. We 'do not know the right bound for the budget-balance factor

of the vertex cover game.

Theorem 5.2.4 For the vertex cover game, the cost sharing scheme that charges the

edge uv in the set S an amount equal to min(1/degs(u), 1/degs(v)) is cross-monotonic

and 2-budget balanced.

Proof. It is clear that this scheme is cross-monotone. We only need to verify the

budget-balance factor. Consider a set S of n agents (i.e., edges), and the graph G[S]

induced on this set of edges. First, we show that the total cost share of agents in S

is at most the cost of vertex cover for S. Let T C S be an optimal vertex cover of

G[S]. For an edge {u, v} E E(G[S]), u E T or v E T or both of u and v are in T. Let

/u, be I if u and v are both in T; otherwise let 3,,, be 1 or 1 ifdegS(v)+degS(u) deg (u) degs(v)

134



u C T or v c T. Then

1 1E min( I) E OU
{u,v)EE(G[S]) degu(u) deg(v) {EE(G[S])

= ITI.

This shows that the sum of cost shares of edges in G[S] is at most the cost of the

minimum vertex cover of S.

Now, we prove that the total cost share of the agents in S is at least times

the cost of a vertex cover for S. Divide the set of vertices into two subsets L and

H, where L is the set vertices of degree less than +/E in G[S] and H is the rest of

vertices (H = V(G) - L). As a vertex cover solution, select H and both endpoints

of all edges (u, v) such that u, v G L. We show that the cost shares of the edges in S

sum to at least a i- fraction of the cost of this solution. First consider any edge e

between vertices in L. The cost share of e is at least 1, thus its cost share covers the

cost of picking both its endpoints. Now consider the vertices in H. Since the degree

of each vertex v G H is greater than or equal to /n, the sum of the cost shares of

the edges adjacent to v is at least 1 V/ = . Each edge is included in at most two

such summations, and thus the sum of the cost shares of edges adjacent to vertices

in H is at least a fraction of the cost of H. Therefore, the sum of the cost shares

of the agents in S is at least i times the cost of the optimal vertex cover for S. OE

5.2.3 The metric facility location game

Given a set of cities, facilities with opening costs, and metric connection costs between

cities and facilities, the facility location problem seeks to open a subset of facilities

and connect each city to a facility in a manner that minimizes the total cost. In

the facility location game, each city is an agent. The cost of a subset of agents is

the cost of the minimum facility location solution for that subset; a cross-monotonic

cost-sharing scheme tries to share this cost among the agents. In this section, we

prove that any cross-monotonic cost-sharing scheme for facility location is at best
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Figure 5-2: Upper bound for facility location game

½-budget-balanced. This matches the budget-balance factor of the scheme given by

Pal and Tardos [69].

We start by giving an example on which the scheme of Pal and Tardos [69] recovers

only a third of the cost6 . This example will be used as the randomly chosen structure

in our proof.

Lemma 5.2.5 Let I be an instance of the facility location problem consisting of

m + k cities cl,..., cm, C1, ... , c and m facilities fl,..., fm each of opening cost 3.

For every i and j, the connection costs between fi and ci and between fi and cj are

all 1, and other connection costs are obtained by the triangle inequality. See Figure 5-

2(a). Then if m = w(k) and k tends to infinity, the optimal solution for I has cost

3m + o(m).

Proof. Let p be the number of opened facilities in the optimal solution. Then

the facility opening cost of these facilities is 3p, and at least m - p cities among

cl,... , cm should pay at least 3 for the connection cost. Thus, the total cost is

3p + 3(m - p) + p + k = 3m + k + p. Since p > 1, the cost of the optimal solution is

3m + k + 1 which is 3m + o(m) as m = w(k). D]

6 This example also shows that the dual computed by the Jain-Vazirani facility location algo-
rithm [45] can be a factor 3 away from the optimal dual.
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Theorem 5.2.6 Any cross-monotonic cost-sharing scheme for the facility location

game is at most 1/3-budget balanced.

Proof. Consider the following instance of the facility location problem. There are k

sets A 1 ,... , Ak of m cities each, where m = wc(k) and k = w(1). For every subset B

of cities containing exactly one city from each Ai ( B n Ail = 1 for all i), there is a

facility fB with connection cost 1 to each city in B. The remaining connection costs

are defined by extending the metric, i.e., the cost of connecting city i to facility fB

for i X B is 3. The facility opening costs are all 3.

We pick a random set S of cities in the above instance as follows: Pick a random

i from {1,... ,k}, and for every j i, pick a city aj uniformly at random from Aj.

Let T = {aj : j Z i} and S = Ai U T. See Figure 5-2(b) for an example. It is

easy to see that the set S induces an instance of the facility location problem almost

identical to the instance I in Lemma 5.2.5 (the only difference is that here we have

more facilities, but it is easy to see that the only relevant facilities are the ones that

are present in I). Therefore, the cost of the optimal solution on S is 3m + o(mn).

We show that for any cross-monotonic cost-sharing scheme (, the average recov-

ered cost over the choice of S is at most m + o(m) and thus conclude that there

is some S whose recovered cost is m + o(m). As in the previous proofs, we start

bounding the expected total cost share by using the linearity of expectations and

cross-monotonicity:

Es [C (c,S)] = E[ (c,)]+ E[Z (aj, S)]
c(S cEAi ji

< E[I((c,{c}UT) + E [E(aj,T)].
cEAi ji

Notice the set T has a facility location solution of cost 3 + k - 1 and thus by the

budget balance condition the second term in the above expression is at most k + 2.

The first term in the above expression can be written as mEs,c [(c, {c} U T)] where

the expectation is over the random choice of S and the random choice of c from Ai.

However, it can be seen easily that this is equivalent to the following random experi-
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ment: From each Aj, pick a city aj uniformly at random. Then pick i from {1,..., k}

uniformly at random and let c = ai and T = {aj : j # i}. From this description it

is clear that the expected value of ((c, {c} U T) is equal to k EJk (aj, al,..., ak}).

This, by the budget balance property and the fact that {al,..., ak} has a solution of

cost k + 3 cannot be more than k3. Therefore,

k+3
Es [ (c, S) ] < ) + (k + 2) = m + o(m), (5.6)

cES

when m = w(k) and k = w(1). Therefore, the expected value of the ratio of recovered

cost to total cost tends to 1/3. [

5.2.4 Other combinatorial optimization problems

In this section we state upper bounds for three other combinatorial optimization

ganies in particular, the ones considered by Deng et al.. [12]). These problems are

maximization problems, therefore instead of cost sharing, we need to design profit

sharing schemes. Definitions of profit sharing schemes and their properties are similar

to the ones for cost sharing schemes (with a > 1 and the direction of all inequalities

reversed).

The first example is the maximum flow game. In the maximum flow game, we

are given a directed graph G(V, E) with a source s and a sink t. Agents are directed

edges of G. Given a subset of edges, S, the profit of S is the size of maximum flow

from s to t on subgraph of G induced on the edges of S. It is known that the core

of maximum flow game is nonempty [12]. The story is different for cross-monotonic

profit sharing schemes.

Theorem 5.2.7 There is no o(n)-budget balanced profit sharing scheme for the max-

imum flow game where n is the number of agents.

Proof. Let G be a graph consisting of three nodes: s, u, and t. There are n - 1 edges

from s to u, and n - 1 edges from u to t. Let Es, and Et denote the set of edges

from s to u and from u to t, respectively. See Figure 5-3. We pick a random set S
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Figure 5-3: The graph G for the maximum flow game

of n agents as follows: With probability 1/2, pick a random edge e from s to u, and

let S = {e} U Et. With probability 1/2, pick a random edge e from u to t, and let

S = {e} U ES. For example the set S could contain the thick edges in Figure 5-3.

Assume is an o(n)-budget balanced cross-monotonic profit-sharing scheme for
RG. If edge e is picked uniformly at random from a set T, we write e - T. We have

that E Es [ZaES (a, S)] is

1 E1E> (ER ,[ &a{e} UEt)12 ~-E4

aEEut

±e+Et [E(3(an {e})

1)/2. 2I

The second problem is the problem of packing the maximum number of arborescences

in a digraph. An r-arborescence is a spanning tree rooted at r in which all edges are

directed away from r. In the maximum r-arborescence game, we are given a directed
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graph G(V, E) with a root r. Agents are directed edges of G. Given a subset of

edges, S, the value of S is the maximum number of edge-disjoint r-arborescences

on the subgraph induced by S. One can think of the profit of S as the maximum

bandwidth for broadcasting messages from r to all vertices of the graph. It is known

that the core of this game is nonempty [12].

Theorem 5.2.8 There is no o(n)-budget balanced profit sharing scheme for maxi-

mum r-arborescence game.

The same construction as the one used in the proof of Theorem 5.2.7 gives us a proof

for Theorem 5.2.8.

Finally, we consider the maximum matching game, in which the agents are vertices

of a graph G, and the profit of a subset of vertices S is the size of maximum matching

·in G[S]. One can show that there is a 2-budget balance profit allocation in the core

of this game.

Theorem 5.2.9 There zs no o(n)-budget balanced profit sharing scheme for the maz-

imum matching game.

Proof. We use the same construction that was used in the proof of Theorem 5.2.1.

Let G be a complete bipartite graph with n- 1 vertices in each part (here we use

n - 1 instead of n so that the size of S becomes n), and pick S by picking a random

vertex in G and all vertices in the other part. Using an argument essentially the same

as the one used in the proof of Theorem 5.2.1, the expected total profit share of the

elements of S is at least (n - 1)/2. On the other hand, the profit of S is always one.

Thus, there is an S on which the ratio between the total profit-share and the profit

of S is at least (n - 1)/2. ]

5.3 Group-strategyproof mechanisms

A main motivation behind cross-monotonic cost-sharing schemes is that they can

be used to define group-strategyproof mechanisms [62]. In the previous section, we
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proved that every cross-monotonic cost sharing scheme for certain games is poorly

budget balanced. A natural question to ask is whether all group-strategyproof mech-

anisms for these games are so poorly budget balanced. Towards this aim, one might

hope to show that every group-strategyproof mechanism corresponds to a cross-

monotonic cost sharing scheme. In fact, given a group-strategyproof mechanism M,

it is possible to define a corresponding cost-sharing scheme (M by having the agents

in a set S bid a sufficiently large value and others zero, and letting ~M(i, S) be the

payment charged by the mechanism to the agent i in this scenario. Throughout this

section, we refer to the sufficiently large bid value for agent i as ooi. Unfortunately,

this scheme is not necessarily budget-balanced or cross-monotonic. In fact, the follow-

ing simple example shows that for every cost function, there is a group-strategyproof

mechanism recovering all the cost.

Example 1 Single Payment Mechanism: Arbitrarily order the agents from 1 to n.

Then, find the first agent i in this order who.se bid is at least C({i, ... , n}). The set

that will receive the service is Q - {i, .., n}, and the total cost of servicing this set

is paid by the agent i. Other agents pay nothing.

Clearly, the mechanism is truthful (or strategyproof), since in computing the payment

of an agent, the mechanism does not look at the bid of that agent. For the vector

of true bids, let k be the agent that pays C({k,..., n}), thus all agents i < k were

asked to pay C({i,...,n}), but did not afford to pay it. For any agent i < k, i

cannot be in any lying coalition, since i does not have incentive to overbid (as his

happiness may become negative) and if he underbids he does not change the output

of the mechanism. Agent k cannot be in any lying coalition either, since the only

lying strategy for him is to underbid and does not get the service; in this case, the

happiness of other agents may only decrease. No agent i > k can change the output

of the mechanism by lying either. It follows that the above mechanism is group

strategyproof.

Intuitively, the mechanism in Example 1 is neither fair nor efficient. It always

place the burden of the entire service cost on a small subset of agents while servicing
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others for free. Agents who receive the service for free, called free riders, increase the

cost of the solution but do not contribute any payment. We consider constraining

our mechanism to rule out free riders. The main advantage of this restriction is that

the budget-balance factor of a mechanism M without free rider and its derived cost

sharing is the same, since when agents in set S bid ooi and other agents bid 0, the

serviced set is S (because there is no free rider). As the following example shows,

there exist group-strategyproof mechanisms without free rider for cost functions for

which no cross-monotonic cost sharing exists.

Consider the following cost function for 3 bidders: C({1}) = C({2}) = C({3}) =

C({1,2}) = C({1,3}) = C({2,3}) = 1 and C({1,2,3}) = 2. It is not hard to

check that no budget-balanced cross-monotonic cost sharing scheme exists for this

cost function. We will prove that the following mechanism M is group strategyproof

and budget balanced and does not have any free rider. The mechanism M for a bid

vector (bl, b2E b3) is as follows.

1. If bl > 1 then

(a) If min(b2, b3) > then charge (1, , 7),

(b) Else if max(b2, b3) < then charge (1,0, 0),

(c) Else if b2 > b3 then charge (1, , 0),

(d) Else (since b3 > b2 ) charge (1, 0, 2)

2. Else if < b < 1 then

(a) If min(b2, b3) > then charge (, , -),

(b) Else if max(b2, b3) < then charge (0, 0, 0),

(c) Else if b2 > b3 then charge (2, , 0),

(d) Else (since b3 > b2) charge (½, 0, 1).

3. Else if b < then

(a) If min(b2, b3) > 7 then charge (0, , ½),
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(b) Else if b2 > 1 then charge (0, 1,0),

(c) Else if b3 > 1 then charge (0, 0, 1),

(d) Else charge (0, 0, 0).

Table 5.1 depicts the payment vectors of the mechanism M. In this table, bi is the

bid of agent i. In M, we first look at bl, and based on bl, we check the bids of agents

2 and 3. The payment vectors of this mechanism is depicted in the second, third and

fifth columns of Table 5.1. We refer to these three columns as the first, second and

third column of the payment vectors of this table in the following discussion. Since

M has no free rider, if the payment of an agent for a bid vector is zero, it means that

this agent is not served for that bid vector.

if bl > 1oth. b < oth. if bi < 
if min(b2, b3) > 9 7, 9) (0 I) if min(b2, b3) > - (, )

oth. if max(b2, b3) < (1,0, 0) (0, 0,0) oth. if b2 > 1 (0,1,0)
oth. if b2 > b3 2 0)a II oth. if b3 > 1 0, )

oth. if b2 < b3 ,, > ( ,o 0, -) oth. (, ____, )

Table 5.1: The budget-balanced group-strategyproof mechanism without free rider.

Let pi(bl, b2, b3) denote the payment of agent i for the bid vector (bl, b2, b3). Sup-

pose, for contradiction, that (bl, b2, b3) be the true bid vector (willingness to pay)

of players for which there exists a lying coalition. Let S be the lying coalition and

(bl, b2, b3) be the lying bid vector. We first prove that S must include 1. If b1 < 

the cost; sharing for players 2 and 3 in the third column of bid vectors in Table 5.1 is

cross monotonic and the Moulin-Shenker mechanism [62] implies that the mechanism

is group strategyproof. If bl > , players 2 and 3 can only lie and change the payment

to another vector in the same column of the bid vectors in the Table 5.1. The only

way that a player i G {2, 3} can benefit is when bi > and i does not get the service

for true bids. But this does not happen in any of the first two columns of bid vectors

in the table. Therefore 1 E S.

Now, we need to argue that 1 cannot be in any lying coalition either. We consider

two cases:
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Case 1: b < . In this case, the payment of player 1 should be zero, even though
1 1b > . This happens only when min(b2,b3 ) > or max(b2 ,b3) < If

max(b2, b3) < , then none of players 2 and 3 gets the service, thus this cannot

be the lying strategy. If min(b2, b3) > , the payments of players 2 and 3 in

the mechanism for bl < and b > is the same. Therefore, players 2 and 3

cannot benefit from this lying coalition.

Case 2: b > 1. In this case, agent i E {2, 3} can only benefit if bi > and i does

not get the service for true bids. But for any bid vector bl > and bi > 2, the

payment of i is 2. Therefore, i cannot strictly benefit from any lying coalition in

which b > . Agent 1 can only bid bl < , if either bl = and pi(b, b, b) = 

or bl = 1 and pl(bl,b 2,b3 ) = 1. But in this case for each i G {2,3}, either

pi(bl,b 2 ,b3 ) = or bi < Therefore, i - 1 cannot strictly benefit from any

lying coalition.

Finally, we need to argue that 1 cannot strictly benefit from any lying coalition.

In order for agent 1 to benefit, b > and pI(b1, b2, b3) . In this case, agent 1

cannot benefit by bidding bl < . Thus, b > . As a result, in order for agent

1 to strictly benefit from the lying coalition min(b2, b3) > or max(b2, b3) <

If min(b2,b3) > 2, the happiness of 2 and 3 in bid vector (bl, b2, b3) is positive

and one can check that in order for player 2 or 3 to change his bid such that

1 strictly benefits, 2 or 3's happiness strictly decreases (since one of them does

not get the service). Therefore, in this case, 2 and 3 cannot be in any lying

coalition. If max(b2, b3) < 1, 1 can only strictly benefit if 2 or 3 bid greater than

or equal to . Again, in order for 2 or 3 to strictly help 1, this player should

pay at least and thus, his happiness will be negative. Thus, 2 or 3 cannot be

in the lying coalition.

It follows that there is no lying coalition for M and thus, M is group strate-

gyproof. The cost sharing scheme derived from M is not cross-monotonic though,

e.g., M (1, {1,2, 3}) > M (1, {1,2}).
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In the mechanism given above, there are scenarios in which an agent does not

receive the service, but would receive service if she increased her bid by any positive

amount, however small. For example, if bl = b2 = , the third bidder gets service

for any bid greater than 1, but not for b3 = In fact, we can show that a cross-2' 2ww
monotonic cost sharing scheme can be derived from any mechanism with no free

riders for which such situations do not occur. More precisely, we call a mechanism

M upper continuous if for every agent i, if i gets the service for every bid value

greater than x holding other bids fixed, then i gets the service if she bids x. Upper

continuity by itself is not difficult to satisfy. In fact, the mechanism in Example 1

is upper continuous. However, we prove that mechanisms satisfying upper continuity

and no-free-rider conditions are as hard as cross-monotonic cost sharing schemes.

To prove this statement, we prove a useful structural lemma (Lemma 5.3.1) on the

cost sharing schemes derived from a group-strategyproof mechanism. We need the

following definition to state this lemma.

Definition 5.3.1 Let ': a x 2 H R+ U {O} be a cost-sharing scheme, S C ;,; and

i E \ S. We say i is good for set S U {i} if for every j G S, (j, S) > (j, S U {i})

and for at least one j a strict inequality holds; i is bad for S U {i} if for every j G S,

~(j, S) < ((j, S U {i}) and for at least one j a strict inequality holds. If for all j E S,

~(j, S) = ((j, S U {i}), we say i is neutral for S U {i}.

Lemma 5.3.1 Let BM be a cost-sharing scheme derived from a group-strategyproof

mechanism M with no free rider. Then for every agent i and set S, i G S, i is either

good, bad, or neutral for S.

Proof. For an agent i, let ooi be a large enough number such that if agent i bids ooi,

he will get the service, independent of other agents' bids. Let S = {1, 2,. .. , k}. It is

enough to show that agent k is good, bad, or neutral for S. Consider the following 3

bid vectors:

1. (001,... , k- , M (k,. . , 0)
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Since the mechanism does not have a free rider, in the first bid vector, set S is served

and in the third bid vector, S - {k} is served. Consider two cases:

Case 1: k is served for bid vector 2. We claim that in this case, k's payment is

equal to (M (k, S). Otherwise k would lie in scenario 1 by announcing ~M (k, S)

as his bid and consequently pay less. We claim that for every j :/ k, .M (j, S) <

M (j, S- {k}). Assume for contradiction that (M (j, S) > (M (j, S- {k}). Then

j can convince k to bid 0 in scenario 2. Agent k's happiness remains the same

(zero) and j pays less, and so {k,j} form a lying coalition, contradicting the

group strategyproofness. Here we used coalitions of size at most 2 in the proof.

Case 2: k is not served for bid vector 2. In this case, we claim that for every

j k, M(j, S) > &2'(j, S - {k}). Assume for contradiction that M(j, S) <

&,l(, -- {k}). Now, j can convince k to bid ook in scenario 2. Agent k's

happiness remnains the same and j pays less, so again {k, j} is a lying coalition

(of size at most 2), contradicting group strategyproofness.

In case 1, k is good or neutral for S by definition and in case 2, k is bad or neutral

by definition. [

Before proving the main theorem, we need to prove the following three lemmas:

Lemma 5.3.2 Consider a group-strategyproof mechanism M without free riders. For

the bid vector B = (bl,..., b), if bi = O for i S and bi > M(i, S) for i S, then

set S is serviced at their cost share, i.e., each i E S pays M(i, S).

Proof. Order the bidders such that S = {1,... , k}. Let ooj be a large enough

number such that ooj > M(i,S) and if agent j bids ooj, he will get the service,

independent of other bids. We will prove by induction that if the first i bidders in S

bid ooi and the rest bid bi, the set S is serviced at the cost share. First notice that

if bj = ooj for all j E S, S gets serviced at the cost share by the definition of the

derived cost sharing ~M. Consider the following bid vectors:
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2. (O1, .. .,ooil,bi,bi+l,..., bk,O ,... 0)

By inductive hypothesis, i gets serviced at his cost share M(i, S) for bid vector

1. If he gets serviced at less than his cost share for bid vector 2, when the true bids

are as in scenario 1, i will lie and bid bi. Similarly, if he gets serviced at more than

his cost share for bid vector 2 or does not get the service, when the true bids are as

in scenario 2, i will lie and bid ooi. Since there is no lying coalition, i gets serviced

at his cost share for bid vector 2 and is thus indifferent between scenario 1 and 2.

Therefore, no one can benefit between the two scenarios or else they could form a

lying coalition with bidder i. Since all nonzero bidders get serviced at their cost share

for bid vector 1, they should get the service at their cost share for bid vector 2 as

well. O

Lemma 5.3.3 Consider a group-strategyproof mechanism M with no free riders.

For any bid vector B3 = (bl,..., b,), if the serviced set is S, then payment of i E S is

exactly equal to M (i, S).

Proof. Let Si = {i C Slbi < M (i, S)}. First we prove that all members of S1 should

pay exactly .M (i, S), thus their bid should be equal to M (i, S). Let S2 = S - S1 be

the members of S who bid strictly greater than their cost share in S and S3 = A - S

be the remaining bidders. Let P be a bid vector at which every member i of S1

bids ooi, every member i of S2 bids bi (his bid in B) and all members of S3 bid zero.

From Lemma 5.3.2, in scenario P, set S will get the service at the cost .M(i, S). If

any agent i in SI pays less than M(i, S) (his payment in P) for bid vector B, then

in scenario P, i can form a lying coalition with Sl U S3 and pretend the bid vector

B. As a result nobody in S U S3 pays more and at least agent i pays strictly less

contradicting group strategyproofness.

Now consider agent i S2. If he pays more than M(i, S) for bid vector B, he

would make the lying coalition SI U S3 U {i} in scenario B and pretend the bid vector

7 instead and pay less. Agent i strictly benefits from this lying strategy and no other
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agent pays more. Therefore, S1 U S3 U {i} pretending P is a lying coalition for scenario

1 which contradicts group strategyproofness. Therefore, all members of S2 also pay

the same as M (i, S). []

Lemma 5.3.4 Consider a bid vector B' = (b, b,..., b) in a group-strategyproof

mechanism M with no free rider. If the set S gets the service for the bid vector 3'

and i E S is bad for S then b > M (i, S).

Proof. Assume for contradiction that bi = M(i, S). If the true bid of i is bi = b,

the happiness of agent i for bid vector B3' is zero. Since the set S gets the service at

the bid vector B', from Lemma 5.3.3, the payment of agent j C S is ~M (i, S) for bid

vector B'. Consider the bid vector 13 = (bl,..., bn) where bj = ooj for j S- {i};

and bj = 0 otherwise. By the definition of M, the payment of j S - {i} for 13 is

'M(j, S - {j}). Since i is bad for S, M (j, S - {i}) < M (j, S) for all j E S and the

strict, inequality holds at least for one agent t C -S. In addition agent i is indifferent

tetween bid vectors 13 and 1', since in both cases his happiness is zero.

Thus, in scenario .3', all agents can make a lying coalition and pretend 13: nobody

is harmed by this lying strategy and agent t strictly benefits. Therefore, the fact that

i gets service in B' at his cost share contradicts the group strategyproofness of M. l

Using the above lemmas, we can prove the following theorem.

Theorem 5.3.5 The cost function C has an upper-continuous a-budget-balanced

group-strategyproof mechanism with no free riders if and only if it has an a-budget-

balanced cross-monotonic cost-sharing scheme.

Proof. Given an a-budget-balanced cross-monotonic cost-sharing scheme , the

Moulin-Shenker mechanism M(() gives an a-budget-balanced group-strategyproof

mechanism [62] with upper-continuity and without free riders.

Given an a-budget-balanced group-strategyproof mechanism, the upper continuity

condition implies that all agents get the service at their cost share if all other agents

bid ooi. Therefore, Lemma 5.3.4 implies that there is no bad agent for any set.

Thus, from Lemma 5.3.1 all agents are good or neutral in M. This proves that M
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is cross monotonic. Moreover, the budget-balance factor of (M is the same as the

budget-balance factor of M, since there is no free rider. []

In the proof of Theorem 5.3.5 we do not use coalitions of size greater than 2.

Thus, with the assumptions of no-free-rider and upper-continuity, coalitions of size 2

are as strong as coalitions of arbitrary size. We do not know if this equivalence holds

without these assumptions.

Finally, we consider a strong fairness property called the subsidy-freeness prop-

erty 7 [61]. This condition says that the total charge of the mechanism to all users in a

set S is at most the cost of the set c(S)8 . In the following theorem, we show that the

budget-balanced group-strategyproof mechanisms with this property are equivalent

to the budget-balanced cross-monotonic cost sharing schemes.

Theorem 5.3.6 There exists a budget-balanced group-strategyproof mechanism with

no free rider satisfying the subsidy-freeness property for a cost function C if and only

if this cost function has a budget-balanced cross-monotonic cost-sharing scheme.

Proof. The "if" part follows from the Moulin-Shenker mechanism [62]. In order

to prove the "only if" part, we first prove that given a budget-balanced group-

strategyproof mechanism M satisfying subsidyfreeness, there is no bad agent for

any set. Consider agent i who is bad for the set S. Then for any agent j E S - {i},

M (j, S) > M (j, S-{i}),

and strict inequality holds at least for one j. Thus,

E SM(j, S) > E C(kM(i S ),
jeS-{i} jcS-{i}

contradicting the subsidy-freeness property. Therefore, all agents are good or neutral

for any set S, and so the cost sharing (M derived from M is cross monotonic. Since
7 This property is considered by Moulin. Also see Devanur et al. [13] for a discussion of strat-

egyproof (but not group-strategyproof) mechanisms satisfying subsidy-freeness for set cover and
facility location problems.

sThis is the same as the core property for each subset S.
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the mechanism has no free rider, the budget-balance factor of the mechanism and the

derived cost sharing is the same. O

We do not know if this theorem holds for budget-balance factors other than 1, and

so the upper bounds for different problems in this chapter only imply that there

is no budget-balanced group-strategyproof mechanism without free rider and with

subsidy-freeness for these problems.

5.4 Conclusion

In this chapter, we studied upper bounds for the budget-balance factor of cross-

monotonic cost-sharing schemes for a variety of combinatorial optimization games.

Our techniques are quite general and may prove applicable to variety of other inter-

esting games. For example, the facility location game restricted to a tree always has

a budget-balanced cost sharing in the core [32], bulli we do not have a tight lower and,

upper bound for the budget-balance factor of a cross-monotonic cost sharing scheme.

For the facility location on the line, we have the upper bound of 7.9 A more challeng-

ing open question is that of cross-monotonic cost-sharing schemes for the Steiner tree

game. There are 1/2-budget-balanced scheme for the Steiner tree and Steiner for-

est [49, 50]. Recently, Konemann et. al [51], showed that this budget-balanced factor

is tight for cross-monotone cost-sharing schemes for Steiner tree and Steiner forest.

Their construction is based on the construction of our example for the metric facility

location problem. However, the best known upper bound for the budget-balanced

factor of the core property for both problems is 8/9. Closing the gap between the

known lower and upper bounds (8 and ) for the budget-balanced factor of a cost

sharing in the core for Steiner tree and Steiner forest is an interesting open problem.

A main motivation behind cross-monotonic cost-sharing schemes is the develop-

ment of group-strategyproof mechanisms. As mentioned in this thesis, almost any

9 The example is as follows: Consider 3 facilities with opening cost 2 - , and 4 cities. The
connection cost of facility 1 to cities 1 and 2 is 1. The connection cost of facility 2 to cities 2 and 3
is 1. The connection cost of facility 3 to cities 3 and 4 is 1. The other connection costs follow the
triangle inequality.
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cost function (including all those for which we derived upper bounds on cost shar-

ing schemes) has a trivial group-strategyproof mechanism. Several different sets of

axioms, some of which are explored in this thesis, can be added to the mechanisms

to rule out these trivial ones. An interesting open question in this area is to extend

the result of Theorem 5.3.6 and show that a-budget-balanced group-strategy mecha-

nisms with subsidy-freeness are equivalent to a-budget-balanced cross-monotone cost-

sharing schemes.

It is a standard economic result that a strategyproof mechanism can not be

both efficient (i.e., return a solution that maximizes social welfare) and budget-

balanced [34, 75]. It would be interesting to explore the possible budget-balance

factor of group-strategyproof mechanisms that are in some sense close to efficient.
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Chapter 6

Open Problems

In this thesis, we develop several new algorithms and decentralized mechanisms for

different combinatorial optimization problems. In this chapter, we describe the main

open problems corresponding to each chapter of the thesis.

1. The main open problem in Chapter 2 is to close the gap between the known

approximation factor and the inapproximability result of GAP and IBDC. The

best known approximation factor for these problems is 1 - + c for any c > 0

and the only hardness result that is known for these problems is their APX-

hardness. In Chapter 2, we proved that the factor 1 - 1 is almost tight for the

CapDC problem.

Another interesting open problem is to extend the local search or the LP-based

algorithm to the maximization version of the facility location problem with

packing constraints. The facility location problem with packing constraints

can be viewed as the IBDC problem with an extra opening cost for each cache

location and an installation cost for putting each request type in each cache

location. No constant-factor approximation algorithm is known for these prob-

lems. In Chapter 2, we developed constant-factor approximation algorithms for

all variants of the DCP problems and SAP and KMed.

2. The main open questions in Chapter 3 are as follows:
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(a) A strategy profile in a strategic game is a c-approximate Nash equilibrium

if no player can change his strategy and increase his payoff by more than

a factor of c. The first open problem is to find a 2-approximate (or any

constant-factor approximate) Nash equilibrium in the cut game in polyno-

mial time or to prove that finding such an equilibrium is PLS-complete.

The answer to this question may or may not imply a fast or poor conver-

gence of (1 + )-greedy players (see the definition in Chapter 3) to Nash

equilibria. In Chapter 3, we proved fast convergence of (1 + e)-greedy

players to approximate solutions, but not to pure Nash equilibria. The

same set of questions can be asked about basic-utility and market sharing

games.

(b) One open question is to bound the length of best-response walks to pure

Nash equilibria in basic-utility games and market sharing games, or to

prove that a best-response walk to a PSNE may be exponential.

(c) Another open question s the speed of convergence to constant-factor ap-

proximate solutions on polynomial-length random best-response walks in

the market sharing game.

3. In Chapter 4, we developed a model for studying the outcome of a game as

a result of a sequence of selfish behavior of players. Considering other types

of walks in the state graph and studying other types of selfish behavior of

players is an interesting area for future research. We can define the price of

sinking for other types of selfish behavior and prove bounds on the performance

of the outcome of the game by bounding the price of sinking in those models.

Considering the model that we described in Chapter 4, the most interesting open

problem is to bound the price of sinking for different variants of the distributed

caching games (and in particular, the CaplBDC game). Characterizing the set

of sink equilibria for different classes of games, e.g., the CapDC game is another

area for future consideration.

4. Two main open questions related to Chapter 5 are as follows:
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(a) Proving upper bounds or improving lower bounds for the budget-balanced

factor of the "fair" group-strategyproof mechanisms is the most important

open problem of this chapter. In particular, understanding the budget-

balanced factor of the group-strategyproof mechanisms with no free rider

and with the subsidy-freeness property is a challenging open problem.

(b) Another open problem is to close the gap between the lower and upper

bounds of the budget-balanced factor of the cost allocations in the core for

the rooted steiner tree game. The known lower and uppers bounds for this

problem are and , respectively. We conjecture that the right answer is

8
9'
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