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ABSTRACT

Characterizing and Leveraging Social Phenomena in
Online Networks

Zeinab Abbassi

Social phenomena have been studied extensively in small scales by social scientists. With the

increasing popularity of Web 2.0 and online social networks/media, a large amount of data on

social phenomena have become available. In this dissertation we study online social phenomena

such as social influence in social networks in various contexts. This dissertation has two major

components: 1. Identifying and characterizing online social phenomena 2. Leveraging online

social phenomena for economic and commercial purposes.

We begin the dissertation by developing multi-level revenue sharing schemes for viral mar-

keting on social networks. Viral marketing leverages social influence among users of the social

network. For our proposed models, we develop results on the computational complexity, individ-

ual rationality, and potential reach of employing the Shapley value as a revenue sharing scheme.

Our results indicate that under the multi-level tree-based propagation model, the Shapley value is

a promising scheme for revenue sharing, whereas under other models there are computational or

incentive compatibility issues that remain open. We continue with another application of social

influence: social advertising. Social advertising is a new paradigm that is utilized by online social

networks. Social advertising is based in the premise that social influence can be leveraged to place

ads more efficiently. The goal of our work is to understand how social ads can affect click-through

rates in social networks. We propose a formal model for social ads in the context of display adver-

tising. In our model, ads are shown to users one after the other. The probability of a user clicking

an ad depends on the users who have clicked this ad so far. This information is presented to users



as a social cue, thus the click probability is a function of this cue. We introduce the social display

optimization problem: suppose an advertiser has a contract with a publisher for showing some

number (say B) impressions of an ad. What strategy should the publisher use to show these ads so

as to maximize the expected number of clicks? We show hardness results for this problem and in

light of the general hardness results, we develop heuristic algorithms and compare them to natural

baseline ones.

We then study distributed content curation on the Web. In recent years readers have turned

to the social web to consume content. In other words, they rely on their social network to curate

content for them as opposed to the more traditional way of relying on news editors for this purpose

– this is an implicit consequence of social influence as well. We study how efficient this is for users

with limited budgets of attention. We model distributed content curation as a reader-publisher game

and show various results. Our results imply that in the complete information setting, when pub-

lishers maximize their utility selfishly, distributed content curation reaches an equilibrium which is

efficient, that is, the social welfare is a constant factor of that under an optimal centralized curation.

Next, we initiate the study of an exchange market problem without money that is a natural

generalization of the well-studied kidney exchange problem. From the practical point of view, the

problem is motivated by barter websites on the Internet, e.g., swap.com, and u-exchange.com. In

this problem, the users of the social network wish to exchange items with each other. A mechanism

specifies for each user a set of items that she gives away, and a set of items that she receives.

Consider a set of agents where each agent has some items to offer, and wishes to receive some

items from other agents. Each agent would like to receive as many items as possible from the items

that she wishes, that is, her utility is equal to the number of items that she receives and wishes.

However, she will have a large dis-utility if she gives away more items than what she receives,

because she considers such a trade to be unfair. To ensure voluntary participation (also known as

individual rationality), we require the mechanism to avoid this. We consider different variants of

this problem: with and without a constraint on the length of the exchange cycles and show different

results including their truthfulness and individual rationality.



In the other main component of this thesis, we study and characterize two other social phenom-

ena: 1. friends vs. the crowd and 2. altruism vs. reciprocity in social networks. More specifically,

we study how a social network user’s actions are influenced by her friends vs. the crowd’s opinion.

For example, in social rating websites where both ratings from friends and average ratings from

everyone is available, we study how similar one’s ratings are to each other. In the next part, we aim

to analyze the motivations behind users’ actions on online social media over an extended period of

time. We look specifically at users’ likes, comments and favorite markings on their friends’ posts

and photos. Most theories of why people exhibit prosocial behavior isolate two distinct motiva-

tions: Altruism and reciprocity. In our work, we focus on identifying the underlying motivations

behind users’ prosocial giving on social media. In particular, our goal is to identify if the motiva-

tion is altruism or reciprocity. For that purpose, we study two datasets of sequence of users’ actions

on social media: a dataset of wall posts by users of Facebook.com, and another dataset of favorite

markings by users of Flickr.com. We study the sequence of users’ actions in these datasets and

provide several observations on patterns related to their prosocial giving behavior.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Phenomenon is defined as a fact or situation that is observed to exist or happen, especially one

whose cause or explanation is in question. Social phenomena include all behavior which influences

or is influenced by organisms sufficiently alive to respond to one another. Social sciences have been

studying social phenomena for a very long time – in small scales. With the increasing popularity of

Web 2.0, online social networks and social media, a large amount of data has become available. By

employing the principles of computer science to deal with large-scale data, we can look at social

science problems such as marketing, social influence, and model the ways that very large groups

of people interact on the web. Our ability to quantify this behavior sheds light on interesting

phenomena and ideally makes further developments possible for online platforms. In addition to

identification and characterization of these phenomena, different technics can be employed in order

to leverage these phenomena in different ways. As an example, for improving user experience with

better targeted advertising.

This thesis has two major components: 1. Leveraging social phenomena for economic and

commercial purposes 2. Identifying and characterizing social phenomena that have not been stud-

ied well so far.

We begin in Chapter 2, where we develop multi-level revenue sharing schemes for viral mar-

keting on social networks. Viral marketing leverages social influence among users of the social



CHAPTER 1. INTRODUCTION 2

network. For the proposed models, we develop results on the computational complexity, individ-

ual rationality, and potential reach of employing the Shapley value as a revenue sharing scheme.

Our results indicate that under the multi-level tree-based propagation model, the Shapley value is

a promising scheme for revenue sharing, whereas under other models there are computational or

incentive compatibility issues that remain open. This chapter is published as [14].

We continue in Chapter 3 with another application of social influence: social advertising. Social

advertising is a new paradigm that is utilized by online social networks. Social advertising is based

in the premise that social influence can be leveraged to place ads more efficiently. The impact of

social influence among users has been confirmed in sociological studies, statistical models, and

in online randomized experiments (see [24] and references therein). The goal of our work is to

understand how social ads can affect click-through rates in social networks. We propose a formal

model for social ads in the context of display advertising. In our model, ads are shown to users one

after the other. The probability of a user u clicking an ad depends on the users who have clicked (or

taken a certain action on) this ad so far. This information is presented to u as a social cue (which

could be of different kinds, as we will see in Chapter 3), thus the click probability is a function

of this cue. We introduce the social display optimization problem: suppose an advertiser has a

contract with a publisher for showing some number (say B) impressions of an ad. What strategy

should the publisher use to show these ads so as to maximize the expected number of clicks? We

show hardness results for this problem and in light of the general hardness results, we develop

heuristic algorithms and compare them to natural baseline ones. This chapter is published as [10].

In Chapter 4 we study distributed content curation on the Web. In recent years readers have

turned to the social web to consume content. In other words, they rely on their social network to

curate content for them as opposed to the more traditional way of relying on news editors for this

purpose – this is an implicit consequence of social influence as well. In this Chapter we study

this phenomenon. In particular, we study how efficient this is for users with limited budgets of

attention. We show that the centralized optimization, while being NP-complete, can be reduced to

a separable assignment problem, thus admitting a (1 − 1/e)-approximation algorithm. We model

distributed content curation as a reader-publisher game and show that the price of anarchy is at

most 2. When in addition the readers are selective in the items they choose, we show that the

price of anarchy is bounded by 2. Our results imply that in the complete information setting,
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when publishers maximize their utility selfishly, distributed content curation reaches an equilibrium

which is efficient, that is, the social welfare is a constant factor of that under an optimal centralized

curation. This chapter is published as [12].

In Chapter 5, we initiate the study of an exchange market problem without money that is a natu-

ral generalization of the well-studied kidney exchange problem []. From the practical point of view,

the problem is motivated by barter websites on the Internet, e.g., swap.com, and u-exchange.com.

In this problem, the users of the social network wish to exchange items with each other. A mecha-

nism specifies for each user a set of items that she gives away, and a set of items that she receives.

Consider a set of agents where each agent has some items to offer, and wishes to receive some

items from other agents. Each agent would like to receive as many items as possible from the items

that she wishes, that is, her utility is equal to the number of items that she receives and wishes.

However, she will have a large disutility if she gives away more items than what she receives, be-

cause she considers such a trade to be unfair. To ensure voluntary participation (also known as

individual rationality), we require the mechanism to avoid this. We consider different variants of

this problem: with and without a constraint on the length of the exchange cycles and show different

results including their truthfulness and individual rationality. This chapter is published as [11].

The above chapters: Chapters 2, 3, 4, and 5 belong to the first component of this thesis:

leveraging social phenomena.

In the other main component of this thesis (Chapter 6), we study and characterize two other

social phenomena: 1. friends vs. the crowd and 2. altruism vs. reciprocity in social networks.

More specifically, in Section 6.1 we study how a social network user’s actions are influenced by

her friends vs. the crowd’s opinion. For example, in social rating websites where both ratings from

friends and average ratings from everyone is available, we study how similar one’s ratings are to

each

In Chapter 6.3, we aim to analyze the motivations behind users’ actions on online social me-

dia over an extended period of time. We look specifically at users’ likes, comments and favorite

markings on their friends’ posts and photos. These actions are analogous to what social scientists

and economists call prosocial giving or in general prosocial behavior. Prosocial behavior is defined

as “voluntary behavior intended to benefit another person” and has been a puzzle to researchers of

different fields because while this type of behavior benefits others, it is often costly for the person
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performing it. Most theories of why people exhibit prosocial behavior isolate two distinct motiva-

tions: Altruism and reciprocity. In our work, we focus on identifying the underlying motivations

behind users’ prosocial giving on social media. In particular, our goal is to identify if the moti-

vation is altruism or reciprocity. For that purpose, we study two datasets of sequence of users’

actions on social media: a dataset of wall posts by users of Facebook.com, and another dataset of

favorite markings by users of Flickr.com. The main difference between these two datasets is that

in the Flickr dataset, a user can mark any other user’s photo as favorite but in the Facebook dataset,

interactions are limited to friends only. We study the sequence of users’ actions in these datasets

and provide several observations on patterns related to their prosocial giving behavior.

In this dissertation we study social phenomena in particular social influence and social ex-

change on the Web with different approaches and from different perspectives. Users are spending

more and more time on the Web and therefore generating large-scale data. These data can be

leveraged in order to improve user experience.

Chapter 2 was done in collaboration with Vishal Misra and is published as [14]. Chapter 3 was

done in collaboration with Vishal Misra and Aditya Bhaskara and is published as [10]. Chapter 4

was done in collaboration with Nidhi Hegde and Laurent Massoulie and is published as [12].

Chapter 5 is done in collaboration with Nima Haghpanah and Vahab Mirrokni and is published as

[11]. Chapter 6.1 was done in collaboration with Christina Aperjis and Bernardo Huberman and

is published as [8]. Chapter 6.3 is unpublished work and was done in collaboration with Vishal

Misra and Eric Schwartz.
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Chapter 2

Multi-level Revenue Sharing for Viral

Marketing

2.1 Introduction

In recent years, the Web has been, among other things, leveraged to harness the power of users to

carry out tasks that require collective efforts. Wikipedia, crowdsourcing platforms such as Ama-

zon’s Mechanical Turk, and Yahoo! Answers are only a few examples. Users participate with

different incentives such as monetary compensation, social recognition, altruism or a combination

of these. Some of these tasks require networked structures to succeed. The recent tremendous

growth in the popularity of online social networks suggests leveraging these networks for those

types of tasks. The recent DARPA network challenge is an example of such a task. The challenge

was to locate ten red balloons spread all over the Unites States on a given date as quickly as pos-

sible for the prize of $40000 [1]. A task that would be considered impossible using conventional

information gathering methods [2]. The winning team implemented a recursive incentive scheme

over a social network of referrals with the objective to locate the balloons in minimum time [90].

Refer-a-friend marketing (which is a type of viral marketing) is another example of such tasks

because the network of trust between the referrer and the potential adopters plays an important

role in the adoption of a product in a viral marketing campaign. In a refer-a-friend advertising

campaign, typically, a current user gets some form of discount for referring a product to her friend

that ends up in the adoption of the product. Referring a friend might trigger a cascade if the new
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adopter recommends the product to her friends as well (hence the term viral marketing).

Another motivating scenario inspired by the above ideas can be for advertising over online

social networks. The increasing need for monetizing social networks more effectively is causing

social network platforms to look for alternatives to online behavioral targeting. A specific example

for this model is as follows (illustrated in Figure 2.1): A social network platform may build the

following system to target ads and coupons more effectively. This system allows users to opt in

and help the platform in exchange for a share in the revenue. To be more precise, a user who opts in

this system is presented with a number of ads/coupons to assign to a limited number of her friends

according to their interests. In this example a social network user, named Alice, is presented with

two ads: one about audiobooks and the other about places to travel with a baby. Alice knows

that Bob has a baby and might be interested in going on a trip, so she would select Bob for the

ad: ”Best places to travel with a baby”. On the other hand, knowing that Carol enjoys listening

to audio books, Alice would assign the ad for free audio books to her. This will help the social

network route ads to the right users. Bob sees the ad about traveling with a baby as he logs into

his account. He also thinks that another fellow parent might be interested in this ad, therefore, he

suggests it to be shown to her. The source of the ad can be transparent to the recipient of the ad.

In other words, this system can be incorporated in the ad network that the social network platform

implements.

A significant challenge for this model to work is to give the users the proper motivation to

earnestly contribute to the system in finding the most relevant match. To incentivize users, the

social network platform shares the added revenue with the users that opt in and have impact. In

this chapter, we introduce various revenue sharing models and discuss fairness and individual ra-

tionality of such incentive schemes, and design efficient algorithms to compute and implement

such schemes. In particular, we propose models in which referrals (both for products and ads) are

rewarded either for one level or multiple levels, and discuss Shapley value revenue sharing. In

other words, we discuss single-level and multi-level propagation models, and identify tree-based

multi-level propagation as a special case of the graph-based propagation model. We compare these

models in terms of the polynomial-time computability of Shapley revenue shares, individual ratio-

nality of the revenue shares, and potential reach or expected effectiveness of these models. First,

we prove that finding Shapley value revenue shares is #P -hard for general graph-based multi-level
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models, but it is polynomial-time solvable for single-level and tree-based multi-level propagation

models. Further, by showing supermodularity of revenue function for tree-based propagation mod-

els, we show that for the tree-based propagation model, (i) Shapley value revenue shares lie in

the core and thus satisfy certain individual rationality conditions, (ii) the nucleolus of these games

is polynomial-time computable, and (iii) one can implement budget-balanced group-strategyproof

mechanisms, extracting people’s willingness to participate in the process. Finally, via simulations

on real-world datasets, we conclude that with a fixed amount of revenue share, multi-level tree-

based propagation will result in larger expected reach. Overall, we conclude that the tree-based

multi-level propagation model for revenue sharing is more effective and more efficient than single-

level or graph-based multi-level propagation models.

Please select one of your friends to whom you think the ad is more relevant:Please select a friend who you think would be 
interested:

Figure 2.1: Users select most relevant friends.

2.2 Related Work

Viral marketing over social networks has been studied for the purpose of influence maximiza-

tion [37, 70], or revenue maximization [56, 16]. In the influence maximization models [37, 70], a

person’s decision to buy a product is influenced by the set of other people who own the product. In

the revenue maximization model[56, 16], people don’t simply adopt products, but rather must pay

money to buy them. A person’s decision to buy a product is influenced by the set of other people

that own the product as well as the price at which the item is offered. On the subject of propa-

gation of information and influence on social networks, various work has been done. In a recent

paper [25], the authors argue that viral marketing would be more effective if a large number of ordi-

nary users are picked as influencers. None of the above work however studies the effect of revenue
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sharing in incentivizing users of the social networks in maximizing the reach and effectiveness of

online ads.

Recently, a social ad model considering user influence, called AdHeat, has been explored [26].

In this model, the advertising platform may diffuse hint words of influential users to others and

then matches ads for each user with aggregated hints. They perform experiments on a real-world

data set, and show that AdHeat outperforms the traditional relevance models by a large factor. Al-

though this study shows the effectiveness of using social network information in online advertising,

however they do not consider active propagation of ads by users of the social network.

The applications of the Shapley value to network and in particular Internet economics is also

been of interest recently: from applications to peer-assisted services [86] to the settlement issue

between Content, Eyeball, and Transit ISPs [78, 79, 33]. In a less recent work [71], authors propose

that certain private information should only be disclosed by users if they get compensated fairly.

The paper determines the value of private information in the context of online surveys, collaborative

filtering and in general recommender systems by the Shapley value.

A related but different problem is the cost sharing of Steiner tree or multicast network design

problem in cooperative game theory[65, 41]. It is not hard to see that cost function of a multicast

tree for a subset of nodes is a submodular function, and this implies the existence of budget-balance

cross-monotone cost sharing methods for this problem. This might seem related to our proof of

supermodularity of the revenue function in the tree-based propagation model. However, in the

multicast cost sharing context, the submodularity of the cost function holds for any general cost

function on the edges while, it is not hard to show that supermodularity of the revenue function

does not hold in the general case and we show that it holds in the case that the revenue share of

each node in the graph is the same (Section 2.5).

2.3 Model

Let U be the set of users of a social network platform (SNP) P . The SNP P implements a viral

marketing program helping an ad campaign or an online retailer, by giving incentives to its users

to participate in marketing for the advertiser. To be more specific, the SNP suggests coupons,

products or ads to a subset of its users, and asks them to refer a limited number of their friends for
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each. If their friends buy the coupon or product or click on the ad (or simply do anything through

which the SNP gains revenue), the revenue gained would be shared with the referrers. If the friend

also refers some of her friends a cascade of referrals would be initiated. In this chapter, if a user

adopts a product, buys a coupon or clicks on an ad or takes any action through which revenue is

earned by the SNP (directly or through a cascade), we say that the node has become active. The

nodes that had a role in activating a node are called the activators of that node.

Looking at this model as a cooperative game, the set of players are denoted by U , where

N = |U |. We call any nonempty subset S ⊆ U a coalition of players. For each coalition S, we

denote by f(S) the worth function (f : 2U∪{P} → R), which measures the total revenue from

an advertiser produced by the system when all players of this coalition S are active. Clearly the

revenue from a subset S of users without P is zero as any coalition needs the SNP to implement

the marketing/advertising strategy. Let fu(S) denote the revenue of player u in the coalition S, we

then have: f(S) =
∑

u∈S fu(S).

We suggest two models for revenue sharing if a node becomes active. In the first model, which

is very similar to what happens commonly in referral-based marketing, the SNP shares the added

revenue only with direct activators of that node. The other model suggests that the revenue be

shared with the whole set of users who contributed in activating a node.

Before we get into specifics of our proposed models we define the Shapley value [101]:

Definition 1 (Shapley Value) Shapley value of player u in coalition S is denoted as φu(S, f) and

is computed as: ∀u ∈ U, φu(S, f) = 1
|S|!
∑

π∈Π ∆u(f, S(π, u))

where Π is the set of all |S|! orderings of S and S(π, u) is the set of players preceding u in

the ordering π. The Shapley value of player u can thus be interpreted as the expected marginal

contribution ∆u(f, S′), where S′ is the set of players in S preceding u in a uniformly distributed

random ordering of S.

Shapley value of each player u in coalition S satisfies the three following axioms:

Axiom 1: Efficiency
∑

u∈S φu(S, f) = f(S) This axiom means that the total revenue share of

each user should be equal to the total revenue gained in the coalition.

Axiom 2: Symmetry If for all S′ ⊆ S\{u, v}, f(S′ ∪ {u}) = f(S′ ∪ {v}) then φu(S, f) =

φv(S, f) This axiom states that players contributing equal amounts to a coalition should receive

same amount of the revenue.
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Axiom 3: Fairness For any u, v ∈ S, v’s contribution to u equals u’s contribution to v, or in other

words φu(S, f)− φu(S\{v}, f) = φv(S, f)− φv(S\{u}, f)

We formulate the network of referrals by constructing a directed graph representing users in-

fluencing their friends in becoming active. More specifically, nodes in this graph are users of the

SNP and there is an edge from user w to user u if w activates u. We also add a root node for the

SNP and connect this root to all original users who become active. Given this graph, users who are

on paths from the root to each node u share the revenue from the activity of this node. In fact, since

there might be several users contributing in activation of a specific node, there are different ways

to construct this graph. We will describe our models below.

Note that similar to other advertising and revenue sharing systems, such revenue sharing schemes

should also be accompanied with a reasonable fraud detection and reputation system that can con-

trol for malicious user behavior. Also, It is important to note that in this model, a user is only

allowed to refer an ad/product to a limited number of her friends, therefore, increasing her incen-

tive to pick the most relevant ones.

2.3.1 Single-level Propagation Model.

In the single-level propagation model the amount paid by the advertiser for a node becoming active

is shared among the SNP and the set of its direct activators. Considering this model as a cooperative

game, the players of this game are the SNP and the users who influence other nodes to become

active. If k users refer a product/ad to user u and she becomes active resulting in revenue gain,

the coalition would consist of these k users and the social network platform. The worth function is

described in the following.

To be more precise, assume that the advertiser is willing to pay Qu for each action, and the

probability of an action by user u is pu, i.e., the expected revenue of referring a product to u is

puQu. In this setting, the revenue fu(S) from a user u given a subset S ⊆ U ∪ {P} of users is

computed as follows: if P ∈ S and there exists a user u′ ∈ S who is connected to user u and

activates u, then fu(S) = puQu, otherwise fu(S) = 0 We should note that it is possible that k of

u’s friends play role in activating u, therefore fair ways to share the revenue among the contributing

users should be explored. We will discuss such fair methods in Section 2.4.
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2.3.2 Multi-level Propagation Model.

The multi-level model generalizes the single-level model by sharing the revenue with all the users

collaborating in a cascade of referrals. In other words, the multi-level model keeps track of the

path of users activating their friends in the network and shares revenue with all of them. This

way, users get credit from their friends’ friends activation. This propagation can grow for multiple

levels, which gives more incentive to users to make referrals because they will earn money not only

from direct activations but also from all the chains they are part of. Note that in this model, the

assumption is that users do not have an incentive to refer every item to all their friends, since that

will result in losing their credibility and ruining their reputation.

Modeling this as a cooperative game, the players are the SNP and all the users who participate

The worth function would be as follows. In such a model, referrals are propagated through paths,

and the expected revenue for a referral from a user u is puQu if there is a path of users propagat-

ing the referral iteratively to user u, i.e., fu(S) = puQu if P ∈ S and there is a path of users

v1, v2, . . . , vl ∈ S where v1 originally has become active, and then each user vi activates user vi+1

after receiving it from vi−1, and finally vl activates u, otherwise fu(S) = 0.

There are various ways for the SNP to keep track of activation paths. These various ways

would, in turn, impose different revenue sharing schemes. For example, the SNP may only keep

track of the first user who makes a referral to each user. Alternatively, the SNP may keep track of

all users who made referrals to another user. Different methods for keeping track of users making

referrals can be divided into two main categories. Consider a set w1, w2, . . . , wk activating user u.

Graph-based Model: The SNP may keep track of all users who activated u, i.e., we may put

edges from all nodesw1, w2, . . . , wk to node u. Tree-based Model: We may put an edge only from

one node wi to user u, e.g. we may put an edge only from w1 who is the first user who activated u

encourage users to make referrals as early as possible.

For each of the above multi-level models, we can define a k-level propagation model in which

the revenue sharing for a node u happens among at most k users on the path to u, i.e, the revenue

from node u is shared only among the last k nodes on a path to node u. For example, in the k-level

tree-based model, the revenue share for a user u is shared among k top parents of node u in the

corresponding propagation tree. Throughout this chapter, we mainly study the general multi-level

model both for the graph-based and tree-based models, but all of our results hold for the k-level
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variant of these propagation models. In parts of this chapter that we need to distinguish between

different k-level models, we specify the k-level propagation model.

2.4 Computing the Shapley Value

The challenge in the above mentioned models is to design a fair mechanism to share the added rev-

enue with users that participated in the process. Shapley value as described in details in Section 2.3

not only ensures fairness, but also has other desirable properties. In what follows, we discuss com-

putation of the Shapley value for the proposed models. We either show that Shapley value can be

computed polynomially, or prove a hardness result and provide approximate solutions.

2.4.1 Single-level propagation model.

Assume that k users have activated user u. Here, we discuss simple fair ways to share the revenue

gained among the contributing users and the SNP. One way is to just consider the first user who

starts the propagation, in which case the revenue should only be divided between that first user and

the SNP. Alternatively, we may share the revenue with all these k users1. Consider user u, let Ku

be the set of ku users who activated user u, and let the revenue of user u becoming active be puQu.

Then, the Shapley value revenue share of SNP for each user u is ku
ku+1puQu and the Shapley value

revenue share of each of these ku users is 1
ku(ku+1)puQu. Letting ku be the set of users who have

activated user u, and summing up the Shapley value revenue share for all users, the revenue share

of the SNP in the single-level model is
∑

u∈U
ku
ku+1puQu. Also letting Ai be the set of users who

have been referred by user i, Shapley value for user i would be
∑

u∈Ai
1

ku(ku+1)puQu.

2.4.2 Graph-based Multi-level propagation model

In this section, we show that computing the Shapley value in the graph-based multi-level model is

computationally hard, and in fact is #P -hard. The proof is by reduction from a node variant of the

NETWORKRELIABILITY problem, called NODERELIABILITY. Both problems are defined below:

1Considering the influence model known as the threshold model, it is reasonable to assume that all referrers should

receive some credit.
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NETWORKRELIABILITYProblem

Instance: Graph G = (V,E),

a rational failure probability p(e) for each e ∈ E ,

nodes s and t.

Question: If edge failures are independent

from each other, what is the probability that

there exists a path from s to t in this graph?

NODERELIABILITYProblem

Instance: Graph G = (V,E),

a rational failure probability p(v) for each v ∈ V ,

nodes s and t.

Question: If node failures are independent

from each other, what is the probability that

there exists a path from s to t in this graph?

The NETWORKRELIABILITY is known to be #P -complete, even for a fixed probability p(e) =

1
2 for each edge e [35, 69]. Using this, it is not hard to show that NODERELIABILITY is also #P -

hard by giving a reduction from from the edge variant: Given an instance of the NETWORKRELI-

ABILITY problem, construct an instance (s, t,G′) of the NODERELIABILITY problem as follows:

Let V (G′) = E(G) ∪ {s, t}, i.e., for each edge e in the graph G, put a node ve in graph G′ with

p(ve) = p(e), and also put two nodes corresponding to s and t. Two nodes in G′ are adjacent if

their corresponding edges or nodes in G are adjacent. One can easily verify that the probability

of having a path in a random sample of G in the NETWORKRELIABILITY problem is the same as

the probability of having a path from s to t in the random sample of G′ in the new instance of the

NODERELIABILITY problem.

Theorem 1 Computing Shapley value in the multi-level graph-based propagation model is #P -

complete.

Proof. Consider an instance of NODERELIABILITY problem as follows: Given a graph G =

(V,E) and two nodes s and t, and probability p(v) = 1
2 on each node, compute the probability
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of having a path from s to t in a random graph constructed by including each node of G with

probability 1
2 . From this instance, we construct an instance of the Shapley value computation

in the multi-level graph-based model. The propagation graph G′ is the same as graph G with

an additional node v and two edges (s, v) and (v, t), i.e., V (G′) = V (G) ∪ {v} and E(G′) =

E(G) ∪ {(s, v), (v, t)}. Now consider the revenue share of nodes in G′ toward node t, that is the

revenue shares toward ptQt. We claim that the total revenue share of nodes other than v in G′ is

ptQt times the probability of having a path from s to t in a random graph where each node of G is

present with probability 1
2 . To see this, note that in computing the Shapley value revenue shares of

nodes in V (G′)\{v}, the probability that each node u ∈ V (G) appears before v in a permutation

is 1
2 . Thus the probability that each node is before v is 1

2 and is independent of any other node

appearing before v. Also, if a path from s to t appears completely before v in a permutation, the

marginal value of node t which is ptQt goes to one of the nodes in V (G′) − {v}. Therefore, the

total revenue share of nodes in V (G′)−{v} in the multi-level graph-based propagation model over

G′ is equal to the the probability of having a path from s to t in a random subgraph of G where

each node is present with probability 1
2 . Thus if we can compute the Shapley value revenue shares,

we can solve theNETWORKRELIABILITY problem which is #P -hard.

2.4.2.1 Approximating Shapley Value

In light of the above hardness result, we design an algorithm based on sampling to approximate

Shapley value for the graph-based multi-level model. It can be observed that by simply using poly-

nomial number of samples we can compute Shapley values approximately in this general model.

Theorem 2 If φu(S, fv) >
PvQv
n3 , then we can compute φu(S, fv) within factor (1 ± ε) with high

probability (i.e., probability 1 − o(1)), in time polynomial in 1
ε and n. Otherwise, if φu(S, fv) ≤

PvQv
n3 , one can approximate it within multiplicative factor and PvQv

n3 additive error, in time polyno-

mial in 1
ε and n.
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2.4.3 Tree-based propagation model.

Here, we show that the Shapley value revenue share of each user in the tree-based model can be

computed easily.

Lemma 3 In the multi-level tree-based propagation model, the Shapley value revenue share of

each user can be computed in time O(n2).

2.5 Supermodularity

In this section, we observe a main advantage of the tree-based propagation model compared to the

graph-based propagation model. In particular, we show that the revenue function for the multi-

level tree-based model described above is supermodular, and this implies various nice properties

of the Shapley value revenue shares for the tree-based propagation model. For example, this shows

individual rationality of these revenue shares for the corresponding cooperative game. We first

prove the supermodularity and then switch to summarizing the corollaries.

As we have explained at the end of Section 2.2, it is important to note that although this result

might seem related to the multi-cast cost sharing problem, the results are different. Before stating

the proof of supermodularity for the tree-based model, we observe that this property does not

hold for the graph-based propagation model, and even for the single-level propagation model with

uniform valuations for the revenue shares. To see this, consider the following example:

Example 1 Consider a single-level model with 4 users A, B, C, D in which all 3 users A, B, C

make referrals to user D and D becomes active. Let the revenue of each user be 1. In this case, the

value of each subset of size 2 including s and one of A, B or C is 2 (since using A, B, or C, the

path fromD is formed). Also f(s) = 0, f(s,A,B) = 3, since there are three nodes reachable from

s each with revenue 1. This example violates supermodularity as follows: f(s) = 0, f(s,A) = 2,

f(s,B) = 2 and f(s,A,B) = 3 and f(s,A,B) − f(s,B) = 3 − 2 = 1 < 2 = 2 − 0 =

f(s,A)− f(s).

Theorem 4 The revenue function in the tree-based multi-level propagation model with uniform

valuation for all users puQu = P is a supermodular set function.
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Proof. A potential way to show that function f is supermodular is by showing that the set function

fu for any user u is supermodular. However, it is not the true in this case, i.e., for some users

u, the set function fu might not be supermodular. Nevertheless, we can show that the summation

f(S) =
∑

u∈U fu(S) is supermodular. In the tree-based propagation model, for a subset S ⊂

U ∪ {s}, f(S) = 0 if s 6∈ S, and otherwise, f(S) is equal to |T (S)|P where T (S) is the maximal

connected subtree rooted at s with all internal nodes in S. In other words, f(S) is proportional

to the number of nodes that are connected to s using a path whose all internal nodesare in S.

Knowing f(S) = P |T (S)| in the uniform valuation model, it is sufficient to prove that |T (S)| is

supermodular. We do so by verifying the supermodularity property of f by proving that for any

two subsets A ⊂ B and any element i 6∈ B,

|T (B ∪ {i})| − |T (B)| ≥ |T (A ∪ {i})| − |T (A)|.

Letting ∆i(B) = T (B ∪ {i}) − T (B) and ∆i(A) = T (A ∪ {i}) − T (A), it is sufficient to

prove that ∆i(A) ⊆ ∆i(B). To show this, we consider two cases:

Case 1: i’s parent is not in T (A) ∩ A. In this case, adding i to A does not change T (A), and thus

∆i(A) = ∅ ⊆ ∆i(B).

Case 2: i’s parent is in T (A) ∩ A. In this case ∆i(A) contains all non-root nodes of the maximal

connected subtree rooted at i with all internal nodes in A. In this case, i’s parent is also in T (B) ∪

B, and ∆i(B) contains all non-root nodes of the maximal connected subtree rooted at i with all

internal nodes in B. Now since A ⊆ B, the corresponding connected maximal subtree in the

induced graph of B is larger than the maximal subtree rooted at i in A. The result follows from the

above case analysis, as it shows that ∆i(A) ⊆ ∆i(B), and thus |∆i(A)| ≤ |∆i(B)| which implies

supermodularity of f . The supermodularity of revenue shares, in turn, implies individual

rationality, computability, and incentive compatibility results for the revenue shares based on the

tree-based propagation model with uniform valuations.

2.6 Single-level vs. Multi-level

In the previous sections, we argued for an advantage of using tree-based propagation model com-

pared to a general graph-based propagation model. In this section, we compare single-level and
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multi-level propagation models, and show which revenue sharing strategy is more effective in max-

imizing the spread of viral marketing or advertising campaign.

Let M be the total revenue share for each new user who gets the referral, i.e., M = pR where

p is the probability that a new user becomes active, and R is the amount that the online retailer

or the advertiser pays as the total revenue share with each user. We observe that there exists a

direct relation between the amount of revenue shared with users and the amount of spread of the

advertising campaign. Intuitively, the more revenue share there is, the more probable the spread

is. Here, we observe that other than the parameter M , the revenue sharing scheme also plays an

important role in the expected reach of the viral marketing method. Intuitively, for multi-level

revenue sharing schemes, the potential gain of each user for making referrals is more than the

potential gain for single-level sharing schemes. The reason is that the user not only gains a revenue

share from her immediate neighbors, but also from her neighbors of neighbors and so on. This in

turn increases the probability of making referrals by users, and thus it may result in higher expected

reach of the marketing for multi-level revenue sharing schemes.

We model the potential reach of a revenue sharing strategy by simulating a random propagation

process on real-world networks, and reporting the simulation results. In order to simulate this

process, we consider the following model over a network: Each each user u has a random threshold

tu, where tu is chosen uniformly at random from [0, 1]. Before making a decision to make a referral

or not, each user computes her potential gain, Potential(u), and makes referrals if Potential(u) ≥

tu. This propagation model is inspired by the probabilistic threshold model that is widely studied

as a model for viral marketing [70]. An important feature of our model is the way we compute the

potential gain of users. In fact, the main difference in various revenue sharing policies is the way

users compute their potential gain. If we use a k-level tree-based propagation model for a large k,

there is a larger potential revenue from referrals (at the beginning of the propagation process). In

such a setting along with a k-level tree-based revenue sharing, a user u may get a revenue share M
k

(or Mt for some t ≤ k) for each new user who gets a referral from u, and also u may get a revenue

share of M
k from each new user who becomes active through u, and so on. As a result, the total

potential gain of user u for making referrals is proportional to the potential number of new users

within a distance k of user u who became active through u. At the beginning of the propagation

process, this potential is larger for each node u, but as time goes on, more people hear about it



CHAPTER 2. MULTI-LEVEL REVENUE SHARING FOR VIRAL MARKETING 18

through other friends, and the chance that a new user is informed by user u becomes lower. The

more k is, the more potential gain users have at the beginning, and thus there is a higher chance

that they start propagating referrals. On the other hand, for a larger k, after a fixed number of steps,

more people have already heard about the product/ad, and the potential gain of users to propagate

it to new users is lower. Because of this tradeoff, using different propagation models will result in

different expected number of users who get the referral.

We simulate the above process for different k-level tree-based propagation models for several

networks, and report the total expected number of users who end up getting the referral using

different propagation models. We denote this expected number of users who hear about a product

using a k-level tree-based model by E(k). As we will explain in details, in all simulations, we

observe that this expected number E(k) increases as k increases.

Data. To evaluate the performance of our models we tested them on five large real networks. To

avoid repetition, we report one of them in this chapter of the thesis as the behavior for all the net-

works were similar. The network presented here is a who-trusts-whom network of Epinions.com

which is a consumer review website. Users of the site can explicitly indicate wether they trust

another member or not. The graph contains a node for each user and there is an edge from each

user to the other users that she trusts. The graph has 75879 nodes and 508,837 edges between the

nodes [92].

Results. The performance of the k-level propagation model is depicted in Figure 2.2 for the Epin-

ions network. The simulation is done for k = 1, . . . , 20, for M = 0.3 and M = 0.5. The plots

indicate the number of users that hear about the product for each k-level simulation. As the plots

show the number increases as k increases up to 13 lvels for the Epinions network. At level k = 13,

the network is saturated.

We observe that the saturation level is close to the diameter of the graph. This implies that

implementing a k-level model beyond the diameter will not improve the number of informed users.

The 90 percent effective diameter of the graph is 5.8. We also observe that the relative increase

in the number of users getting the referral is at maximum between levels 4, 5 and 6. We also find

that, especially in the case where the total revenue shareM is smaller, having a k-level propagation

model is even more effective to trigger users initiate propagation. This observation can be inter-

preted intuitively as follows: when M is small, the single-level model might not be incentivizing
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Table 2.1: Epinions dataset properties.

Nodes Edges Avg. Degree Diameter largest CC

75879 508837 13.41 13 32223

enough for the users to opt in, however, by increasing the levels the potential increases which gives

more incentive to users to take part in this process.
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Figure 2.2: Epinions.com

2.7 Conclusion

In this chapter, we have developed multi-level revenue sharing schemes for viral marketing over

social networks. For the proposed models, we develop results on the computational complexity,

individual rationality, and potential reach of employing the Shapley value as a revenue sharing

scheme. Our results indicate that under the multi-level tree-based propagation model, the Shapley

value is a promising scheme for revenue sharing, whereas under other models there are compu-

tational or incentive compatibility issues that remain open. We also assess the effectiveness and

potential reach of the single-level and k-level tree-based models through simulations, and our find-

ings show that using a k-level tree-based model has higher potential for increasing the spread over

the social network.
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Chapter 3

Optimizing Display Advertising on

Social Networks

3.1 Introduction

Advertising is one of the main sources – if not the main source – of revenue for most online so-

cial networks; e.g., online advertising comprised about 91% of Facebook’s revenue in 2013 [3].

A significant portion of this revenue comes from display ads where certain business rules from

traditional advertising apply. Conventional display ads (and more generally traditional online ad-

vertising methods) have not been as successful in generating revenue in social networks compared

to other types of online advertising such as sponsored search advertising. To increase their rev-

enue, online social networks have utilized a new paradigm called social advertising, which aims to

leverage the social influence of a user on their friends. In this chapter, we develop a formal model

to study social advertising in display ads, and formalize the algorithmic problem faced by a social

network platform. We then present new theoretical and empirical results for this problem.

Let us start with a brief review of display advertising: An online social network has multiple

pages where it displays ads in the form of images, video or text. Once a user visits a page, she

views an ad. Her exposure to the ad is called an “impression.” Advertisers buy blocks of impres-

sions ahead of time via contracts, choosing blocks carefully to target a particular market segment.

Once the contract is agreed upon, the advertiser expects a specified number of impressions to be

delivered by the social network platform over an agreed-upon time period. In addition to deliver-
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ing a predetermined number of impressions, the advertiser may choose to optimize other objectives

like clicks or conversions [7, 6, 5].

It has been observed, however, that conventional methods of ad allocation are not very success-

ful in the context of online social networks [24, 108], and the paradigm of social advertising was

developed to address this shortcoming. The goal of social advertising is to leverage social influ-

ence among users. The impact of social influence among users has been confirmed in sociological

studies, statistical models, and in online randomized experiments (see [24] and references therein).

A social ad has been defined as “an ad that incorporates user interactions that the consumer has

agreed to display and be shared. The resulting ad displays these interactions along with the user’s

persona (picture and/or name along with the ad content)” [64]. In other words, an ad being shown

to a person can incorporate information about others who have clicked the ad in the past (assuming

their consent).

The goal of our work is to understand how social ads can affect click-through rates in social

networks. Recent field studies [108, 24] show that advertising using social cues are more effective

than conventional demographic and behavioral targeting methods.

Our Contributions and Techniques. The main contributions of this Chapter are as follows:

• We propose a formal model for social ads in the context of display advertising. In our model,

ads are shown to users one after the other. The probability of a user u clicking an ad depends

on the users who have clicked (or taken a certain action on) this ad so far. This information

is presented to u as a social cue (which could be of different kinds, as we see later), thus the

click probability is a function of this cue.

• We introduce the social display optimization problem: suppose an advertiser has a contract

with a publisher for showing some number (say B) impressions of an ad. What strategy

should the publisher use to show these ads so as to maximize the expected number of clicks?1

• We show that this optimization problem is APX hard.2 In fact, under a complexity assump-

tion known as the planted dense subgraph conjecture (widely believed to be true, see [30]),

1We will discuss publishers’ motivations for this in Section 3.2.1.

2Hard to approximate to some constant factor unless P = NP .
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we prove that it is impossible to find a strategy that approximates the best one to a factor

better than n1/8−ε, where n is the total number of users, and ε > 0 is any constant.

• In light of the general hardness results, we develop heuristic algorithms and compare them

to natural baseline ones. Inspired by influence-and-exploit strategies studied in [70, 56], we

propose a two-stage algorithm: we first show the ad to αB users of highest influence, and

then show it to users most likely to click (given the ones that clicked so far).

• Finally, we evaluate the performance of this as well as other heuristics on two real datasets

with influence probabilities from Flixster.com and GoodReads.com.

Our model shares some common elements with previous work on influence maximization and

viral marketing, but our aim is quite different: we care only about the users we show the ad to

(which we are allowed to pick), and the strategy used for doing so (as opposed to creating a cascade

over the entire graph). The strong inapproximability results mentioned above are also in contrast

to constant-factor approximations known for influence maximization models.

Formally, a display strategy will consist of a set of users and a specificied order of showing

ads, both of which are adaptive, in the sense they depend on which users have clicked the ad

so far (thus it can be viewed as a decision tree). Indeed the number of such strategy trees can

be doubly exponential in the size of the graph. Proving hardness results thus involves reasoning

about arbitrary adaptive strategies. This is our main theoretical contribution that might find other

applications.

This is also the reason proving worst approximation guarantees is difficult – because any ap-

proximation algorithm must (implicitly) certify that there is no strategy that could obtain a value

much larger than that output by the algorithm. While this may suggest that the problem is hope-

less, we will see in the experiments that our two-stage algorithm (outlined above) outperforms the

baseline heuristics by a large margin – typically by about 11% to 100%.

3.1.1 Related Work

There is a rich and diverse body of work in the intersection of display advertising, social networks,

marketing and influence maximization. For purposes of exposition, we will discuss these results in
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three categories. The most relevant to us is work on social network advertising, which is what we

intend to formalize in the context of display advertising.

Social Network Advertising: Works on social advertising have looked at the impact of displaying

social signals (cues) to users. In other words, they measure the increase in the likelihood of a

user clicking an ad, given she knows that her friends have already taken an action on that ad. In

particular, in [24], the authors run an experiment on Facebook to measure this impact. They find

that showing social cues increases the probability of clicks on fan pages. Tucker [108] studies the

same problem on a different network and makes similar observations. In a recent paper [25], the

authors argue that viral marketing would be more effective if a large number of ordinary users are

picked as influencers. None of the above work, however, looks at how one could optimize the

number of clicks, likes or conversions in display ads by leveraging these social cues.

Recently, a social ad model considering user influence, called AdHeat, has been explored [26].

In this model, the advertising platform diffuses hint words of influential users to others and then

matches ads for each user with aggregated hints. They perform experiments on a real-world data

set, and show that AdHeat outperforms the traditional relevance models by a large factor. Although

this study shows the effectiveness of using social network information in online advertising, they

do not consider active propagation of ads by the users of the social network.

Viral Marketing and Influence Maximization: The problem of influence maximization in

social networks has received a lot of attention in the past decade or so, with applications to viral

marketing, studying the spread of diseases, and a variety of other settings. Introduced in the seminal

work of Kempe, Kleinberg and Tardos [70], the goal is to pick a small set of vertices to influence,

with the goal of maximizing the expected number of nodes that this influence cascades to. We do

not get into the formal definitions, but note that these works [37, 70, 56, 87] give formal ways to

model the probability of a user buying a product based on her friends buying the product.

This is very similar to the way in which our work models the click probability, and our model

is indeed inspired by this literature. However, as we stated earlier, our goal is to find good display

strategies, which is quite different from finding good nodes from which to start a cascade. Thus

it seems the algorithmic tools developed there do not apply to our setting (indeed our hardness

results imply that we cannot obtain constant factor approximations, as in the case of influence

maximization).
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Another related work is the revenue maximization model [56, 85], in which a person’s decision

to buy a product is influenced by the set of other people who own the product, as well as the price

at which the item is offered. The results in this line of work have a more economic focus, and thus

have a very different flavor compared to ours.

Online display ad allocation: The problem of optimal allocation for display ads has been re-

cently studied as an online optimization problem [43, 42, 109]. The display ad optimization model

considered in these papers is similar to our model in that there is a goal of delivering the ad to a

predetermined number of impressions while trying to maximize the expected number of clicks or

conversions. Incorporating social influence into these settings is partly the motivation for our work.

3.2 Model

We will first give a brief background on display advertising, and thus motivate our main question

of study. This will help set up the notation for describing the model formally.

3.2.1 Display Advertising

There are three major pricing models for online ads on the Internet: Cost-per-mille/impression

(CPM), Cost-per-click (CPC), and Cost-per-action (CPA). In these models, the advertisers pay the

platform (publisher) for the number of impressions, clicks, or actions3 respectively. Even though

a majority (in terms of revenue) of search advertising operates on the CPC and CPA models, a

significant portion (roughly 33 percent, as of 2013 [4]) of display ads are sold based on the CPM

model.

The CPM model is simple to describe: an advertiser enters in a contract with a web publisher

for its ads to be shown to a fixed number of site’s visitors. The advertiser may specify a segment

of the market or some demographic criteria to target the ads to. The contract requires the publisher

to show this number of impressions. Thus the publisher can choose which users to show the ad to

(and on which pages). How should he make this choice?

Note that the more clicks an ad gets, the higher the chances that the advertiser would come

3Actions, or conversions correspond to a specific action by the online user, e.g., purchases of a product or signs up

for newsletters on a website.
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back for another advertising campaign. Thus it is in the publisher’s interest to show the ads to users

more likely to click. This is a well-recognized objective – in fact, most of the advanced display-

ad platforms offer tools to optimize metrics like clicks, conversions, or even return-on-investment

(ROI) while delivering a predetermined number of ads [7, 6, 5]. This motivates the question of

optimizing the expected number of clicks (or conversions) subject to displaying a specified number

of ads. We study this question formally in the setting of social networks.

3.2.2 Display ads in Social Networks

Let us consider the situation in which the publisher is a social network. The contracts now require

the publisher to show an ad (from an advertiser) to a fixed number (say B) users of the social

network. As we saw above, the publisher wishes to maximize the number of clicks or ‘likes’ the

ad would receive. This, in turn, could be used for pricing the contract, or improving the customer-

loyalty.

We will develop a way to model how users react to social cues, and use the model to optimize

the number of clicks an ad is expected to get. Social cues can be of different kinds. In its most

general form, the publisher could display to a user the entire set of friends who have clicked the

ad so far. This has many problems – the first is the privacy of the users who have clicked the ad.

A fix for this is (as in the experiments of [24]) is to only show users who have given consent.

Even so, displaying a list is cumbersome; a realistic way is to show a small subset (say, ones with

closest ties) of friends, or the fraction of friends, who clicked the ad (and consented to spreading

the information). Additional information, such as the number or demographics of other people

(non-friends) who clicked the ad may also be provided. We would like to have a model that is

general enough to capture the probability of a user’s click probability in all of these settings.

We now formally describe such a model. Let B denote the budget, i.e. the number of ads that

are to be displayed. We show ads one by one to users. At some point of time, suppose S is the

set of users who have clicked the ad. Then the probability that a user u clicks the ad is given by

an influence function pu(S). We assume that pu(S) is increasing with S, i.e., the probability that

a user clicks an ad only increases if more people click the ad (e.g. pu(S) may be a linear function

or a submodular function). Given this setting, the objective of the publisher (the social network)

is to find the optimal set of users and the optimal display strategy (described below) in order to
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maximize the number of clicks the ad receives.

What kind of functions pu(S) are possible? From our discussion above, the user u does not see

all of S, but only a social cue, which is something derived from S. Thus pu(S) is only a function

of the social cue that u receives. In Section 3.2.2.1, we will see a list of reasonable candidates for

pu(S) and the corresponding social cues.

Display strategy Formally a display strategy is a binary decision tree of depth B, the total num-

ber of impressions. The vertex at the root is the first user to be shown the ad. If the user clicks

the ad, we follow the display strategy in the left subtree, else the right subtree, and so on. Note

that even if the same user appears in the tree at the same depth, the probability of him/her click-

ing the ad will depend on the set of users who clicked so far (which is captured by the path from

the root). Given a strategy, we can define the expected clicks, which is the expected number of

users who click the ad if the publisher follows this strategy. This can be computed by a bottom-up

computation in the tree.

The caveat here is that a strategy tree typically has exponential size (since it is a binary tree of

depth B), thus computing the expected clicks is non-trivial. All the algorithms we consider will

have a ‘succinct description’ of the tree (at each step, it will be a simple computation to pick the

next root), however it is still not clear how to compute the expected clicks. We will compute this

quantity using Monte-Carlo simulation. This can be done efficiently, because the variance is at

most k2 (in practice it is much smaller), and thus we get a good estimate of the expectation with

only a few samples. The vast number of strategies is one reason it is difficult to reason about the

optimal strategy (one with the largest expected clicks).

Adaptivity vs. non-adaptivity We have allowed our display strategy to be adaptive (the pub-

lisher can decide who to show the ad to based on which users clicked it so far). This is reasonable

in most realistic cases. There are instances in which adaptivity gives a huge advantage (B vs. Bε,

for small ε). We do not get into them due to space constraints.

3.2.2.1 Influence Functions

In social advertising, the probability of a user u clicking or liking an ad could increase depending

on the knowledge that certain other users have clicked the ad in the past, due to an inherent trust
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in the taste or judgement of those users. This is what we capture using influence functions, as we

defined earlier. Below we will list out some influence functions pu(S) we consider.

• Linear influence: Here for each pair (u, v) of users, we have a weightw(u, v) (not necessarily

symmetric), and pu(S) = cu +
∑

v∈S w(v, u).4 The constant term cu could be zero for

certain vertices. An interesting special case is one in which the weights w(u, v) are all in

{0, p}, i.e., given a graphG(V,E) over users, w(u, v) = p if (u, v) ∈ E(G) and 0 otherwise.

In this case, pu(S) = cu + p · |S ∩Nu|. This special case is particularly interesting because

it is very easy to communicate pu(S) via social cues – we can simply tell a user the number

of friends who clicked the ad so far.

• Independent Cascade Model: This is discussed and motivated in [70]. Here as above, we

have influences p(u, v) for pairs of users, and pu(S) = 1−ΠS(1− p(u, v)). In our context,

we need to allow certain vertices u to have pu(S) = cu for constants cu (otherwise no one

would click the ad to start with). We note that when p(u, v) are all small, ΠS(1− p(u, v)) is

roughly 1−
∑

S p(u, v), in which case this is a special case of linear influence.

• Concave influence: We have weights w(u, v) as before, and have a concave function g :

R → R such that pu(S) = g(
∑

v∈S w(v, u)). Interesting examples of such functions are

g(x) = xd for d < 1, and g(x) = log x.

The linear and concave functions for influence are inspired by similar models considered

in [56]. We could also have another threshold based functions pu(S), again inspired by [70].

• Deterministic threshold function: We have weights w(u, v), and thresholds Tu. We have

pu(S) = 1 if
∑

v∈S w(v, u) ≥ Tu, and 0 otherwise. We also need to have some vertices with

pu(S) = cu as explained earlier.

Allowing thresholds makes the problem extremely hard to approximate (and possibly unrealistic),

thus we do not study algorithmic results for it.

Let us now formally define our problem.

4We cap probabilities at 1, though we do not explicitly write this.
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Definition 1 ((Social Display Optimization)) Given a tuple (U,B, p) of a set of users U , a bound

B on the number of users to show an ad to, and influence functions pu(·), the goal is to find a

(possibly adaptive) strategy for showing the ad to B users so as to maximize the expected clicks.

Sometimes we will simply refer to the problem as display optimization.

3.3 Hardness Results

In this section, we will examine the complexity of the Display-Optimization problem (in terms of

approximating the objective, which is the maximum expected clicks). We show that the problem is

NP-hard to approximate up to a factor (1 + ε) for some small constant ε > 0.5 Such a result is also

called APX-hardness. Then, under a stronger hardness assumption, called the planted dense sub-

graph conjecture, we will show that we cannot approximate the optimal display strategy problem

to a factor roughly n1/8, where n is the number of users.

We first present the latter result — strong inapproximability under planted dense subgraph

assumption — because it seems to highlight the crux of the problem, which is the following: if

we wish to influence k users in a network, and we wish to take advantage of the graph structure,

we should be able to find a set of k users who are well connected to each other, and this is hard

in general. The reasoning below will make this rough intuition formal, and also illustrate how to

argue about adaptive algorithms.

3.3.1 Strong inapproximability

We prove that for any ε > 0, the Display-Optimization problem cannot be approximated to a

factor better than n1/8−ε, unless we can approximate the random-planted version of the densest

k-subgraph (DkS) problem to a factor better than n1/4−ε (conjectured to be hard [30]).

Let B be the budget, and suppose the probability that u clicks given S is the set of vertices that

have clicked before, is given by

pu(S) = min{1, p0 + c · |S ∩N(u)|},

5Formally, it means that unless P = NP , it is impossible to tell if the optimal display strategy has expected clicks

equal to M or expected clicks ≤M/(1 + ε) for some parameter M .
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where p0 and c will be picked appropriately. So a user has an ‘independent’ probability p0 of

clicking,6 and there is an increase depending on the number of friends who clicked the ad. The

aim, of course, is to maximize the expected number of clicks.

The planted DkS problem is the following: let ε > 0 be any constant; define two distributions

over graphs as follows

D1: pick a graph from G(n, n−1/2) (thus the expected degree is n1/2).

D2: pick a graph from G(n, n−1/2), and a random subset P of size n1/2. Replace the

induced subgraph on P by a graph from G(n1/2, n−(1/4+ε)).

To see that D1 and D2 are statistically different, we note that:

1. For a graph in D1, every induced subgraph on n1/2 vertices has average degree ≤ O(log n)

with probability 1− exp(−n1/2). (Proof follows from Lemma 5.)

2. For a graph in D2, there exists an induced subgraph on n1/2 vertices and average degree

Ω(n1/4−ε) with probability 1− exp(−n1/2).

Conjecture 1 (Planted Dense Subgraph Conjecture) Given a graphG, it is not possible in poly-

nomial time to tell (with probability > 2/3) if G ∼ D1 or G ∼ D2. [30]

Our theorem is now the following

Theorem 1 Assuming Conjecture 1 (for some ε ∈ (0, 1/16)), it is not possible to approximate the

Display-Optimization problem to a factor better than n1/8−ε in polynomial time.

Proof. The reduction uses the same graph G (drawn from either D1 or D2), with parameters as

follows:

B = n1/2 ; p0 =
1

n1/8−ε/2 ; c =
1

n1/8−ε/2 .

We show that maxE[#clicks] is (a) O(log2 n) · n3/8+ε/2 if G ∼ D1, and is (b) Ω(n1/2) if

G ∼ D2, with high probability. These two claims easily imply the theorem.

6This is necessary for the clicking to kick off. We can simulate this by adding a new user who clicks with probability

1, and is connected to everyone with an edge of weight p0.
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It is easier to see (b). Suppose we are given a graph G ∼ D2. Suppose P is the planted set of

vertices, and suppose we show ads to the vertices in P (in a random order). Consider the situation

after we show the ads to half the vertices in P . Of these vertices, (B/2)p0 = (1/2) · n3/8+ε/2

vertices will have clicked the ad in expectation (and with very high probability, at least half this

number). This means that for every remaining vertex in P , at least Ω(n1/8−ε/2) of its neighbors

will have clicked the ad w.h.p. (Here we are using the fact that the planted subgraph is random

and has degree n1/4−ε). Thus by the choice of c, each subsequent vertex will click the ad with

probability Ω(1), thus the expected number is Ω(n1/2) with high probability.

Now consider G ∼ D1, and let v1, v2, . . . , vB be any sequence of B users. Now suppose a

display strategy shows the ad to these users in this order. Let Si be the subset of {v1, v2, . . . , vi−1}

that clicked. We can upper bound pvi(Si) as:

pvi(Si) = p0 + c · |Si ∩N(vi)| ≤ p0 + c · |{v1, . . . , vi−1} ∩N(vi)|.

Now for j ≥ 1, define vertex vi to be in level j if |{v1, . . . , vi−1} ∩N(vi)| lies in the interval

[2j−1, 2j).7 Then, Lemma 5 (proved below) shows that with high probability (≥ 1 − 1/n2, say),

for every sequence v1, v2, . . . , vB , the number of vi in level j is at most O(logn)n1/2

2j
.

Thus consider any (adaptive) display strategy. Suppose it shows the ad to users v1, v2, . . . , vB .

Now divide these users into levels as above, and consider some level j. By the above, there are at

most O(log n)n1/2/2j users in level j. Thus the expected number of these who click on the ad is

O(log n)n1/2

2j
·
(
p0 +

2j

n1/8−ε/2

)
≤ O(log n) · n3/8+ε/2.

By Chernoff bounds, the probability that the number who click is twice the expectation is < 1/n4

in this case. Thus the total number of clicks is at most O(log2 n)n3/8+ε/2 with probability at least

1− 1/n4. This then implies that the expected number of clicks is at most O(log2 n)n3/8+ε/2.

Note that the proof holds for every display strategy, thus concluding the proof.

It only remains to show Lemma 5.

Lemma 5 Let G = (V,E) ∼ G(n, n−1/2), and define M = n1/2. Then with probability (1 −

1/n2), we have that for every v1, v2, . . . , vM , the number of edges in the induced subgraph is at

7Include vertices with no edges to their predecessors into level 1.
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most (2 log n)M . Consequently, the number of vi with > t neighbors among {v1, . . . , vM} is at

most (4 log n)M/t.

Proof. Consider some v1, . . . , vM . The probability that there are ≥ k edges is essentially(
M2/2

k

)
pk <

(
M2pe

2k

)k
.

Now for k = 2M log n, since Mp = 1, we have the probability above to be less than e−2M logn.

Thus we can take a union bound over all choices of v1, . . . , vM (there are only nM = eM logn of

them), completing the proof.

3.3.2 APX hardness

The theorem here is the following. Though the factor is much weaker, it is based on a much more

standard assumption (NP hardness). This is the reason we include the result.

Theorem 2 There is an absolute constant ε > 0 such that it is NP-hard to approximate the Display

Optimization problem to a factor (1 + ε).

We apply a result about the complexity of the k-uniform set cover problem (set cover in which

all sets have size precisely k) and present a reduction from this. Formally, an instance of this

problem consists of a family S of m subsets S1, . . . , Sm, each of size k, over a ground set of

elements [n] := {1, 2, . . . , n}. The goal is to find a subfamily of S of minimum size that covers all

of [n]. The following hardness result is known:

Proposition 1 [40] For every choice of constants s0 > 0 and ε > 0, there exists a k (depending

on ε) and instances of k−uniform regular set cover with n elements on which it is NP-hard to

distinguish between the case in which all elements can be covered by t = n
k disjoint sets (called

YES instances), and the case in which every s ≤ s0t sets cover at most a fraction of 1−(1− 1
t )
s+ε

of the elements (called NO instances).

Reduction. We now give a reduction from k-uniform set cover to Display Optimization. Let V

be the set of elements and S = {S1, S2, . . . , Sm} be a family of sets over V each of size k. The

instance of Display-Optimization we construct is as follows: for each element v ∈ V , we have one

user. For each Si ∈ S , we have a set Ui of 4 log n/p users, where p = 1/n1/4. The edges are as
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follows. We place an edge between v ∈ V and u ∈ Ui iff u ∈ Si (thus such a v has an edge to

all the users in the ‘group’ Ui). Now the influence functions pu() are defined as follows. For users

u ∈ Ui, pu(S) = p (i.e., these users click the ad with probability p independent of the rest). For

users v ∈ V , we have

pv(S) =


1 if |S ∩ Γ(v)| ≥ 1,

0 otherwise.

The number of users to show the ad to, i.e., the parameter B, is picked to be (4t/p) + n. (Recall

t = n/k, defined above.)

We now show that if we started with a YES instance for set cover, there is a strategy which has

expected clicks ≥ (1 − δ)n + 4t, and if we started with a NO instance, then any strategy has an

expected clicks at most (1 − δ′)n + 4t, for some constants δ′ > δ > 0. Recall that t = n/k (k

constant), so this will establish APX-hardness.

YES case. In this case there exists a sub-family of t sets – say S1, S2, . . . , St which cover all the

elements V . Now consider the following display strategy:

1. Show the ad to precisely 4t/p users, according to the following algorithm: first show the ad

to users in U1 until either one of them clicks the ad, or we have exhausted all of U1, then do

the same with U2, and so on, until the ad is either shown to 4t/p users, or we have one click

in each each Ui for i = 1, . . . , t. In the latter case, if we have not shown the ad to 4t/p users

in total, show it to arbitrary (other) users in ∪jUj so that the total is 4t/p.

2. Then show the item to all the n users in V in any order.

Lemma 6 With probability 1−1/n2, step 1 of the algorithm ends up with at least one click in each

of U1, . . . , Ut.

Proof. The full proof is technical, so we only give an outline in this version. The intuition is that

in each of the Ui, by showing the ad to 1/p users, there is a probability roughly 1/2 of some user

clicking. Thus in roughly t/2 of the groups Ui, the algorithm will show the ad only to 1/p users in

the group. Now a similar argument will show that in roughly 1/2 of the rest, we require showing

the ad to 2/p users, and in general, roughly t/2j of the groups will require showing the ad to j/p
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users, for j = 1, 2, . . . , log n. Thus the total number of users to show the ad to, will be

logn∑
j=1

j

p
· t

2j
< 2t/p.

By allowing some slack in each bound, we can get high-concentration versions of these, which

completes the proof. Note that if we have one click in each Ui, i ≤ t, then in step 2, we get

n clicks. Further, the expected number of clicks in step 1 will be precisely p · (4t/p) = 4t, and

by Chernoff bounds, it will be ≥ 4t −
√

40t log n with probability at least (1 − 1/n2). Thus with

probability≥ 1−2/n2, we have that in the YES case, the algorithm above gets n+4t−
√

40t log n

clicks. Thus the expectation is ≥ (1− δ)n+ 4t, for any constant δ > 0 (for large enough n, since

t = n/k < n). This completes the analysis.

NO case. Here we need to show that no display strategy can have expected clicks> (1−δ′)n+4t,

for some absolute constant δ′. The key is to observe that an optimal strategy will (w.l.o.g.) first

show the ad to users in U and then to users in V (this is because of the structure of our instance),

and among the users in U , the order does not matter – the only thing that matters is the number of

users in each Ui that are shown the ad.

Lemma 7 In any strategy, the number of users in U who click the ad is at mostBp+
√

10Bp log n

with probability ≥ 1− 1/n2.

Proof. Any strategy shows the ad to at most B users in U (B is in fact the total number of users

it shows the ad to). For this lemma, it does not matter which users are shown the ad, because

each user likes with probability p independent of all others. Thus the lemma follows by standard

Chernoff bounds. Note that the bound above is Bp = 4t + np + O(
√
t log n), for our choice

of p. We introduce a bit of notation: we will call a group Ui “good” if at least one of the users in

Ui clicks the ad.

Lemma 8 In any strategy, at most 40t of the groups are good with probability at least 1− 1/n2.

Proof. From the way n, t, p are related, we have B < 5t/p, thus any strategy shows the ad only

to 5t/p users in U . This means that the number of groups in which the ad was shown to > 1/(2p)

users is at most 10t (else we would get a contradiction).
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Thus if 40t groups are good in total, it means that in at least 30t groups, the strategy shows

the ad to at most 1/(2p) users, and it manages to have one of the users like the ad. We show

that this is very unlikely – can happen with probability at most 1/n2. Let us now perform a finer

division. For each j, let nj be the number of groups in which the ad is shown to 1/jp users, for

j = 2, . . . , (1/p).8 Define these groups to be in level j. By a calculation similar to the above, we

have that
1/p∑
j=2

nj ·
1

jp
<

5t

p
.

For convenience, denote the quantity nj/j byCj . Then the above inequality becomes
∑

j Cj <

5t. We claim that for each j, the probability that there are > 4(Cj + log n) good groups in level j,

is at most 1/n2.

The probability that some group in level j is good, is at most 1−(1−p)1/jp ≈ 1−exp(−1/j) <

2/j, for j ≥ 2. Thus the expected number of good groups in level j is at most 2nj/j = 2Cj . Sim-

ple concentration bounds then give the claim above (because groups being good are independent

events).

This then implies that with prob. 1 − 1/n2, the total number of good groups is at most∑
j 4(Cj + log n) < 20t+ t log2 n/p < 30t. This completes the proof.

Once we have Lemmas 7, 8, it is easy to see that with probability ≥ 1 − 1/n2, the number of

users who clicked the ad in total is at most (because we are in the NO instance of set cover)

4t+ np+O(
√
t log n) +

{(
1− 1/t

)40t
+ ε
}
· n < (1− δ′)n+ 4t,

for some absolute constant δ′ (since ε can be picked small enough). This completes the proof of

APX hardness.

Deterministic thresolds The proof above can be modified to show that if the influence function

is allowed to be hard threshold, then there is no hope of approximating. More precisely we can

show:

Theorem 3 The Display-Optimization problem when some users are allowed to have a determin-

istic threshold function is NP-hard to approximate up to any polynomial (nc) approximation factor.

8Formally, we need to have the interval (1/(j + 1)p, 1/jp].
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Proof. (Sketch) We modify the reduction above, noting that in the YES case, all n vertices of V

would click the ad (in our algorithm, w.h.p.), while in the NO case, at most (1 − δ′) fraction of

V could click the ad w.h.p. (the same argument gives 1/n2c instead of 1/n2 with minor changes).

Now connect M = nc+1 new users to all the users of V , and suppose these new users click the ad

only if all n of V click the ad (threshold). Then in the YES case we get M +O(n) clicks, while in

the NO case we only get O(n) clicks w.h.p. This shows inapproximability to an nc factor.

3.4 Algorithms

In light of the above hardness results, we cannot hope to obtain algorithms with provably good

approximation ratios. However, we will describe heuristics which perform much better than the

natural baseline algorithms on real life data sets. The baseline algorithms are similar to those used

in the context of influence maximization (and are known to give good algorithms for special cases).

3.4.1 Baseline algorithms

We present two natural heuristics for the problem, which we then use to compare the performance

of our algorithms.

3.4.1.1 Largest probability greedy

One simple algorithm is to pick users that are most likely to click on the ad at each time step,

i.e., given an input (U,B, pu), pick users {a1, a2, . . . , aB} as follows: at the i’th step, let ai ∈

U\{a1, a2, . . . , ai−1} be the user maximizing pai(Si−1) where Si−1 ⊂ {a1, a2, . . . , ai−1} is the

set of users who have clicked on the ad so far. Ties are broken arbitrarily.

The problem with this heuristic is, intuitively, that it ignores the future. While picking users

most likely to click, we may have picked ones that do not influence others (we will see examples).

3.4.1.2 Most influential greedy

The heuristic above ignores the influence of the chosen users on others. We can consider the

other extreme: algorithms that pick the most influential users at each step (and ignore the click

probability).
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Most Influential Greedy Heuristic

Input: (U,B, pu).

Output: A sequence (a1, a2, . . . , aB), and set S.

Goal: Maximize E[|S|].

1. Initialize: S = ∅, A = ∅

2. For i := 1 to B do

3. Let ai ∈ U\A be the user maximizing top-infl(u)

4. Let A := A ∪ {ai}.

5. With probability pai(S), let S = S ∪ {ai}.

Figure 3.1: Most Influential Greedy Heuristic

Given an input (U,B, pu) for an instance of social display optimization, we define a total

influence infl(u) for each user u as
∑

v∈U pv({u}). The algorithm simply picks the top B users in

the non-increasing order of infl(u). One issue with the above is that it considers the total influence

of a vertex on all other nodes as opposed to the influence on at most B nodes. To deal with this,

we define the total top influence top-infl(u) for each user u as
∑

v∈J(u) pv({u}), where J(u) ⊂ U

is a subset of users v with the B largest values of pv({u}). The greedy algorithm is to pick the top

B users in the non-increasing order of top-infl(u).

This algorithm performs poorly in instances where the click probability and the influence are

negatively correlated, but is reasonable on instances in which such correlations do not occur. We

thus view the algorithm as a relevant baseline for evaluating better heuristics. The algorithm is

formally stated in Figure 3.1.

3.4.1.3 Worst-case examples greedy heuristics

Let us describe concrete instances in which the baseline heuristics perform badly. These will inspire

the more sophisticated algorithms.

For completeness, we also note that picking B vertices at random will perform very poorly.

A simple example is a path with B vertices, in which the first vertex has a click probability 1



CHAPTER 3. OPTIMIZING DISPLAY ADVERTISING ON SOCIAL NETWORKS 37

(always clicks), and each vertex has a click probability 1 if at least one neighbor has clicked, and

0 otherwise. It is easy to see that a random order does very badly, while the linear order obtains a

value B. (The largest-probability greedy recovers this.)

Next we see that even in simple linear influence models with B = n, there are bad examples

for the two greedy algorithms above. For the largest-probability greedy algorithm, consider a path

as above, but with asymmetric weights: w(i, i+ 1) = 1 whereas w(i+ 1, i) = 0 (i influences the

neighbor to the right, but not the one on the left). Suppose the probability pu(S) = min{1, α +

iε + |S ∩Ni|}, where α = nδ−1 for small δ, and ε = 1/n2. The greedy algorithm picks vertices

in the order n, n − 1, . . . (because of the iε terms), and the expected number of clicks is only nδ.

However if shown in the order 1, . . . , n, then in roughly 1/α steps, we see at least one click, and

all vertices following that will definitely click, thus the expected value is Ω(n) for this strategy.

It is not hard to construct counter examples for most-influential greedy heuristic, with two sets

of vertices, one with slightly higher influence but low click probabilities, which fool the greedy

strategy.

3.4.2 Better heuristics

3.4.2.1 Adaptive Hybrid Heuristic

This heuristic is based on the simplest way to take into account both the influence and the click

probability – the product of the two. More specifically, given an input (U,B, pu) for an instance

of the social display optimization, the algorithm greedily picks users {a1, . . . , aB} as follows: in

the i’th step, let ai ∈ U\{a1, . . . , ai−1} be the user maximizing pai(Si−1)× top-infl(ai) where S

is the set of users who clicked so far, and top-infl(ai) =
∑

v∈J(u) pv({u}), where J(u) consists of

users v who have not yet been shown the ad, and who have the (B − i) highest values of pv({ai}).

The algorithm is shown in Fig. 3.2.

3.4.2.2 Two-stage heuristic

Inspired by the idea of the the influence-and-exploit strategies in viral marketing [70, 56], and

the greedy algorithm for Densest k-subgraph [30], we propose the following two-stage heuristic:

follow the most-influential greedy heuristics for the first stage of the algorithm, and then switch
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Adaptive Hybrid Heuristic

Input: (U,B, pu).

Output: A sequence (a1, a2, . . . , aB), and set S.

Goal: Maximize E[|S|].

1. Initialize: S = ∅, A = ∅

2. For i := 1 to B do

3. Let ai ∈ U\A be the user maximizing pai(S)× top-infl(ai)

4. Let A := A ∪ {ai}.

5. With probability pai(S), let S = S ∪ {ai}.

Figure 3.2: Adaptive Hybrid Heuristic.

to the largest-probability greedy algorithm in the second stage. More specifically, we can run

the adaptive most-influential algorithm for the first αB steps, and then follow the naive greedy

largest-probability heuristic in the last (1 − α)B steps. Our motivation for this greedy algorithm

is to follow the intuition behind the greedy algorithm for influence maximization [70]. Although

this algorithm does not provide a guaranteed approximation algorithm for this problem, we hope

that this technique works well in practice, since the greedy heuristic has been very effective for

influence maximization [70]. In fact, for the independent cascade model, the first part of the two-

stage algorithm is the same as the maximum marginal greedy algorithm for influence maximization

under cardinality constraint in this model. This algorithm achieves a 1 − 1/e-approximation for

the influence maximization problem with cardinality constraints. The optimal value of α certainly

depends on the influence functions and the structure of the influence among users. Such an optimal

value of α can be computed by trying a range of values for α and estimating the expected number

of clicks via simulations. As part of our empirical study, we report a number of insights for the

optimal choice of α for various settings.

Bad examples. Note that our bad example for largest-probability greedy (path with asymmetric

influence) can be modified easily to give an n1−δ gap for both the heuristics above. Influence of

every vertex in that example is precisely 1 – so the adaptive hybrid works exactly like largest-
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Two-stage Heuristic

Input: (U,B, pu).

Output: A sequence (a1, a2, . . . , aB), and set S.

Goal: Maximize E[|S|].

1. Initialize: S = ∅, A = ∅

2. For i := 1 to αB do

3. Let ai ∈ U\A be the user maximizing top-infl(u)

4. Let A := A ∪ {ai}.

5. With probability pai(S), let S = S ∪ {ai}.

6. For i := αB + 1 to B do do

7. Let ai ∈ U\A be the user maximizing pai(S)

8. Let A := A ∪ {ai}.

9. With probability pai(S), let S = S ∪ {ai}.

Figure 3.3: The two-stage heuristic for specific α; the overall algorithm tries different α and picks

the best

probability; if ties are broken badly (which is possible), this example is also bad for the two stage

heuristic. However, the example is based on a chain of highly asymmetric influence, which is

unlikely in real instances. We believe that this why our algorithms seem to perform quite well in

real instances.

3.5 Empirical Evaluation

In this section, we evaluate variants of four heuristics discussed in the previous section on two

families of instances taken from real-world datasets. After elaborating on our datasets, we report

the improvement of the two-stage and adaptive hybrid algorithms over the two baseline algorithms.
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3.5.1 Datasets

It is important to explain how we obtain the instances of Display-Optimization (in particular the

influences w(u, v)) from real data. There is no a priori “correct” way.

Flixster9: Flixster is a social network for rating movies. We obtained the Flixster dataset from

Goyal et al’s work [52, 29]. This dataset contains 13,000 users with 192,400 directed edges between

them. There are 1.84 million ratings done by these users. These statistics are presented in Table 3.1.

The influence probabilities are learned by looking at the log of user ratings with time: < u, i, t, r >

(meaning user u rated item i at time twith rating r). We estimate the influence probability of user u

on user v as the fraction of times user v rated an item after user u had rated that item. This fraction

is then normalized over all neighbors of user v to make the sum of influence probabilities equal to

1.10

# Users 13,000

# Friendship links 192,400

# Ratings 1.84M

Table 3.1: Summary of Flixster Data Statistics

Goodreads11: Goodreads is a social book cataloging website where users can register books to

create personal bookshelves and also form friendships with each other. The dataset contains 4,654

users with 445,947 edges between them [9] (statistics in Table 3.2). This time, we produce the

influence probabilities according to the so-called voter model. This was introduced by [34] and

[60] to model probabilistic influence. The model explains the diffusion of opinions in a social

network as follows: in each step, each node changes her opinion by choosing one of her neighbors

at random and adopting that neighbor’s opinion. In [39], the authors show that degree is a good

predictor of influence probabilities.

The voter model was introduced by [34] and [60] as a natural probabilistic influence model. The

voter model explains the diffusion of opinions in a social network as follows: in each step, each

9www.flixster.com

10This typically overestimates causality; for the next dataset we consider a different way to estimate influences.

11www.GoodReads.com
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# Users 592,081

# Friendship links 2,045,177

# Books 248,252

Table 3.2: Summary of Goodreads: owner-book information data

node changes her opinion by choosing one of her neighbors at random and adopting that neighbor’s

opinion. In [39], the authors show that degree is a good predictor of influence probabilities.

3.5.2 Experimental Setup

Here, we report the performance of our algorithms on the Flixster and GoodReads data sets. For

each data set, we study the performance of these algorithms with B = βn for four different values

β, 0.02, 0.05, 0.1 and 0.15. I.e., we set the the goal of showing the ad to 2%, 5%, 10% or 15% of

the whole population, and report the results for each value of B. The way we compute the edge

weights (probabilities) is described in Secton 3.5.1. As for the choice of the influence function, we

examine the independent cascade model, and linear and concave influences. The concave functions

we examined are g(x) =
√
x and g(x) = log x.

Finally, for each node u, the individual click probability pu(∅) is drawn from a log-normal

distribution with a large mean (between 0.1 and 0.45). We chose a large mean for these distributions

to make sure that in the final click probability, the individual click probability is not dominated

by the incremental probability due to influence.12 The performance of the algorithms under the

independent cascade model were almost the same as linear influence (as we noted, this is not

surprising), thus we report the plots for the independent cascade model, and concave influences

with
√
x and log x. The reason we report the results for both of these is to illustrate that our

empirical observations are similar for seemingly very different influence functions.

As we discussed, we compare four algorithms (including two baseline heuristics). For the

12This probability could be much smaller for certain ad types. The goal of our empirical study is mainly to compare

different heuristic methods. We observe that the magnitude of the click-through-rate numbers is not important for this

comparison, and we expect to get similar relative performance if we scale all click-through-rates by the same factor. It

is, however, important to choose the individual probability factors in such a way that their magnitude dominates that of

the probabilities due to influence.
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Figure 3.4: Performance of the heuristics on the Flixster dataset for the independent cascade model.
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Figure 3.5: Performance of the heuristics on the Flixster dataset with a concave influence function,

specifically log(x)

two-stage algorithm, we try different values of α and choose the α with maximum expected value.

3.5.3 Observations

The empirical results for both data sets and for all propagation cases that we ran can be found

in Figures 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9. In these plots, the X axis changes β where B = βn.

The Y axis is the expected number of clicks during the simulation. Here we summarize our main

observations in these plots:

• Most notably, we observe that the two-stage heuristic algorithm consistently outperforms

all the other heuristics. Across all instances, the gap between the performance of the two-
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Figure 3.6: Performance of the heuristics on the Flixster dataset with a concave influence function,

specifically
√
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Figure 3.7: Performance of the heuristics on the GoodReads dataset for the independent cascade

model
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Figure 3.8: Performance of the heuristics on the GoodReads dataset with a concave influence

function, specifically log(x)
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Figure 3.9: Performance of the heuristics on the GoodReads dataset with a concave influence

function, specifically
√
x

stage heuristic and other algorithms increases as the the budget B increases. For example,

for β = 0.15, for the Flixster dataset, the percentage increases for the two-stage heuristic

from the best of other algorithms (i.e., adaptive hybrid) is around 25%, 14%, and 6% for

the three different influence propagation models. For the GoodReads dataset, the percentage

increases are around 7%, 5%, and 12%. The percentage increases from the output of the

largest-probability heuristic (that ignores the influence function) to the output of the two-

stage are 26%, 62%, and 23%. The same percentage increases for the GoodReads dataset

are 11%, 100%, and 12%. The interesting parameter in two-stage algorithms is the α at

which the best performance is achieved. See below for a discussion on how this behaves.

• Even our first heuristic, the adaptive hybrid greedy algorithm, outperforms the baselines for

all values of β except β = 0.02 where the largest-probability heuristic is slightly better for

two instances, and β = 0.05 where the largest-probability heuristic is slightly better for one

instance. Again the performance increase from largest-probability heuristic to the adaptive

hybrid heuristic increases as the budget increases.

• Finally, the most-influential greedy algorithm performs the worst. This was expected since

it only focuses on picking the most influential users and not on their click probability.

Optimal α for the two-stage heuristic: As we discussed, in order to find the optimal α for the

two-stage algorithm, we tried several values and chose the best one. The expected number of clicks

for each value of α and for different budgets is plotted in Figure 3.11. The optimal choice of α
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Figure 3.10: Two-stage heuristic for different values of α. Plot is for the independent cascade

model on the Flixter dataset.
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for each instance may be related to the optimal way of influencing the network through ads. We

observe that the optimal α for different instances vary from 0.05 to 0.2. It is worth noting the

following points in these plots:

• The optimal choice of α increases as β increase from 2% to 15%. This suggests that with a

higher budget, we can afford to spend a bit more fraction of time on ‘exploration’ (influenc-

ing) and attain higher expected clicks.

• The optimal choice of α decrease as the exponent of the concave influence function de-

creases. This is reasonable, because the lesser the influence among users, the lesser the

importance of the influencing steps.

• Fixing an instance (i.e., fixing β and an influence propagation model), we observe that as α

increases, the expected number of clicks from the two-stage heuristic is first monotonically

increasing, and then it decreases monotonically (i.e., it is unimodal). This is a curious fact

which would be nice to prove in restricted models. Of course, it also implies that the optimal

α can be found by trying only a logarithmic number of values of α (by essentially binary

search).

3.6 Conclusion

Social advertising has emerged as a promising alternative to conventional online advertising meth-

ods. In the setting of display advertising, relying on the notion that leveraging social cues can

increase clicks in online social networks, we proposed a formal model for social display ad opti-

mization, and initiated the study of the problem of optimally allocating display ads by modeling the

impact of social influence on users’ decisions. We showed that the social display ad optimization

problem is APX-hard and is unlikely to be approximable within a factor much better than n1/8.

On the algorithms side, we proposed new algorithms which seem to perform significantly better

than the baseline heuristics on datasets from real social networks. E.g., our two-stage algorithm

achieved a 11% to 100% improvement over the output of baseline greedy algorithms. We also ex-

amined the question of the optimal “influence/exploit trade-off” for the two-stage heuristic under

different choices of influence functions.
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As a first step towards better display advertising in social networks, our work raises many

interesting questions: can we develop algorithms with provable guarantees for synthetic graphs,

such as the well-studied models for social networks? What other restricted influence models can

we study for which we can prove provable approximation algorithms? What are good ways to learn

influence weights from real data? Can we extend the model to incorporate multiple advertisers

(each having a certain number of impressions)?

Our work suggests that the structure of the (induced) graph between the target users is a crucial

parameter in this model of ‘social display advertising’. It suggests that the graph structure, used

well, could significantly increase the expected click rate. Running experiments to test this on real

advertising platforms is an interesting direction for future research.
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Chapter 4

Social Content Curation on the Web

4.1 Introduction

In recent years there has been an explosive growth of digital content in many forms, such as blogs,

news feeds, as well as original and shared content on online social networks. Users are thus faced

with a large collection on content that they receive through these various platforms. In particular,

online social networks such as Google+, Twitter, and Facebook are rapidly turning into social

reading or social content sharing networks, whereby each user shares content such as news, videos,

etc., with her friends or followers. By re-sharing content, each user acts to filter items she receives

or produces such that it is of interest to her followers. Indeed online aggregators also serve to

perform a similar function of content curation where content is chosen such that it matches with

subscribers’ interest.

Content curation can be quite complex when users (following or subscribing to the same ag-

gregator) have differing interests and a limited budget of attention. By the latter we mean that users

have limited time to sift through contents in their stream. The curation function by the aggregator

then must take this into account by choosing a relatively small set of contents that followers would

find most interesting. We address the scenario of content curation where a set of aggregators, or

publishers, aims to optimize the set of content to publish such that the followers receive contents

of maximal interest to them.

We consider a very general setting with a set of aggregators or publishers, a set of followers

or readers, and a set of contents or items of interest to the followers. Each reader has an intrinsic
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interest in a given item, represented through a quantified value. The problem then is: how should

the publishers choose a limited set of items to publish such that readers receive contents of maximal

value? As we will show, solving the centralized optimization of this set of items is NP-complete,

but admits approximation algorithms. We thus address the distributed content curation problem

through a game-theoretic model where publishers are strategic agents with the aim of maximizing

their utility, expressed in terms of feedback or incentives they receive from readers. In our analysis

we aim to answer the following questions:

• Does distributed content curation based on selfish behavior of publishers converge to a pure

equilibrium?

• How efficient is decentralized content curation? We define efficiency in terms of the price of

anarchy, the ratio of social welfare under centralized curation to the sum of utilities achieved

through distributed means.

• What is the rate of convergence to equilibria?

• How do the results change when readers are also strategic?

Our contributions. To the best of our knowledge our model is the first to address the problem of

distributed content curation as a game. In the next section, we formulate the distributed content

curation problem as a game where the readers receive utility in obtaining items of interest and

the agents, the publishers, receive a reward from the readers for publishing items. The publishers

objective is then to post items such that their rewards are maximized. We analyze this game in

Section 4.3 and show that with a certain form of feedback, or reward, the distributed content cura-

tion game is efficient, in that the price of anarchy is bounded by 2. In particular, we show that the

game has a pure Nash equilibrium(NE) and that best-response dynamics converge to a pure NE.

We study the speed of convergence and show that in a polynomial number of best-response moves,

players converge to a solution with an approximation factor of 2 + ε.

We study centralized curation in Section 4.4, where a central authority may optimize the set of

items at each publisher so that the overall system utility is maximized. In this case, we show that

the problem is NP-complete. We then show that there exists a (1− 1/e)-approximation algorithm

for this problem.
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Lastly in Section 4.5 we consider the case the readers are strategic in a certain sense. Rather

than obtaining all items posted at the publisher they are connected to, the readers are selective in

choosing only a limited set of items of highest utility to them. We show that the price of anarchy

in this case is also bounded by 2.

We conclude with a discussion on extensions to this model in Section 4.7.

4.2 Model

We consider a scenario where each user connects to, or follows content aggregators, and receives

content such as videos, news updates, etc., posted by those aggregators or publishers. Our aim is

to analyze content filtering behaviour whereby a set of users filter contents so as to optimize the

content received by those connected to these users. As such, we consider a setting with a set of

users that act as aggregators (or publishers), collecting and filtering contents from sources, and a

set of users (or readers) that connect to these aggregators with the objective of receiving content of

interest to them.We will assume a set of exogenous content sources, that is, sources that have no

strategic actions. Examples of such sources are news sources such as newspaper and magazines,

owners of online videos, etc.

We further consider the more realistic setting where readers have a limited budget of attention,

that is, they spend a limited amount of time in the act of content consumption. In our model,

this translates to a limited number of publishers that the readers consult, and a limited number of

items obtained when a publisher is contacted. Further, each user has some intrinsic interest in the

items, represented by a value that a user attaches to each item. We thus consider the dual problem

of allocating links from each reader to a limited number of aggregators and selecting a limited

number of items to host at publishers so as to maximize the total value received by users. We now

formally specify our model.

4.2.1 System model

Our system consists of a set P of P publishers or aggregators, a setR of R readers or users, and a

set C of C contents or items. This can be represented as a graph G = ((C,P,R), E) of three types
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of nodes: content nodes, publisher nodes, and reader nodes1, and of a set of directed edges. The

edges are in the direction of content pull, in the following sense: a directed edge from a publisher

node to a content node indicates that this publisher selects this content to host, and a directed edge

from a reader node to a publisher node indicates that this reader follows this publisher. The term

“following” in the social reading context has the meaning that a user receives contents posted by

the publisher she follows. DefineFi to be the set of readers that follow publisher i, andHj to be the

set of publishers that reader j follows. We denote L to be the limit on a user’s budget of attention,

implying that a reader follows a limited number of publishers, or |Hj | ≤ L for all readers j ∈ R.

4.2.2 Publishing model

We assume that publishers post a set of items to their wall or stream and that this set is accessible

to their followers. Examples are news aggregator streams or the Twitter stream of a user. We focus

on the Twitter-like model where all the posts by publishers that a reader follows are presented to

the reader in a combined stream format. Let Cp(i) denote the set of items posted by publisher i and

Cr(j) the set of items received by reader j, that is, Cr(j) = {k : k ∈ ∪i∈HjCp(i)}. A limit on the

budget of attention and filtering role of publishers implies that each publisher i ∈ P selects a set of

items Cp(i) to post (or share), with |Cp(i)| ≤ K.

Readers have intrinsic interests in receiving certain items, and thus have valuations for these

items. Denote v(j, k) to be the value of item k to reader j. We define the utility received by a user

j, uj , as the total value of all items she receives: uj =
∑

k∈Cr(j) v(j, k).

The publishers have no intrinsic interests in items, however receive a reward from their fol-

lowers corresponding to the value of items posted. Specifically, publisher i receives a reward of

ri(j, k) from reader j for posting item k. Note that these rewards can be in the form of feedback

or incentives, through endogenous tools such as +1s, likes, retweets, or some exogenous form of

monetary incentive. At this stage, we leave the type of this feedback quite general, and in the next

section we formulate the reward structure that leads to desirable results.

We now define the content curation problem with strategic publishers as choosing a set of

items to be posted at each publisher such that the global utility is maximized. We first consider the

1Note that we will use the terms user and reader interchangeably throughout this chapter, and similarly for the term

pairs content/item and aggregator/publisher.
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distributed case in Section 4.3, where publishers follow selfish dynamics to maximize their own

payoffs. Next in Section 4.4 we study the centralized formulation. In Section 4.5 we will consider

the problem with selective readers.

Note that in the present formulation we consider a set of discrete items to be shared. In reality,

once an item is consumed, it is no longer of interest and a user would seek other items. However, our

formulation includes the general case where content is classified by topics and users have intrinsic

value for certain topics. Each item k in our formulation then represents a stream of content of topic

k.

4.3 Content Curation Game

We first consider the case where the readers follow a fixed subset of publishers and collect all

items shared by the publishers they follow and in return pay the publishers a reward. The strategic

publishers then select a set of items to post that maximizes their payoff. Each reader j is assumed

to follow a fixed subset of publishersHj and receives a utility uj that corresponds to the items she

receives from those publishers.

Each publisher chooses a set of K items to post that maximizes her total reward. Denote by

Ai the set of feasible actions available to publisher i, where a feasible action is a set of items, ai,

the publisher chooses, satisfying the limit of K items: Ai = {ai ⊆ C : |ai| ≤ K}. The reward, or

payoff, that a publisher receives for action ai is thus as follows:

Wi(ai) =
∑
k∈ai

∑
j∈Fi

ri(j, k), (4.1)

where ri(j, k) is reward she receives from follower j for posting item k. The form of these rewards

will be made more precise below.

Each reader j receives a total utility v(j, k) for each item k that she collects, whether she

receives this from one or more publishers. The reader then sends a reward up to one or more

publishers as a feedback representing her interest. In this work we consider bounded reward poli-

cies where the sum of all rewards sent by reader j for item k does not exceed v(j, k), that is,∑
i∈Hj∩Pk ri(j, k) ≤ v(j, k). In particular, we consider policies of the following form:

ri(j, k) = v(j, k)bi(j, k), (4.2)
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where
∑

i∈P bi(j, k) = 1 for all j, k. The tuple G = (P, {Ai}, {Wi(
∏
`A`)} now denotes our

content curation game.

Remark. The reward paid by the reader might be of the form of likes, re-shares, favorite markings,

etc., in the various online social networks accordingly. We do not go into detail on how the reward

values are to be translated into such feedback, only noting that such a representation is possible.

Note that Wi represent the private utilities, or payoffs, of the agents in the game (here, these

are the publishers). The social welfare function is defined as the sum of utilities received by all

readers:

W(A) =
∑
j∈R

uj =
∑
j∈R

∑
k∈ ∪

i∈Hj
ai

v(j, k),

where A = {a1, . . . , aP } is the action profile of all users.

With the aim of characterizing the efficiency of distributed content curation, we consider the

price of anarchy of the content curation game. The price of anarchy is defined as the ratio between

the social welfare of an optimal allocation of items to publishers and that of the worst-case equilib-

rium. A high price of anarchy suggests that the distributed scheme is not efficient in terms of the

achieved social welfare. A low price of anarchy that scales well with the system size, indicates an

efficient distributed scheme, where even as the system grows the distributed scheme may achieve

close to the optimal social welfare. We will now show that the price of anarchy is at most 2 in the

content curation game. Note that a Nash equilibrium of this game may be one of mixed strategy,

where an agent selects an action according to some probability distribution. We will show that the

content curation game admits at least one pure Nash equilibrium.

Let Ω denote an optimal action profile in the content curation game, that is, one that maximizes

W , the social welfare.

Theorem 9 Any Nash equilibrium of G, the content curation game, results in social welfare at

least half of the maximal social welfare:

W(Ω) ≤ 2W(A), A ∈ A,

whereW(A) is the expectation ofW over the mixed strategy set A.

Proof. Vetta [110] has shown that valid utility games have a price of anarchy of at most 2. It
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suffices to show that G, the content curation game, is a valid utility game. A valid utility game has

the three following properties:

1. non-decreasing submodularity: the social welfare function must be submodular and non-

decreasing,

2. Vickrey condition: the utility of an agent is at least equal to the loss in the social welfare

resulting from this agent declining to participate in the game,

3. cake condition: the sum of agent utilities under any set of strategies should be less than or

equal to the social welfare.

We now show that the content curation game satisfies these three properties.

1. Since all item values v(·, ·) are non-negative, the social welfare function is non-decreasing.

We denote by nA(j, k) and nA′(j, k) the number of publishers through whom reader j re-

ceives item k under strategy profile A and A′ respectively, that is, nA(j, k) = |Hj ∩ PA,k|,

where PA,k = {i : k ∈ ai}. We simplify the above notation to n(j, k) and n′(j, k) for strat-

egy profiles A and A′ respectively for the rest of the chapter and only include the subscript

if the strategy profile under consideration is not clear. We consider profiles A and A′ such

that ai ⊆ a′i for all i, and thus n(j, k) ≤ n′(j, k). We now show submodularity by studying

the increase in social welfare due to the utility of any reader j when item k is added to A and

A′. If both n(j, k) and n′(j, k) are non-zero, reader j’s utility is not affected under either

strategy and so the increase in social welfare is zero. If n(j, k) = 0 and n′(j, k) > 0, the

social welfare has a non-zero increase when adding item k to A, but no increase when added

to A′ since reader k already receives the item under A′. Finally if n(j, k) = n′(j, k) = 0,

the increase in adding item k to A and to A′ is both v(j, k). Summing over all readers, the

increase in total social welfare due to adding any item k under A is not less than that under

A′.

2. When publisher i declines to participate in the game (denoted by action set ∅i), the loss in

social welfare as compared to when she selects action ai isW({a1, . . . , aP })−W(∅i, a−i) =∑
k∈ai

∑
j:j∈Fi,n(j,k)=1 v(j, k); this corresponds to the loss of receiving an item provided

only by this publisher to her followers. (Note that the readers who receive items from i also



CHAPTER 4. SOCIAL CONTENT CURATION ON THE WEB 55

from any other publisher do not lose any value.) The publisher’s payoff, had she selected

action ai is Wi(ai) =
∑

k∈ai

(∑
j∈Fi,n(j,k)=1 v(j, k) +

∑
j∈Fi,n(j,k)>1 v(j, k)bi(j, k)

)
≥

W({a1, . . . , aP })−W(∅i, a−i).

3. It is easily shown that
∑

i∈PWi(Ai) ≤ W(A).

Bounded reward policies

We consider bounded reward policies, as described above, that allow us to show that the content

curation game is a valid utility game and thus any Nash equilibrium of the game results in a social

welfare at least half the optimal social welfare. This result however does not guarantee the existence

of pure Nash equilibria. For this stronger result, we consider a more restrictive reward policy, that

we call the Uniform policy. Under this policy, each reader divides her utility for an item equally

among all publishers that she follows who post that item, that is, bi(j, k) = 1/n(j, k). In particular,

the reward that a publisher i receives under action profile A = {a1, . . . , aP } is as follows:

Wi(ai) =
∑
k∈ai

∑
j∈Fi

v(j, k)/nA(j, k). (4.3)

Note that this is a special case of the set of bounded reward policies and thus the results pre-

sented thus far still apply. Such a policy is realistic in a scenario where a reader’s stream of content

is not presented in any particular order and it is equally likely that a given item is first read from

any of the sources.

4.3.1 Convergence to Equilibria

We now show that the content curation game with the Uniform reward policy converges to a pure

Nash equilibrium, by showing that it is a congestion game.

As defined by Rosenthal, a congestion game is a non-cooperative game G(N,M, U) with a set

of N players, a set ofM resources, and utility functions Un for each player. Each player has a set

of feasible strategies, each of which specifies a subset of resources. A congestion game has two

properties:
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1. for any strategy selected by a player, this player receives a utility that can be written as the

sum of the utilities from each resource in that strategy profile,

2. the utility that a player receives from each resource depends on the number of other players

selecting the same resource.

Rosenthal [93] has shown that any congestion game has at least one pure Nash equilibrium by pro-

viding an exact potential function for such games. Further, this implies that best-response dynamics

converge to an equilibrium.

If we let “items” be the set of “resources” of the congestion game, we cannot show that the

content curation game is a congestion game. The reason is that the utility of a publisher i posting

an item depends not only on the number of other users posting the same item, but also on the set of

followers shared by those users and publisher i. However, in the following theorem we will show

that the content curation game is a congestion game by letting the setM of resources be the set of

pairs (j, k) of all followers j ∈ R, and contents k ∈ C.

Theorem 10 The content curation game is a congestion game. In fact, it is a potential game and

any best-response sequence of actions will converge to a Nash equilibrium of this game.

Proof. We show that the content curation game is a congestion game by defining a resource

as a reader-item pair. We thus have a set of resources M = {(j, k) : j ∈ R, k ∈ C}. Let

r(j, k) = v(j, k)/n(j, k) denote the payoff received by a publisher that posts item k and has reader

j as a follower. Since we have, from (4.3), for all i ∈ P , Wi(ai) =
∑

(j,k):
j∈Fi,k∈ai

r(j, k), the

first property of congestion games is verified. The second property is verified by the definition of

publisher payoffs, Wi, under the Uniform policy. By considering the following potential function

under strategy profile A : Φ(A) =
∑

k∈C,j∈R
∑nA(j,k)

t=1 v(j, k)/t, we can easily show that the

content curation game is a potential game.

4.3.2 Convergence to Approximate Solutions

In the previous subsection, we showed that any sequence of best-response dynamics will converge

to a pure Nash equilibrium. However the rate of convergence (in terms of the number of best-

response moves) is not guaranteed to be polynomial in the number of players. In this section,
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we study the rate of convergence of approximate (α-Nash) dynamics to approximately optimal

solutions. In particular, we show that the number of approximate best responses by players before

they converge to a solution within a factor 2+ε of the optimal solution is bounded by a polynomial.

In our analysis, we use the concepts of α-Nash Dynamics and β-nice games, defined in Awerbuch

et al. [22].

We first define approximate game dynamics and introduce some notation.

α-Nash Dynamics: An α-approximate best-response dynamics or α-Nash dynamics is a sequence

of best responses by players in which each best response will increase the payoff of the player (who

makes the change) by a factor of at least α. In an α-Nash dynamics with liveness property, each

player gets a chance to play a best response after at most T steps.

β-nice games: Consider an exact potential game Λ, and let Ω be the optimal solution. Let A =

(a1, . . . , aP ) be a strategy profile of the players and letA′i be a best response strategy for player i in

strategy profileA. The payoff of player i in strategy profileA is denoted byWi(A) and each player

wants to maximize her payoff. In this setting, in a strategy profileA, for each player i with the best

response strategy a′i ∈ Ai, we let ∆i(A) = Wi(A−i, a′i) −Wi(A), and ∆(A) =
∑

i∈P ∆i(A).

We say that the game is a β-nice game if for any action profile A,

β · (W(A) +
∑
i∈P

∆i(A)) ≥ W(Ω).

1-bounded jump condition: We say that a game satisfies the 1-bounded jump condition if for any

action profile A = (a1, a2, . . . , aP ), and any player i with best-response move a′i, and for every

player i′ the following two properties hold:

1. Wi′(A−i, a′i)−Wi′(A) ≤Wi(A−i, a′i).

2. for every improvement action a′i′ of player i′, it holdsWi′(A−i′ , a′i′)−Wi′(A−{i,i′}, a′i, a′i′) ≤

Wi(A−i, a′i).

Awerbuch et al. [22] show that in order to prove the desirable result of this section, it is sufficient

to prove that the content curation game satisfies the above two properties. Next, we show that the

content curation game satisfies the above two properties.

First we state Theorem 5.6 of Awerbuch et al [22].
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Theorem 11 [22] Let 1
8 > δ ≥ 4α. Consider an exact potential game Λ that satisfies the β-nice

property and the 1-bounded jump condition. For any initial state Ainit the unrestricted α-Nash

best-response dynamics with liveness property generates a profile A with β(1 + O(δ))W(A) ≥

W(Ω) in at most O
(
n
αδ log( φ∗

φ(Ainit)) · T
)

steps.

Lemma 12 The content curation game is a 2-nice game where Ω is the optimal solution, then for

any action profile A, we have 2 · (W(A) +
∑

i∈P ∆i(A)) ≥ W(Ω).

Proof. We show that W(A) +
∑

i∈PWi(A−i, a′i) ≥ W(Ω) where a′i is the best response of

player i in strategy profile A. Note that Wi(A−i, a′i) ≥ Wi(A−i,Ωi). Let S be the set of pairs

of posts and readers (j, k) ∈ R × C that are satisfied in the optimal solution , i.e., W(Ω) =∑
(j,k)∈S v(j, k). Let X be the set of pairs in S that are satisfied in A and X ′ be the rest of pairs

in S. The value of all pairs in X appear in W(A), thus the sum of values of items in X is less

thanW(A). Moreover, for any pair (j, k) in X ′, if item k is covered by Ωi and j follows i, then

the utility Wi(A−i,Ω(i)) contains the whole value v(j, k) for pair (j, k). This is because no other

publisher that j follows posts k as otherwise the pair (j, k) would be in X and not X ′. Therefore,∑
j∈X′ v(j, k) ≤

∑
i∈PWi(A−i,Ωi) ≤

∑
i∈PWi(A−i, a′i). The above inequalities imply the

claim as follows:

W(Ω) =
∑

(j,k)∈T

v(j, k) =
∑

(j,k)j∈T ′
v(j, k) +

∑
j∈T ′′

v(j, k)

≤ W(A) +
∑
i∈P

Wi(A−i, a′i) ≤ 2(W(A) + ∆(A)).

Lemma 13 Content curation games satisfy the 1-bounded-jump condition.

Proof. The proof lies in showing that the change in payoff for any publisher after a best-response

move or improvement action by any other player is bounded by the new payoff of the publisher

who makes the move. Consider two players i and i′ in strategy profile A. Consider each pair

(j, k) of a reader j and content k with value v(j, k). Recall that the number of publishers i that

are followed by j and are posting content k in A is n(j, k). Thus the payoff of publisher i in A

is
∑

(j,k)∈Fi×ai
v(j,k)
n(j,k) . When a publisher i′ changes her strategy to her best response a′i′ , for each
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pair (j, k) of a reader and an item, the number of publishers followed by j and posting k changes

from n(j, k) to n′(j, k) where n(j, k) − 1 ≤ n′(j, k) ≤ n(j, k) + 1. Therefore the increase in

the payoff of publisher i is at most
∑

(j,k)∈Fi∩Fi′×[ai∩(ai′\a′i′ )]
( v(j,k)
n(j,k)−1 −

v(j,k)
n(j,k)). The payoff of

player i′ after changing her strategy from ai′ to a′i′ is at least
∑

(j,k)∈Fi′×ai′
v(j,k)
n(j,k) . For a pair

(j, k) ∈ Fi ∩ Fi′ × [ai ∩ (ai′\a′i′)], at least two players i and i′ followed by j are posting k in A,

thus n(j, k) ≥ 2, and ( v(j,k)
n(j,k)−1 −

v(j,k)
n(j,k)) ≤ v(j,k)

n(j,k) . Therefore,

∑
(j,k)∈Fi∩Fi′×[ai∩(ai′\a′i′ )]

(
v(j, k)

n(j, k)− 1
− v(j, k)

n(j, k)
) ≤

∑
(j,k)∈Fi∩Fi′×ai∩(ai′\a′i′ )

v(j, k)

n(j, k)

≤
∑

(j,k)∈Fi×ai′

v(j, k)

n(j, k)

= Wi′(A).

This implies the first condition of the bounded jump property, i.e, the increase in the payoff of

player i is at most the payoff i′.

Consider a strategy profile A and two players i and i′ with two best response strategies a′i

and a′i′ . When player i′ changes her strategy to a′i′ , if she decreases the payoff for player i, then

the decrease in payoff is at most
∑

(j,k)∈Fi∩Fi′×a′i∩(a′
i′\ai′ )

( v(j,k)
n(j,k) −

v(j,k)
n(j,k)+1). In this case, the

payoff of i′ from switching to her strategy is at least
∑

(j,k)∈Fi′×a′i′
v(j,k)

n(j,k)+1 . Since for any pair

(j, k) ∈ Fi ∩ Fi′ × [a′i ∩ (a′i′\ai′)], we have n(j, k) ≥ 1, then v(j,k)
n(j,k)+1 ≥

v(j,k)
n(j,k) −

v(j,k)
n(j,k)+1 . These

inequalities imply the second condition of the 1-bounded jump property as follows:

Wi(A−i, a′i)−Wi(A−{i,i′}, a′i, a′i′)

≤
∑

(j,k)∈Fi∩Fi′×[a′i∩(a′
i′\ai′ )]

(
v(j, k)

n(j, k)
− v(j, k)

n(j, k) + 1
)

≤
∑

(j,k)∈Fi′×a′i′

v(j, k)

n(j, k) + 1
≤Wi′(A−i′ , a′i′).

As stated earlier, Theorem 5.6 of [22] and Lemmas 12, 13 imply the following Theorem for

the convergence of α-Nash dynamics to 2-approximate optimal solutions.



CHAPTER 4. SOCIAL CONTENT CURATION ON THE WEB 60

Theorem 14 Let 1
8 > δ ≥ 4α. Consider a content curation game Λ with any initial strategy profile

Ainit. Any α–Nash best-response dynamics with liveness property generates a profile A with total

welfare 1
(2+O(δ))W(Ω) in at most O

(
n
αδ log( φ∗

φ(Ainit)) · T
)

steps.

Numerical results on convergence

While we have shown in Section 4.3.1 that the content curation game converges to pure NE, we are

not able to prove theoretical results on the convergence time. Since convergence to approximate

equilibria in polynomial time has been shown above, we expect convergence time to pure NE to

be similarly reasonable. We thus perform simulations to support this conjecture. We simulate

the content curation game where each publisher chooses a best response strategy and each reader

sends rewards to publishers. We consider a game with N nodes, including R = 0.35N readers,

P = 0.3N publishers, and C = 0.35N content sources, where each publisher may collect up to

K = 0.4C items. At each step of the simulation a publisher chosen uniformly at random selects

his best strategy, the strategy that yields the optimal reward for that step. At each step readers also

send up rewards to the publishers they follow according to the Uniform policy. Figure 4.1 plots the

convergence time in number of steps against N , the system size. We observe that the increase in

convergence time as the system grows appears to be reasonable, and polynomial in system size.

4.4 Centralized Content Curation

We now study the centralized curation problem, where a central authority with complete informa-

tion optimizes the set of items each publisher must post so that social welfare is maximized.

We first show that the problem is NP-complete by giving a reduction to the Set Cover problem.

Theorem 15 The centralized content curation problem is NP-complete.

Proof. We prove the hardness by giving a reduction from the well-known Set Cover problem. In

the Set Cover problem, a number l, and finite set S with a collection T of its subsets are given. A

set cover for S is a subset T ′ ⊆ T such that every element in S belongs to at least one member of

T ′. The objective is to find a set cover with a cardinality of l. Given an instance I of Set Cover,
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Figure 4.1: Simulation results on the convergence time of the content curation game.

we create an instance J of the curation problem. I consists of S and T as described above, where

S = {j1, . . . , jq} and T = {T1, . . . , Tn}.

Given an instance I = (S, T ) of the set cover, we construct the following instance J =

((C,P,R), E) of the content curation problem: Let C = {k0}∪{k1, k2, k3, . . . , kn},R = {j1, j2, . . . , jq, j′1, j′2, . . . , j′n}

and P = {i1, . . . , in}. The structure of readers following publishers is as follows. Each publisher

iu, u = 1, . . . , n, is followed by reader j′u, and each publisher iu is further followed by a number

of readers from the set {j1, . . . , jq}, such that each of this latter set of readers follows at least one

publisher. Figure 4.2 provides an illustrative example where each of reader jt, t = 1 . . . , q, follows

publisher it. Furthermore, for 1 ≤ t ≤ q and 1 ≤ u ≤ n, we let v(jt, k0) = M ,v(jt, ku) = 0,

and v(j′u, ku) = m and for u′ 6= u, v(ju, ku′) = 0. We further assume that M >> mn. Finally,

let K = 1 for this instance. The max curation problem then consists in choosing a subset of E, the

set of edges between the publishers and content sources, such that each publisher connects to only

one content source, and the total utility of the system is maximized. We claim that there exists a

set cover of size l if and only if there exists a solution to the content curation problem with utility

value of Mq + (n − l)m. To see this, consider a set cover solution of a family T ′ of l′ subsets
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in I. We first show how to construct a solution of utility value Mq + (n − l′)m in J . To do so,

consider a solution to the curation problem where each publisher i ∈ T ′ posts the item k0, and for

each publisher iu 6∈ T ′ publishes one item ku. This is a feasible solution to the curation problem

as each publisher posts one content item. In this solution, since all elements of S are covered by

the set cover solution, each reader jt, t = 1, . . . , q, can read the item k0 for a value of M each,

summing to a total value of Mq from content item k0. Moreover, for each of the n− l′ publishers

iu 6∈ T ′, reader j′u receives item ku since iu posts item ku, and therefore each such reader j′u has

value m, summing up to the value of (n − l′)m. As a result, the total value of this solution is

Mq + (n− l′)m.

To complete the proof, we need to show that if we have a solution to the curation problem with

total value Mq + (n − l′)m, we can find a set cover solution of cardinality l′ subsets. Let T ′ be

a subset of publishers it that publish item k0 and let T ′′ = {it|1 ≤ t ≤ n, it publishes kt} (i.e.,

the set of publishers it that each post item kt respectively). Since M >> mn, the value of the

solution is at least Mq only when T ′ corresponds to a feasible set cover that results in having all

readers j1, · · · , jq getting access to content item k0. Given the above, the value of this solution is

Mq +m|T ′′|. Since the value of the solution to the content curation problem is Mq + (n− l′)m,

we conclude that |T ′′| = n− l′. Moreover, since publishers in T ′ publish k0, they may not publish

any other content item, and thus |T ′′| ≤ n− |T ′|. Combining these two inequalities, we get:

|T ′| ≤ n− |T ′′| = n− (n− l′) = l′.

We conclude that T ′ is a feasible set cover solution of cardinality at most l′, and this completes the

proof.

4.4.1 Approximation Algorithms

We now show that there exist (1− 1/e)-approximation algorithms based on LP and greedy (1/2)-

approximation algorithms by showing that the content curation problem is a special case of the

separable assignment problem [44].

Lemma 16 The maximum content curation problem is a special case of the separable assignment

problem, thus admits a (1 − 1/e)-approximation factor through an LP-based algorithm and a

(1/2)-approximation through by a greedy algorithm.
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Figure 4.2: An example scenario for the reduction to the set cover problem. The solid arrows

represent the follower structure while the dashed arrows represent one possible solution that results

in a total utility of Mq + (n− l′)m.

Proof. We show that the content curation problem is a special case of the separable assignment

problem. In a separable assignment problem, we are given a set of items I to be assigned to a set

of bins B and a packing maximization problem Pb for each bin b ∈ B. Each bin has a packing

constraint and each item can be assigned to at most one bin. Any subset of items has a value for

each bin, and the total value of the assignment is the sum of the value for the bins. The objective in

the separable assignment problem is to find an assignment of items that maximizes the total value.

Assuming that there exists an α-approximation algorithm for a single-bin packing problem

Pb, it is shown that (i) one can get a 1 − 1
eα -approximation algorithm for the problem by solv-

ing and rounding an exponential-size configuration linear program, and (ii) one can get a α
α+1 -

approximation algorithm by applying a simple greedy algorithm [44].

We show that the centralized optimization problem of content curation is a separable assign-

ment problem as follows: Each bin b corresponds to a publisher i, and an item in the separable

assignment problem corresponds to a pair (j, k) of reader j and content (item) k. The packing

problem Pi for the separable assignment problem of publisher i corresponds to choosing a set of
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pairs (j, k) of content and readers maximizing the total utility
∑

j,k v(j, k) such that j follows i and

i posts k, i.e., a set Q of pairs (j, k) is feasible if the size of the set of posts that appear in the pairs

ofQ is not more thanK, and for each reader j appearing in these pairs j follows i. We also observe

that the optimization packing problem for each publisher (corresponding to the single-bin packing

problem the case of the separable assignment problem) is polynomial-time solvable: in order to

solve the packing optimization problem for a publisher i, it is sufficient to compute the utility of

publisher i of posting content k, i.e.
∑

j∈Fi v(j, k), and choose the top K posts maximizing this

value. Since the single-bin packing problem admits a polynomial time algorithm, α = 1. Applying

the theorems above with α = 1, we get the aforementioned 1 − 1/e-approximation (0.63) and

greedy 1/2-approximation algorithms.

4.5 Selective Readers

We have thus far assumed that readers are not strategic, that is they follow a fixed set of publishers

reading all the items published by them. We now consider the readers’ budget of attention not

through a limit on the number of publishers they follow, but through a limit on the number of items

they read. We thus assume that readers are selective and only read (or benefit) from the top Z

items posted by publishers that they follow. The readers choose this set of Z items such that their

utility is maximized. Now, we consider the same utility model as in the previous sections, but with

selective readers, where user j chooses only Zj items to read. The centralized optimization is still

NP-complete.

From the game theoretic point of view, we can show that when followers are selective as de-

scribed above, the price of anarchy is 2. We prove this by showing that the game is a valid utility

game. The proof is similar to that of content curation games without selective readers.

Let Ω denote an optimal action profile in this game with selective readers, that is, one that

maximizesW , the social welfare.

Theorem 17 Any Nash equilibrium of G, the content curation game with selective readers, results

in social welfare at least half of the maximal social welfare:

W(Ω) ≤ 2W(A), A ∈ A,
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whereW(A) is the expectation ofW over the mixed strategy set A.

Proof. We present a sketch of the proof by showing that the game is a valid-utility game, and

apply the result of Vetta [110] who shows that valid utility games have a price of anarchy of at

most 2. To do so, we show that the content curation game with selective readers satisfies the three

properties for valid-utility games.

• Non-decreasing submodularity. Since all item values v(·, ·) are non-negative, the social

welfare function is non-decreasing. To show its submodularity, consider two strategy profiles

A and A′ where ai ⊆ a′i for each i. Now consider adding pair (j, k) of item k and reader j

to the strategies of ai′ and a′i′ in A and A′ respectively. There are two cases: if in strategy

profile (A′−i′ , a
′
i′ ∪ {(j, k)}) item k is not among the top Zj items posted for j, then the

increase in the social welfare by adding (j, k) to A′ is zero, and thus less than or equal to

that of adding this pair to A. For the case where item k is among the top Zj items for j,

we further consider three conditions. Let n(j, k) and n′(j, k) be the number of publishers

through whom reader j receives item k under strategy profile A and A′ respectively. Since

ai ⊆ a′i for all i, n(j, k) ≤ n′(j, k). In the first case, if both n(j, k) and n′(j, k) are non-zero,

user j’s utility is not affected under either strategy and so the increase in social welfare is

zero. In the second case, if n(j, k) = 0 and n′(j, k) > 0, the social welfare has a non-zero

increase when adding item k to A, but no increase when added to A′ since reader k already

receives the item under A′. Note that adding item k to A may replace another item ` from

the top-Zj list. Since the Zj items are items of highest utility, this increase in social welfare,

v(j, k) − v(j, `) is non-negative. Finally if n(j, k) = n′(j, k) = 0, there is non-negative

increase in adding item k to both A and to A′. Again, an item ` may be replaced in adding

item k with value v(j, `) ≤ v(j, k). The increase in welfare in adding item k to A is at least

that of adding to A′. Summing over all readers, the increase in total social welfare due to

adding any item k under A is not less than that under A′.

• Vickery condition. When publisher i declines to participate in the game (denoted by action

set ∅i), the loss in social welfare as compared to when she selects action ai corresponds to

all items posted by publisher i that are only published by i and are among the top Zj valued

items for each i’s followers, j ∈ Fi. These values account for part of publisher i’s payoff
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from items she posts for readers who do not get the same items from anybody else. Moreover,

publisher i receives payoffs from items she is posting that other publishers may be posting

as well. Therefore her payoff is at least the reduction in social welfare due to dropping her

strategy.

• Cake condition. Again by definition, it is not hard to show that
∑

i∈PWi(Ai) =W(A).

The above theorem shows that the price of anarchy of Nash equilibria in content curation games

with strategic readers is at most 2. Since the content curation game with selective readers is not

a congestion game, it is not necessarily a potential game, and the analysis of theconvergence of

best-response (Nash) dynamics in these games remains open. However, one can argue that regret-

minimization dynamics will converge to a 1/2-approximately optimal solution. This result is im-

plied in a result of Roughgarden [99] which shows that valid-utility games are (1, 1)-smooth. This

implies that not only the price of anarchy for mixed Nash equilibria is 1/2, the price of anarchy for

correlated equilibria and no-regret dynamics is also 1/2.

4.6 Related Work

To the best of our knowledge, our model is the first to address the problem of content curation by

a set of aggregators for the optimization of utility of a set of readers. However, similar models of

optimization and game theory have been considered in different contexts.

The content curation game is related to a previously studied game called the market sharing

game [50]. In a market sharing game, there are a set of players (agents), each playing a subset of

markets, and we are given a bipartite graph between the markets and the players indicating which

markets are eligible to be played by each agent. A generalization of market sharing games is the

distributed caching game where the strategy space of players is more general than playing a subset

of markets [44]. Content curation games are different from both types of games in that in content

curation games, there are three parties in the game: the players (or publishers), the items they

post (corresponding to markets), and a third party that is the set readers who follow a subset of

publishers. Neither of these three games is a special case of the other, and in particular content

curation games are a generalization of ”uniform market sharing games” [50].
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Our work is also related to another line of work that explores incentives in user-generated

content systems where users are strategic. In particular, in [53], the authors study the problem of

strategic news posting in online social networks. They model users as either greedy or courteous

in their posting strategy. They analyze these two models on random graphs from a game theoretic

point of view. They find that high quality information spreads in the network if users are greedy.

Through simulations on Twitter data they show the same observation when users are modeled as

courteous. In our work, rather than information spread, we are interested in maximizing the utility

of readers where they have differing interests in content.

In another related work [81], the authors study the role of intermediaries in blogging and mi-

croblogging websites via a different model. They study the posting behavior of these intermediaries

on real datasets and in a game theoretic setting.

Another line of work in the area of user-generated content models ranking mechanisms in a

game theoretic setting, where utility is defined in terms of the attention (exposure) the contributor

or their content receives. In this setting, generating higher quality content is assumed to be costlier.

The objective of the system is to elicit high quality and high participation in equilibrium [48]. Our

model is more general where we consider content aggregation, not modification of content quality.

4.7 Conclusion

We have considered the problem of content curation by a set of publishers aiming to maximize

global utility of a set of readers. We show that the centralized optimization, while being NP-

complete, can be reduced to a separable assignment problem, thus admitting a (1 − 1/e) approx-

imation algorithm. We model distributed content curation as a reader-publisher game and show

that the price of anarchy is at most 2. When in addition the readers are selective in the items they

choose, we show that the price of anarchy is bounded by 2. Our results imply that in the complete

information setting, when publishers maximize their utility selfishly, distributed content curation

reaches an equilibrium which is efficient, that is, the social welfare is a constant factor of that under

an optimal centralized curation.

This result can be leveraged by online social network platform operators in the design of fil-

tering mechanisms. For instance, when a user is about to share an item by posting it on her wall,
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the social network platform can inform her about the number or fraction of her followers who have

already seen that item. If a large fraction have already seen it, then it might be more efficient, or

result in higher payoff, if that user shared another item that has not been seen by her followers as

much.

We have presented an initial analysis into the phenomenon of social filtering of content. In

this initial study we have made some simplifying assumptions to gain an insight into how these

systems function, and what type of mechanisms lead to desirable behaviour. There are several

avenues for the extension of our model that we intend to pursue. First, the bounded reward policies

we consider are separable or decomposable, in the sense that the reward a user pays to a publisher

for a given content is independent of the rewards to other publishers and of the rewards pertaining to

other content. We can imagine a scenario where it would be beneficial to pay rewards to publishers

offering the most contents of high value to a user. Further, the value derived by a user in receiving a

content may also depend on the set of contents retrieved simultaneously through a given publisher.

Under such conditions, the properties necessary for a valid utility game may no longer hold, in

particular submodularity of the welfare function, but this does not imply that bounded price of

anarchy and desirable equilibrium conditions may not hold. Other formulations for the analysis of

such games will be considered. Second, we do not assume a cost structure for the publishers other

than the limit of K items to post that implicitly puts an unbounded cost for more than K items. We

may assume a soft budget of attention where the cost in posting each additional item increases with

the number of items posted. This problem of maximizing the welfare of readers and minimizing

the cost of the publishers is an interesting extension we leave for future work.
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Chapter 5

Exchange Markets without Money

5.1 Introduction

Mechanism design without money has been a major subject of study in economics and mechanism

design [94, 47, 95]. This line of research has been studied in the economics literature in the context

of two-sided matching markets [47, 94], markets where monetary transactions are repugnant [96],

and house allocation problems [105]. Recently this field has gained more attention in the computer

science literature due to the fact that monetary compensations are not always easily applicable [91,

38]. In some cases, payments are hard to implement or to collect, e.g., implementing secure money

transaction systems is costly in general and some people do not feel safe enough sharing sensitive

information online fearing internet fraud [36, 100]. Moreover, in some repugnant markets, there

may be legal or ethical issues with monetary transactions, e.g., in the case of kidney donation [97,

19]. In this chapter, we initiate the study of a fundamental exchange market problem without money

that is a natural generalization of the well-studied kidney exchange problem. From the practical

point of view, the problem is motivated by barter websites on the Internet, e.g., swap.com, and

u-exchange.com.1 We will elaborate on these applications after the problem description.

Consider a set of agents where each agent has some items to offer, and wishes to receive

some items from other agents. A mechanism specifies for each agent a set of items that he gives

away, and a set of items that he receives. Each agent would like to receive as many items as

1See http://abcnews.go.com/International/buying-barter-economy-matures-niche-trend/

story?id=18193023 for a recent news coverage.

http://abcnews.go.com/International/buying-barter-economy-matures-niche-trend/story?id=18193023
http://abcnews.go.com/International/buying-barter-economy-matures-niche-trend/story?id=18193023
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possible from the items that he wishes, that is, his utility is equal to the number of items that he

receives and wishes. However, he will have a large dis-utility if he gives away more items than

what he receives, because he considers such a trade to be unfair. To ensure voluntary participation

(also known as individual rationality), we require the mechanism to avoid this. We show that any

individually rational exchange can be viewed as a collection of directed cycles, in which each agent

receives an item from the agent before him, and gives an item to the agent after him. In addition

to simplifying the statement of the problem, this suggests that we can implement an exchange by

separately carrying out one-to-one trades among subsets of agents. In some settings, carrying out

cycle-exchanges of large size is undesirable or infeasible. If there is a chance that each trade in

a cycle fails, the chance that the whole cycle of exchanges is realized will exponentially decrease

as the length of the cycle increases. Because of this and other problems with implementation, for

example, most of the previous work on the exchange of kidneys focuses on short exchanges [97,

98]. Therefore, we distinguish the restricted problem in which the number of agents in each cycle

is bounded above by some given constant k ≥ 2. The most natural and commonly practiced cycles

are of length 2, (i.e., swaps). Most of the results of this chapter are for the two extremes in which

there is no limit on the length of the cycles, and k = 2.

As an example, consider a simple instance with 3 agents and 4 items, where agent a owns item

1, agent b owns item 2, and agent c owns items 3 and 4. Assume that agents a and c both wish

to receive item 2, and agent b wishes to receive items 1, 3, or 4. Therefore, agents a and c each

would like to be the one who gets the chance to trade his item(s) for item 2. Now consider another

instance in which agent c does not own item 4. Consider a mechanism that, given the first instance,

picks agent a to trade with b, but given the second instance, picks agent c to trade with b. Then,

if c truly owns both 3 and 4, he would prefer to claim that he only owns 3, and be the person who

trades with b. The problem can be easily fixed here by making consistent decisions. The question

is, then, can we design a mechanism that always finds the exchange that maximizes social welfare,

and yet incentivizes truthfulness? Interestingly, we show that the answer differs in unconstrained

and constrained problems. We elaborate upon this further after reviewing some real-world applica-

tions of this model.

Applications. Motivated by concerns about money transaction on the Internet, and simplicity
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and convenience of swapping items in local economies, barter websites (also referred to as barter

economy sites) have become more popular in the recent years.2 Such barter websites help users

exchange items with each other. Various types of items may be exchanged in these websites: from

smaller used items like books, DVDs, cellphones, or children’s clothing, to bigger items like boats,

vehicles and vacation rentals. Some of these sites also support exchanging services like dental

work and installing hardwood flooring. In most cases, users swap items with one another, i.e., only

exchanges of size 2 are allowed. One can extend their setting to multiple exchanges over a cycle at

the same time. We model such barter websites as networks amongst users where each user has two

associated lists: an item list which consists of items the user is willing to give away to other users,

and a wish list which consists of items the user is interested in receiving. A transaction involves a

user giving an item to another user. Users are motivated to transact in expectation of realizing their

wishes. Some examples of such marketplace applications are as follows:

• swap.com focuses on media like books and CDs. It claims about 1.2 million members and

focuses on more local trades as they want to avoid expensive shipping fees.

• readitswapit.co.uk allows book lovers to exchange their already read books and receive new

books in return. Almost all of the matching is done manually by the user herself, meaning

that she has to go and find her desired book in a library and then mark it. The owner of the

desired book will be informed by an email and will check the seeker’s list of books and if

willing to do the exchange, they will post the books for each other.

Other than these applications, the aforementioned exchange market problem without money is

a natural generalization of the well-studied kidney exchange problem [97, 15, 19] where each agent

wishes one item (a healthy kidney) and has only one item to offer.

Our Contributions. For the length-constrained variant of the problem, we rule out the existence

of a 1 − o(1)-approximate truthful mechanism for k ≥ 2. We show that no truthful determinis-

2See examples at http://mashable.com/2011/08/19/barter-sites/ and http://gigaom.

com/2012/07/07/summer-is-for-swapping-startups-boost-the-barter-economy/.

For a recent news coverage, see http://abcnews.go.com/International/

buying-barter-economy-matures-niche-trend/story?id=18193023.

http://mashable.com/2011/08/19/barter-sites/
http://gigaom.com/2012/07/07/summer-is-for-swapping-startups-boost-the-barter-economy/
http://gigaom.com/2012/07/07/summer-is-for-swapping-startups-boost-the-barter-economy/
http://abcnews.go.com/International/buying-barter-economy-matures-niche-trend/story?id=18193023
http://abcnews.go.com/International/buying-barter-economy-matures-niche-trend/story?id=18193023
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tic or randomized mechanism can achieve an approximation factor better than 3k+1
3k+2 or 3k+1.89

3k+2 ,

respectively.

The above impossibility results are caused by incentive issues, and are not based on the com-

putational complexity of the problem. We strengthen the hardness of the problem by proving that,

even without the truthfulness requirement, the problem is APX-hard for any k. Finally, we present

a 1
8 -approximately optimal truthful mechanism for the problem with k = 2. The mechanism visits

pairs of agents in some fixed order, and considers adding a subset of exchanges when visiting a

pair. The ordering of pairs is done such that, at any stage during the process, an agent can not affect

the relevant future cycles by changing his strategy. We formalize this by defining an interaction set

for each agent, which denotes the set of agents that are (possibly indirectly) affected by him at any

stage, and making sure that an agent does not trade with any other agent who is currently in his

interaction set.

For the unconstrained version, we present a class of polynomial-time algorithms solving the

optimal exchange market problem, closely following algorithms for maximum flow and circulation

problems. An algorithm maintains a set of feasible exchanges, and iteratively augments the current

solution until the residual graph does not contain any more cycles.

5.1.1 Related Work

The Kidney Exchange Problem A related problem in exchange markets is the “national kidney

exchange” problem. For many patients with kidney disease, the best option is to find a living donor

– a healthy person willing to donate one of her two kidneys. The problem is that frequently, a

potential donor and her intended recipient are blood or tissue-type incompatible. In the past, the

incompatible donor’s kidney was not used, and the patient had to wait for a deceased-donor kidney.

However, now through regional kidney exchange programs in the United States, patients can swap

their incompatible donors with each other, in order to each obtain a compatible donor [97, 98, 15,

19]. The kidney exchange problem is a special case of our problem where each user has only one

item to offer and wishes one item. As a result, the kidney exchange problem is fundamentally

simpler, and can be solved in polynomial time in the case of one-to-one exchanges (i.e., for k =

2), however, for the case of length-constrained exchanges even with k = 2, our problem is NP-

hard (and also APX-hard as observed in this chapter). From the mechanism design point of view,



CHAPTER 5. EXCHANGE MARKETS WITHOUT MONEY 73

[19, 21] study the kidney exchange problem in the presence of strategic hospitals that may have an

incentive not to list all their current available organ donors. By not listing donors, hospitals will

still have the option of matching pairs internally. In our model, however, agents can have positive

utility only by exchanging items.

Mechanism Design without Money Our work fits in a line of research that seeks to design

strategy-proof mechanisms without monetary transfers. This line of research has been studied in

the economics literature in the context of two-sided matching markets, repugnant markets, and

house allocation problems:

• Two-sided matching markets have applications in college admissions and allocating interns

to hospitals [95]. Incentive issues in such markets have been studied in several papers [62,

20]. A special class of the stable matching problem with dichotomous preferences, studied

by [31], is remotely related to our problem as it employs the theory of bipartite matchings.

• Repugnant markets are markets that are considered by society to be outside of the range

of market monetary transactions, due to moral issues. It applies to organ donation (like

exchange of kidneys), and reproduction (e.g., child adoption and surrogate mothers). As

discussed earlier, our problem can be thought of as a generalization of the kidney exchange

problem.

• House allocation problems [105] are resource allocation problems where a set of items

(houses) are to be allocated to a set of people each with a preference list over the items.

These problems have applications in organ allocation (e.g., deceased donor waiting list),

university dormitory room, parking space, and office space allocation.

Although about mechanism design without money, none of the above papers discuss approxi-

mately optimal truthful mechanisms. Recently, approximate mechanism design without money has

become more popular in the computer science community. Initiated by [91], various assignment

problems [38] as well as network design problems [76, 77] have been studied in this context. Our

results fit in a similar framework, but our exchange market problem and the techniques we employ

are different from all the above problems.
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Algorithmic Results The length-constrained variant of the problem from an algorithmic per-

spective was studied in [13], where it is shown that the problem for length constraint of k = 2

is NP-hard, and a 5/3-approximation is deriven using a reduction to the k-set packing problem.

The bounded cycle cover problem, which constrains cycles to be of bounded size as well as simple

and node-disjoint, was introduced by [59]. They present a heuristic for the problem along with

empirical analysis. For the unconstrained exchange market problem, we design a polynomial-time

algorithm which is a variant of the well-studied minimum cost circulation problem [51].

5.2 Preliminaries

Consider a set of n agents A and a set of m items I . In an instance (A, I, {(Ia,Wa)|a ∈ A}) of

the exchange market problem, each agent a has an item list Ia ⊆ I (items that he owns) and a wish

list Wa ⊆ I (items that he needs) such that Ia ∩Wa = ∅. An exchange C : A → I2 assigns to

each agent a a set C1(a) of items that he receives in exchange for a set of items C2(a) that he gives

away. An exchange is feasible if for each item i, |{a|i ∈ C2(a)}| ≥ |{a|i ∈ C1(a)}|. The utility

of agent a for exchange C is specified by a function u as follows:

u(a,C) =

 |C1(a) ∩Wa| if C2(a) ⊆ Ia and |C1(a) ∩Wa| ≤ |C2(a)|,

−∞ otherwise.

In other words, in a feasible exchange, the utility of an agent is −∞ if he must provide an item

he does not own, or has to give away more items than he receives, and otherwise, his utility is the

number of items that he receives from his wish list.

Our goal is to find a feasible exchange maximizing the social welfare, i.e., sum of utilities of

agents. This goal corresponds to finding a feasible exchange that maximizes the number of items

exchanged, and no agent has −∞ utility. Notice that feasibility implies that the total number of

items collected from agents must be at least the total number of items received by agents. Therefore,

in order to find an exchange with non-negative total social welfare, we should make sure that the

number of items each agent receives and is in his wish list is not more than the number of items he

gives away, i.e., we must have C1(a) ⊆Wa, and also |C1(a)| = |C2(a)|.

An exchange mechanism extracts the private information, i.e, Ia and Wa of each agent a, and

maps it to an exchange. We are interested in designing truthful (or strategyproof) mechanisms in
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which it is a dominant strategy for each agent a to report his true private information (Ia,Wa). Our

goal is to design truthful exchange mechanisms maximizing the social welfare. We will give a more

formal definition of the problem after defining a bipartite graph representation of the problem.

5.2.1 Bipartite Graph Modeling

The above formulation of the problem allows for a clean representation using a directed bipartite

graph. This representation will help in deriving a polynomial-time algorithm for the unconstrained

problem and also argue about the constrained-length problem. This representation will be used

throughout the rest of the chapter. Here, we first define this representation, and then formally state

our problem in terms of this graph representation.

Given an instance (A, I, {(Ia,Wa)|a ∈ A}) of the exchange mechanism problem, define a

bipartite directed graph G = (A ∪ I, E), where E = {(a, i)|i ∈ Ia} ∪ {(i, a)|i ∈ Wa}. That is,

there is an edge from an agent to an item if the agent owns the item, and from an item to an agent if

the agent needs the item. A (directed) cycle in graph G is a sequence of directed edges in G where

each edge appears at most once. This graph representation helps in arguing about the exchange

market problem, since any feasible exchange in the exchange market problem corresponds to a set

of edge-disjoint directed cycles in G and vice versa.

Proposition 18 In an exchange market problem (A, I, {(Ia,Wa)|a ∈ A}), any feasible exchange

corresponds to a set of edge-disjoint directed cycles in its graph representation G(A ∪ I, E), and

vice versa.

Proof. First of all, we can interpret a simple directed cycle in this graph as a feasible exchange

as follows: any agent in this cycle gives away the item immediately after him in the cycle, and

receives the item immediately before him. More generally, any set of edge-disjoint cycles can be

interpreted as a feasible exchange. Conversely, any feasible exchange corresponds to a subgraph in

which the in-degree of each vertex is equal to the out-degree (|C1(a)| = |C2(a)|), and therefore it

can be decomposed to a set of edge-disjoint cycles. The utility of an agent in each cycle is equal to

the number of cycles to which his corresponding vertex belongs and in which he receives an item

in his wish list.

We can now formally state the definition of truthful exchange mechanisms using our graph
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representation of the problem. Truthfulness states that by misreporting, an agent will either be

asked to provide an item he does not own or receive fewer items that he wants.

Definition 2 Consider a bipartite graph G(A ∪ I, E) and let a ∈ A be a vertex where Ia is the

outgoing neighbors of a and Wa is incoming neighbors for a. Consider any other subsets I ′a ⊆ I

andW ′a ⊆ I , I ′a∩W ′a = ∅, and letG′ be the graph representation of the problem where we replace

(Ia,Wa) with (I ′a,W
′
a) in G. An exchange mechanism is truthful if for any such G and G′, in the

set of cycles produced by the mechanism on G′ there is either a cycle with an edge from a to I\Ia,

or the number of cycles with edges from Wa to a is no more than the number of cycles including a

in G.

We can now define the unconstrained exchange market problem as follows:

Definition 3 Given a graph representation G(A ∪ I, E) of an instance (A, I, {(Ia,Wa)|a ∈ A})

of the exchange market problem, the goal of the unconstrained exchange maximization problem is

to find a set E of edge-disjoint (directed) cycles with the maximum number of edges.

We also define the length-constrained exchange market problem, or equivalently, the k-exchange

market problem as follows:

Definition 4 Given a graph representation G(A ∪ I, E) of an instance (A, I, {(Ia,Wa)|a ∈ A})

of the exchange market problem and a constant k, the goal of the length-constrained exchange

maximization problem is to find a set E of edge-disjoint cycles, each of size at most 2k, with the

maximum number of edges.

Note that by restricting the size of the cycles by 2k, rather than k, we are limiting the number

of agents (equivalently, items) in each cycle by k. For example, the case of k = 2 corresponds to

swapping two items among two agents, and thus a cycle of size 4 in the bipartite graph.

LetOPT (G) be the maximum social welfare of a set of feasible exchanges given a graphG. In

this chapter, we are interested in designing truthful mechanisms to approximate OPT (.) on every

instance. We say that an algorithm f is α-approximation if for all G, S(f(G), G) ≥ αOPT (G).

Notice that any approximate mechanism avoids selecting an infeasible exchange, since the optimal

social welfare is always at least 0, achieved by not picking any exchanges.
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5.3 Length-Constrained Exchange Markets

In this section, we study the length-constrained exchange market problem. We show several im-

possibility results from truthful mechanism design and computational complexity point of views

for any k ≥ 2, and one approximately optimal mechanism for the length-constrained problem with

k = 2.

5.3.1 Inapproximability of truthful mechanisms

In this section, we show the inapproximability of truthful mechanisms for length-constrained mar-

ket exchange problem for k ≥ 2. First we show a result for deterministic mechanisms and then

extend it to randomized mechanisms.

Theorem 19 No deterministic truthful mechanism for the k-constrained problem can have an ap-

proximation ratio better than 3k+1
3k+2 .

Proof. Consider an instance of the k-exchange market problem with k+1 agents a, b, c1, . . . , ck−1

and 3k+ 3 items. Each agent owns 3 items (exclusively), and each item is in the wish list of one or

two other agents. Each item is coded by a pair, where the first element is the agent owning it, and

the second element is the agent(s) wishing for it. The agents and items are,

• Items owned by a: (a, b), (a, c1), (a, bc1).

• Items owned by b: (b, a), (b, c1), (b, ac1).

• Items owned by ci for 1 ≤ i ≤ k − 2: (ci, ci+1), (ci, ci+1)′, (ci, ci+1)′′.

• Items owned by ck−1: (ck−1, ab), (ck−1, ab)
′, (ck−1, ab)

′′.

For example, (b, ac1) is an item that is owned by agent b, and is wished for by agents a and

c1. Agents a and b are symmetric in this instance. Notice that any cycle involving any agent ci for

1 ≤ i ≤ k − 1, also involves all such agents. In particular, any cycle involving c1 involves all ci,

1 ≤ i ≤ k− 1, and therefore has size at least k− 1. We conclude that no feasible cycle can involve

a, b, and c1 all together (otherwise it will have size k + 1). Also notice that no feasible cycle can

involve exactly one of a, b, or c1. As a result, the sum of the utilities of a, b, and c1 for any feasible

cycle is an even number. Since there are 9 items that a, b, and c1 want, the sum of the utilities of
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a, b, and c1 in any feasible exchange is at most 9. But since the sum of their utilities is an even

number, it can be at most 8. We therefore conclude that at least one of these three agents will have

utility at most 2 in any feasible solution to this instance, regardless of the approximation factor. We

next show by considering cases that that agent will benefit from misreporting. Since a and b are

symmetric, there are two cases:

1. Agent a’s utility is at most 2 (the case for agent b is similar). Assume that agent a removes

item (b, a) from his wish list. The following exchange is still feasible, and has social welfare

3k + 2:

• (a, b), (b, ac1).

• (a, c1), (ci, ci+1) for 1 ≤ i ≤ k − 2, and (ck−1, ab).

• (a, bc1), (ci, ci+1)′ for 1 ≤ i ≤ k − 2, and (ck−1, ab)
′.

• (b, c), (ci, ci+1)′ for 1 ≤ i ≤ k − 2, and (ck−1, ab)
′′.

2. Agent c1’s utility is at most 2. Assume that agent c1 removes item (a, c1) from his wish list.

The following exchange is still feasible, and has social welfare 3k + 2:

• (a, b), (b, a).

• (a, bc1), (ci, ci+1) for 1 ≤ i ≤ k − 2, and (ck−1, ab).

• (b, c1), (ci, ci+1) for 1 ≤ i ≤ k − 2, and (ck−1, ab)
′.

• (b, ac1), (ci, ci+1) for 1 ≤ i ≤ k − 2, and (ck−1, ab)
′′.

Notice that in each case an agent removed an item from his wish list that was exclusively

wanted by him. Therefore, in each instance the social welfare can be at most 3k + 2, and the

specified exchange is optimal. In the specified exchange the agent removing an item has utility 3.

In fact, we show that in each the agent removing his item will have utility 3 in any exchange with

social welfare 3k + 2.

1. Assume for contradiction that a has utility at most 2 in an exchange with social welfare

3k + 2. Since there are k other agents and the utility of each agent is at most 3, all other

agents must have utility 3. But since a participates in at most 2 exchanges, the number of
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items that either b and c1 wants that are offered is at most 5. Therefore b and c1 can not both

have utility 3.

2. This case is similar. Assume that c1 has utility at most 2 in an exchange with social welfare

3k + 2. Since c1 participates in at most 2 exchanges, the number of items that either a and

c1 wants that are offered is at most 5. Therefore a and c1 can not both have utility 3.

We conclude that the agent removing his item will have utility 3 in any exchange with social

welfare 3k+2. Since any algorithm with approximation factor 3k+1
3k+2 must choose such an exchange,

it can not be truthful.

A randomized mechanism may choose exchanges at random. In this case, we assume that

agents are risk-neutral and try to maximize their expected utility. The question is if it is possible

to design a truthful mechanism that does not give any incentive to agents to misreport their private

information in order to increase their expected utility.

Theorem 20 No randomized truthful mechanism for the k-exchange problem can have an approx-

imation factor better than 3k+ 17
9

3k+2 .

5.3.2 Truthful 1
8
-approximation for the 2-exchange problem

In this section, we present a 1
8 -approximation truthful mechanism for the length-constrained ex-

change problem with k = 2. The algorithm is as follows:

1. Partition agents into sets A and B by placing each agent independently at random with

probability 1/2 into set A (and otherwise in B).

2. Let a1, . . . , ak be the agents in A, and b1, . . . , bn−k the agents in B.

3. Visit every pair of agents inA×B in order (a1, b1), (a1, b2), . . . , (a1, bn−k), (a2, b1), . . . , (ak, bn−k).

4. When visiting a pair of agents, consider exchanging all pairs of items in an arbitrary order,

and add that exchange if feasible.

First, we show the above algorithm is a 1
8 -approximation algorithm, and then we show it cor-

responds to a truthful implementation.
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Lemma 21 The above algorithm is a 1/8 approximation algorithm for the 2-exchange market

problem.

Proof. Consider an optimum set of exchanges OPT . Let OPT (A) be the subset of OPT

consisting only of exchanges between an agent in A and an agent in B. Since every element

of OPT will be in OPT (A) with probability 1/2, we must have EA[|OPT (A)|] ≥ |OPT |/2.

Fixing A, the algorithm heuristically considers adding exchanges in A × B. Since each possible

exchange intersects with at most 4 exchanges in OPT (A), and also every element of OPT (A)

has intersection with at least an exchange picked by the algorithm (otherwise it would have been

picked), this algorithm picks at least OPT (A)/4 exchanges. This implies that the algorithm is a

1/8-approximation.

We next prove the truthfulness of the algorithm by showing that it satisfies a property, which

we call interaction-freeness, that is a sufficient condition for truthfulness of greedy algorithms.

Equivalently, we say that the algorithm is interaction-free. A greedy algorithm fixes an ordering

over a subset of all exchanges, visiting them one by one, adding a cycle whenever it is feasible

(according to the item lists and wish lists of the two agents), and it does not intersect with a cycle

that is already picked. At any time during the process of the algorithm, and for any agent a,

define the interaction set S(a) ⊆ A to be the set of agents that are already affected (possibly

indirectly) by a as follows: At the start of the process, let S(a) = {a} for all a. Assume that

(b, c) are the agents currently considered for an exchange. Then for any agent a such that b ∈ S(a)

(respectively for c), update S(a) by adding c (respectively b). Intuitively, a greedy algorithm is

interaction-free if for any two agents that are being considered for the first time in the algorithm,

they have not previously interacted, i.e., they are not in each other’s interaction set. More formally,

a greedy algorithm satisfies the interaction-free property, if for any two agents a and b, whenever

an exchange involving agents a and b is considered in the process of the greedy algorithm, one of

the following is true:

• a /∈ S(b) and b /∈ S(a), or

• the only exchanges that are already considered for agents a and b involve both a and b.

Lemma 22 Any greedy algorithm that satisfies the interaction-free property is truthful.
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Proof. Fix an agent a. For any b 6= a such that an exchange between b and a is ever considered,

let Îb ⊆ Ib and Ŵb ⊆Wb be the sets of items that are not used in any exchange before the first time

an exchange between a and b is considered. Directly from the definition of interaction-freeness, it

follows that Îb and Ŵb are independent of the strategy of a. That is, from the perspective of agent

a, the algorithm ranks a subset of other agents with Îb and Ŵb, and then considers greedily adding

a subset of all possible exchanges according to the ranking. To prove truthfulness, we only need to

show a does not benefit by misreporting in this simple procedure.

Consider an order σ on a subset of exchanges each involving a. Assume for contradiction that

a benefits from reporting I ′a and W ′a. That is, a’s utility when reporting truthfully is k, and his

utility when reporting I ′a and W ′a is k′ > k. Since all the exchanges involve a, his utility when

reporting truthfully is equal to the number of cycles picked by the algorithm. Let C = {c1, . . . , ck}

be such a set. Let C ′ = Ĉ ∪ C̄ be the set of cycles picked when a misreports, where Ĉ is the set of

exchanges in which a does not receive an item that he wants, and C̄ is the set of exchanges in which

a receives and item he wants (and therefore |C̄| = k′). Assume that the set of items a gives away

in C ′ is a subset of Ia, since otherwise he will have a large dis-utility. Let σ′ be the projection of σ

on C ∪ C ′. The outcome of the greedy algorithm on σ and σ′ is the same, and therefore i will still

benefit by misreporting in σ′. We can further assume that C ∩ C ′ = ∅, by removing any element

of C ∩ C ′ from σ′. Removing such an element will decrease i’s utility of being truthful and his

utility by misreporting by the same amount. Notice that for any element c̄ of C̄ there must be an

element of C that has non-empty intersection with c̄ (otherwise barc would have been picked by

the algorithm when a reports truthfully). We say that c covers c̄ in this case. Let C1 ⊆ C be all the

elements that cover at most one element of C̄, and let C̄1 ⊆ C̄ be all the elements that are covered

by C1. Remove C1 and C̄1 from σ′. Notice that i would still benefit from misreporting since the

number of elements removed from C is at least that of C̄. So we can assume that any element of

C now covers at least two elements from C̄. Consider the first element of C ∪ C̄ according to σ′.

Such a cycle must be in C, since otherwise it would have been picked when a is truthful. Let c

be this element. Since c is not picked when a misreports, there must be an element ĉ of Ĉ that

appears before c in σ′, and has intersection with it. That is, there are 3 elements of C ′ that have

intersection with c. Recall that all these cycles involve a. Let items i and j be the items a gives and

receives in c, respectively. For a cycle to have intersection with c, either a must give i or receive
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j. This implies that there are at most two non-intersecting cycles that intersect with c. This is a

contradiction to the feasibility of C ′.

Lemma 23 The above algorithm is a truthful algorithm.

Proof. Consider the time when the algorithm first visits pair (ai, bj). It can be shown inductively

that S(ai) = {b1, . . . , bj−1}, and S(bj) = {a1, . . . , ai−1, bj+1, . . . , bn}. This shows that ai /∈

S(bj) and bj /∈ S(ai).

We next show by an example that a very simple violation of interaction-free-ness property by

a greedy algorithm can make it not truthful.

Example 2 Assume that we have 3 agents and 5 items, and consider the instance shown in Fig-

ure 5.1. Consider an order σ such that {(a, 2), (b, 1)} �σ {(a, 3), (b, 1)} �σ {(a, 3), (c, 5)} �σ

{(b, 4), (c, 5)} (what σ does on the rest of the exchanges is irrelevant and thus not represented here

for simplicity). This means that the algorithm first considers an exchange in which agent b gives

item 1 to agent a and receives 2, and so on. The greedy algorithm parameterized by σ chooses

{(a, 2), (b, 1)} and {(a, 3), (c, 5)}. The valuation of agent b for this set of exchanges is 1. Now as-

sume that b misreports his wish list asW ′b = {3, 5}, instead of the true set which isWb = {2, 3, 5}.

The outcome of the algorithm on this instance is going to be {(a, 3), (b, 1)} and {(b, 4), (c, 5)}. The

valuation of b for this set is 2. Therefore, the static algorithm parameterized by σ is not truthful.

Notice that this algorithm violates the interaction-free-ness property because at the time when

the last exchange is considered between b and c, we have S(b) = {a, b, c} and S(c) = {a, c}.

Since c ∈ S(b), thus, the algorithm is not interaction-free.

5.3.3 Computational Complexity

In this section, we show that the length-constrained market exchange problem is APX-hard for

any k ≥ 2. First, we discuss the case of k = 2. To prove APX-hardness for k = 2, we use

the fact that there exists a factor-preserving reduction from the edge-disjoint 3-cycle partitioning

of 3-partite graphs to the market exchange problem with k = 2 [13]. Here, we show that edge-

disjoint 3-cycle partitioning of 3-partite graphs is APX-Hard, which in turn, implies our desired



CHAPTER 5. EXCHANGE MARKETS WITHOUT MONEY 83

3

2

1

4

5

a

b

c

a

b

c

Figure 5.1: The exchange market of Example 2. For the ease of visualization, each vertex repre-

senting an agent is split into two vertices.

result. Formally, the problem edge-disjoint 3-cycle partitioning of 3-partite graphs problem, given

a tripartite graph G(V1, V2, V3;E) where V1, V2 and V3 are disjoint sets of vertices, and E ⊆

{V1 × V2} ∪ {V1 × V3} ∪ {V2 × V3}, the goal is to find the maximum number of edge-disjoint

triangles in G. A factor-preserving reduction from EdgeDisjTrianglePar to the 2-exchange market

problem is given in [13]. To show the APX-hardness of 2-exchange market problem, it remains to

prove that EdgeDisjTrianglePar is APX-hard.

Holyer [61] proved that edge-partitioning of general graphs into edge-disjoint triangles is

NP-complete. A more careful analysis of this proof shows that the edge-partitioning of general

graphs is APX-hard [63]. We first note that the set of graphs that Holyer used in his NP-hardness

proof for edge-partitioning triangles is in fact tripartite. To show this, we define some notations

from [61]. Let graphH3,n be a graph with n3 vertices V = {(x1, x2, x3) ∈ {0, 1, 2}n |
∑3

i=1 xi =

0(mod n)}. Let ((x1, x2, x3), (y1, y2, y3)) be an edge in H3,n if there exists i, j ∈ {1, 2, 3}, i 6= j,

such that xk = yk(mod n) for k 6= i, j and yi = (xi + 1)(mod n) and yj = (xj + 1)(mod n).

The resulting graph reduced from any 3SAT instance in Holyer’s proof is a result of combining and

joiningH3,p’s. It is not hard to verify thatH3,n is 3-vertex-colorable and any combination and joint

of these graphs is also 3-vertex-colorable. As a result, Holyer’s proof of NP-hardness [61] and its

extension for APX-hardness [63] of edge-partitioning of general graphs implies the APX-hardness

of EdgeDisjTrianglePar. This, in turn, implies that 2-exchange market problem is APX-hard.

The APX-hardness proof for the k-exchange market problem where k > 2 is very similar to
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that of the 2-exchange market problem. First, one can give a similar factor-preserving reduction

from the problem of edge-partitioning of a k-partite graph to k-cycles to the k-exchange market

problem. Now the APX-hardness of the k-exchange market problem boils down to the APX-

hardness of edge-partitioning of k-partite graphs to k-cycles, which can be shown by giving a

reduction from EdgeDisjTrianglePar to edge-partitioning of a k-partite graph to k-cycles. To see

this, given an instance G(V1, V2, V3;E) of EdgeDisjTrianglePar, we construct a k-partite graph

G′(U1, U2, . . . , Uk;E
′) where U1 = V1, U2 = V2, U3 = V3, and for i ≥ 4, Ui = E3 where

E3 = E ∩ {V2 × V3}, i.e., each node in Ui corresponds to an edge e ∈ E3 from V2 to V3. Denote

by e4, e5, . . . , ek the k − 3 nodes in G′ corresponding to edge e ∈ E3. We also form the edges of

E′ = ∪{(u, v)|u ∈ V2, v ∈ V3, as follows:

• include all edges from nodes in U1 to nodes in U2 and U3 for each pair of nodes whose

corresponding nodes in G are connected, i.e., add {(u, v)|u ∈ V1, v ∈ V2 ∪ V3, (u, v) ∈

E(G)}.

• for each edge e = (u, v) ∈ E3, add the following edges toE′: (u, e4), (e4, e5), . . . , (ek−1, ek), (ek, v).

It is not hard to see that any triangle (w, u, v) where (u, v) = e ∈ E3 in graph G corresponds

to the k-cycle (w, u, e4, e5, . . . , ek, v) in G′ and vice versa. G is a tripartite graph and G′ is a

k-partite graph. As a result, the above is a factor-preserving reduction from EdgeDisjTrianglePar

to the problem of edge-partitioning a k-partite graph to k-cycles. Therefore, APX-hardness of

k-exchange market problem follows from APX-hardness of EdgeDisjTrianglePar.

5.4 Unconstrained Exchange Market Problem

In this section, we give a polynomial-time algorithm for the unconstrained exchange market prob-

lem. As we stated earlier, we would like to maximize the number of edges by picking a set of

edge-disjoint cycles. One can write this problem as a maximum circulation problem (or minimum

cost circulation problem with negative cost on the edges 3), and solve it in polynomial time us-

3The minimum cost circulation problem is as follows: Given a graph G and capacities and costs ue and ce for each

edge e ∈ E(G), find a circulation flow f with capacities f(e) ≤ ue, and the minimum total cost
∑
e∈E cef(e). Our

maximum circulation problem can be modeled by setting ce = −1 for each edge in E(G), and applying the algorithm

for the minimum cost circulation problem [51].
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ing an algorithm that interactively improves the current solution with a cycle in an augmenting

graph [51]. We will present a variant of this algorithm that satisfies a desired set of properties

(e.g, a specific monotonicity property). We start by a high-level description of the solution for the

maximum circulation problem [51].

Given a directed unweighted anti-symmetric graph G, a flow is a function f : G→ Z. Flow f

is feasible in G if it satisfies:

• ∀e ∈ G, fe ≤ 1, and ∀e /∈ G, fe ≤ 0,

• f(u,v) = −f(v,u),

• For any vertex v,
∑

e∼v fe = 0, where e ∼ v if v is an endpoint of e.

The goal is to find a feasible flow that maximizes weight wG(f) =
∑

e∈G fe. Given a flow f ,

we now define the residual graph Gf corresponding to f :

Definition 5 Given a graph G and a circulation f , we define the residual graph corresponding to

f to be Gf (V,Ef ) with Ef = {(u, v) ∈ E(G)|f(u, v) = 0} ∪ {(v, u) ∈ E(G)|f(u, v) = 1}.

We say Gf admits a flow f ′ if f ′ is a feasible circulation flow in Gf . The following is a well-

known result which connects optimality of the flows to absence of cycles with positive weight in

the residual graph.

Lemma 24 [51] A flow f is optimal if and only if its residual graph Gf does not admit any flow

f ′ with wG(f ′) ≥ 0.

The above lemma suggests the following algorithm for the exchange market problem:

1. Initialize flow f := 0, and maintain a feasible flow.

2. Construct Gf .

3. If Gf admits a flow f ′ with positive weight, augment f with f ′ by setting f := f + f ′, and

go back to Line 2. Otherwise, terminate.

Notice that since the weight of the integral flow increases by at least 1 (since optimal flows are

integral) in each step, the pseudo-algorithm terminates after polynomial number of steps. Thus, if

the selection of an augmenting flow is done in polynomial time in each step, the algorithm runs in

polynomial time.
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Chapter 6

Identifying/characterizing social

phenomena in online networks

6.1 Social Ratings: Friends or the Crowd?

6.1.1 Introduction

It is generally believed that friends are similar to each other [80]. In fact, many social psychology

studies have shown this [74, 82, 23] and report that people all over the world find similarity as a

desirable quality in a friend (e.g.[113]). Although this is a well-established sociological premise,

this phenomenon is not well studied in the context of online social media. When making choices,

people use information from a number of sources including friends, family, experts, media, and

the general public. Two sources that are particularly relevant in an online setting are the opinions

of friends and ratings from the general public. Friends are believed to influence choices of their

friends. In many cases, however, recommendations from one’s friends are in contrast to opinions

of individuals in the general public who are not one’s friends.

Specifically, focusing on friends and the general public as two components of social influence

is important because these sources of social information are already used in a variety of algorithms

and applications online. Social recommender systems take into account the actions of a user’s

friends and make recommendations accordingly. Social search is also gaining more attention.

Google recently launched its +1 button for search results and ads in order to improve its search
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algorithm. If a user thinks that a search result or an ad is useful she can click on the +1 button.

The +1 will be displayed along with the user’s name in the search results to all her friends who

subsequently search a similar query. For users who are not friends, only the number of +1’s will

be displayed. Facebook uses a similar approach for business pages with the intention of getting

higher click-through rates. The model that we suggest can be leveraged to design better algorithms

for these and other similar applications.

In the first part of this work we study how an online user’s decision is influenced by recom-

mendations from friends and ratings from the general public, particularly when these two sources

of information are in conflict with each other. This question is interesting for two reasons. First,

understanding how people trade off friends’ opinions with ratings from the general public helps to

determine the weight assigned by consumers to these two sources when they are uncertain about

choosing one of two possible options. Second, this information can be used when designing algo-

rithms that display these two sources of information in order to increase the probability of a user

selecting one of the options. For example, an online social network platform that has information

about how a user’s friends and the general public have rated two different items can display to the

user the item that she is more likely to select. On the other hand, if users tend to disregard some

source of information, this source need not be shown to the user. Finally, an advertiser that wishes

to make the user choose a certain item may strategically choose which pieces of information to

show.

In the second part of this research, our main research question is:

To predict future ratings of an individual, how useful is it to know the ratings of their friends?

In other words, for applications such as recommender systems that currently do not have an un-

derlying social network (e.g. Netflix and Amazon) how beneficial is it to invest in social data to

increase the accuracy of their predictions?

To find the predictive value of average ratings vs. friends’ average ratings, we formulated our

problem as the prediction of ratings for users of social rating networks. We included different

features such as friends’ average rating (computed by us) and the average rating by all the users

who have rated the book (given by Goodreads) in the predictions incrementally. Specifically, we

applied ordered logistic regression, support vector machines and matrix factorization for the task

of prediction and evaluated our models by comparing their accuracy and errors. For this work we
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studied two social rating networks: Goodreads and Flixster. Goodreads is an online social book

cataloging network that features a rating system. Since the dataset was not available online, we

crawled the Goodreads website and gathered the relevant data. Flixster is a social movie rating

website. This dataset was available [66].

This is important to study since predicting future behavior is crucial for many online applica-

tions such as recommender systems, online ad placement/

allocation, and web search ranking. Applications like viral marketing and social recommender sys-

tems, in fact rely on the premise that the behavior of one’s social contacts is a good predictor of

one’s behavior.

Extensive studies have been done to show the effect of social influence on an individual’s

decision to adopt or select a new product, for example in viral marketing and in the area of rec-

ommender systems [58, 66, 67]. However, our goal in this study is to determine how much users

actually rate items similarly to their friends as opposed to the general public (regardless of the

underlying reason why the item was chosen in the first place).

6.1.2 Swayed by Friends or the Crowd? [8]

In particular, in the first part of the work we ask the following questions:

1. How much are one’s choices influenced by the opinions of her friends compared to ratings

from the general public? What mathematical model predicts this?

2. Do friends’ negative opinions have a stronger or weaker effect than friends’ positive opinions

about an item?

3. Do friends’ opinions have the same effect on one’s decision in higher risk situations versus

lower risk situations?

To answer the above questions, we performed user studies on Mechanical Turk involving

around 350 participants using positive and negative opinions from friends, as well as ratings from

the general public; the latter was represented by the average number of stars. We find that the

choice between two options fits a logit model. Our major contributions are (1) Our model is able to

predict the probability of selection of an item by a user given two choices when recommendations

from friends and star ratings from the general public is displayed, (2) We find that negative opin-

ions from friends are more influential than positive opinions, and (3) We observe that people exhibit
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more random behavior in their choices when the decision involves less cost and risk. Our results

are quite general in the sense that people across different demographics trade off recommendations

from friends and ratings from the general public in a similar fashion.

6.1.3 Method

Our goal is to study how people trade off information from friends and the general public when

choosing between two items. Moreover, our experiments allow us to compare a setting where the

information from friends consists of positive recommendations to a setting where the information

from friends consists of negative opinions. Furthermore, we compare people’s choices with re-

spect to two types of decisions: one that involves a monetary cost (booking a hotel) and a low

risk decision that involves no monetary cost (watching a movie trailer). We chose booking hotels

because the user cannot go and check it out before deciding and should rely on the information she

gets from others. Similarly, a user may not have any information about a movie trailer before she

watches it. We can think of the setting with the movie trailers as a less serious decision, since it

involves less cost (just a couple of minutes of one’s time) and risk. Users often make choices of

this type online, e.g., when watching Youtube videos, clicking on a link or ad, etc.

In total, we conducted three user studies: booking a hotel with positive recommendations from

friends (Study 1), booking a hotel with negative opinions from friends (Study 2) and watching a

movie trailer with positive recommendations from friends (Study 3).

To collect the data we conducted the three studies with 350 participants each in the form of

surveys on Amazon’s Mechanical Turk (MTurk) during July and August 2011.

We asked each worker to put herself in the following hypothetical situation: she is about to book

a hotel (resp. watch a movie trailer) an on e-commerce site (resp. online), and among the options,

she has come down to two between which she is indifferent. The website has an underlying social

network of friends (or it runs on top of an online social network). For each of the two options, we

provide the following information:

(i) the overall rating (in terms of stars on the scale of 1 to 5) based on ratings from a large

number of previous customers (resp. users) in the case of selecting which hotel to book

(resp. which movie trailer to watch)
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(ii) the number of friends who recommend (resp. have negative opinions about) the option in the

case of positive (resp. negative) recommendations

For each question, the option that has more stars is the one that is less recommended by friends;

that is, we did not use a pair of options where one clearly dominated the other.

A sample question from each survey is shown in Figure ??. We incorporated a few tricks in

order to make sure the workers were not cheating. We discarded answers from the workers who

did not pass our test.

Overall, we rejected 33% of the responses across all 3 studies because they were invalid. The

average completion time for each valid HIT was 174.8 seconds while the average completion time

for the invalid HITS was 153.3; this suggests that the workers that were rejected had not taken the

task as seriously as the rest of the workers.

6.1.4 Results

For each question, there are two options that the worker can select from, which we refer to as option

1 and option 2. We denote the number of stars Si and the number of friends’ recommendations

by Fi, for i = 1, 2. To predict the probability that option 1 is selected, we conduct a logistic

regression1 on our dataset of choices with the difference in the number of friends (i.e., F1 − F2)

and the number of stars (i.e., S1 − S2) for each question as the predictor variables. We denote the

corresponding coefficients by αf and αs respectively.

We also ran the logistic regression with an intercept, but the intercept was not statistically

significant. This is good news, since a statistically significant intercept in this case would imply

bias (that is, the position in which an option is presented would affect the probability that it is

1We note that a number of other empirical studies also use the logit choice function to model social influence [88,

49, 103].
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Table 6.1: Study 1: Positive Opinions for Hotels

Predictor Estimated Coefficients z-value

αf 0.20471∗∗∗ (0.027) 7.597

αs 0.73549∗∗∗ (0.050) 14.307

Note: Standard errors are shown in parentheses.

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Pseudo-R2 = 0.95

selected). We next report the results from each survey separately.

6.1.5 Study 1: Positive Opinions for Hotels

6.1.5.1 Model 1

We first only considered the difference in the number of stars and friends as predictor variables.

The estimated coefficients along with other parameters are shown in Table 6.1, and as can be seen

both are statistically significant. Observe that both coefficients are positive; this is intuitive, since

more stars (resp. more positive recommendations) indicate that the option is better and thus the

worker is more likely to select it. Finally, the pseudo -R2 for this model2 is 0.95, indicating that

the fit is very good.

Interpretation of the coefficients We first interpret the coefficients for our model in terms

of marginal effects on the odds ratio. The odds ratio measures the probability that the dependent

variable is equal to 1 relative to the probability that it is equal to zero. For the logit model, the log

odds of the outcome is modeled as a linear combination of the predictor variables; therefore, the

2We computed Efron’s pseudo -R2 which is defined as follows:

R2 = 1−
∑N
i=1(yi − π̂i)2∑N
i=1(yi − ȳ)2

where, N is the number of observations in the model, y is the dependent variable, ȳ is the mean of the y values, and π̂ is

the probabilities predicted by the logit model. The numerator of the ratio is the sum of the squared differences between

the actual y values and the predicted π probabilities. The denominator of the ratio is the sum of squared differences

between the actual y values and their mean [55].
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Table 6.2: Cross validation for study 1

Left out question Actual Predicted |Difference|

Q1 0.54 0.53 0.01

Q2 0.58 0.55 0.03

Q3 0.71 0.62 0.09

Q4 0.74 0.74 0.00

Q5 0.77 0.77 0.00

Q6 0.74 0.72 0.02

Q7 0.82 0.83 0.01

Q8 0.54 0.53 0.01

odds ratio of a coefficient is equal to exp(coefficient). Since αs = 0.735, we conclude that a unit

increase in S1−S2, multiplies the initial odds ratio by exp(0.735) = 2.07. For the friends predictor

variable, the odds ratio is equal to exp(0.204) = 1.22. Another way to interpret the coefficients is in

terms of relative change in the probability when there is one unit of change in one of the predictor

variables while other parameters remain the same. In this case the relative probability increases by

at most 10% with a unit change in F1 − F2 and by at most 35% with a unit change in S1 − S2.

To further assess the predictive power of the model, we performed cross validation. We left

out one question at a time and estimated the coefficients using the remaining questions. Then, we

predicted the probabilities for the question that was left out. The predicted values were very close

in all cases with absolute mean difference of 0.021. The actual values and their differences can be

found in Table 6.2.

Finally, we used one of the questions of this survey twice in Amazon’s Mechanical Turk (in

two separate HITS) in order to see whether workers would react to the question in similar ways.

We found that the percentage of workers that chose the first option of the question was similar in

both cases (26% versus 24%), further validating our approach.
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Table 6.3: Study 2: Negative Opinions for Hotels

Predictor Estimated Coefficients z-value

αf -0.281∗∗∗ (0.030) 9.378

αs 0.503∗∗∗ (0.050) 10.018

Note: Standard errors are shown in parentheses.

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Pseudo-R2 = 0.95

6.1.5.2 Model 1’

In Model 1’, we included all self reported demographic information as predictor variables in ad-

dition to the stars and friends’ recommendation variables. This information includes: gender, age,

and education level. More specifically, we coded the following variables as dummy variables. We

found that these extra coefficients are not statistically significant. This suggests that people in dif-

ferent demographics trade off ratings from the public and friends’ recommendations similarly.

6.1.6 Study 2: Negative Opinions for Hotels

6.1.6.1 Model 2

In this section we look at negative opinions from friends — instead of positive recommendations.

In particular, each option is characterized by the number of stars (based on information from the

general public) as well as the number of friends who have negative opinions about it. We run a

logistic regression and report the results in Table 6.3. As can be seen in the table both variables

are statistically significant and the pseudo-R2 measure for this model is 0.95 which implies that the

model is a good fit. Moreover, as we would expect, the friends coefficient is negative in this case,

as more negative opinions from friends decrease the probability that the worker selects an option.
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Table 6.4: Cross validation for study 2

Left out question Actual Predicted |Difference|

Q1 0.30 0.25 0.05

Q2 0.39 0.41 0.02

Q3 0.43 0.44 0.01

Q4 0.54 0.53 0.01

Q5 0.58 0.60 0.02

Q6 0.38 0.39 0.01

Q7 0.40 0.42 0.02

Q8 0.45 0.50 0.05

Interpretation of the coefficients Similarly to Study 1, we interpret the coefficients for our

model in terms of marginal effects on the odds ratio. For the present model (negative recommenda-

tions), the fact that αs = 0.503 means that one unit increase in S1 − S2, multiplies the initial odds

ratio by exp(0.503) = 1.65. In other words, the odds of choosing option 1 increases by 65%. For

the friends predictor variable, the odds ratio is equal to exp(−0.281) = 0.75, which means that the

odds of selecting option 1 decreasing by 25%. Equivalently, the relative odds of selecting option

1 when F1 − F2 decreases by one unit is (exp(0.281) − 1) ≈ 32%. Another way to interpret the

coefficients is by looking at the relative changes in the probability of choosing each option. In this

case the relative probability decreases by at most 14% with a unit change in F1−F2 and by at most

26% with a unit change in S1 − S2.

For this study we did cross validation as well to test the predictive power of our model. The

results are shown in Table 6.4. The predicted and actual values are very close (mean absolute

difference = 0.231).
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Table 6.5: Study 3: Positive Opinions for Movie Trailers

Predictor Estimated Coefficients z-value

αf 0.167∗∗∗ (0.049) 7.101

αs 0.349∗∗∗ (0.027) 6.014

Note: Standard errors are shown in parentheses.

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Pseudo-R2 = 0.61

6.1.7 Study 3: Positive Opinions for Movie Trailers

6.1.7.1 Model 3

Our third study considers the effect of positive recommendations from friends in a low risk de-

cision: choosing which movie trailer to watch. We perform a logistic regression and report the

estimated coefficients in Table 6.5. The estimated coefficients are statistically significant; however,

in this case pseudo-R2 is 0.61 which is lower than the pseudo-R2’s for previous models Models 1

and 2 (0.95). The coefficients for stars and friends are αs = 0.349 and αf = 0.167. As for Model

1, both coefficients are positive, since people are more likely to select an option if it has more stars

and/or more positive recommendations from friends. Therefore, the odds ratio for the number of

stars is 1.41 and for the number of friends’ recommendations is 1.18. By computing the relative

probability changes, we conclude that an additional star increases the probability of selecting that

option by 18%, whereas an additional recommendation from a friend increases the probability by

8%.

6.1.8 Results and Discussion

This work studies how positive and negative opinions from friends affect our decisions compared

to ratings from the crowd for different types of decisions. Our three user studies result in some

interesting conceptual findings about the tradeoff between these two types of social influence.

First, negative opinions from friends are more influential on one’s decision than positive opin-

ions. We can see this by comparing the odds ratios of Study 1 and Study 2, in which the number
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of positive and negative friends’ opinions are shown respectively: the odds ratio for the friends

variable is higher in Study 2 (1.32 versus 1.22 where the difference is statistically significant with

p = 0.046), whereas the odds ratio for the stars variable is higher in Study 1 (2.07 versus 1.65

where the difference is statistically significant with p = 0.001). In other words, one less negative

opinion from a friend has a larger effect than one more positive opinion, whereas one more star in-

creases the odds of an option being chosen less in the case that negative opinions from friends are

present. Such an asymmetry between the effect of negative and positive actions and opinions have

been studied in the social psychology literature [27, 89, 107, 32, 54]. The positive-negative asym-

metry effect has been observed in many domains such as impression formation [17], information-

integration paradigm [18] and prospect theory for decision making under risk [68]. The finding in

all the above cited work is that negativity has stronger effects than equally intense positivity. Our

results confirm this finding in online settings.

Second, people exhibit more random behavior when the decision involves less cost and less

risk. We can see this by comparing the results from Study 1 and Study 3, where the decisions are

“which hotel to book” and “which movie trailer to watch” respectively. Booking a hotel clearly

involves a monetary cost and some risk, whereas the worse thing that can happen with a movie

trailer is to waste a couple of minutes of one’s time. The odds ratios are lower in Study 3 than

Study 1 (1.18 versus 1.22 for friends with p = 0.345 which is not statistically significant, and 1.41

versus 2.07 for stars where the difference is statistically significant with p < 0.0001). This implies

that one added star has a smaller influence on one’s decision in the case of movie trailers. However,

one added friend has basically the same influence as in the case of hotels. Moreover, the fraction

of respondents choosing either option is closer to half compared to the hotel booking surveys. This

implies that the choices were more random in this case, which may be explained by the fact that

choosing which movie trailer to watch is a less important/serious decision than booking a hotel.

Third, we observe that in all three studies one more star increases the probability of selecting

that option more than one more (resp. less) friend in the case of positive (resp. negative) recom-

mendations. Equivalently, the odds ratio of the stars’ coefficient is larger than the odds ratio of

the friends’ coefficient (2.07 versus 1.22, 1.65 versus 1.32 and 1.41 versus 1.18 for studies 1, 2

and 3 respectively where for all three studies the differences are very statistically significant.) This

does not mean that the number of friends’ positive or negative recommendations does not influence
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decisions; on the contrary, an additional recommendation (resp. one less negative opinion) from

friends changes the probability by at least 18% across all three studies. The fact that an additional

star has a larger effect that an additional friend opinion is reasonable if we consider that the number

of stars is bounded between 1 and 5, whereas the number of friends’ recommendations may take

values from a larger range.

Forth, for all of our user studies, we find out that the demographic variables (gender, age, and

education level) do not significantly impact the choice that is made, implying that people across

different demographics trade off recommendations from friends and ratings from the crowd in a

similar way. It also implies that our predictive model and results are generalizable across different

demographics.

6.2 Predicting Social Ratings in Online Networks: Friends or the

Crowd?

Our main research question in this part is:3

To predict future ratings of an individual, how useful is it to know the ratings of their friends?

In other words, for applications such as recommender systems that currently do not have an un-

derlying social network (e.g. Netflix and Amazon) how beneficial is it to invest in social data to

increase the accuracy of their predictions?

6.2.1 Data

The analyses in this work are based on two different social rating networks: Goodreads.com and

Flixster.com. While data from Flixster was available online [66], we had to crawl the Goodreads

website in order to gather data that was relevant to our research question4.

6.2.2 Prediction Methods

We formulate our main research question as follows: how beneficial is it to know one’s friends’

ratings to predict one’s future ratings in online social applications? In order to investigate this

3This work is in submission.

4Our dataset is available upon request.
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question, we model the problem as a prediction task and explore the predictive value of the pub-

lic’s average ratings vs. friends’ average ratings on two social rating networks. We employ three

different prediction methods: ordered logistic regression, support vector machines and matrix fac-

torization. We include features in the prediction model incrementally: the first model does not

include the average rating from the public, the second model excludes friends’ average ratings, and

the third includes both of the previously excluded features (i.e. all features). Other than the average

rating variables, we included the subject areas of the books and the number of times each book is

rated as predictor variables to increase the accuracy of our results. Our choice of additional features

was based on the available data.

In most cases, average rating and friends’ average rating are close to each other (i.e. their

difference is less than 1). This might suggest that including both average ratings (friends’ and the

public) will be redundant. Therefore, we consider two other cases were these two were at least 1

and 2 units apart. In other words cases where there is a divergence between friends’ opinions and

the general public’s opinions.

6.2.3 Evaluation Setting

To evaluate and compare our prediction techniques we use root mean squared error (RMSE) as

our evaluation metric. RMSE is commonly used as a metric for evaluating recommender system

accuracy [57]. RMSE is defined as:

RMSE =

√∑
(u,i)∈Test (ru,i − r̂u,i)2

|Test|

where Test is the test data, (u, i) is the pair of user u and item i, ru,i is the actual rating of user

u for item i and r̂u,i is the estimated rating predicted by our model. We performed cross validation

in order to assess the accuracy of our prediction models. The training, test and validation sets were

comprised of 60%, 20%, and 20% of the data respectively.

6.2.4 Results

In this section, first, we present the results of applying the methods described in 6.2.2 on all data

and then turn to cases where there is a divergence between friends’ ratings and the public’s ratings.
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Predictors Model 1 Model 2 Model 3

Friends’ Rating 3.8694∗∗ (0.03) – 2.9202∗∗ (0.03)

The Public’s Rating – 8.8029∗∗ (0.07) 6.3313∗∗ (0.07)

RMSE 1.07 1.04 1.00

Note: Standard errors are shown in parentheses.

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 6.6: GoodReads: Logit coefficients for models M1, M2 and M3. Standard errors are indi-

cated in parentheses.

6.2.4.1 Results over All data

Ordered Logistic Regression. In addition to RMSE, ologit yields coefficients that show how im-

portant each independent variable is in predicting the value of the dependent variable. We applied

ordered logistic regression (ologit) to the Goodreads data to three different cases: 1) included all

dependent variables (prediction features) except for the public’s ratings (Model 1) 2) included all

dependent variables (prediction features) but friends’ average ratings (Model 2) 3) included all

prediction features.

Table 6.6 depicts the coefficients from each model along with their standard errors. The last

row in Table 6.6 shows the RMSE values obtained for each model. As can be seen, the public’s

rating has a higher coefficient when both variables are included as predictive features in the model.

This implies that one’s ratings have a higher correlation with the public’s rating. Furthermore, the

RMSE values confirm this observation. RMSE is the lowest in Model 3 (the difference between

RMSE’s of Model 3 and Model 2 is statistically significant with p < 0.001) when both variables

are part of the prediction. Model 2 has a lower RMSE than Model 1 (the difference is statistically

significant with p = 0.0377), suggesting that on this dataset using the public’s rating would result

in a more accurate prediction.

Support Vector Machines (SVM) and Matrix Factorization (MF). We applied SVM and MF

to the Goodreads and Flixster datasets incrementally same as above. The RMSE values for the

Goodreads and Flixster datasets are summarized in Tables 6.7 and 6.8 respectively. RMSE values

from Flixster and Goodreads validate each other: for all cases, Model 3 performs better than Model
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2 followed by Model 1. The p-values of these differences show that they are statistically significant.

Ologit SVM MF

All but public’s ratings 1.07 1.07 1.03

All but friends’ ratings 1.04 1.04 1.00

All features 1.00 0.98 0.95

Table 6.7: GoodReads: RMSE values: Logistic regression, SVM and Matrix Factorization applied

to all data

SVM MF

All but public’s ratings 1.16 1.12

All but friends’ ratings 1.13 1.08

All features 1.07 1.04

Table 6.8: Flixster: RMSE values: SVM and Matrix Factorization applied to all data

6.2.4.2 Results over Divergent Data

In this part we describe our results on cases where the average ratings among friends and the public

were at least 1 unit (Model 4) and 2 (Model 5) units apart.

Ologit. Similar to the previous case, we fitted ologit to the Goodreads data including all predictive

features in order to compare the coefficients. The summary of ologit for these two additional cases

are summarized in Table 6.9. We can see that for Model 4 (second column) the public’s average

rating has a lower coefficient value compared to Table 6.6. The case is different for Model 5 (third

column of Table 6.9). In this case, friends’ average rating has a larger coefficient than the public’s

average rating (unlike previous cases). This implies that in cases where the public’s opinions is

different from friends’ opinions, friends’ are better predictors of one’s rating. This observation can

be confirmed by the RMSE values of these two models summarized in Table 6.12. The RMSE

value for the case where the difference is at least 2 and friends’ ratings are included is less than the

case where only the public’s ratings are considered.
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Variables M4: Diff ≥ 1 M5: Diff ≥ 2

Friends’ Rating 2.599∗∗ (0.0338) 1.900∗∗ (0.268)

The Public’s Rating 5.385∗∗ (0.1162) 1.387∗∗ (0.298)

Note: Standard errors are shown in parentheses.

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 6.9: GoodReads: Logit coefficients for models M4 and M5: where friends’ average rating and the

public’s average rating are at least 1 and 2 units apart respectively.

SVM and MF. We ran SVM and MF on the subset of data with convergence between ratings from

friends and the public. Our observations are consistent with what our findings from fitting ologit.

In particular, we report RMSE values for cases where the difference is at least 1 in Table 6.10.

RMSE values for Model 1 and Model 2 are very close – differences are not statistically significant

for any of the technics. The case is different for the subset of data with difference of at least 2. The

corresponding RMSE values can be seen in Table6.12. In these cases, the difference between the

RMSE values of all models is statistically significant and in all cases Model 3 performs the best,

followed by Model 1 and then Model 2. Notice the difference with Subsection 6.2.4.1. This shows

the importance of friends when there is a divergence between their ratings and public’s ratings.

Ologit SVM MF

All but public’s ratings 1.09 1.08 1.03

All but friends’ ratings 1.09 1.07 1.02

All features 1.03 1.05 0.98

Table 6.10: GoodReads: RMSE values: Logistic regression, SVM and Matrix Factorization ap-

plied to cases where the difference is at least 1 unit

6.2.5 Discussion

Our study results in some interesting findings about the value of friends’ average ratings vs. the

public’s average ratings in predicting ratings. First, all three methods (ologit, SVM and MF)

show that surprisingly average rating is a better predictor of an individual’s rating compared to
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SVM MF

All but public’s ratings 1.21 1.17

All but friends’ ratings 1.18 1.15

All features 1.14 1.12

Table 6.11: Flixster: RMSE values: SVM and Matrix Factorization applied to cases where the

difference is at least 1 unit

Ologit SVM MF

All but public’s ratings 1.06 1.05 1.03

All but friends’ ratings 1.09 1.10 1.06

All features 1.01 0.98 0.97

Table 6.12: GoodReads: RMSE values: Logistic regression, SVM and Matrix Factorization ap-

plied to cases where the difference is at least 2 units

SVM MF

All but public’s ratings 1.25 1.24

All but friends’ ratings 1.28 1.26

All features 1.23 1.18

Table 6.13: Flixster: RMSE values: SVM and Matrix Factorization applied to cases where the

difference is at least 2 units

her friends’ average rating in general. This was observed by including these two variables incre-

mentally and comparing the coefficients of the variables, and RMSE values. Second, as can be

seen, the RMSE errors are at their minimum when both variables are included in the prediction

task, suggesting that these two predictor variables are not redundant and including both improves

prediction.

We then turned to cases where friends’ average rating and the public’s average rating where at

least 1 and 2 units apart. These are cases where the general public either liked or did not like a book

but friends’ of that user had different opinions. In these cases, the public’s average ratings is not as
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predictive as the previous cases. In fact, where the difference is at least two units, friends’ average

rating is a better predictor of the rating variable. This implies the importance of the availability of

friends’ ratings to discover niche audiences. This is our third interesting finding.

In general, comparing these three different prediction methods across all the above experiments

shows that MF always achieves better accuracy than SVM and ologit. SVM never performs worse

than ologit (i.e. most of times better with some cases ties between them.)

Another interesting observation is that although the dataset is smaller when we only look at

cases where there is a considerable difference between what friends think about a book or movie

and what the public thinks, RMSE values do not always increase.

6.2.6 Practical Implications

The present work offers insights that can be helpful in various online domains such as referral

and viral marketing in online social networks, social network advertising, recommender systems,

e-commerce websites and in general in any application which determines a ranking of items. Our

work shows that the presence of an underlying social network will improve the predictions of users’

interests in different items.

As a specific example, let’s say a user is looking for an item on Amazon.com. Amazon has a

huge set of items that match this query. Amazon would like to present a ranking which results in

a purchase, therefore, they should predict the user’s interest (i.e. rating) for each item. Our work

shows that utilizing friends’ ratings will improve this prediction.

Moreover, our work shows that leveraging the social network of friends can help online plat-

forms – e-commerce website or recommender systems – discover items’ niche audience. For in-

stance, consider a case where the average rating for an item is much lower than a user’s friends’

ratings. Our studies show that friends are much better predictors of an individual’s ratings in that

case.

Furthermore, it is worth noting that this study is particularly helpful in solving the cold-start

issue [72]. In a cold-start situation, a user does not have a history of ratings in the system (e.g. she

has just joined the network). However, users usually import contacts from other services such as

email services when they join. Therefore, information from her friends will be very valuable, as

shown by our work.
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Limitations. The results discussed above may be affected by sparsity of information about

friends in the online domain. The fact that the nature and meaning of friendships are different

between the online and offline worlds [112] may be another contributing factor to the reason why

our findings are not completely consistent with sociological studies.

The features included in the models are not complete. Obviously there are many other features

influencing one’s ratings that were not obtainable by us.

6.2.7 Conclusion and Future Directions

This work shows that the sociological premise that friends are similar to each other does not nec-

essarily entail that online behavior of one’s friends’ are good predictors of one’s future behavior

although it improves predictions when combined with other features. More interestingly, in cases

where the opinion of friends and the public diverge from each other, friends’ ratings become more

significant. For future work, it would be interesting to run randomized experiments over time to

distinguish the impact of homophily and social influence on ratings. It would be interesting also

to include more predictor features such as the strength of the friendship link to the predictions in

order to make them more accurate and robust.

6.3 Social Exchange

6.3.1 Introduction

Nowadays, hundreds of millions of people spend a significant part of their social lives on the

web. As a result, they reveal various types of social interactions by their actions such as likes,

favorite markings, and comments. The increasing amount of data from these actions in online

social networks has opened new opportunities to analyze social interactions and social behavior of

individuals at macro and microscopic levels. Such analysis could also be used for social network

simulations by developing user models. In addition, such studies can help designers of social media

platforms increase user engagement in their websites. This is important because more engagement

could lead to increased revenue for the platform.

In this work, we aim to analyze the motivations behind users’ actions on online social media

over an extended period of time. We look specifically at users’ likes, comments and favorite mark-
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ings on their friends’ posts and photos. These actions are analogous to what social scientists and

economists call prosocial giving or in general prosocial behavior. Prosocial behavior is defined as

“voluntary behavior intended to benefit another person” [75] and has been a puzzle to researchers

of different fields because while this type of behavior benefits others, it is often costly for the person

performing it [102]. Most theories of why people exhibit prosocial behavior isolate two distinct

motivations: Altruism and reciprocity.

In our work, we focus on identifying the underlying motivations behind users’ prosocial giving

on social media. In particular, our goal is to identify if the motivation is altruism or reciprocity. For

that purpose, we study two datasets of sequence of users’ actions on social media: a dataset of wall

posts by users of Facebook.com, and another dataset of favorite markings by users of Flickr.com.

The main difference between these two datasets is that in the Flickr dataset, a user can mark any

other user’s photo as favorite but in the Facebook dataset, interactions are limited to friends only.

We study the sequence of users’ actions in these datasets and provide several observations on pat-

terns related to their prosocial giving behavior. We do so by first dividing the interactions into two

categories of one-way vs. reciprocal interactions (see Section 6.3.2); and then by computing two

scores for each interaction by any pair of users: a total activity score and a relative activity score,

called the net score, which is computed as the difference between the number of social actions be-

tween two users in each direction (See Section 6.3.3). We further take into account the magnitude

of reciprocity by computing the number of social givings in each direction and by considering the

persistence of interactions by observing the duration of their relationship (See sections 6.3.4 and

6.3.5). Moreover, we explore the dynamics of users’ interactions over time, e.g., by computing

the sequence of ups and downs of interactions between two users. We cluster users’ interactions

based on their characteristics summarized above and derive insights from those clusterings (see

Section 6.3.6). Finally, we define a prediction task to further study the importance of different

factors in determining the length of an interaction. We show that there is a positive correlation

between persistence and reciprocity. As the main result of our study, we show a clear trend that

more reciprocal interactions are more persistent and longer. More specifically, our findings indi-

cate that for most users in both datasets reciprocity is the primary motivation for sustaining online

relationships with others. While the results are very similar for both datasets, we do observe more

persistent and more reciprocal interaction in the Facebook dataset. Finally, we study the impact
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of friendship on the level of reciprocity among users on Flickr. We examine persistence and reci-

procity of pairwise interactions between pairs of friends and pairs of users who are not friends on

Flickr but have interacted with each other. Most notably, in this study, we observe higher levels of

altruism between friends and higher levels of reciprocity among non-friend pairs.

6.3.2 Datasets and initial Pruning

Before discussing our results, in this section we first elaborate on our two datasets. We will also

discuss characteristics of these datasets and define one-way interactions and reciprocal interac-

tions.

6.3.2.1 Flickr Dataset

We obtained a Flickr dataset from the Max Planck Institute for software systems5 containing docu-

ments with approximately 7.5 million favorite markings over a 104 day period starting on Novem-

ber 2, 2006. The data contains the list of all photo favorite markings from users with their times-

tamps. From this input, for each pair of users (A,B), we extract social interactions of (A,B) as a

sequence of events with their timestamps. This allows us to easily analyze the social interactions

of pairs of individuals on the network.

For example, using this data, we classify interactions between any pair of users into two cat-

egories: one-way interactions and reciprocal ones. Reciprocal interactions are the ones in which

each of the users in the pair gives at least one favorite marking to the other user in the pair. The rest

of the interactions are one-way interactions; for these pairs, only one of the users does a favorite

marking for the other one. In total, there were 6,327,024 pairwise interactions in the dataset out of

which 6.7% of them were reciprocal interactions and 93.3% of them were one-way interactions.

We first removed what we determined to be “super-users”; i.e., super-users are users who re-

ceive huge amounts of user feedback but have very little overall outward activity of their own. We

define super-users as users who have more than a hundred reactions received than given. Super-

user behavior is abnormal and not of interest to this study. We purged these users from the original

dataset. In the Flickr dataset, 561 of a total of 482,458 users were identified as super-users. We

5http://socialnetworks.mpi-sws.org/data-www2009.html
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remove interactions related to these users that are around 2 million interactions, after which around

7% of interactions were reciprocal and 93% were one-way.

6.3.2.2 Facebook dataset

We acquired a dataset from wall postings of users of Facebook.com from the New Orleans regional

network that is similar in form to our Flickr dataset [111]. This dataset consists of 838,092 wall

posts from September 2006 to January 2009. The details of this dataset can be found in [111].

One of the key differences between the two social networks is that, unlike Flickr, Facebook strongly

limits the amount of interaction users can have with other users who are not on their friends list. We

observe that out of 183,413 pairwise interactions in this dataset, almost 44% of them are reciprocal

interactions and 56% of them are one-way interactions. After removing super-users that account

for around 9,000 interactions, 174,595 interactions remain, out of which 45.5% are reciprocal ones.

6.3.3 Initial Analysis

In order to present our intial analysis of users’ social interactions, in this section, we first define a

couple of notions. Let’s assume that user A posts a photo on Flickr or a status on Facebook. If user

B likes the post or comments on it, we call this behavior reacting. We define activity score for user

u as the number of times u reacts to a post or receives a reaction on her posts. For example, in the

above scenario both A and B’s activity scores are 1.

To quantify this “reaction” behavior more closely, we set up a credit/debit-like structure and

define a credit score or simply a net score as follows: For every comment or like spent by user B

we add a point to user A’s credit score and subtract one point from user B’s score. So in effect,

userA is earning points andB is spending points. We apply these scores to compute a net score for

each user and a net score for each pair of users. Credit score for a pair (A,B) of users is defined as

the number of reactions A has for B minus the number of reactions that B has for A. To calculate

an individual user’s credit score, referred to as the net score, we define it as the number of reactions

received from others minus the number of reactions given to other users’ posts. This means a user

who gives more than he receives will have a negative score, as if he had used more credit than he

had received.
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6.3.3.1 User Score Distributions

Figure 6.2a shows the by-user distribution of activity scores with a log-scale on the y-axis and

Figure 6.2b shows the same distribution for net scores.
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(d) Distribution of pair net scores.

Figure 6.1: Flickr scores

What can be gleaned from these graphs is, first of all, that the majority of users have very low

total action and roughly balanced action. This means that the majority of users give or receive

very little and that, if they do, it is usually balanced. What can also be seen is that with the super-

users removed, interactions are slightly biased, in the net-sense, toward more giving than receiving.

We have a greater distribution of negative scores than positive. The net picture confirms we have

successfully thrown out our super-users. It also shows us that even for values less that one hundred,

there seems to be a faster trail-off of users with positive scores than users with negative scores.
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(d) Distribution of pair net scores.

Figure 6.2: Facebook scores

6.3.3.2 User-pair Score Distributions

We now present the same types of distributions but on a user-pair by user-pair basis. Figure 6.2c

shows the by-pair distribution for activity scores, again with a log-scale on the y-axis. Figure 6.2d

shows the same distribution for by-pair net scores.

One of the things that can be seen from these graphs is that the number of user interactions

trails off very quickly, meaning the majority of users are not giving or receiving very many favorite

markings at all. What can also be seen is that a big portion of interactions are roughly equal in

the net score criteria. It is also important to note that even though we have thrown out the extreme

(celebrity-like) super-users, there do seem to be some relationships that are celebrity-like, where

one user is receiving a lot more likes than they are giving in the net-sense. One thing that this
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phenomenon shows is that there are users that are giving high numbers of favorite markings to a

particular user, but receiving enough from other users to offset this behavior.

6.3.4 One-Way vs. Reciprocal Interactions

In the previous section, we introduced the concept of one-way vs. reciprocal interactions and

provided some basic statistics about them. In this section, we present an in-depth comparison of

these types of interactions, and introduce the concept of “magnitude of reciprocity” for further

analysis.

6.3.4.1 Score distributions for each interaction type

As discussed earlier, we partitioned the non-super user interactions into two types: one-way inter-

actions and reciprocal interactions. Note that any user may appear in both types of one-way and

reciprocal interactions, since the partitioning for interactions is performed over each interaction

pair.

We first calculated both an activity score and a net score for the user interaction pair. We plotted

distributions of scores both by user and by pair for each of these partitions.

By-User Net Scores. While the by-user activity scores provide little useful data, the net score

distributions from this method provide us with insight into the differences between reciprocal and

one-way interactions. Below we present two graphs. First, we present net score distributions

by-user for one-way interactions (Figures 6.3a and 6.4a). The y-axis is on a logarithmic scale.

Figures 6.3b and 6.4b shows the same distribution for reciprocal interactions.

An interesting finding from the results of by-user interactions is that most users’ one-way in-

teractions are biased against them, meaning that when interactions are one-way most users give

more than they receive. Reciprocal interactions by users however tend to be more symmetrically

distributed. On average then for most users, one-way interactions tend to be more lopsided than

reciprocal ones.

By-Pair Activity Scores. Looking at scores on a pairwise basis allows us to get into the data on an

interaction-by-interaction level.

First, we present the activity score distribution by-pair for one-way interactions with a log scale

on the y-axis (Figures 6.3c and 6.4c). We also present the same plot for reciprocal interactions
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Figure 6.3: Distribution of activity and net scores for one-way vs. reciprocal interactions for the

Flickr dataset.

(Figures 6.3d and 6.4d).

In this case, looking at the total number of interactions by pair instead of the net number, allows

us to see that for reciprocal interactions the total number of interactions per pair bows out much

further than the same data for one-way interactions. This observation points to the manner in which

reciprocal interactions tend to last longer than one-way interactions.

6.3.4.2 Magnitude of Reciprocity and Persistence of Interactions

Partitioning social interactions to only one-way vs. reciprocal interactions is restrictive as it does

not distinguish amongst different levles of reciprocity. In this section, we define a new measure

called the magnitude of reciprocity. This measure defines how reciprocal an interaction is between

two users. We define this measure because intuitively, an interaction where users A and B give each

other three photo markings seems more evolved than a relationship in which there is one marking

in each direction, even though each of these interactions is assigned the same net score.

We define magnitude as the minimum number of interactions in either direction. For example,
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Figure 6.4: Distribution of activity and net scores for one-way vs. reciprocal interactions for the

Facebook dataset.

an interaction with three likes from user A to B and three likes from user B to A would be of

magnitude three. Likewise an interaction with three likes from user A to B and five likes from user

B to A is of magnitude three. As we increase the magnitude threshold, the number of users

decreases. We first plotted distributions for magnitudes of three, five and ten, but they were similar

to the plots we had for the magnitude of one which was discussed earlier. On the other hand, as

discussed in the following paragraphs, we found out that combining the magnitude of reciprocity

of interactions together with localized vs. persistent interactions brings new insights.

Next we delved into the differences between localized and persistent interactions: in order to

study persistence of interactions, we first identified a notion of a week in each dataset We can then

call relationships that occur entirely within the timeframe of a week localized and the ones that go

beyond a week persistent.

We then performed these calculations on our data for one-way and reciprocal interactions as

well as for interactions of magnitudes three, five and ten. These results for both datasets are shown

in Tables 6.14, 6.15, 6.16 and 6.17.
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As can be seen, for the Flickr dataset, there is a noticeable shift from localized to persistent

interactions as the relationships increase in reciprocity. Interactions that are even at all reciprocal

have a much greater chance of being persistent: 62% vs. 7%. These longer lasting interactions

may be more meaningful than the short-lived localized ones. And, as can be seen, even a slight

increase in magnitude drastically increases the likelihood of persistent relationships. At magnitude

three, 94% of relationships are persistent and by magnitude 10, practically 100% are. The results

for the Facebook dataset follow a similar trend, however, the percentage of reciprocal interactions

is higher.

Type of pairs one-way pairs reciprocal pairs

# Persistent pairs 291299 184417

% Localized pairs 92.68% 38.02%

% Persistent pairs 7.32% 61.98%

Table 6.14: Localized vs. persistent data for one-way and reciprocal interactions for Flickr dataset.

Magnitude 3 5 10

# Total pairs 58416 28423 10266

% Localized pairs 5.82% 1.74% 0.35%

% Persistent pairs 94.18% 98.26% 99.65%

Table 6.15: Localized vs. persistent data for magnitude 3/5/10 interactions for Flickr dataset.

The results are generally similar to the that of the Flickr dataset with a difference that even

one-way interactions were more persistent in this dataset.

Overall we observe very similar results for the Facebook dataset compared to the results for

the Flickr dataset, and the percentage of persistent ones goes up a lot as we increase the magnitude

cutoff.
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Type of pairs one-way pairs reciprocal pairs

# Total pairs 102820 80592

% Localized pairs 76.89% 37.35%

% Persistent pairs 23.10% 62.64%

Table 6.16: Localized vs. persistent data for one-way and reciprocal interactions for Facebook

dataset.

Magnitude 3 5 10

# Total pairs 23703 12225 4581

% Localized pairs 7.52% 2.86% 0.63%

% Persistent pairs 92.4% 97.13% 99.36%

Table 6.17: Localized vs. persistent data for magnitude 3/5/10 interactions for Facebook dataset.

6.3.5 Interactions Over Time and User Retention

In this part, in order to have a better understanding of the dynamics of prosocial giving, we analyzed

social interactions and their correlation to user retention over time. More precisely, we studied the

correlation between users’ retention and their scores, reciprocity, persistence, and magnitude of the

interactions over time. To this end we used a sliding timeframe to determine user retention levels.

In order to calculate user retention rates, we used training and testing sliding windows to mea-

sure user activity. In the training window which accounted for the first 2
3 fraction of the total

timeframe, we calculated net score for each user. In the testing part, which accounted for the last
1
3 fraction of the total time, we checked for outgoing activity from that user. A user who had no

activity during this test window was considered to have left the social network. Figure 6.5a

shows the percentage of users who left the site for a distribution of net scores clustered around

zero.

Interestingly, what can be seen from this distribution is that a greater percentage of users who

are net givers remain active on the social network compared to those who are net receivers. In

fact, the users most likely to leave are those who receive slightly more than they give. In each
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(a) Percentage of users who left for a given net

score.
(b) Percentage of users who left for a given ac-

tivity score.

Figure 6.5: Percentage of users leaving for activity and net scores.

case, users with high activity scores are less likely to leave compared to those with scores clustered

around zero.

To confirm the above observation, we also analyze the leaving patterns for users based on their

total activity scores shown in Figure 6.5a. We again see that users who are more active are much

less likely to leave the site. This may indicate that, overall, user activity level is a better predictor

of how users behave than net scores.

6.3.6 Insights from Clustering

In this section, we study the dynamics of interactions between each pair of users in further details

by clustering all interaction pairs into a small number of interaction types. For this purpose, in this

section we only consider persistent interactions, since those were the ones from which we could

derive meaningful insights.

6.3.6.1 Clustering Methodology

We first compute cumulative net scores for each interaction pair by taking into account the ”se-

quence” associated with ups and downs of two users’ interactions, i.e., we construct a sequence of

numbers for each interaction as follows: the sequence starts out at 0, adding a value of one for each

interaction from user A to user B and subtracting a value of one for each interaction from user B
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to user A (similar to computing net scores for pairs, presented in Section 6.3.2).

We then use these variable-length sequences and analyze them to extract certain features for

each interaction pair. Using these features, we perform k-means clustering using the R SciPy

package on the dataset in order to discern different types of interaction pairs. This package uses

Euclidean distance as its distance function.

Feature set for clustering. We performed k-means clusterings on the dataset using different sets

of features. We then revised our feature set based on the quality of the output of the clustering.

We measured the quality of the clustering by observing the inter-cluster and intra-cluster distances.

After trying a variety of subsets of features, we decided to focus no the following six categories of

features:

1. The normalized number of sign changes, i.e., the number of times that the sign of the prefix

net score changes in the sequence of net scores computed for this interaction.

2. The normalized difference between the maximum and minimum points on the sequence.

3. The normalized slope of the overall sequence.

4. The number of sign changes in the first half of the sequence.

5. The number of sign changes in the second half of the sequence.

6. The length of the sequence.

Choosing the number of clusters k. While running the k-means algorithm we had to determine

the desirable number k. We followed the following methodology to choose an appropriate k: Let

the inter-cluster distance for a clustering be the average distance between centroids and the intra-

cluster distance for the same clustering be the average distance from points in a given cluster to

their centroid. We computed intra- and inter-cluster distances for each clustering to glean better

insight into which number of clustering was the best. More specifically, we chose a number k at

which the intra-cluster distance is low and the inter-cluster distance is high. Based on our analysis

for both data sets, the clusters seemed to be the furthest apart at k = 6 and the points were closest

to their centers at k = 6. Therefore we chose the solution corresponding to k = 6 for both datasets.
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(a) Cluster of long reciprocal interactions. (b) Cluster of very long reciprocal interactions.

Figure 6.6: Two of the clusters for the Facebook dataset.

6.3.6.2 Clustering Results

We analyzed each cluster in the output by visualizing the cluster and found out a description for

the cluster based on the value of the features for interactions in that cluster. Here we describe these

clustering outputs and insights from them.

For the Flickr dataset, we cluster a total number of 475, 716 persistent social interactions, and

came up with the following six clusters:

• 1) a cluster of length-2 one-way interactions with 23.6% of interactions,

• 2) a cluster of short one-way interactions of length 3 to 5 with 38.5% of interactions,

• 3) a cluster of short reciprocal interactions of length 2 to 5 with 20.3% of interactions,

• 4) a cluster of medium-size one-way interactions of length 5 to 20 with 11.3% of interactions,

• 5) a cluster of medium-size reciprocal interactions of length 5 to 20 with 4.9% of interactions,

and

• 6) a cluster of long reciprocal interactions of length 20 and above with 1.1% of interactions.

One can easily observe the following from the above: We first note that even inside the per-

sistent interactions, the overall number of one-way interactions is much larger than the number of
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Figure 6.7: A Flickr cluster of long reciprocal interactions.

reciprocal ones and therefore most clusters with one-way interactions are much larger. However,

despite having many more overall one-way interactions, the algorithm did not find a cluster for

long one-way interactions indicating that the long persistent interactions are almost all reciprocal.

There exists a cluster corresponding to the long reciprocal interactions. A random sample of 20

sequences for these two clusters are depicted in Figures 6.7 and 6.8.

For the Facebook dataset, we cluster a total number of 74, 241 persistent social interactions,

and came up with the following six clusters:

• 1) a cluster of short one-way interactions of length 2 to 5 with 17.2% of interactions,

• 2) a cluster of short reciprocal interactions of length 2 to 5 with 14.3% of interactions,

• 3) a cluster of medium-size one-way interactions of length 5 to 20 with 14.7% of interactions,

• 4) a cluster of medium reciprocal interactions of length 5 to 20 with 37.7% of interactions,

• 5) a cluster of long reciprocal interactions of length 20 to 200 with 15.3% of interactions,

and

• 6) a cluster of very long reciprocal interactions of length 200 to 1400 with 0.6% of interac-

tions.

The results for the Facebook dataset differ from the Flickr dataset in a couple of ways but the

general trend of the results remain similar. First of all, the percentage of persistent interactions
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Figure 6.8: A Flickr cluster of one-way interactions.

is higher overall. More notably, the percentage of reciprocal interactions is much higher in this

dataset compared to the Flickr dataset. Moreover, we get very long reciprocal interactions and as a

result, the clustering puts them into two different clusters. The general trend for the length of one-

way vs. reciprocal interactions remains the same, i.e., the percentage of long reciprocal interactions

is much higher than that of one-way interactions. The clustering algorithm does not find a specific

cluster for long one-way clusters and instead finds two clusters of long and very long reciprocal

interactions. A random sample of 20 sequences for these two clusters are depicted in Figures 6.6a

and 6.6b.

After choosing the best clustering for each dataset, we also examined the percentage of users

for which all their interactions with other users were clustered into one cluster only. Interestingly,

we observe that more than 50% of the time, users would be clustered into the same cluster.

6.3.6.3 Prediction

Another way to study the correlation and impact of different parameters on the persistence of an

interaction is to define a prediction task of estimating the length of an interaction as a function of

a set of features associated with that interaction. Here, we aim to predict the length of pairwise

interactions using the same set of features that we used for clustering:

1. The normalized number of sign changes, i.e., the number of times that the sign of the prefix

net score changes in the sequence of net scores computed for this interaction.
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2. The normalized difference between the maximum and minimum points on the sequence.

3. The normalized slope of the overall sequence.

4. The number of sign changes in the first half of the sequence (SC1)

5. The number of sign changes in the second half of the sequence (SC2)

6. The length of the sequence.

We use linear regression and multivariate adaptive regression splines (MARS) [46] to study the

impact of each of the above variables in predicting the length of an interaction. We first present

the result for the Flickr dataset. Linear regression and logistic regression were not good fits on this

dataset, so we opted to explore other methods. In particular, using multivariate adaptive regression

splines resulted in a good fit on this dataset. For this purpose, we applied package earth [84]. We

utilized a 10-fold cross validation on this data, and report the mean of out-of-fold R-Squareds as the

final cross validation R-Squared value (cvRs). cvRs for our model is 0.90. This model also reports

how important each predictor variable is in predicting the dependent variable. For this dataset,

MARS determined that SC1 and SC2 were not important, and as a result, they were not used.

More notably, MARS determined that the overall number of sign changes, absolute difference,

and the slope were the most important predictors, respectively. We observe a similar behavior for

the Facebook dataset with cvRs = 0.95. For this dataset, however, even linear regression models

results in a good fit, and we get similar insights regarding the significance of different features in

performing this prediction task. In particular, the fact that the number of sign changes is the most

important factor in predicting the length of a pairwise interaction, implies that there is a strong

positive correlation between length and reciprocity (which validates what we had seen in previous

sections).

6.3.7 Friends vs. Non-friends

One implication of our studies presented in this work is that there is a positive correlation between

persistent interactions and being more reciprocal. An interesting and related question is to study

the level of altruism vs. reciprocity based on other characteristics of pairwise interactions among
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users. In particular, it is interesting to study the impact of friendship among pairs of users on the

reciprocity of their interactions.

To achieve this goal, we performed another data analysis on the Flickr dataset. On Flickr,

users can declare a friendship relationship with other users on the website. Our goal is to study

the impact of friendship on the altruism and reciprocity of interactions. We first note that only

0.8% of the pairwise interactions correspond to pairs of users who had declared their friendship

from the beginning of the crawl, and 1.4% of all pairwise interactions correspond to pairs of users

who became friends during the crawl. We first note that the average length of these two categories

of friend relations are 4.6 and 3.7 respectively. These are much larger than the average length

of any pairwise interaction on the whole Flickr dataset which is around 2.1. On the other hand,

the average length of non-friend interactions is around 1.6. Next, we compute the distribution of

absolute net score for each category of interactions and compare the average and standard deviation

of these distributions for each type of interactions. The distribution of length and net score of

friends and non-friends are shown in Figures 6.9 and 6.10. The average and standard deviations

of the net score distributions are summarized in Table 6.18. Interestingly, we find out that even

though the interactions between friends are longer (i.e., more persistent), both average and standard

deviation of the absolute value of the net score between these pairs are larger. In other words, while

interactions between friends are more persistent, the level of altruism (captured in the net score)

is higher for these friends. At a first glance, this is contradicting the observed positive correlation

between the length of the interactions and their reciprocity however it can be interpreted as follows:

For friendship-based relationships the underlying reason for an interaction may be beyond what can

be seen on a social media site. On the other hand for non-friend interactions, the response rate and

reciprocity may play a more significant role in continuing the relationship.

6.3.8 Related Work

There has been work done on the motivations of participation in online user generated communi-

ties – cases where a user contributes to a group without obvious/immediate rewards. For instance,

Lampe et al [73] have turned to the theory of ”uses and gratifications and organizational commit-

ment” to explain why users create content online. They find that users may continue generating

content in the site for reasons that may not be the same as those that led them to the site in the first
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Data Set Avg. Length Avg. Net Score Std. Dev.

All 2.1 1.84 3.89

Friend 4.6 3.17 7.45

Friend during 3.7 2.74 5.30

Non-friend 1.6 1.52 2.60

Table 6.18: Average Length and Net Score for friend versus non-friend interactions.
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Figure 6.9: Distribution of lengths of friends and non-friends.

place. They also find that a ”sense of belonging” is an important determinant of user participation.

In other work on question-answering websites (Mathoverflow and Yahoo Answers), users

reported getting information, giving information, reputation building, relationship development,

recreation, and self discovery as their main motivation to answer questions. However, motivations

vary based on the community type [106]. In this work, they found that users may continue partici-

pating in a site for reasons other than those that drew them to the site in the first place. Additionally,

a sense of belonging to the site was important to all types of users across all types of users. Our data

analysis shows that the predictors of contribution among these users seemed to not be associated

with how easy the site was to use for them, but may instead have social or cognitive factors.

Social scientists and economists have explained prosocial giving in two main ways: altruism

and expecting future reciprocal exchange [28, 83, 45]. For example, in one study of underlying

motivations of prosocial giving, researchers ran a dictator game experiment among college stu-

dents asking them to allocate a sum of money among their peers, friends or strangers one time.
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Figure 6.10: Distribution of net scores of friends and non-friends.

Controlling for social exchange, they found that a significantly higher proportion of the money was

allocated by the students to their friends compared to the amount allocated to strangers. In a recent

paper [104], the authors study other aspects of social exchanges such as power and status in online

networks, however they do not study reciprocity or related social giving behavior in online social

media. Finally, we note a related work [114] in which the authors study the presence of a notion of

reciprocity known as Guanxi in a Chinese forum (Mitbbs). However, the context of interactions in

this Mitbbs is based on predefined virtual points (credits). As a result, the social giving behaviors

studied in this paper are not the subject of study in [114]. Moreover, while Guanxi is related to

reciprocity, it captures a different aspect of reciprocity motivated by a sense of obligation or in-

debtedness in human relations [115]. While other similar research has been performed in similar

settings, to the best of our knowledge, our work is the first that studies the distinction between

altruism and reciprocity as social givings in online social sites.

6.3.9 Concluding Remarks

In this work, we present a study of users’ social interactions in two social media sites: Flickr and

Facebook. Our goal is to determine the level of reciprocity vs. altruism in all pairwise social inter-

actions among users. Our study shows that there is a positive correlation between persistence and

reciprocity . Finally, we study the difference between altruism and reciprocity between friends and

non-friends and observe that while interactions between friends are more persistent, the level of

altruism is higher in friendship-based interactions. This may seem surprising, however, this phe-

nomenon can be explained as follows: while non-friend interactions are motivated by the prospect
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of future reciprocal favorite markings, the underlying reasons for user interactions between friends

is beyond their limited interactions on the site therefore, more altruism appear in these interactions.

We note that our study does not imply causality between reciprocity and persistence of social

interactions (we show a positive correlation exists between them). As a future research direction, it

would be interesting to run real-world experiments on a social network in order to study causality of

reciprocal behavior on the persistence of social interactions. Finally we note that, from the practical

point of view, our study offers insights in improving user engagement in online social platforms.

For example, the positive correlation between reciprocity and persistence of social interactions can

be leveraged in newsfeed ranking algorithms to encourage users to increase levels of reciprocity in

their interactions. Moreover, such analysis could also be used for social network simulations by

developing better user behavior models in online social sites.
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