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Abstract

Guideposts and traffic signals are important devices for controlling inner-city traf-
fic and their optimized operation is essential for efficient traffic flow without con-
gestion. In this thesis, we develop a mathematical model for guideposts and traffic
signals in the context of network flow theory. Guideposts lead to confluent flows
where each node in the network may have at most one outgoing flow-carrying arc.
The complexity of finding maximum confluent flows is studied and several poly-
nomial time algorithms for special graph classes are developed. For traffic signal
optimization, a cyclically time-expanded model is suggested which provides the pos-
sibility of the simultaneous optimization of offsets and traffic assignment. Thus, the
influence of offsets on travel times can be accounted directly. The potential of the
presented approach is demonstrated by simulation of real-world instances.

Zusammenfassung

Vorwegweiser und Lichtsignalanlagen sind wichtige Elemente zur Steuerung in-
nerstädtischen Verkehrs und ihre optimale Nutzung ist von entscheidender Bedeu-
tung für einen staufreien Verkehrsfluss. In dieser Arbeit werden Vorwegweiser und
Lichtsignalanlagen mittels der Netzwerkflusstheorie mathematisch modelliert. Vor-
wegweiser führen dabei zu konfluenten Flüssen, bei denen Fluss einen Knoten des
Netzwerks nur gebündelt auf einer einzigen Kante verlassen darf. Diese konfluenten
Flüsse werden hinsichtlich ihrer Komplexität untersucht und es werden Polynomial-
zeitalgorithmen für das Finden maximaler Flüsse auf ausgewählten Graphenklassen
vorgestellt. Für die Versatzzeitoptimierung von Lichtsignalanlagen wird ein zyklisch
zeitexpandiertes Modell entwickelt, das die gleichzeitige Optimierung der Verkehrs-
umlegung ermöglicht. So kann der Einfluss geänderter Versatzzeiten auf die Fahr-
zeiten direkt berücksichtigt werden. Die Leistungsfähigkeit dieses Ansatzes wird mit
Hilfe von Simulationen realistischer Szenarien nachgewiesen.
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Introduction

Urban traffic congestion is increasing day by day. Examples can be found around the
world. Growing cities and increasing population doubled the traffic volume in the last two
decades in Europe and North America and an even higher rise has to be expected for the
urban regions in Asia or South America in the next years. In Germany, the population
travels about 1000 billion kilometers every year, and 85 percent of this distance is covered
by individual motor car traffic [25, 56]. The city of São Paulo, Brazil, is famous for its
record-breaking traffic jams. The 20 million inhabitants own about six million vehicles.
On an evening in June 2009, the traffic congestion the city reached a new record of
293 kilometers in total [47]. In August 2010, there was a 60-mile, nine-day traffic jam
near Beijing, China, that even made headlines in Europe.

Traffic congestion causes delays which add up to huge costs for society and business.
The urban mobility report 2009 [136] states a total loss of 4.2 billion hours and
87.2 billion dollars for the 439 urban areas in the United States in only one year.
Wasted fuel of 2.8 billion gallons, noise, and pollution accumulate. A huge problem has
to be solved.

But what can mathematics do to support the quest for stress-free, environment-friendly,
and safe traveling? In this thesis we will have a close look at two familiar systems
for traffic control–guideposts and traffic signals. If you do not like traffic jams you are
invited to read on and find out how an optimization of guideposts and traffic signals can
be used to direct and improve inner-city traffic flow.

Guideposts. Guideposts have been used for a long time. They provide guidance, es-
pecially in unfamiliar regions. With increasing mobility, we cannot imagine traveling
without guideposts and we can find them everywhere. Even modern GPS-based satellite
navigation systems can be seen as small, virtual guideposts inside our cars. Everything
seems clear–just follow the guideposts!

But we missed an important question. Where should we install these guideposts? And
what consequences arise from our choice?

Assume we want to find a certain point of interest in an unfamiliar network. Fortu-
nately, this network is equipped with guidepost pointing towards our destination wher-
ever a routing decision has to be made. Further, we may assume that these guideposts
point in an unique direction, i.e. they exclude all but one road at each intersection.
Nothing would be more confusing than two guidepost naming the same destination but
pointing in two different directions. Most likely, other traffic participants with the same
destination will follow these guideposts, too. If we meet one of them, she will make
the same routing decisions just like us. Thus, we will travel on the same route until we
reach our destination. Consequently, a group of road users starting at the same origin
will share the same path, even if there would exist several alternatives. The capacity of
this path limits the amount of traffic participants that can reach the common destina-
tion. With road users starting all over the network, a bad choice of guideposts may lead
to congestion, although the traffic flow in the network is far away from the network’s
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capacity at free route choice.

Traffic signals. With increasing car traffic, traffic signals managing the right of way at
intersections became more and more important. However, the red traffic light seems to
be dominant. But sometimes, we arrive at a traffic signal and it switches to green just
in time, so that we can go on without stopping. And once in a blue moon1, we get even
four or five green lights in a row.

Such a traffic signal coordination is a difficult task. Of course, coordinating one road
in one direction is rather easy, but with traffic in the opposite direction or traffic in a
whole street network it becomes considerably harder.

Even more, changing the coordination also means changing travel times. After a
while road users will learn about the fastest routes in the network and they will switch
to these routes. This new distribution of traffic in the network may completely disturb
our fine-tuned coordination.

Obviously, guideposts and traffic signals are important tools for controlling traffic and
traffic control is the backbone in the management of traffic flows in our cities. The
optimal use of these signals is essential when we are going to resolve traffic congestion.
However, it is sometimes not even clear what ‘optimal’ means in this context. Guide-
posts are often installed with respect to the shortest distance towards the destination.
Their influence on congestion is poorly studied. In contrast, traffic signal coordination
has been investigated for a long time and many approaches and models have been pro-
posed. But these models also recommend various definitions of optimality. The two
most common objectives are minimizing the delay/waiting time of vehicles facing red
lights and minimizing the number of stops. Furthermore, the majority of the approaches
reveal some deficits like unrealistic modeling of inner-city traffic flows or no guarantee
for an optimal solution.

Contribution

In this thesis, we tackle traffic congestion with the help of network flow theory from
two sides. First, we advance guideposts from a theoretical point of view and introduce
confluent flows. A flow is called confluent if the flow uses at most one outgoing arc at
each node. Unlike previous results we consider heterogeneous arc capacities. We will
focus on NP-hardness results for maximum confluent flows, an approximation algorithm
for graphs with treewidth bounded by a constant k, and polynomial time-algorithms for
special graph classes.

Second, we advance traffic signals. Since this discussion is actually a practical one –
most results presented in this part are an outcome of the ADVEST project that emerged

1A blue moon refers to the third full moon in a season with four full moons. A season with four full
moons is very rare, this happens only once every 2 or 3 years.
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between BTU Cottbus, TU Berlin, TU Braunschweig, and PTV AG2 – we start our
contribution with a new model for the simultaneous optimization of traffic signal coordi-
nation and traffic assignment. This combined approach accounts the feedback between
red lights and route choices. We answer the time dependance of traffic signals by a
cyclically time-expanded network. This time expansion will also allow capturing several
other characteristics of inner-city traffic like platoons of cars and exact arrival times of
these platoons at the intersections. Still, viewing inner-city traffic as a periodic process
limits the time horizon of the expansion and leads to a compact formulation of the prob-
lem as a mixed-integer program. Solving the MIP yields a guarantee or at least bounds
for the optimal solution. We investigate our approach with the help of real-world data
and state-of-the-art simulation tools.

Outline of the thesis

In Chapter 1 we will fix the notation and terminology and present basic definitions.
We assume the reader to be familiar with the basic concepts in graph theory, complexity
theory as well as linear programming. However, for later reference and as a short refresh-
ing of knowledge we recall some of the most important facts. For additional information
we refer to [2, 66, 100, 122, 147].

In Chapter 2 we will derive the concept for flows in networks with guideposts. For
that, we will introduce confluent flows and conclude some basic properties, e.g. the
underlying tree structure. We will study complexity result for both the transshipment
and the maximum flow variant. We also present arc-confluent flows and discuss cuts for
confluent flows.

Afterwards, we present polynomial time algorithms for restricted graph classes,
e.g. trees, planar graphs with at most k terminals on the boundary, and graphs with-
out K2,3 as a minor in Chapter 3. The relation between confluent flows and trees will
lead to a pseudo-polynomial time solution for maximum confluent flows on graphs with
treewidth bounded by a constant k. We use this result to develop a fully polynomial time
approximation scheme (FPTAS) for confluent flows on this kind of graphs.

Due to the various approaches for traffic signal optimization we start with a short
survey on this topic in Chapter 4. We will use this survey to make the reader familiar
with concepts in traffic engineering and with terms related to traffic signals. We will
also discuss the advantages and disadvantages of the considered approaches to motivate
our new model. Herewith, the ground for the next two chapters should be prepared.
Additional information can be found, e.g., in [69, 141].

In Chapter 5 we use the concept of dynamic flows and the periodicity of traffic signals
to develop a cyclically time-expanded network. The model is completed by modeling
intersections, traffic signals and traffic assignment. As a main result of this chapter
we show how this model can be used to optimize traffic signal coordination and traffic
assignment simultaneously. Aiming for a realistic modeling we also discuss the conse-

2PTV AG is a traffic planning company from Karlsruhe, Germany. It is well known for its traffic
planning and simulation software VISUM and VISSIM.



12

quences of our approach to travel times and link performance in detail and derive further
properties of the model.

Finally, Chapter 6 is designated for the simulation of inner-city traffic and the practi-
cal evaluation of the proposed model. We introduce the reader to two traffic simulation
tools, namely VISSIM and MATSim. In detail, we consider the real-world inner-city
networks of Cottbus, Braunschweig, Portland, and Denver. In particular, we empha-
size the advantages of our simultaneous optimization of signal coordination and traffic
assignment by comparing to a decomposed successive version of our approach.

About this thesis

A lot of results in this thesis were obtained during the ADVEST project, granted
by the German ministry of education and research (BMBF). This also reflects in the
thesis. First, some results were already published, see [52, 53, 96, 97, 98]. Second, the
aims of the project lead to different kinds of results. On the one hand confluent flows
were studied theoretically and are better understood now. But due to the combinatorial
complexity practical applicability is – in the moment – poor. One the other hand, in a
more experimental approach, a new model for simultaneous traffic signal coordination
and traffic assignment was created, implemented, improved and tested with help of
simulation tools. Hereby, a model of high practicability was developed, but it is difficult
to prove the impact of the model also mathematically. Hence, the first part of the thesis
will perhaps be more interesting for readers who focus on combinatorial optimization.
The second part may more appeal to readers who are interested in the modeling of real
world problems.
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1 Basic Definitions and Notation

In this chapter we introduce and fix the basic notation for this thesis. Many fields of
discrete mathematics are touched. First, we introduce the graph notation and we present
some classical graph problems that we will refer to later. Due to the wide area of graph
theory this description cannot be complete. For an introduction to graph theory we
suggest, e.g., [152] or [49]. A good textbook on network flows is, for example, [2]. Good
textbooks, covering network flows and other combinatorial optimization strategies, are
[36, 100, 138]

Furthermore, we fix the notations for algorithms, complexity and approximation.
Again, we can only give a short overview. For additional information, we refer to [66]
and [9].

Linear Programming and Integer Programming are two basic approaches to solve
network flow problems and combinatorial optimization problems. We will introduce
both techniques in section 1.4 and suggest [147, 153] for further reading.

Please note that the following chapters also provide their own introductions and terms
specific to these chapters are defined there.

1.1 Graphs

In this work we consider finite graphs G = (V,E) where V = V (G) is the vertex set
and elements v ∈ V are called vertices or nodes. E = E(G) is the edge set of G. We
consider both undirected and directed graphs (digraphs). In the case of undirected, loop
free graphs the edge set is a subset of V 2, i.e. E ⊆ {{u, v} : u, v ∈ V, u 6= v}.

To denote directed edges, we also call them arcs. E is termed arc set A. A consists
of ordered pairs of nodes, i.e. A ⊆ V × V = {(u, v) : u, v ∈ V }. Therefore, each arc
a ∈ A, a = (u, v) is directed from its tail(a) = u to its head(a) = v. For v ∈ V , we use
δ−(v) = {a ∈ A : v = head(a)} for the set of incoming arcs and δ+(v) = {a ∈ A : v =
tail(a)} for the set of outgoing arcs. A graph is called bi-directed if it contains for each
arc a = (u, v) also the arc in the opposite direction a′ = (v, u). A directed graph can be
made undirected by simply deleting the directions of the arcs. To make an (undirected)
graph a bi-directed one we add both directions for each edge/arc.

The cardinalities of the node and edge sets are denoted by n = |V | and m = |E|. A
graph with n vertices that contains all possible edges, is called a complete graph and
denoted by Kn. Obviously, the complete graph has m =

(

n
2

)

= n(n−1)
2 edges. Sometimes,

a graph is allowed to contain multi-edges, i.e., parallel edges. Hence, E, or A respectively,
is defined as a multi-set in this case and G is called multi-graph. The induced subgraph
on a vertex set V ′ ⊆ V is denoted by G[V ′]. The induced arc set of G[V ′] is denoted by
A[V ′].

A sequence W = (a1, . . . , ak), ai ∈ A, of arcs is called a walk if it fits head to tail,
i.e. head(ai) = tail(ai+1) ∀i ∈ {1, . . . , k − 1}. For short, we will use tail(W ) := tail(a1)
and head(W ) := head(ak). V [W ] is used for the set of vertices that occur in the arcs
of W . To simplify matters, we use a ∈ W to denote that the arc a is contained in the
sequence of arcs in walk W . A path P is a walk which passes through every vertex at
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most once. A walk/path where the tail of the first arc and the head of the last arc
coincide is called cycle/circuit . For u, v ∈ V , Pu,v denotes the set of all paths with tail u
and head v. The length of a path (with respect to unit edge lengths) is the number of arcs
in its sequence. Two paths P1 and P2 are (arc) disjoint if A[V [P1]]∩A[V [P2]] = ∅. They
are node disjoint if V [P1] ∩ V [P2] = ∅. The composition of two paths P1 = (a1, . . . , ak)
and P2 = (b1, . . . , bl) is defined as P1 ◦ P2 = (a1, . . . , ak, b1, . . . , bl).

Similarly, walks, paths, cycles, and circuits can be defined for undirected graphs.

A graph is strongly connected if for each pair of vertices (u, v) there exists a path P
from u to v, i.e. tail(P ) = u and head(P ) = v. A graph is weakly connected if its corre-
sponding bi-directed graph is strongly connected. A node set U ⊆ V is (strongly/weakly)
connected if the induced graph G[U ] is (strongly/weakly) connected. The inclusion max-
imal (strongly/weakly) connected subgraphs of G are called (strongly/weakly) connected
components.

A cut in G is an arc set C such that G\C = (V,A\C) has at least one connected
component more than G. The value of a cut is simply the number of arcs in the cut.
An s-t-cut is defined as a partition of V into two subsets C1 and C2, such that s ∈ C1

and t ∈ C2. Let C = {a ∈ A : tail(a) ∈ C1 ∧ head(a) ∈ C2} then there exists no directed
path from s to t in G\C. The value of the s-t-cut is |C|, i.e. the number of forward arcs
from C1 to C2.

1.2 Flows and Networks

Flows have been a major planning tool for many applications ever since Ford and Fulk-
erson [58] studied them. Before considering flows with additional routing constraints in
the following sections, standard flow is introduced here.

1.2.1 Definitions

Although there is consens what a flow in a network should be, we will use a slightly
different and modular approach for defining flows3.

A flow function is a non-negative function on the arc set x : A → R+
0 . In most

practical applications the maximal flow on each arc is limited by a capacity bound, i.e.,
a maximal flow value that cannot be exceeded on this arc. The capacities are given by
a function u : A → R+

0 ∪ {∞}. A flow is feasible if 0 ≤ x(e) ≤ u(e) ∀e ∈ A holds.
A graph together with capacities is called a network G = (V,A, u). For some results
in this thesis, we will limit the capacity function to integer values, i.e., u : A → N0.
This is no restriction for most applications, since rational values can simply be scaled to
integer values and irrational numbers cannot exactly be represented in our computers
anyway4.Furthermore, a flow function is integral if it has only integral values.

3In some of the algorithms especially in Section 3, we will not be able to fulfill all requirements of a
flow at once. A modular definition admits step-by-step procedures. For example, we will define and
derive preflows with a slightly different flow conservation constraint.

4Irrational input may yield a unexpected behavior, the algorithm of Ford and Fulkerson is a prime
example.
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The inflow and outflow of a flow function x at a given node v are

inflowx(v) :=
∑

a∈δ−(v)

x(a)

outflowx(v) :=
∑

a∈δ+(v)

x(a)

and the balance of a flow function x at a node v is defined as net flow out of this node

balx(v) := outflowx(v)− inflowx(v).

We can now distinguish between three kinds of nodes. At some nodes v ∈ V flow may
enter into the network, i.e., the outflow is higher than the inflow. Therefore, these nodes
have positive balance and we call them sources. The set of all sources is denoted S+.
At other nodes, the balance may be negative and flow may leave the network. These
nodes are called sinks and the set of all sinks is accordingly denoted S−. All nodes in
S+ and S− are also called terminals and we demand S+ ∩ S− = ∅. For all other nodes
v we require that x satisfies the flow conservation constraint, i.e., balx(v) = 0.

Definition 1.1 (Flow). A flow in a network G = (V,A, u) with sources S+ and sinks
S− is a feasible flow function x : A→ R+

0 that

1. satisfies the flow conservation at all non-terminals,

2. has non-negative balance at all sources,

3. has non-positive balance at all sinks.

An s-t-flow is a flow with a single source s ∈ V and a single sink t ∈ V . A circulation
is a flow where balx(v) = 0 holds for all v ∈ V and thus, there are no sources or sinks.

The value of a flow x is the amount of flow reaching the sinks, i.e.,

val(x) = −
∑

v∈S−

balx(v).

This is equal to val(x) =
∑

v∈S+ balx(v) due to flow conservation at the non-terminals.
For most applications we need to restrict the balances of the terminals. We use a
supply/demand function d : V → R. All sources have positive values d(v) > 0, while
all sinks have negative values d(v) < 0. For non-terminals we require d(v) = 0. When
we talk about the supply of a source or the demand of a sink this refers to the absolute
values of the supply/demand function.

We can now study two variants of flow problems. In the case of a transshipment the
supplies and demands should exactly be satisfied. This means balx(v) = d(v) ∀v ∈ V .
Of course, this can only be achieved if

∑

v∈V d(v) = 0. In a weaker variant a source s
may send up to d(s) and a sink t can accept up to d(t) units of flow. A flow obeys the
supply/demand function if 0 ≤ balx(v)d(v) ≤ d(v)2 ∀v ∈ V .

These two variants lead to two problems.
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Problem 1.2. Consider a network G = (V,A, u) with sources S+, sinks S−, and a
matching supply/demand function d.

1. Is there a flow x that satisfies d? (Transshipment Problem)

2. What is the maximum value of a flow x obeying d? (Max Flow)

Note that both problems can also be formulated as a circulation problem. In many
problems one can typically add a supersource s∗ and a supersink t∗ without changing the
problem. More precisely, one connects the supersource with all sources, i.e., one adds
the arcs (s∗, s) ∀s ∈ S+ with capacities u((s∗, s)) = d(s). Respectively, the same is done
for the supersink with arcs (s, t∗) ∀s ∈ S− with capacities u((s, t∗) = −d(s). Connecting
supersink and supersource as well, we require x((t∗, s∗)) =

∑

v∈S+ d(v) for the transship-
ment or we try to maximize x((t∗, s∗)) for a maximum circulation. Furthermore, flow
conservation applies in every node.

This general definition of flows can be extended by adding costs to each arc, i.e., there
is another function c : A → R+

0 . These arc costs can be interpreted as the length of
an arc or a toll that has to be paid for using this arc. The total cost of flow on an arc
e is f(e)c(e) and the total cost of a flow in a network is given by

∑

e∈A c(e)f(e). We
can now vary the above flow problems by adding an additional constraint, which limits
the overall costs of a flow. Or we can look for the cheapest flow among all flows with
maximum flow value.

Problem 1.3. Consider a network G = (V,A, u) with sources S+, sinks S−, a matching
supply/demand function d, and a cost function c.

1. What is the minimum cost of a transshipment? (Min Cost Transshipment)

2. What is the minimum cost of a maximum flow? (Min Cost Flow)

One can also think of negative costs, i.e., getting money for using an arc. But this
complicates the computation of shortest paths and Min Cost Flow. Shortest paths
can have negative infinite length if the graph contains a cycle with negative cost sum.
On the other hand a minimum circulation can be used to calculate a Max Flow.
Just add supersource and supersink as above with c((t∗, s∗)) = −1, and all other costs
c(e) = 0, e 6= (t∗, s∗).

Up to now, we considered only homogeneous flows. In many applications one has
to deal with several goods with different origins and destinations in the same network.
This can be modeled by multicommodity flows. For each commodity i, i ∈ {1, . . . , N}
we implement a separate flow function xi : A → R+

0 . We require flow conservation
as above for each flow xi. The capacity of an arc is shared among the commodities,
∑N

i=1 xi(e) ≤ u(e) ∀e ∈ A. All problems given above can be formulated in a multi-
commodity variant [2].

1.2.2 Important results

In 1927, Menger presented his famous result which shows the relationship between dis-
joint paths and cuts.
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Theorem 1.4 (Menger, 1927). Let G = (V,A) be a graph and s, t ∈ V . The maximum
number of edge disjoint paths from s to t is equal to the minimum value of an s-t-cut.

Introducing arc weights, i.e. arc capacities, this result can be extended to flows.
Hereby, the capacity of an s-t-cut is

∑

e∈C ue where C is the set of forward arcs from
C1 ∋ s to C2 ∋ t.

Theorem 1.5 (Maximum-flow Minimum-cut). The maximum value of an s-t-flow
is equal to the minimum capacity of an s-t-cut.

This theorem was proven by P. Elias, A. Feinstein, and C.E. Shannon in 1956, and
independently also by L.R. Ford, Jr. and D.R. Fulkerson in the same year.

Several algorithms for finding a maximum s-t-flow have been developed since the
1950s. To name a few approaches, Ford and Fulkerson constructed an algorithm that
is related to their constructive proof of the maximum-flow minimum-cut theorem. This
algorithm uses augmenting paths and was improved by Dinic and by Edmonds and Karp.
Goldberg and Tarjan presented a push-relabel-algorithm, which was improved by Ahuja
and Orlin. Note that, despite the bunch of combinatorial algorithms for s-t-flows, no
exact combinatorial algorithm is known for multicommodity flows, yet.

The successively increasing flow value in the algorithm of Ford and Fulkerson also
leads to an important observation.

Corollary 1.6 (Integrality theorem). If the capacity function u is integral, there
exists an integral maximum flow.

Note that this result is not true for multicommodity flows.

There is also another important link between flows and paths. Let x be an s-t-flow
in a network G = (V,A, u) with s, t ∈ V . Then there exists up to m = |A| s-t-paths
or cycles, such that x can be represented as a nonnegative linear combination of these
paths or cycles. Moreover, if x is integral, the linear combination can be realized with
integral coefficients. This result is also known as path decomposition.

1.3 Algorithms and Complexity

In the previous section we just mentioned some algorithms for maximum flows and many
more algorithms for restricted flows will follow in this thesis. But when talking about
algorithms, we have to discuss running times and complexity . Again, we can only provide
an overview.

An algorithm is a finite list of instructions. These instructions perform operations on
the given data, but they need not be performed in linear order. Each instruction also
determines which instruction is next or may even stop the algorithm. Therefore, the
algorithm itself is fixed, but the input data may vary.

Obviously, the running time of an algorithm may depend on the size of the input.
We will not discuss memory models or machine models here. For a detailed survey on
deterministic Turing machines see [66].
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For short, we measure the size of the input data as its lengths in some binary encoding.
The running time of an algorithm is measured in the number of elementary arithmetic
operations (addition, subtraction, multiplication, division, comparison), that are per-
formed until the algorithm stops. Even inputs of the same size may lead to different
behavior of the algorithm. Considering the worst case, the time complexity function for
an algorithm is the largest amount of time for each possible input length, that is needed
by the algorithm to solve an instance of this size.

1.3.1 Polynomial-time algorithms

If the number of elementary operations is bounded by a polynomial in the input size, the
algorithm is called polynomial-time algorithm or efficient algorithm. We can describe
the running time of an algorithm with help of the O-notation. A function f(n) is in
O(g(n)) if there exists a constant factor c and n0 ∈ N such that |f(n)| ≤ c|g(n)| ∀n ≥ n0.
Therefore, an algorithm is efficient, if its time complexity function is in O(p(n)) for a
polynomial p and input length n.

To simplify matters we do not measure the size of a graph or network in some binary
encoding. The size of a graph depends on the number n of nodes and the number m of
edges/arcs. Therefore, the input size for graph related problems is in most cases n + m.

With help of this notation, we can now compare algorithms. For example, the algo-
rithm for Max Flow from Edmonds and Karp with shortest augmenting paths has a
time complexity of O(nm2), while the algorithm from Goldberg and Tarjan has time
complexity O(nm log(n2/m)). Remember that m < n2.

Note that huge constant factors are maybe ignored in this run time analysis. Also,
the running time may depend on some additional implementation tricks. The popular
Dijkstra’s algorithm for shortest path calculation (cf. [50]) can simply be implemented
with a time complexity of O(n2). Using a more sophisticated data structure, namely
Fibonacci heaps, the time complexity can be reduced to O(n log n + m) [2].

Sometimes, an input value itself appears in the running time of an algorithm instead
of its logarithm (its size). If the complexity bound is also a polynomial of this parameter,
the algorithm is called pseudo-polynomial .

For other problems, it is useful to describe the input with several parameters. This
allows a finer analysis of their inherent complexity. Not only the size of the input data
influences the running time of the algorithm, but the structure of the data may be
important as well. Therefore, for some hard problems one can compute an answer in
a time that is polynomial in the size of the input and exponential in a parameter k.
If k is small and fixed, then such problems can still be considered manageable. The
corresponding algorithms are called fixed-parameter tractable.

1.3.2 P, NP, and co-NP

For some problems one has not found polynomial time algorithms yet. This leads to the
question whether some problems are harder than other problems. The classes P, NP,
and co-NP are collections of decision problems. A decision problem is a problem that
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can be answered by Yes or No. More precisely, we consider a finite alphabet Σ and the
set Σ∗ of all finite words of letters from Σ. A problem Π is an arbitrary subset of Σ∗.
For a given x ∈ Σ∗ we have to decide whether x ∈ Π.

Problems in P are considered to be ‘easy’ problems, because they can be solved on a
deterministic Turing machine in polynomial time with respect to the length of the input.

A problem is in NP when it can be answered on a nondeterministic Turing machine
in polynomial time. Clearly, P ⊆ NP. An equivalent definition for NP requires that
a given certificate (Yes-solution) can be verified on a deterministic Turing machine
in polynomial time. For example, it is hard to decide whether a graph contains a
Hamiltonian circuit, i.e., a cycle that visits all nodes exactly once. But when a cycle is
given, it is easy to check, whether it is a Hamiltonian circuit.

A problem is in co-NP when its complement is in NP. It holds P ⊆ NP ∩ co-NP.
But it is an open problem whether P = NP or P 6= NP. Assuming the second case
holds, NP-hard problems are not solvable in an acceptable time.

1.3.3 NP-complete problems

A problem in NP is said to be NP-complete if each problem in NP can be reduced
to this problem. Hereby, a reduction is a polynomial time algorithm that transforms a
problem into another problem such that both problems have the same answer. Hence,
NP-complete problems are also referred as the hardest problems in NP. A problem is
NP-hard if and only if there is an NP-complete problem that is reducible in polynomial
time to this problem. In other words, a problem is NP-hard when it is at least as hard
as the hardest problems in NP. Note that an NP-hard problem needs not to be in
NP. It could be even harder, undecidable or it may not even be a decision problem.
This notation dates back to Cook, who proved that there exists a formal language
with NP-complete problems [35]. Building on that, Karp [85] showed for 21 popular
combinatorial problems (e.g. the Travelling Salesman Problem (TSP)) that they
are NP-complete.

1.3.4 Complexity of optimization problems

We defined complexity for decision problems, i.e., problems with a Yes or No answer.
But in most problems introduced up to now like Max Flow or Min Cost Flow, we
are looking for a minimum or maximum of some objective.

Assume, we minimize a function f(x) over x ∈ X. We consider the following decision
problem:

Given a value v, is there an x ∈ X with f(x) < v?

We perform a binary search to find the optimal value v. If we have an upper bound
on the size of the optimal solution and a polynomial time algorithm for the decision
problem, this usually yields a polynomial time algorithm for the optimization problem.
On the other hand, if an optimization problem has an NP-complete decision version,
then it is NP-hard.
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1.3.5 Approximation

Many practical optimization problems are NP-hard problems. Theory states that most
real world instances of such problems cannot be solved exactly in an acceptable time,
assuming P 6= NP. But on the other hand, this is not necessary for a lot of applications
and an exact solution is of limited use when, e.g., the input data is noisy. In this case a
reasonable good solution near to the optimum is sufficient.

A p-approximation algorithm is an algorithm that runs in polynomial time and cal-
culates a solution that is at most a factor p away from the optimum. The factor p
is called the performance ratio of the approximation. Obviously, to performance ratio
for a maximization algorithm is less than 1, while it is greater than 1 for minimization
problems.

If we can find polynomial time approximation algorithms with a performance ratio of
p = (1 + ǫ) for minimization problems or p = (1 − ǫ) for maximization problems ∀ǫ ∈
(0, 1), we call the family {Aǫ}0<ǫ<1 a polynomial time approximation scheme (PTAS).
Furthermore, when each algorithm Aǫ in this family has a running time polynomial in
the input size and polynomial in 1/ǫ we call the family {Aǫ}0<ǫ<1 a fully polynomial
time approximation scheme (FPTAS).

Approximation algorithms are not only used for hard problems. For example, there
exist combinatorial approximation algorithms for Multicommodity Flow (see, e.g.,
[67]).

1.4 Linear Programming and Integer Programming

1.4.1 Linear programs

Linear programming (LP) is a powerful optimization tool, which we will also use in this
thesis. Again, we can only sketch the main ideas here. Fortunately, there exist very
good text books and we recommend, e.g., [147, 153].

Whenever we can formulate a problem in the form

min cTx

s. t. Ax ≤ b

x ∈ Qn

with the objective cTx (c ∈ Qn), and some constraints Ax ≤ b (A ∈ Qm×n, b ∈ Qm)
linear programming is an alternative option to solve this problem. For example, the
Max Flow problem can be formulated as a linear program. For simplicity, we assume
a single source s and a single sink t with infinite capacities:



1 BASIC DEFINITIONS AND NOTATION 21

max
∑

e=(s,v)

x(e)−
∑

e=(v,s)

x(e) (1)

s. t. u(e)− x(e) ≥ 0 ∀e ∈ A (2)
∑

e=(u,v)

x(e)−
∑

e=(v,w)

x(e) = 0 ∀v ∈ V \{s, t} (3)

x(e) ≥ 0 (4)

Hereby, the objective (1) is the outgoing flow of the source. The constraints (2) ensure
the capacity bounds. The flow conservation is formulated in (3), i.e., the balance is equal
to zero. Of course, all flow values have to be non-negative (4).

Linear programs can be solved by the simplex algorithm, presented by Dantzig [44] in
1947. Despite the simplex algorithm has no polynomial running time in theory, it works
well in practice.

In 1979, Khachiyan proved that linear programs can be solved in polynomial time with
the ellipsoid method [87]. Therefore, whenever we can formulate a problem Π as a linear
program, and this formulation is polynomial in time and size of the original problem,
this proves that Π is in P. For example, no combinatorial algorithm is known for the
Multicommodity Flow problem. But it is easy to formulate this problem as a linear
program similar to the formulation of Max Flow above. Hence, Multicommodity

Flow is in P.

Interestingly, the ellipsoid method is inefficient in practice. Today, most solvers for
LP also use interior points methods, introduced by Karmarkar [84] in 1984, which are
efficient in theory and practice.

The existence of a dual program is an important property of linear programs. As
a consequence of Farkas’ lemma, each linear program has a dual linear programming
formulation and both problems have the same optimal objective value [147]. For example,
the path based Max Flow can be formulated as linear program as follows:

max
∑

P∈Ps,t

xP

s. t.
∑

P :e∈P

xP ≤ u(e) ∀e ∈ A

xp ≥ 0 ∀P ∈ P

Note that the set Ps,t is very large in general. It is not a good idea to list all paths
between two nodes. However, this formulation is very useful when only considering a
rather small set of active paths. This can be achieved, e.g., by a column generation
approach. The dual formulation is:
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min
∑

e∈A

yeu(e)

s. t.
∑

e∈P

ye ≥ 1 ∀P ∈ P

ye ≥ 0 ∀e ∈ E

It is not obvious that this dual linear program always has an optimal solution with
integer values for ye. One will need a result concerning total unimodular matrices to
prove this. So, assume, we have found this integer solution. This optimal solution of
the dual determines a minimum s-t-cut in the graph, i.e., the set of arcs in the cut
is {e : ye = 1}. All paths between s and t are cancelled by deleting this set of arcs.
Furthermore, the objective is the weighted sum over this set of arcs.

Solving primal and dual LP simultaneously yields bounds for the optimal solution.
Furthermore, if both solutions have equal value, then optimality is proved.

1.4.2 Integer programs

If some of the variables have to be integral, finding an optimal solution is much harder.
Simply dropping the integrality constraints and rounding does not need to yield good
solutions in general. In fact, a special case, the decision version of an integer program
with binary variables, is one of Karp’s 21 NP-complete problems.

Integer Programming and Mixed Integer Programming are based on linear program-
ming, but they use various strategies to handle integrality constraints. Typically, one
solves the relaxation of the problem, i.e., the integrality constraints are dropped. If
the solution is not integral, the problem is modified and solved again. These modifica-
tions include adding new constraints or splitting the problem. Two strategies are briefly
introduced here. For further reading, we recommend [153].

Cutting plane methods This method was first used by Dantzig et al. [45] to solve an
instance of the Travelling Salesman Problem, containing 49 major cities in the
United States. Gomory [70] generalized this approach to arbitrary integer programs.
A cutting plane is an additional constraint that refines the relaxation of an integer
program. If the optimal solution of the relaxation is not integral, then there exists a
linear inequality separating the optimum from the integer feasible set. This inequality
can be added to the relaxation. Obviously, the current optimum is no longer feasible.
This process is repeated until an optimal integer solution is found.

Branch&Bound The branch&bound method was introduced by Land and Doig [104].
This enhanced enumeration method consists of two steps. In the branching step the
problem is split into two smaller problems. For example, assume the value of a variable
x is not integral in the optimal solution, i.e. x = r and r 6∈ Z. We may now consider
two new problems:
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• one with the additional constraint x ≤ ⌊r⌋

• the other one with the additional constraint x ≥ ⌈r⌉

Obviously, the union of these two sub-problems is the original problem. Now, a recursive
branching is executed. In each step, a new variable and a new threshold is chosen,
depending on the branch in the last step. In the bounding step upper and lower bounds
for each sub-problem are calculated. If we consider a minimization problem and a lower
bound of some sub-problem X is greater than the upper bound of another sub-problem
Y , then X can be safely discarded from the branching (pruning), since Y will always
yield better solutions. Again, this is repeated until an optimal integer solution is found.
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2 Destination-based Routing and Confluent Flows

2.1 Guideposts, destination-based routing, and confluent flows

2.1.1 Guideposts

Guideposts provide orientation for travelers in unfamiliar regions. The oldest known
guideposts which can still be found are probably the milestones of the Roman Empire
all over Southern Europe. When visiting Rome and the forum romanum one can take
a look at the basement of the Milliarium Aureum (golden milestone). All milestones in
the Roman Empire provided the distance and direction to this central point. Most likely,
this is the origin of the saying ‘all roads lead to Rome’. Another kind of guideposts still
used today are fingerposts. Such fingerposts dating back to the 17th century can still be
found in England, but they have surely been used much earlier.

Today, modern guideposts, e.g. the one in Figure 1, can be found nearly everywhere.
There are 3.5 million traffic guideposts only in Germany, equating to one guidepost every
160 metres in average. But guideposts are not only used for traffic guidance. Some other
applications, e.g. designing emergency exit plans, are discussed in Section 2.1.3.

Figure 1: Guidepost near Kelvedon Hatch, North-east of London.

2.1.2 Destination-based Routing

The guidepost in Figure 1 is confusing in a funny way. But there is an even simpler
scenario for confusing guideposts: two guideposts at the same intersection, naming the
same destination, but pointing in different directions. Thinking of emergency exit routes
this could be dangerous as a person fleeing in panic may not act logically.

Of course, we want to avoid confusing guideposts. Therefore, we make the following
assumption. Whenever representing a street network or a building as a graph, we allow
at most one guidepost for every destination per node. This implies that the chosen
path only depends on the destination. This also provides a very easy routing protocol
for flow units representing traffic participants. Whenever two flow units with the same
destination meet they will stay together for the remaining journey. If the guideposts are
already installed, routing itself is very easy. Placing the guideposts is the main task.

Before we are delving into theory we will take a closer look at some applications.
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2.1.3 Applications

Besides common road traffic, destination-based routing is used in a variety of other
applications. In practice, a simple routing protocol is often desired for various reasons.
Sometimes, the demand distribution in the network is not known a priori and the routing
decision has to be made locally. In other cases, there is not enough time for calculating
another routing protocol which is optimal with respect to a more sophisticated objective
function.

Evacuation. Most of the time, we do not pay much attention to these green pictograms
with the little stick figure fleeing from danger: emergency exit signs. Creating evacuation
plans means, besides lots of other tasks, choosing the escape routes. And here a crucial
point arises. Two persons arriving at the same evacuation sign will follow the same
route.

Herd behavior has been observed in many species. When panicked individuals can
choose between two equal exits of a room, most of them tend to stay together. The
majority will use one of the exits and only a minority will favor the other exit. This
implies that a group of humans fleeing in panic cannot be splitted equally among two
escape routes. There is no use to put up two signs pointing in different directions.

On the other hand, people should be partitioned evenly among the different emergency
exits of a building. One has to avoid congestion since people pushing through a narrow
door can be even more dangerous than the actual emergency. This application also
shows a relation between destination based routing and a partitioning problem.

Internet routing. Internet routing is based on packet forwarding. The overwhelming
majority of Internet traffic is routed by unicast forwarding5. Routing decisions are solely
based on the destination IP (Internet Protocol) address found in IP packets.

But with a network that big and with so many queries every second, there is a need
for very fast routing algorithms. Hence, one relies on local routing strategies instead of
a global optimum solution controlled by a central unit.

Routing protocols are defined in the Internet Protocol Suite. The two most important
protocols in this suite are the Transmission Control Protocol and the Internet Protocol.
Therefore, this suite is often referred as TCP/IP. TCP provides the service of exchanging
data directly between two hosts on the same network, whereas IP handles addressing
and routing messages across one or more networks.

IP again contains several different protocols for routing. In most protocols the topology
of the network determines the routing table. One can distinguish between Distance-
vector routing protocols and Link-state routing protocols. For example, Open Shortest
Path First (OSPF) is a most widely-used protocol based on Dijkstra’s algorithm.

Speaking in terms of the Internet, guideposts are Next Hop Forwarding Tables, which
may also contain distance metric information. In this context, the guideposts are not
static – an important part of these protocols is the detection of link failures and the

5Of course, there are also other routing strategies like multicast or broadcasting which are essential for
services like WLAN (wireless local area network).
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recalculation of the forwarding tables [17]. On the one hand, the network topology of
the Internet changes quickly. On the other hand, exchange of information is very fast
and latencies are small. Therefore, for short amounts of time, we can consider Internet
routing as a destination-based routing. Furthermore, certain virtual private network
(VPN) design problems always admit a flow-carrying tree as the optimum solution [71].

Logistics. There are also some applications for destination based routing in logistics.
Many shipping companies prefer that cargo with the same destination is transported
together. However, destination based routing seems to be an artificial constraint in
most of these cases. It is used to keep the routing simple and it appears plausible for the
dispatcher on-site. But it is probably not optimal with respect to total time or costs.

An example is described in [65]. The authors study railway cargo routing with freight
trains that are recombined at large marshalling yards. Wagons with the some destination
should be grouped together and they stay together until they reach their destination.
However, the authors do not explicitly study the destination based routing. It is just
one of many subconstraints in an integer program.

2.1.4 Intuitive description of confluent flows

Now, we are going to send flow through a network with guideposts. We will concentrate
on the core of the applications presented above: the destination based routing. Therefore,
we make two assumptions. First, we will only consider single commodity flows. Second,
we assume that all flow units are following the guideposts.

Given sources and sinks, we choose a unique arc for outgoing flow at each node of the
network. All flow particles will follow these guideposts. This additional constraint will
significantly change the flow distribution. Therefore, we will introduce confluent flows
in the next section to describe the corresponding flow pattern mathematically.

The word confluent originates from the Latin confluō (con- ‘with; together’ and fluō
‘flow’). A flow in a network G = (V,A, u) is called confluent if the flow uses at most
one outgoing arc at each node. Intuitively, one can think of creeks and rivers. Thus,
confluent flows can be seen as the ‘most natural’ flows.

Furthermore, we demand that sinks have no outgoing flow carrying arcs at all. An
outgoing flow carrying arc out of a sink may imply that the flow is splitted inside the
sink and only some flow is absorbed. Nevertheless, all-or-nothing sinks can be modeled
as follows. For each sink t add a new sink t∗ with the same capacity, an arc (t, t∗) and
transform t to a normal node.

These restrictions have far-reaching consequences: flow carrying paths may not cross
or split, and every source is assigned to exactly one sink. The total view shows the flow-
carrying arcs forming an oriented sub-forest of the graph, pointing towards the sinks.
There may still occur cycles. But since these cycles cannot consist of any sources or
sinks, they do not contribute to the flow value and they can be ignored.

When the sub-forest of flow carrying arcs is fixed a priori, it is very easy to calculate the
value of a maximum confluent flow on this forest by a preflow-push-algorithm. Starting
at the sources flow is simply pushed along the arcs of the sub-forest with respect to the
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capacities until it reaches the sinks. Surplus flow units can be cancelled by tracing the
flow back to the sources. Hence, the combined problem of finding the optimal sub-forest,
i.e. putting up the guideposts, and calculating the maximum flow on this forest is the
task addressed in this chapter.

From an alternative point of view, confluent flows are also linked to graph partitioning,
since every source is assigned to exactly one sink. Nonsurprisingly, we will mostly face
combinatorial decision problems in this chapter.

2.2 Preliminaries

After this motivation from applications, we would like to turn to a more formal descrip-
tion of the problem. From now on, the road network is represented by a graph-theoretical
network, based on a directed graph G = (V,A) without multiple arcs or loops and a ca-
pacity function u. Given a demand function d, flow units are to be sent from the sources
to the sinks obeying the capacities on the arcs. Of course, we do not install guideposts
in our network. Instead, we choose a unique outgoing arc at each node. None but these
arcs may carry flow.

More formally, let F(V ′) be the family of sets F ⊆ A[V ′] such that |F ∩ δ+(v)| ≤ 1
for all v ∈ V ′ ⊆ V .

Definition 2.1 (Instance). An instance of a flow problem consists of a directed graph
G = (V,A), a capacity function u : A → N0, a set of sinks T ⊆ V with sink capacities
c : T → N0∪{∞}, and supplies d : V → N0∪{∞}. The vertices S := {v ∈ V : d(v) > 0}
are called sources and we assume S ∩ T = ∅.
Definition 2.2 (Flow). Given an instance, a flow is a function x : A → R with
0 ≤ x(a) ≤ u(a) for all a ∈ A. A flow is called integral if it has only integral values.
The inflow and outflow of a flow x at a given node v are inflowx(v) :=

∑

a∈δ−(v) x(a) and
outflowx(v) :=

∑

a∈δ+(v) x(a). Let balx(v) := outflowx(v) − inflowx(v) be the balance
of a node. A flow x is an S-T -flow if it satisfies the flow conservation constraint 0 ≤
bal(v) ≤ d(v) for all v ∈ V \T and −balx(t) ≤ c(t) for all t ∈ T . The value of an
S-T -flow is val(x) := −∑

t∈T bal(t) (as we assume d(t) = 0 ∀t ∈ T ).

Definition 2.3 (Confluent flow). Given an instance and a flow x, let Fx := {(v,w) ∈
A : x(v,w) > 0} be the set of flow-carrying arcs. A flow x is called nearly confluent
if Fx ∈ F(V ) and Fx ∩ δ+(t) = ∅ for all t ∈ T . A nearly confluent flow x is called
confluent if Fx contains no directed cycle. The value of a confluent S-T -flow is val(x) :=
−∑

t∈T bal(t).

The subgraph G′ = (V, Fx) of flow-carrying arcs is also called support graph of x. For
the sake of brevity, we will also simply use Fx to address this subgraph. In a confluent
flow x, there is no undirected cycle in Fx. This undirected cycle would be a directed
cycle as well, because it cannot contain a vertex with two outgoing arcs, which is not
allowed in Fx. Fx is also an in-forest in this case.

Definition 2.4 (In-forest). A directed forest with a unique sink per tree where all arcs
are pointing towards a sink is called an in-forest.
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Given a graph with supplies, every support graph of a confluent flow on this graph
is an in-forest, but not every in-forest is a support graph of a confluent flow. An in-
forest may contain a leaf that is neither source nor sink. Thus, it cannot be reached
by a confluent flow. Nevertheless, we will consider all subgraphs of G with the in-forest
property as feasible set for confluent flows since unused nodes and arcs can be deleted.

An in-forest is closely related to arborescences, i.e. directed, rooted trees in which all
arcs point away from the root. Thus, a re-orientation of the arcs in the opposite direction
transforms an arborescence to an in-forest.

Furthermore, a confluent flow can never use an arc a = (u, v) and the arc in the
opposite direction a′ = (v, u) at the same time. Keeping this in mind, all definitions and
results in this chapter carry over to undirected networks by considering the corresponding
bi-directed graph, i.e. each edge is substituted by two opposing arcs. The positions of
the sinks always imply which of the two arcs has to be used.

We can now formally define Maximum Confluent Flow and Confluent Trans-

shipment.

Problem 2.5 (Confluent Transshipment). Input: An instance G, u, d, S, and T .
Output: Yes if and only if there is a confluent S-T -flow of value

∑

s∈S d(s).

Problem 2.6 (Maximum Confluent Flow). Input: An instance G, u, d, S, and T .
Output: The maximum flow value over all confluent S-T -flows.

Clearly, an algorithm for solving Maximum Confluent Flow can solve Confluent

Transshipment as well by comparing the flow value to
∑

s∈S d(s). In contrast, we
cannot use Confluent Transshipment directly, e.g. with a binary search, to compute
a solution of Maximum Confluent Flow since every source and their demands have
to be considered separately.

A helpful way to view confluent flows and the associated Maximum Confluent

Flow and Confluent Transshipment is to break the flow computation into two
parts. The first step is to determine the set of arcs that actually carry flow, in other
words the in-forest Fx. Once Fx is fixed, one can use any maximum (standard) flow
algorithm to compute an optimal confluent S-T -flow on Fx in a second step. (Since Fx

is a forest, this subproblem is even easier than a standard flow computation.) Thus,
solving any confluent flow problem essentially reduces to picking the optimum in-forest.
Of course it is not clear whether this is the right point of view to handle confluent flows.
However, the complexity result in Section 2.4 implies that this is at least not the worst
approach.

We have already defined all capacity functions to be integral. This is not a strong
restriction, since all results carry over to rational inputs after scaling and irrational inputs
can be approximated. Furthermore, we assumed a loop free graph without multiple arcs.
Again, this is no restriction. Loops may never contribute to the flow value and all but
the one parallel arc with the highest capacity are redundant.

One important consequence is that maximum confluent S-T -flows can always be cho-
sen integral if the input, i.e. capacities and demands, is integral, because they can be
computed as maximum flows on the in-forests Fx, which are well-known to have integral
solutions under this assumption.
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Observation 2.7. Maximum confluent S-T -flows can always be chosen integral, if the
input is integral.

We will now derive some more implications of the above definitions. Since we are
working on a restricted arc set, the following observation is obvious.

Observation 2.8. Given an instance, the value of Maximum Confluent Flow is
less than or equal to the value of Max Flow.

Another observation (easily understandable on trees) is that one can always drop
excess units of flow in a confluent flow and trace this back to some source in the tree
where the outflow can be adjusted downwards. Similar to a preflow-push-algorithm
on a tree, the sources try to send their complete demand along the in-forest. Flow that
would exceed the capacity constraint of an arc is temporarily stored in the tail of this arc.
Thus, we primarily derive the amount of flow units that can reach the sinks. Afterwards,
we compute the corresponding flow pattern by sending the overhead flow back to the
sources. So flow conservation is not really needed, as long as no additional flow units
appear out of nowhere. We will sometimes use this weaker variant of flow conservation,
i.e. inflow(v) + d(v) ≥ outflow(v) ∀v ∈ V , implicitly. For example, some algorithms in
Chapter 3 will store overhead flow units.

Furthermore, we have seen that cycles do not contribute to the flow value. Some of
the following algorithms will not explicitly exclude cycles, but a backtracking step from
the sinks will eliminate them. The optimal flow value is already calculated without this
post-processing step.

Observation 2.9. Given an instance, the value of Maximum Confluent Flow is
equal to the value of a maximum nearly confluent S-T -flow.

We will finish this section with an estimate on the number of feasible in-forests for
a given graph. Since Maximum Confluent Flow depends on finding the optimal
in-forest, this number gives a hint on the complexity of Maximum Confluent Flow.
Assume, that all nodes but the sink are sources. To determine all possible in-forests for
the single sink t, we have to consider all spanning trees with root t in the network.

Since the sink determines the orientation of all arcs in the tree, we can use a result
from undirected graphs. The number of labeled spanning trees of the complete graph Kn

with labeled vertices is nn−2. This famous result is called Cayley’s formula, named after
Arthur Cayley. The formula was discovered by Borchardt and proven via a determinant.
A very elegant proof was given by Prüfer. He introduced the Prüfer code and showed
that there is a bijection between the set of labeled trees with n nodes and the set of
sequences over the set {1, . . . , n} of length n− 2.

For short, the Prüfer code of a tree can be constructed as follows. Remove the leaf
with the smallest label and set the next element of the Prüfer code to be the label of this
leaf’s neighbor. Stop, when only two nodes are left. Similar, a tree can be constructed
out of the code. The degree of each node is equal to the number of occurrences of the
label in the sequence increased by one. The proof of the Prüfer code and other proofs
for Cayley’s formula can be found in [3].
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For multiple sinks, we are interested in the number of spanning forests, where each
sink is the root of exactly one sub-tree.

Proposition 2.10 ([3]). The number of labeled spanning forests on the complete graph
Kn with k roots is knn−k−1.

Proof. The formula can be proved very similar the Cayley’s formula via a modified Prüfer
code and we only present the main idea. Without loss of generality, we assume that the
roots have the highest labels, i.e. label n− k + 1 up to label n.

The sinks/roots are not connected in the desired spanning forests, but we connect
them temporarily with k − 1 arbitrary edges. Now, we are counting the number of
spanning trees on the graph which are using these k − 1 edges.

We calculate the Prüfer code as described above, but we stop when k + 1 vertices are
left. This yields nn−k−1 codes. It is easy to see that there exists always a leaf with a
label smaller than n − k + 1, hence none of the roots is deleted up to now and there is
only one other node left. Since we have fixed the edges between the roots, the last part
of the Prüfer code is redundant. We only need to know which root is the neighbor of
the last node, yielding another k possibilities.

Two other proofs for the formula in Proposition 2.10 can be found in [3]. They are
parts of proofs for Cayley’s formula (k = 1) using recursion and induction or double
counting respectively. However, since the author did not find the above proof in the
literature, its main idea was presented here.

Concluding, an arbitrary graph may have an exponential number of in-forests. Thus,
it is not a good idea to enumerate all possible in-forests and compute a maximum flow
on them if we want to solve Maximum Confluent Flow.

2.3 Related problems

Several graph theoretical problems are related to confluent flows. Despite the various
applications, pure confluent flows are rarely studied in literature. In this section, we
collect the main insights about confluent flows and similar problems from the literature.

2.3.1 Bottleneck paths

Given a graph G = (V,E, u) with integral edge weights u(e) and two special nodes s, t,
the bottleneck bP of an s-t-path P is defined as bP = mine∈P u(e). The bottleneck
between s and t is defined as maxP∈Ps,t bP . Each path P realizing the maximum is
called a bottleneck path.

In other words, a bottleneck path is the thickest path between a source s and a sink
t allowing to send as much flow as possible on a single path. Hence, for a single source
and a single sink, the confluent flow problem is equivalent to a bottleneck path.

A bottleneck path can be found with a modified Dijkstra’s algorithm. Instead of
pushing the smallest label and adding lengths, one pushes the highest label first and
decreases the label whenever the corresponding capacity is not sufficient. Therefore, the
bottleneck path problem is solvable in polynomial time.
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Another possibility is a binary search on the bottleneck capacity. One deletes all edges
with a smaller capacity than the supposed capacity and checks whether s and t are still
connected.

Since the bottleneck path problem is a subroutine in some algorithms for higher level
problems, e.g. Max Flow, some efforts have been made to develop fast algorithms
(e.g. [83]).

2.3.2 Unsplittable and k-splittable flow

An unsplittable flow ships the demands along a single path between a source s and a
sink t. Hence, for a single commodity, a maximum unsplittable flow is equivalent to
a bottleneck path or a confluent flow. Unsplittable flow becomes challenging, when
multiple commodities are considered [89]. In this case, a source and a sink is given for
each commodity.

However, confluent flows can be seen as taking the idea of unsplittable flows a little
bit further. Still, only one path between source and sink is allowed, but additionally,
paths may not cross each other. If we assume that all commodities of an unsplittable
flow use the same sink, the following observation is obvious.

Observation 2.11. For a unique sink, every confluent flow is an unsplittable flow.
Thus, for a given instance, the maximum value of an unsplittable flow is an upper bound
for the value of a confluent flow.

A generalization of unsplittable flows are k-splittable flows. In such a flow, up to k
paths between a source and a sink can be used. This problem is already hard for the
case of a single source and a single sink as shown by Baier et al. [10, 11, 12]. Even worse,
it is also hard to approximate a maximum k-splittable flow with arbitrary precision, i.e.
there does not exist a polynomial time approximation scheme. Baier et al. present a
2
k -approximation and they prove that it is NP-hard to achieve a better performance
ratio for k = 3. Further, the authors restrict the problem to uniform exactly-k-splittable
flows where exactly k paths have to be used and each path has to carry the same amount
of flow. In this case, a maximum s-t-flow can be found in O(km log n).

2.3.3 Disjoint paths

Many variants of disjoint paths can be found in the literature. Given a graph G = (V,E)
and a set of pairs (si, ti) of terminals, the disjoint path problems asks for pairwise disjoint
paths Pi from si to ti. One may consider node-disjoint or edge-disjoint paths as well as
directed or undirected graphs. This decision problem is extendable to the Maximum

Edge Disjoint Paths problem. Given a set of pairs of terminals, the goal is to connect
as many pairs as possible with edge disjoint paths.

Consider a network with uniform arc capacities. A maximum confluent flow may have
a path decomposition with many node disjoint paths. However, in confluent flows sources
can be assigned to arbitrary sinks in contrast to disjoint paths where this assignment is
usually fixed. Similarly, there is a relation between edge-disjoint paths and arc-confluent
flows (cf. Section 2.7). Note that node disjoint paths are also edge disjoint.
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Arbitrary graphs. For arbitrary directed graphs, Fortune et al. show that the Di-

rected Vertex Disjoint Paths problem is NP-complete even for only two pairs
of terminals [62]. We will use this result for a complexity analysis of confluent flows in
Section 2.4.

On undirected graphs, Robertson and Seymour [129] show that k node disjoint paths
(if they exist) can be found in polynomial time for every constant k. However, when the
number of terminals is not bounded by a constant, Lynch [107] proves the problem to
be NP-complete via a reduction from the satisfiability problem (SAT).

Consequently, the Maximum Edge Disjoint Paths (MEDP) problem is also hard
on general graphs. Further, an approximation scheme for MEDP would contradict the
hardness of the 2-Directed Vertex Disjoint Paths. In fact, this approach can be
used to derive an O(

√
m) in-approximability result. There exist a few approximation

algorithms with a matching ratio. A easily comprehensible survey of MEDP related
results is provided by Erlebach [54].

Planar graphs. Planar graphs are of special interest for the disjoint path problem
for example due to its application in Very-large-scale integration (VLSI), i.e. designing
integrated circuits.

Schrijver [137] proves, that the problem of finding k pairwise vertex-disjoint directed
paths in a directed planar graph is solvable in polynomial time for each fixed k. Fur-
thermore, Reed et al. [127] show that for undirected planar graphs the k disjoint paths
problem can be solved even in linear time for any fixed k.

Several other restricted variants of disjoint path problems are directly related to wire
routing. For example, Kramer and van Leeuwen [101] show that the disjoint path prob-
lem is NP-complete on rectangular grids, i.e. finding crossing-free connections on a
conductor board is difficult.

Other authors consider planar graphs where all terminals are placed on the boundary
of the graph. Edge disjoint paths can quickly be found on undirected graphs with an
evenness condition [13, 86, 148]. A graph G = (V,E) with pairs (si, ti) of terminals on
the boundary fulfills the evenness condition if G′ = (V,E ∪⋃

i{(si, ti)}) is Eulerian.

The maximization problem MEDP is also hard on several restricted graph classes.
For chain graphs, i.e. the graph consists of a single path, this problem is equivalent
to finding a maximum number of pairwise disjoint intervals on the number line. This
problem is solvable in linear time. For undirected trees, the problem is still in P, but
for bi-directed trees, MEDP is already APX -hard, i.e. there does not exist a polynomial
time approximation scheme [55].

2.3.4 Confluent flows with uniform arc capacities and congestion

Chen et al. [29, 30] introduce confluent flows in a different setting as considered in this
thesis. Instead of obeying arc capacities, they are interested in a transshipment with
a minimum node congestion, i.e. they are minimizing the maximum flow arriving at
one of the sinks. Using unit demands in each node, this problem resembles a partition
problem of a graph into disjoint trees of almost equal size. It is shown that there exists
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a congestion gap of Θ(log n) compared to common flows, i.e. a significant amount of
network capacity is lost due to the confluent flow condition. They derive some powerful
inapproximability result and also derive an almost matching approximation algorithm.
For example, they show that it is NP-hard to approximate the congestion of an optimal
confluent flow to within a factor of 1

2 lg k, where k is the number of sinks in a graph G.
When G admits a splittable flow with congestion at most 1, their proposed algorithm
can compute a confluent flow with congestion at most 1 + ln k in polynomial time.

On the one hand, one can use the Confluent Transshipment to model the decision
version of their problem using sink capacities and sufficient arc capacities. On the other
hand, by scaling congestion to 1, their problem can be seen as a maximum flow problem
with uniform capacities. How much flow can be sent without exceeding the congestion?
This problem is quite different from Maximum Confluent Flow and their inapprox-
imability within a factor of 1

2 lg k − ε does not carry over to our problem. The crucial
problem is that in the congestion case all demands are satisfied proportionally. As long
as this proportion is 1, i.e. all flow must arrive at the sinks, the Maximum Confluent

Flow problem behaves the same. For lower values, Maximum Confluent Flow does
not enforce any proportion at all.

Furthermore, the authors of [30] study their confluent congestion minimization prob-
lem on trees and present a polynomial time algorithm for this case. We adapt some
ideas of this algorithm in Section 3.1 for the Confluent Transshipment problem
with heterogeneous arc capacities. Chen et al. [29] also study a demand maximization
variant, where each vertex must send either nothing or its full supply, and give a 13.29-
approximation for this problem. Again, this result can be seen as a maximum flow
with uniform arc capacities. The authors list heterogeneous capacities among their open
problems.

As a generalization, Donovan et al. [51] study d-furcated flows with node congestion,
that is the graph of flow carrying arcs has at most outdegree d. Surprisingly, they present

a
(

1 + 1
d−1

)

-approximation for d ≥ 2. Additionally, the congestion gap is bounded by the

same ratio. Thus, increasing the maximum outdegree from one to two almost eliminates
the congestion gap of Θ(log n) of confluent flows.

2.3.5 Mixed integer programming and confluent flows

To the best of our knowledge, there are no combinatorial approaches to solve confluent
flows with heterogeneous arc capacities on non-trivial graph classes up to now. Never-
theless, confluent flows appear in some applications and most authors addressed them
by mixed integer programming.

As mentioned in the introduction, Fügenschuh et al. [65] integrate confluent flow con-
straints into their mixed integer programming formulation for a railway routing problem.
Due to the many other integral constraints in their application, integer programming is
recommended.

A more detailed analysis of mixed integer formulations for confluent flows is stated
by Achterberg [125]. Under the name of arboricity flows, he studies an improved linear
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programming relaxation and derives classes of cutting planes. Under certain conditions,
these inequalities can describe facets of the flow polytope.

2.3.6 Confluent flows over time on trees

In a series of papers Fujishige et al. [108, 109, 110, 111] consider confluent flows over time
(cf. Section 4.2.4) with multiple sinks but restricted to trees. The routing decisions are
reduced to a sink location problem in this case. Further, the authors study evacuation
as an application.

In Section 2.4, we will see that confluent flows are hard to compute even on trees.
Somewhat surprising, this time-dependent problem can be solved in polynomial time
even though the related static Maximum Confluent Flow problem cannot. One
key difference is that arc capacities in flows over time limit the flow rate and not the
total flow on an arc as in the static version. Therefore, additional flow can be sent over
each link in the network at the expense of more time. Thus, more flow can always be
achieved with patience, whereas a static flow problem simply becomes infeasible if the
given capacities are insufficient. Finally, Fujishige et al. present an O(n log n) algorithm
for their sink location problem in dynamic tree networks.

2.3.7 Spanning trees, minimum cost flows and setup costs

Given a connected, undirected graph G, a spanning tree of G is a subgraph that is a tree
and contains all vertices of G. Given edge weights, one may ask for spanning tree with
minimum or maximum overall weight. There exist several polynomial time algorithms
for find minimum spanning trees, e.g. the algorithm of Prim and Kruskal’s algorithm.
Both are greedy algorithms.

The k-minimum/maximum spanning tree, which is the tree that spans some subset
of k vertices in G with minimum/maximum weight, seems to be closely related to the
problem above. In contrast, this problem is NP-hard [9]. Another related problem is
the Steiner tree problem on graphs. Given a subset S ⊆ V a Steiner tree is a tree in
G that spans all vertices of S. It may contain vertices of V \S. Again, one may ask
for minimum Steiner trees. The corresponding decision problem is one of Karp’s 21
NP-complete problems.

As seen above, there are several problems where a tree or a subtree of a graph is
searched for. For confluent flows, we are also looking for a subtree with high capacities
on the arcs. However, the above problems do not consider any additive behavior of a
confluent flow towards the sink. For confluent flows the highest capacity is needed next
to the sink. Hence, on the one hand, the above problems seem to be rather loosely
related to confluent flows.

On the other hand, consider minimum cost flows as introduced in Problem 1.3. A some
what challenging variation of minimum cost flows are flows with setup costs. Hereby,
a certain setup cost or toll has to be paid if an arc is going to be used. This toll is
independent of the flow value on this arc. Now, the objective is to ship a certain amount
of flow at minimum cost. For infinite capacities, a minimum cost Steiner tree is the
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optimal solution for the flow carrying arcs. Thus, the minimum cost flow is confluent.

2.4 Complexity

In Section 2.2, we gave an estimation on the number of feasible in-forests for confluent
flows. However, a high number of possible routings does not imply the hardness of
confluent flows. Thus, we will now have a closer look at the complexity of confluent
flows.

First, let us fix the decision version of Maximum Confluent Flow to discuss its
hardness: “Given an instance G, u, d, S, T and c, is there a confluent S-T -flow with
value at least f?”.

We start with a result for general directed graphs. In Section 2.3 we presented the
Directed Vertex Disjoint Path Problem. We will use its relationship to confluent
flows for a reduction. One main difficulty of disjoint paths is the assignment of the
sources to the corresponding sink. We will use arc capacities to model this assignment
with confluent flows. The setting is also displayed in Figure 2.

Theorem 2.12. Approximating Maximum Confluent Flow on general directed
graphs within a factor of 2/3 + ε is NP-hard.

Proof. Consider the k-Directed Vertex Disjoint Path Problem: Given a directed
graph G with k terminal pairs (s1, t1), . . . , (sk, tk), are there k node-disjoint paths that
connect the corresponding terminals? Even for k = 2, this problem is strongly NP-
complete [62].

This can be transformed to a Maximum Confluent Flow on the same graph with
arc capacities u ≡ 2. Each source si, i ∈ {1, 2}, has supply d(si) := i and each sink
ti has capacity c(ti) := i. The maximum flow value is 3 if and only if the two disjoint
paths exist.

When using the disjoint paths, a confluent flow value of 3 is obvious. Otherwise, if
there are no disjoint paths, one of the following is true:

• The paths of the confluent flow meet, one sink cannot be used at all.

• The terminals are mismatched, i.e. s1 is connected to t2 and s2 is connected to t1.

• One pair of terminals is not connected at all.

However, the optimum value of a single commodity confluent flow is at most 2. Hence,
any confluent flow with a flow value of 2 + ǫ would imply that two disjoint paths have
been found. Thus, it is NP-hard to approximate Maximum Confluent Flow on
general directed graphs within a factor of 2/3 + ε.

Note that the capacities are chosen in a well-considered way, that is all of the three
cases above imply the same value of a maximum confluent flow. Furthermore, the value
of a maximum confluent flow on a fixed in-forest can easily be computed. Thus, we
have a polynomial-time checkable certificate for the Yes-answer of the decision version
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Figure 2: Graph with two pairs of terminals, all arc capacities are 2. If we can
find node disjoint paths connecting s1 with t1 and s2 with t2, then we can use these
paths to ship 3 units of flow confluently. If no such paths exist, then we may only
send 2 flow units.

of the confluent flow problem. A non-deterministic algorithm just guesses the right in-
forest, everything else can be computed in polynomial time. Hence, NP-hardness results
for confluent flows presented in this thesis imply NP-completeness of the considered
problems.

With our practical application in mind, the NP-completeness of the Maximum Con-

fluent Flow is discouraging but not surprising at all. We will now consider confluent
flows on several graph classes. We will start with the most restrictive graph class for
confluent flows. If G is a tree, it should be easy to determine the optimal in-forest.
Hence, the following result is surprising.

Theorem 2.13. Maximum Confluent Flow is NP-hard if G is a directed tree and
all demands and supplies are infinite.

Proof. We reduce the weakly NP-complete Partition problem [66] to the decision
version of Maximum Confluent Flow. An instance of Partition consists of n
positive integers d1, . . . , dn with D :=

∑n
i=1 di and the question is, whether there is a

subset P ⊆ {1, . . . , n} such that
∑

i∈P di = D/2.

To model this as a Maximum Confluent Flow, consider a graph with vertex set
V = T ′∪̇S∪̇{v, t∗} where S = {s1, . . . , sn} is the set of sources, T ′ = {t1, . . . , tn} and t∗

are sinks, and v is a normal vertex. The arc set is E = {(si, ti), (si, v) : i = 1, . . . , n} ∪
{(v, t∗)}, that is the sources can either go to “their own” sink or through v to a common
sink t∗. The arc capacities are u(si, ti) = di, u(si, vi) = 2di, and u(v, t∗) = D. All source
and sink capacities are infinite. See Figure 3 for the construction.
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Figure 3: This tree models a Partition instance using n sources {si}, and D =
∑n

i=1 di. Labels at arcs refer to capacities. The optimum confluent flow value is
3
2

∑n
i=1 di if and only if partitioning {2di : 1 ≤ i ≤ n} into two sets of equal sum is

possible.

Seen locally, a source si may send twice as much flow to t∗ than to ti. From a global
perspective, flow sent to t∗ could be wasted if the capacity of (v, t∗) is already utilized.

We claim that the solution to Maximum Confluent Flow is at least f := 3
2D if

and only if the Partition instance is a Yes-instance.

If there is a solution P to the Partition instance, we direct the flow from each si with
i ∈ P to v, and si with i 6∈ P to ti. Of course, v should direct its flow to t∗. The flow value
of this solution is di for i 6∈ P and 2di for i ∈ P , noting that

∑

i∈P 2di = D = u(v, t∗).
This yields a flow of value 3

2D as claimed.

Suppose a flow x with value at least 3
2D is given. Let P contain those indices i such

that si tries to send flow to t∗ and let z :=
∑

i∈P di. With respect to the capacities,
min{2z,D} flow units can reach t∗. Consequently, the remaining sources si, i 6∈ P , can
send a total amount of D − z flow units to T ′. If z > D/2, then the value of the flow is
at most D + (D − z) < 3

2D, a contradiction. If z < D/2, then the flow value is at most
2z + (D − z) < 3

2D, again a contradiction. So z =
∑

i∈P di = D/2 must hold, and the
Partition instance is a Yes-instance.

On the one hand, it follows that, although confluent flows are closely linked to trees,
the Maximum Confluent Flow problem is hard on trees. This result implies hardness
for several other graph classes, even when using only a single sink.

Corollary 2.14. Maximum Confluent Flow with a single sink is NP-hard on planar
graphs with treewidth 2 (cf. Section 3.2 for the definition of treewidth).

Proof. Note that in the proof of Theorem 2.13 we can identify all of T = T ′ ∪ {t∗} with
t∗. This yields a planar graph that has treewidth 2 with only one sink. Another modified
instance with treewidth 2 is presented in Figure 4.

On the other hand, the Maximum Confluent Flow is very easy on a tree with a
single sink, since the routing is completely fixed in this case. Thus, the border of easy
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Figure 4: The modified Partition instance with a single sink. This instance
implies that Maximum Confluent Flow with one sink is at least weakly NP-
hard on 3 × n grids, series-parallel graphs (or graphs with treewidth 2) and 2-
outerplanar graphs, all of which are planar in particular.

and hard problems is somewhere in between. We will investigate special graph classes
and restrictions to the number of terminals in Chapter 3.

2.5 A mixed integer programming formulation

In Section 1.4.1, we introduced a linear program for the Max Flow problem. We will
extend this LP to confluent flows, now. Obviously, we will need some integral variables
to restrict the number of outgoing arcs. Given an instance G = (V,A), u, d, S, t and
c(t) =∞, we formulate the following mixed integer program (MIP).

max
∑

e=(v,t)

x(e) (5)

s. t. u(e)b(e) − x(e) ≥ 0 ∀e ∈ A (6)

0 ≤
∑

e=(u,v)

x(e)−
∑

e=(v,w)

x(e) ≤ d(v) ∀v ∈ V \{t} (7)

∑

e∈δ+(v)

b(e) ≤ 1− δvt ∀v ∈ V (8)

x(e) ≥ 0 ∀e ∈ A (9)

b(e) ∈ {0, 1} ∀e ∈ A (10)

The objective (5) is the sum over the incoming flow into the sink t. In constraint (6),
the capacity of each arc is multiplied with the corresponding binary decision variable.
Thus, the binary variable switches the arc on or off. Flow conservation and demands
are handled in constraint (7). The next constraint limits the number of flow-carrying
outgoing arcs of each node. For short, we use Kronecker’s delta δvt to forbid outgoing
arcs out of the sink, i.e. δvt = 1 if v = t and 0 otherwise.

Observation 2.15. Solving the mixed integer program (5)–(10) yields a maximum con-
fluent S-T -flow for the underlying network.
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This mixed integer formulation can also be extended to multicommodity confluent
S-T -flows.

max
∑

i∈I

∑

e=(v,ti)

xi(e) (11)

s. t. u(e)bi(e) − xi(e) ≥ 0 ∀e ∈ A ∀i ∈ I (12)

u(e)−
∑

i∈I

xi(e) ≥ 0 ∀e ∈ A (13)

0 ≤
∑

e=(u,v)

xi(e)−
∑

e=(v,w)

xi(e) ≤ di(v) ∀v ∈ V \{ti} ∀i ∈ I (14)

∑

e∈δ+(v)

bi(e) ≤ 1− δvti ∀v ∈ V ∀i ∈ I (15)

xi(e) ≥ 0 ∀e ∈ A ∀i ∈ I (16)

bi(e) ∈ {0, 1} ∀e ∈ A ∀i ∈ I (17)

Assuming that each commodity has its own destination, we use separate flow functions
for each commodity. There are two capacity contraints, now. The first constraint (12)
models the binary switches for each commodity. The second constraint (13) guarantees
that the capacity of an arc is shared among all commodities. All other constraints apply
for each commodity.

But there is also another important observation. For many related flow problems,
e.g. standard Max Flow or k-splittable flow, one can find a practicable path based
formulation (cf. Section 1.4.1). Such a formulation admits a column generation approach.
The columns correspond to shortest paths, calculated iteratively to improve the flow
value. A similar path based approach for confluent flows does not seem to exist, because
a crucial problem occurs. Consider two paths in the MIP formulation. We need an
additional constraint that permits flow on both paths only if they do not cross each
other. Such constraints can be formulated, but there seems to be no way around binary
decision variables for each path. Much more binary variables are needed than in the
arc based formulation. Furthermore, thinking of column generation for solving the MIP,
adding a new path to the MIP may conflict with all other paths found so far.

Consequently, one may think of a tree based mixed integer formulation, now. Similarly,
listing all in-trees is not a good idea due to their high number. In contrast to paths, only
one in-tree is used for a confluent flow with a single sink. Thus, in a column generation
approach, only one column can be used. An algorithm that computes a new column
would actually compute a better in-tree. Such an algorithm would nearly solve the
Maximum Confluent Flow problem by itself.
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2.6 A max-flow min-cut theorem

The Maximum Flow Minimum Cut theorem (cf. Section 1.2.2) is one of the most im-
portant results in network flow theory. In this section, we will have a closer look at
‘confluent’ cuts and we will try to derive a result similar to Max Flow-Min Cut.

In this section, we assume that all sources and sinks have infinite demand or capacity
respectively. That is not a strong restriction. If a source s has finite demand d(s) > 0, we
introduce a new source s̄ and an arc a = (s̄, s) with capacity u(a) = d(s). Finally, we set
d(s) = 0 and d(s̄) =∞. Obviously, the maximum flow value remains unchanged. How-
ever, we may consider a in the computation of a cut. One can use a similar construction
for the sinks or one may add a supersink.

Non-surprisingly, the capacity of a standard cut is an upper bound on the value of the
Maximum Confluent Flow. But a standard cut will in most cases overestimate a
confluent S-T -flow, since only one outgoing arc can be used at each node. That is, the
outflow of each node is obviously bounded by the highest capacity of the outgoing arcs.
But there is no guarantee that an arc with the highest capacity is used at all. Thus, we
need a more sophisticated cut definition. On the other hand, confluent S-T -flows are
hard to compute. Hence, an associated cut – which marks the critical arcs – is also not
trivial to derive.
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Figure 5: What is an appropriate cut definition for confluent flows? The arcs are
labeled with their capacities. Unlabeled arcs have infinite capacity. If we consider
the pair of parallel arcs, 20 flow units may reach the sink. This would be a minimum
cut for standard flows. The five parallel arcs itself can carry 25 flow units. However,
the maximum value of a confluent flow is 10.

The evidential quality of a standard cut is limited since we have no information
whether flow was merged before the cut or not. Figure 5 suggests the following def-
inition.

Definition 2.16 (Confluent cut). A confluent cut consists of two node sets C1, C2

with C1 ⊆ C2 ⊆ V such that S ⊆ C1 and T ⊆ V \C2.

A confluent cut defines two consecutive frontiers between the set of sources and the
set of sinks. Note that C1 ⊆ C2, i.e. flow that was already merged inside C1 has to leave
C2 on a single arc, too. If x flow units are going to be sent out of C1 on a single arc, then
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we need an outgoing arc of C2 which provides at least the same capacity. Unaffected
thereof, flow can be merged after it left C1 and before it leaves C2.

This behavior resembles bin packing. Here, a set of items with weights wi should be
assigned to bins of size bj , such that the total weight of items assigned to a bin does
not exceed the size of this bin. Items must not be splitted, but several items may be
assigned to a single bin. With bin packing in mind, the capacity of a confluent cut is
derived as follows.

Definition 2.17 (Capacity of a confluent cut). For i = 1, 2 let Ai be the set of
outgoing arcs of Ci, i.e. Ai = {a ∈ A : tail(a) ∈ Ci, head(a) 6∈ Ci}. Let A′

i be an
arbitrary subset of Ai such that each node in Ci is incident to at most one arc in A′

i.
Now consider a bin packing of items of size u(a) ∀a ∈ A′

1 into bins of size u(a) ∀a ∈ A′
2.

The volume of a bin may be exceeded, but at most the size of the bin is accounted. That
is, the value of such a packing is the filled volume of the bins.

The capacity of a confluent cut is the maximum value of such a bin packing.

Since the capacity of a confluent cut is defined as a maximum, one has to choose the
arcs with the largest capacities in Ai to obtain optimal subsets A′

i.
Applying this definition to the graph in Figure 5, we choose C1 = {s1, s2, s3, v1, v2}

and C2 = {s1, s2, s3, v1, . . . , v9}. We have to assign two packets of size 10 to five bins of
size 5. Hence, the capacity of this confluent cut is 10.

Theorem 2.18. Given an instance, the capacity of a confluent cut is greater than or
equal to the value of a confluent S-T -flow.

Proof. Confluent flow may leave a node only on one outgoing arc. On the one hand, at
most

∑

a∈A′
i
u(a) flow units may leave Ci for i = 1, 2. Flow that leaves C1 on a single

arc is not allowed to split. Hence, this flow has to leave C2 on a single arc, too. This is
modeled by the bin packing.

On the other hand, given a confluent S-T -flow, we may restrict Ai to the in-forest of
flow carrying arcs. This yields another bin packing instance. The number of packets
and bins is less than or equal to the number of packets and bins in the original instance.
Since the in-forest may not take the arcs with the largest capacities packets and bins
may be even smaller. Thus, the maximum value of this new bin packing is less than or
equal to the maximum value of the original packing.

If we consider the flow values f(a) instead of the capacities u(a) for defining the
bin packing, this yields a bin packing instance with even smaller value. However, this
instance has a solution where all bins are filled exactly due to flow conservation and the
underlying tree structure. Obviously, this value is equal to the value of the confluent
flow.

Unfortunately, the minimum value of a confluent cut is not equal to the maximum
value of a confluent S-T -flow in general. We may assign items to arbitrary bins. In con-
trast, node disjoint paths between the corresponding arcs may not exist in the network,
i.e. this assignment cannot be realized in a confluent flow. The example in Figure 6
shows that the gap between flow value and cut capacity can be at least 3

2 .
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Figure 6: In the presented graph, the minimum value of a confluent cut is 3.
However, a flow of value 3 cannot be established without crossing or splitting paths.
Thus, the value of a maximum confluent S-T -flow is 2.

Nevertheless, equality holds in some cases.

Proposition 2.19. For a single source and a single sink, the value of maximum con-
fluent S-T -flow is equal to the value of a minimum confluent cut.

Proof. For a single source s and a single sink t, a maximum confluent S-T -flow becomes
a bottleneck path problem (cf. Section 2.3). Given an instance, we choose C1 = {s}.
Thus, A′

1 contains a single arc. W.l.o.g. this arc has infinite capacity. Let C2 be an
arbitrary subset of V \{t}. The bin packing identifies the arc with the highest capacity
in A′

2, since only one packet (of infinite size) can be assigned to a bin. Thus, the confluent
cut definition is equal to finding the classical cut where the maximum arc capacity is
minimum.

The identified arc is the bottleneck arc. Since it is the arc with the highest capacity
in the cut, deleting all arcs with this capacity or any lower capacity disconnects source
and sink. Thus, the capacity of this arc is equal to the capacity of the bottleneck path
and, consequently, it is equal to the value of a confluent flow in this instance.

Proposition 2.20. For uniform capacities and uniform demands, the value of maximum
confluent S-T -flow is equal to the value of a minimum confluent cut.

Proof. For uniform capacities and uniform demands, the problem is reduced to node
disjoint paths between S and T . There exists an integral solution, thus we may use each
flow carrying path P with f(P ) = 1. Consequently, no flow carrying paths meet, since
they cannot be merged. Hence, there exists an optimal confluent flow which uses node
disjoint paths. The maximum number of such paths between S and T is equal to the
minimum number of nodes in a separator of S and T (Menger’s Theorem).

Choose arbitrary sets C1 and C2 with S ⊆ C1 ⊆ C2 ⊆ V \ T . C̄i = {v ∈ Ci : ∃(v, u) ∈
A,u 6∈ Ci} defines a node separator of S and T . For u ≡ 1, the capacity of a confluent
cut simple counts the minimum number of nodes in both separators C̄i, since only one
outgoing arc per node is considered. Obviously, the minimum capacity of a confluent
cut is equal to the minimum number of nodes in a separator. Thus, Menger’s theorem
proves the claim.

The following proposition limits the gap between the minimum capacity of a confluent
cut and the maximum value of a confluent S-T -flow.
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Proposition 2.21. Given an instance with k sources, the value of a minimum confluent
cut is at most k times the value of a maximum confluent S-T -flow.

Proof. Let s1, . . . , sk be the k sources. We insert a supersink t that is reachable from
all sinks via an arc with infinite capacity. We consider the k bottleneck paths from
each source to the sink t. Obviously, we cannot send more flow than the sum over the
capacities of these k paths, but we can send at least flow on the path with the highest
capacity. Let P be this path with the maximum bottleneck uP .

We choose C1 = {si : i = 1, . . . , k}, i.e. A′
1 contains at most k arcs. C2 is chosen as in

the proof of Proposition 2.19 to be the bottleneck cut for P . Thus, A′
2 consists of arcs

with capacity at most uP . Therefore, the value of the bin packing can reach at most
kuP .

That is, the maximum confluent flow value is at least uP and the minimum confluent
cut capacity is at most kuP .

Unfortunately, the presented confluent cut definition is not very strong. On the one
hand, it is difficult to keep track of crossing paths when considering only a small set
of arcs. On the other hand, confluent flows are hard to compute. Thus, we should not
hope for an easy definition of a confluent cut that is easy to compute at all. Closing this
section, we will suggest some ideas for an improvement of confluent cuts.

For arbitrary graphs, the bin packing idea can be applied consecutively. Instead of
only two sets C1 and C2, we can consider a cascade of node sets Ci, i = 1, . . . , N ,
with S ⊆ Ci ⊂ Ci+1 ⊆ V \T ∀i ∈ {1, . . . , N}. The filled bins corresponding to Ci are
considered as items, i.e. the filled volume is accounted as item size, and these items
are assigned to bins representing the outgoing arcs of Ci+1. Obviously, the bin packing
instances are not independent from each other. Thus, it is already difficult to compute
an optimal consecutive packing for a given cascade. Nevertheless, an appropriate cascade
may help to reduce the capacity of a confluent cut significantly.

For planar graphs, we can use an embedding of the graph to define an ordered bin
packing. Items, i.e. arcs corresponding to items, cannot be assigned to arbitrary bins,
since an embedding would imply crossing paths. An example is presented in Figure 7.
Here, the embedding implies an ordering of items and bins. If we assign an item to a
bin, no item with a higher index may be assigned to a bin with a lower index. However,
we have to be very careful, since it is not clear whether another embedding of the same
graph may yield a different capacity of the confluent cut. Furthermore, the example in
Figure 7 also demonstrates that the gap is not closed completely.

Finally, the presented confluent cuts provide quite useful bounds in practice. The
estimation in Proposition 2.21 seems to be poor and can probably be improved. Based
on Theorem 2.12, one may conjecture that the ratio between a minimum confluent cut
and a maximum confluent flow in a network with two sources is at most 1.5.

Summarizing, the definition of a confluent cut and its implications can certainly be
improved. Thus, we list confluent cuts as one of the most interesting open problems
related to confluent flows in the outlook in Section 3.5.
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Figure 7: The embedding implies the sequence (3, 2, 1) of item weights and the
sequence (1, 2, 3) of bin sizes. If we assign the ith item to the jth bin, the mapping
i 7→ j has to be non-decreasing, since paths must not cross. Here, the maximum
confluent flow is 4 (cf. Section 3.4). The value of a confluent cut is 6. Considering
planarity, the upper bound on the flow value is reduced the 5 (1 7→ 2, 2 7→ 3, 3 7→ 3),
but the gap is not closed.

2.7 Arc-confluent flows

With the above definitions the routing decision is made in the nodes of the network. Flow
units that meet in a node are merged. In contrast, one may also consider a variant of the
problem where only flow that meets on a common arc has to stay together. Speaking
in the terms of guideposts, the guidepost is located at the road before arriving at the
intersection. We will call such a flow arc-confluent .

2.7.1 Definition of arc-confluent flow

To simplify matters, we assume that each source has exactly one outgoing arc. This is
no restriction. For each source s ∈ S in the original network, we introduce a new source
s̄ and an arc a = (s̄, s) with capacity u(a) = d(s). Source demands are adjusted to
d(s) = 0 and d(s̄) =∞, i.e. s is no source anymore (c.f. Section 2.6).

Definition 2.22 (Nearly arc-confluent flow). Given an instance and an S-T -flow
x, this S-T -flow x is called nearly arc-confluent if there exists a mapping Mv : δ−(v)→
δ+(v) for each node v ∈ V \(S ∪ T ) such that

∑

a∈M−1
v (ā) x(a) = x(ā) ∀ā ∈ δ+(v),

|δ+(s)| = 1 ∀s ∈ S, and δ+(t) = ∅ ∀t ∈ T .

A nearly arc-confluent S-T -flow may use several outgoing arcs at each node. Note that
the above definition also ensures flow conservation. Additionally, the graph induced by
the flow carrying arcs may contain several directed cycles. Neither these cycles can
simply be ignored nor can they be cancelled like cycles in standard flows. Figure 8
shows an example that cancelling cycles may violate the nearly arc-confluent condition.

The following definitions deal more carefully with forbidden cycles. There are three
kinds of cycles. In the first case, there exists a mapping, where flow units actually
circulate, i.e. no flow particles enter or leave this cycle. The flow on this cycle can be
reduced by an arbitrary value. In the second case, there exists a mapping which implies
a path decomposition of the flow, where a path passes a node twice. This loop can be
deleted. Both cases are displayed in Figure 9. Before we look at cycles of the third
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Figure 8: Cycles in nearly arc-confluent S-T -flows cannot simply be cancelled.
The labels at the arcs correspond to the flow values. Obviously, the flow on the left
side is nearly arc-confluent. We may try to cancel the cycle by pushing one unit
of flow backwards. This yields the flow on the right side. This flow is not nearly
arc-confluent, because there is a node with one incoming and two outgoing flow
carrying arcs.

kind, we exclude arc-confluent flows which contain cycles of category 1 and 2 from our
considerations with help of Definition 2.23.

Definition 2.23 (Weakly arc-confluent flow). Given an instance and a nearly arc-
confluent S-T -flow x, this S-T -flow x is called weakly arc-confluent if for all feasi-
ble mappings Mv : δ−(v) → δ+(v) as in Definition 2.22 there does not exist a cycle
(a1, . . . , ak) such that ai+1 = Mhead(ai)(ai) ∀i ∈ {1, . . . , k − 1}.

The support graph of a weakly confluent flow may still contain a directed cycle of
the third kind. Flow on these cycles cannot be reduced by simply turning it back. A
re-routing of several flow carrying paths is necessary to delete these cycles. An example
of this third case is shown in Figure 10.

The following definition also excludes the third kind of cycles.

Definition 2.24 (Arc-confluent flow). Given an instance and a weakly arc-confluent
S-T -flow x, this S-T -flow x is called arc-confluent if for any value r > 0 there exists

no cycle C = (a1, . . . , ak) such that the flow x̄ :=

{

x̄(a) = x(a)− r : a ∈ C
x̄(a) = x(a) : a 6∈ C

is

weakly arc-confluent.

Arc-confluent flows can be seen as the less restrictive variant of confluent flows. Flow
on a common arc also uses a common node which implies Observation 2.25.

Observation 2.25. Every confluent S-T -flow is also arc-confluent.

Thus, confluent flows and arc-confluent flows have a similar relation as arc disjoint
paths and node disjoint paths. Observation 2.25 leads directly to the following observa-
tion.
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Figure 9: A nearly arc-confluent S-T -flow can contain several kinds of cycles. On
the left side, there is a circulation that can be deleted. On the right side, a flow
particle from s1 is send to t3 via v1, v2, v3, and v1 again. Thus, flow on the inner
cycle can be reduced by exactly one flow unit by sending flow from (s1, v1) directly
to (v1, t3).
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Figure 10: The flow in the left network is weakly arc-confluent. In contrast to the
flows in Figure 9, the inner cycle is build up by various paths. Nevertheless, flow on
this cycle can be reduced by several re-routings as demonstrated on the right side.

Observation 2.26. Given an instance, the value of a maximum arc-confluent S-T -flow
is greater than or equal to the value of a maximum confluent S-T -flow.

2.7.2 Complexity results for arc-confluent flows

In the previous section, we introduced arc-confluent flows with fewer restrictions on the
routing than confluent flows. We will now present two (polynomial-time) reductions
to transform an arc-confluent flow problem on a directed graph into a confluent flow
problem and vice versa. Thus, the main complexity result from confluent flows carries
over to arc-confluent flows.
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Theorem 2.27. It is NP-complete to decide whether an instance G, u, d, S, T and c
allows an arc-confluent flow of value f .

Proof. ⇒: Assume, we have an instance G, u, d, S, T and c and we want to compute
a confluent flow. We construct a graph G′ as follows. For each vertex v ∈ V we add
two vertices vin and vout to G′, demands are transmitted to vin. These vertices are
connected via arcs (vin, vout) with infinite capacity. For each arc a = (v, u) in G we
add the arc (vout, uin) with the same capacity to G′. In other words, each node is split
into an incoming and an outgoing node. Obviously, an arc-confluent flow on G′ also
solves the original problem on G. All incoming flow of a node is forced on a common
arc, where the arc-confluent flow condition applies. Now, only one outgoing arc of the
outgoing node can be used. The construction is depicted in Figure 11.

v

u

vout

uin uout

vin

Figure 11: Transformation of an instance of confluent flow into a corresponding
arc-confluent flow problem. We observed that a confluent flow may never use an
arc and its backward arc at the same time, because this would induce a cycle. This
carries over to arc-confluent flows on graphs obtained with the construction in the
proof of Theorem 2.27. The nodes for incoming flow have only one outgoing arc
and the corresponding cycle consists of four arcs.

⇐: Now, assume, we want to compute an arc-confluent flow for an instance G, u, d, S,
T and c. Arc-confluent flow may bypass in a node. This can be modeled by a confluent
flow on the line graph of G. For our purpose, the line graph G′ of G is constructed
as follows. For each arc a in G, add a node va to G′. For each pair (a1, a2) of arcs in
G with head(a1) = tail(a2) the arc (va1

, va2
) is added to G′. For each arc a in G the

capacity of a is assigned to all outgoing arcs of va in G′. Since only one outgoing arc
can be used in the confluent flow, we have not to care about capacity sharing. Source
and sink demands cannot directly be added to G′, since the original terminal is splitted
into its several route choice possibilities, so to say. Instead, we add a new node with the
same demand to G′ and connect it to all nodes which correspond to the outgoing arcs or
incoming arcs of the original terminal respectively. Likewise as above, a confluent flow
on G′ also solves the original problem on G. All arc-confluent flow which would have
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met on a is merged in va now.
Obviously, the transformation of the problem can be done in polynomial time in both

cases. Reconstructing the solution of the original problem is also straightforward.

Thus, confluent flow and arc-confluent flow are very similar. Note that the reduc-
tion is not applicable for special graph classes, since G′ may not belong to the same
class anymore. Furthermore, this transformation applies only to directed graphs, but
undirected graphs can be processed by making them bi-directed. From now on, we will
mainly consider confluent flows on directed graphs.
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3 Algorithms for Confluent Flows

Up to now, we have seen that Maximum Confluent Flow is a challenging problem
on arbitrary graphs. This discouraging (complexity) result motivates to study confluent
flows on special graph classes. However, even on planar graphs Maximum Confluent

Flow is NP-hard (see Theorem 2.13). In this chapter, we will examine confluent flows
on more restrictive graph classes. We start with the easiest graph class for confluent
flows, namely trees. Hereby, a directed graph is a tree if its underlying undirected graph
is a tree. Afterwards, we will extend this result to graphs with treewidth bounded by a
constant k and derive an approximation scheme for this class. We will also discover that
it is easy to compute maximum confluent flows on outerplanar graphs and planar graphs
with all terminals on the boundary. Several algorithms in this chapter are a result of
joint work with Daniel Dressler and have already been published [53].

3.1 Confluent flows on trees

3.1.1 Maximum Confluent Flows on trees with a single sink

We have already seen that a maximum confluent S-T -flow on a tree with a single sink
can be computed easily by a preflow-push algorithm (cf. Section 2.1.4). Still, there are
some degrees of freedom in the choice of the next vertex to push. Since we will need
a similar idea in Section 3.4, we properly specify Algorithm 3.1 for confluent S-T -flows
on trees for later reference. For simplicity, we assume that the single sink has infinite
capacity and that the tree is bi-directed.

Algorithm 3.1: ConfluentFlowTree

Input: bi-directed tree G = (V,A), supplies d : V → N0, capacities u : A→ N0, a
sink t ∈ V with d(t) = 0 and infinite capacity

Output: Maximum value of a confluent flow
Set S := {v ∈ V : d(v) > 0};1

Initialize f ≡ 0;2

while S 6= ∅ do3

choose s ∈ S arbitrarily;4

find the unique path P from s to t;5

find bottleneck capacity of P , i.e. b = mine∈P u(e)− f(e);6

increase f(e) along P by min{b, d(s)};7

S := S \ {s};8

return
∑

e∈δ−(t) f(e)9

Lemma 3.1. Algorithm 3.1 is correct and has polynomial runtime.

Proof. Since G is a tree, the flow is confluent and there is a unique path from each source
s to t. A (confluent) S-T -flow has to use this path if s should be used. The algorithm
sends as much flow as possible from each source. A path may only be blocked by flow
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units from other sources considered earlier. However, their route choices were without
alternative. Hence, the algorithm obviously determines the maximum flow value.

Furthermore, exploiting the tree structure of G, all steps of the algorithm can be
performed in linear time.

Algorithm 3.1 is obvious, one should keep in mind that the order of the sources has
no influence on the flow value itself. But the flow distribution may change significantly
when starting with another source.

Next, we show the existence of polynomial time algorithms for Maximum Confluent

Flow on trees if either the number of sources or sinks is bounded by a constant k. Recall
that Maximum Confluent Flow on trees with an unlimited number of sources and
sinks is NP-hard in general (see Theorem 2.13).

Theorem 3.2. Maximum Confluent Flow on trees can be solved in polynomial time
if either the number of sinks or the number of sources is bounded by a constant.

Proof. Let the number of sources or sinks be bounded by a constant k. In a confluent
flow, the flow from each source travels along a path that eventually ends at one sink. As
there are at most |V |k assignments of the sources to the sinks, and the paths taken by
the flow units are uniquely determined, all possibilities can simply be enumerated and
checked in polynomial time.

As a simple extension, instances where the underlying undirected graph only differs
from a tree by a constant number of edges can be reduced to a tree by “guessing” a
suitable tree, i.e. with brute force.

3.1.2 Confluent transshipments on trees

Maximum Confluent Flow on a tree with a single sink is an easy problem, because
the optimal in-forest is obvious. But as shown in Section 2.4, Maximum Confluent

Flow with multiple sinks is weakly NP-hard even on trees. Surprisingly, this does not
hold for Confluent Transshipment on trees, which can be solved in polynomial time,
and we will use a finding of Chen et al. [30] to prove this.

Chen et al. studied confluent flows on trees with congestion and uniform capacities.
They present a polynomial time algorithm which can be extended to an algorithm for
Confluent Transshipment with arbitrary capacities by slight modifications. The
main idea is to resolve the confluent flow constraints at the leaves of the tree. For
example, if there is a leaf that is a source node, its supply must leave along the only arc
to the neighbor vertex.

Theorem 3.3. There exists a polynomial time algorithm for Confluent Transship-

ment on bidirected trees (with arbitrarily many sources and sinks).

Proof. We assume that the tree is rooted at an arbitrary vertex. The algorithm proceeds
to delete leaf after leaf, each time yielding a smaller equivalent instance of Confluent

Transshipment, until only a single vertex remains. The instance is a Yes-instance if
and only if this vertex has non-positive supply.
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Suppose there is a leaf v which is not a sink. Let w denote the parent of v. All flow
of v must be routed to w. If u(v,w) < d(v), the flow cannot be routed and the instance
is a No-instance. Otherwise, if w is not a sink we can increase d(w) by d(v) and delete
v. If w is a sink, we decrease c(w) by d(v) and delete v. The instance is a No-instance
if w does not provide enough capacity to do so.

In the remaining case, all leaves are sinks. We want to consider a vertex w in the
second-lowest layer of the tree. All its children are leaves and therefore sinks. If w is
a sink itself, we delete all of its children because by Definition 2.3 flow cannot leave a
sink. Flow trying to reach them is absorbed in w. Otherwise, let v∗ be a leaf below w
that maximizes min{u(w, v), c(v)}, i.e., v∗ is a best sink among the children of w. Its
effective capacity is c∗ := min{u(w, v), c(v∗)} ≥ 0.

If d(w) ≤ c∗, there is no need to route flow from w out of its subtree, so we can
contract the arc (w, v). In terms of the algorithm, we set c(w) := c∗ − d(w) ≥ 0, i.e. w
becomes a sink, and delete all the children of w. On the other hand, if d(w) > c∗, there
is no possibility to route all the flow from w except upwards, so we leave d(w) unchanged
but again delete all children of w.

The Proof of Theorem 3.3 suggests a polynomial time algorithm for Confluent

Transshipment on trees. It is very important to choose a node from the second-lowest
layer if all leaves are sinks. Otherwise, one can accidently push a sink into a path and
by that block flow. See Figure 12 for an example.

t1
c = 1

t2
c = 2

t3
c = 1

s1

d = 2

Figure 12: Instance of the Confluent Transshipment on a tree. The algorithm
recursively resolves the leaves. Sink t3 cannot be processed, because it would block
the path from s1 to t2. Indeed, its parent node is also not on the second-lowest
layer of the tree, whatever root was chosen. Thus, the algorithm continues with t1
or t2 in the next step.

3.2 Confluent flows on graphs with small treewidth

In the previous sections we have seen that confluent flows and trees go together. We will
extend this result to graphs with treewidth bounded by a constant k. Treewidth can be
considered to be a measure for how close a graph is to a tree. Trees are exactly those
graphs with treewidth 1. Treewidth increases with the number of disjoint paths between
nodes. The complete graph Kn has treewidth n − 1. A precise definition will follow in
the next Section 3.2.1.
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t

s

Figure 13: On a tree confluent flow always moves towards the sink. On a graph
with bounded treewidth (in particular, the displayed graph has treewidth 2) flow
may also move “away” from the sink taking a detour through the branches.

Treewidth is a prime example of parametrized complexity in graph theory. Normally,
graphs with bounded treewidth are considered in the context of combinatorial problems
like graph coloring or dominating set. In particular, each graph theoretical problem
that can be expressed in terms of monadic second order logic can be parametrized by
treewidth. This result was proven by Courcelle and Mosbah [38]. An alternative proof
was presented by Arnborg, Lagergren, and Seese [8] at the same time.

Considering flow problems and bounded treewidth together is rather uncommon. Only
a few examples can be found in the literature, e.g. an approach by Koch, Skutella, and
Spenke to tackle k-splittable flows [92]. Approximation algorithms for multicommodity
flows and treewidth were examined by Chekuri et al. [28]. Hagerup et al. study multi-
terminal flows and external flow patterns [74]. Additionally, some problems like disjoint
paths which are related to confluent flows were studied on those graphs [88, 134].

Recalling Corollary 2.14 Maximum Confluent Flow is at least weakly NP-hard
on graphs with treewidth 2. Therefore, we can only hope for a pseudo-polynomial time
algorithm which leads to a polynomial time approximation scheme. Hence, we fall back
to dynamic programming . Dynamic programming works well on graphs with bounded
treewidth by exploiting the special structure of the underlying tree structure [18].

We will show that one can solve the Maximum Confluent Flow problem in a
bottom-up strategy from the “leaves” to the “root”. However, the algorithm is much more
complicated than the corresponding algorithm for confluent flows on trees. Figure 13
illustrates one of the main difficulties.

3.2.1 Treewidth

For defining treewidth, we follow Bodlaender [19, 21]. For our purposes, the treewidth
of a directed graph only depends on the underlying undirected graph with edge set
E := {{v,w} : (v,w) ∈ A}, so the following definitions deal with undirected graphs.
Johnson et al. [82] also give a generalization of treewidth to directed graphs, but it leads
to the same results in the case that all reverse arcs are assumed to be in G as well.

Definition 3.4 (Tree decomposition). Let G = (V,E) be an undirected graph. A
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tree decomposition of G is a tree (I,T ) on some new node set I with edges T , and a
family of sets Bi ⊆ V for i ∈ I. The following three properties must hold:

1.
⋃

i∈I Bi = V ;

2. for every edge {u, v} ∈ E, there is an i ∈ I with {u, v} ⊆ Bi;

3. for all i, j, k ∈ I, if j lies on the unique path between i and k in (I,T ), then
Bi ∩Bk ⊆ Bj .

Each Bi is called a bag. The width of a tree decomposition is maxi∈I |Bi| − 1. The
treewidth of G is the minimum k such that G has a tree decomposition of width k.

The following additional requirements reduce the number of cases that have to be
considered by the algorithm. Similar conditions are often used, e.g. [121]. In essence,
they enforce that the bags change only slowly while traversing the tree.

Definition 3.5 (Nice tree decomposition). Let (I,T ) with {Bi : i ∈ I} be a tree
decomposition of G = (V,E) and let t be a vertex of V . Then this tree decomposition is
called nice if (I,T ) is a binary tree for some root r, satisfying the following additional
properties:

4. If a node i ∈ I has two children j, k ∈ I, then Bi = Bj = Bk. In this case, i is
called a Join node.

5. If a node i ∈ I has one child j, then one of the following must hold:

a) |Bi| = |Bj | − 1 and Bi ⊆ Bj . Then i is called a Forget node.

b) |Bi| = |Bj |+ 1 and Bj ⊆ Bi. Then i is called an Introduce node.

6. |Bi| = 1 holds for all leaves i of (I,T ). Such an i is called a Leaf node.

7. Br = {t} holds.

Note that refinement 7 is a variation from the common definition in the literature,
which further eases the construction of the algorithm. The root r can be chosen to
contain an arbitrary vertex. We will use Br = {t}, the (super-)sink. Consequently,
we will follow Niedermeier [121] to prove the existence of a nice tree decomposition in
Lemma 3.6.

Determining the treewidth of a graph is NP-hard [7]. However, if the treewidth is
bounded by a constant k, many related problems can be solved in polynomial or even
linear time. In particular, one can check in linear time whether a graph has treewidth
at most k. One can also construct a tree decomposition with width k in linear time, if
it exists [20]. However, in all cases the hidden factors are large and grow quickly with
k. See [21] for an overview of fast algorithms.

Lemma 3.6. Let G = (V,E) be a graph of treewidth k and t ∈ V an arbitrary node.
Then G has a nice tree decomposition (I,T ) of width k with root r such that Br = {t}
and it can be constructed in linear time, assuming that k is constant. Furthermore, the
number of nodes in I is polynomially bounded in the size of G.
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Proof. We assume a tree decomposition of polynomial size is given and make it “nice”.
Showing that the result remains a tree decomposition of G mostly revolves around con-
dition 3 from above. Note that there is an equivalent formulation of condition 3, it
requires that the nodes containing a given vertex v in their bags must form a connected
component of (I,T ). This condition can be easily checked because we will only modify
the tree locally.

First, we choose an arbitrary node r′ with t ∈ Br′ and orient the tree towards r′. If
|Br′ | > 1, we introduce a new node r above r′ that becomes the real root with Br = {t}.
If |Br′ | = 1, no such additional step is needed. Next we want to obtain a binary tree.
We replace any node i ∈ I with p > 2 children by a binary tree (I ′,T ′) with p leaves
and all nodes i′ ∈ I ′ are associated with the vertex set Bi. The p children of i are then
connected to the p children of the new binary tree (I ′,T ′). Note that the replacement
binary tree can be chosen such that |I ′| ≤ 2p− 1. Thus, all such replacements can only
double the size of the entire tree.

It is easy to see that leaves with empty bags may be deleted. Now consider a leaf i
with |Bi| > 1. We simply add a new child node to it with a bag containing only one
vertex out of Bi.

Notice that a single edge {i, k} in the tree (I,T ) can be subdivided easily as long as
the new node j between i and k has a bag satisfying Bi∩Bk ⊆ Bj ⊆ Bi∪Bk. So if i is a
father of k that does not satisfy the bag size restrictions of a nice tree decomposition, this
allows us to first introduce a node j with Bj = Bi ∩Bk inbetween, and then “forget” all
vertices in Bi \Bj one by one in further subdivisions of the edge {i, j}. Proceeding from
j downwards, we can then “introduce” all vertices in Bk \ Bj in subdivisions of {j, k}.
For a Join node i it might actually be necessary to introduce one more subdivision to
first obtain a child with the exact same bag Bi. The number of steps needed for each
sequence of subdivisions is clearly bounded in |V |, giving a tree decomposition still with
a polynomial number of nodes. Since we never use a bag larger than max{|Bi|, |Bk|},
the treewidth does not increase. It only remains to contract edges where both ends have
outdegree one and identical associated bags.

Additionally, we address the subgraph that is separated from t by the nodes in Bi as
bagend Gi.

Definition 3.7 (Bagend). Given a nice tree decomposition (I,T ) and i ∈ I, the bagend
Gi is the subgraph of G induced by the union of Bi and all Bj for j in the subtree rooted
at i.

Let us establish some properties of nice tree decompositions that we will use in the
proofs.

Lemma 3.8. Let (I,T ) be a nice tree decomposition of G = (V,E) with root r.

1. For a vertex v ∈ V , the set {i ∈ I : v ∈ Bi} forms a connected component of (I,T ).

2. For a vertex v ∈ V \ Br, there is a unique Forget node i ∈ I with child j ∈ I
such that Bj = Bi ∪ {v}. There is no such Forget node for v ∈ Br.
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3. For a Join node i with children j and k, it holds Bi = V (Gj) ∩ V (Gk).

4. For an Introduce node i with child j, let v be the unique vertex in Bi \Bj . Then
there are no edges between v and V (Gj) \Bj.

Proof. 1. This follows directly from Definition 3.4.3.

2. The unique Forget node for v ∈ V \ Br is the node i ∈ I that contains v and is
closest to the root r of (I,T ). If there was a Forget node for v ∈ Br, that would
contradict the connectedness of {i ∈ I : v ∈ Bi}.

3. Since Bi = Bj = Bk, we have Bi ⊆ V (Gj) ∩ V (Gk). Suppose there is a vertex
v ∈ V (Gj)∩V (Gk)\Bi. Thus v is contained in some nodes j′ and k′ of the subtrees
rooted at j and k, respectively, and so in any node on the path from j′ to k′. In
particular, v ∈ Bi, a contradiction.

4. Suppose there is an edge {v,w} for some w ∈ V (Gj) \ Bj . This edge must be
contained in some Bk, k ∈ I. Thus, v and w are in Bk, in particular k 6= i, k 6=
j. If k is in the subtree of (I,T ) rooted j, then v ∈ V (Gj), a contradiction.
Otherwise the path from j to k passes through i. Then w ∈ Bi must hold, again
a contradiction.

3.2.2 The dynamic programming approach

We now explain the overall structure of our dynamic program for solving the Maximum

Confluent Flow problem on graphs with treewidth bounded by a constant k. First,
one pre-processes the instance of Maximum Confluent Flow to obtain one with
finite supplies d and a single uncapacitated sink t. Then one determines a nice tree
decomposition with t in the root bag. Such a tree decomposition has the useful property
that each bag Bi of a node i separates the sink from the subgraph of G induced by
all bags Bj of nodes j in the subtree of i, i.e. the bagend Gi. One can then compute
suitable representations of all possible flows on each bagend, starting at the Leaf nodes
and working towards the root. Having done so, it just remains to read off the maximum
flow value at the root node.

The bags and bagends of a nice tree decomposition change towards the sink in an
orderly fashion, so this really suggests a dynamic programming approach. However, one
has to carefully choose representatives for the flows on each bagend Gi, while keeping
enough information to develop the values for the next bag from these.

The main trick to make such a representation work is the following: The moment a
vertex is first considered, one fixes the amount of flow that this vertex sends out. This
is what we will call the estimated outflow d+(v). Of course, in a dynamic program we
can try all possible integer values for each vertex up to a reasonable bound U and later
on delete those combinations that turn out to be infeasible. For U we can take every
upper bound on the flow value, the smaller the better. For example, one can choose the
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sum over all demands (U =
∑

v∈V d(v)) or the sum over the capacities of the incoming
arcs of t (U =

∑

e=(v,t) u(e)).

Flow conservation requires that a vertex cannot send more flow than it receives (in-
cluding its own supply), but when a vertex is first examined, it is not clear how much
flow will eventually enter this vertex. Thus, flow conservation cannot be established
immediately. Instead, we track how much more flow must reach a vertex in its balance
deficit, which we denote by d−(v). The supply d(v) does not come into play until the
very last moment when a vertex leaves the currently considered bag.

The main advantage of fixing the estimated outflow is that we can locally manipulate
the set of flow-carrying arcs. For example, if a vertex v uses no outgoing arc so far
and we want to send the flow along (v,w), we can simply do so without triggering a
chain reaction of increasing flow along the path that these flow units take. Indeed, such
a path could lead into “uncharted territory” of the graph, which would make tracking
the changes even harder. Instead, we simply update the balance deficit d−(w) of the
receiving vertex. Its estimated outflow d+(w) remains unchanged, and therefore no other
steps need to be taken.

We also need to keep track of some structural information for each Bi, the most obvious
being the set of used arcs F ⊆ A[Bi], which coupled with d+ implies the actual flow on
A[Bi]. On a very abstract level, one could misleadingly think of the following idea: a
tree-like flow on a tree-like graph structure pointing towards the sink should only flow in
the same direction as the underlying tree decomposition. However, this turns out to be
wrong, and the optimum flow may send flow back and forth between Bi, the rest of the
bagend Gi \Bi and the part with the sink G\Gi (cf. Figure 13). The implication is that
we have to remember whether a vertex has an outgoing arc at all, because this might
not be clear from F , if a flow-carrying outgoing arc points to an already “forgotten”
vertex (an already processed vertex in Gi \Bi). For this, each vertex v ∈ Bi is assigned
one of two states: z(v) ∈ {free,nonfree}. The state nonfree denotes a vertex that
already has an outgoing arc and satisfies the balance condition as if it had supply equal
to its balance deficit d−(v). Vertices in the other state free resemble sinks, which is
why they must have no outgoing arcs yet. These free vertices act as temporary storage.
The estimated outflow d+(v) for a free vertex v means how much flow it could possibly
send.

As can be expected for a problem of this complexity, the flow values that are possible
at a single vertex are not independent of the flow values at a different vertex. Thus, the
dynamic program will always consider tuples of these values as one entry of the dynamic
program. All of this culminates in the following table for each bag Bi:

Definition 3.9 (Table). Let G = (V,A) be a graph with arc capacities u : A → N0,
supplies d : V → N0 and an uncapacitated sink t. Assume that δ+(t) = ∅ and that
U ∈ N0 is an upper bound on Maximum Confluent Flow for this instance. Let
(I,T ) and (Bi)i∈I be a nice tree decomposition of G.

For i ∈ I, let TABLE(i) be defined as the set containing exactly these elements
(F, z, d−, d+) with F ∈ F(Bi), z ∈ {free,nonfree}Bi , d− ∈ {0, 1, . . . , U}Bi , d+ ∈
{0, 1, . . . , U}Bi for which there is an integral nearly confluent flow x in Gi with the
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following properties:

1. a ∈ F ⇐⇒ x(a) > 0 ∀a ∈ A[Bi]

2. d+(v) = inflowx(v) + d−(v) ∀v ∈ Bi

3. outflowx(v) = 0 ⇐⇒ z(v) = free ∀v ∈ Bi

4. d+(v) = outflowx(v) ∀v ∈ Bi : z(v) = nonfree

5. 0 ≤ bal(v) ≤ d(v) ∀v ∈ Gi \Bi.

For brevity, SET (i) := F(Bi)×{free,nonfree}Bi×{0, 1, . . . , U}Bi× {0, 1, . . . , U}Bi

denotes the domain of TABLE(i).

Please note that given a nearly confluent flow x on the bagend Gi and some table
element (F, z, d−, d+), it is easy to check whether they match. However, x does not
necessarily determine a unique entry in TABLE(i). For a free vertex v, the flow only
determines the difference d+(v) − d−(v) = inflowx(v) by condition 2, not the absolute
values. For a nonfree vertex, condition 4 eliminates any ambiguity.

A detailed view of this definition reveals that for a vertex v not all possible flow values
in Gi are considered as d+(v) because the bound U on the overall flow value affects
d+(v) ∈ {0, 1, . . . , U} in any bag. Even if v could send or receive much more flow in Gi,
this amount of flow could never reach the sink by the definition of U .

3.2.3 Computing the tables

For computing the entries of the TABLE(i) out of the tables of the children of i,
algorithms that address the four classes of nodes Leaf, Introduce, Join, and Forget

are needed. One has to ensure that the flow values are calculated correctly and to proof
that all entries can be derived in this way.

All of the following lemmata establish that certain entries are in TABLE(i) based on
the existence of a different entry in either TABLE(i) or the table of the child or the
children of i. Thus, we need to construct nearly confluent flows that match these new
entries, starting with a flow for the old entry. Once a suitable flow has been chosen, it
remains to check the conditions of Definition 3.9. Remember that flow just refers to a
function without flow conservation. Flow conservation and demands are realized at the
very end to turn a confluent flow into a confluent S-T -flow. Furthermore, we do not
care about cycles, since the optimal value of a nearly confluent S-T -flow is equal to the
value of a confluent S-T -flow (see Observation 2.9).

In these lemmata, we often modify vectors or functions and use a special notation for
this. For example, if x is a flow, a an arc and f ∈ R, we write x ← (a : f) to denote
a flow x̄ almost like x except that x̄(a) = f . Similarly, for a subset A′ of arcs we use
x ← (A′ : f) to set x̄(a) = f for all a ∈ A′. Note that this may extend the domain as
well.
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Leaf node. First, we present the easiest case of calculating TABLE(i) of a Leaf node
which only contains one vertex and cannot contain any arcs at all.

Lemma 3.10. Let i ∈ I be a Leaf node.
Then TABLE(i) = {(∅, (free), (f), (f)) : 0 ≤ f ≤ U}.

Proof. If i is a Leaf in T , then Bi = {v} by definition. Since Gi is just a single vertex,
A(Gi) is empty. We show the equality by showing both inclusions.

“⊇”: Let 0 ≤ f ≤ U . To show that (∅, (free), (f), (f)) is in TABLE(i) we have to
consider some nearly confluent flow x and then check the conditions for TABLE(i)
given in Definition 3.9. Since A(Gi) = ∅, this flow x is a function on an empty set
and thus there is no choice to be made. It is also trivially a nearly confluent flow.
Note that ∅ is the set of flow-carrying arcs of A(Gi), as required by condition 1.
Also, d+(v) = f = d−(v) and inflowx(v) = 0, so condition 2 is satisfied. Since
outflowx(v) = 0, we set z(v) = free in accordance with condition 3. Finally, there
are no nonfree vertices in this bag and no vertices in the empty set Gi\Bi, either,
so conditions 4 and 5 are trivially satisfied.

“⊆”: Now let (F, z, d−, d+) ∈ TABLE(i) and let x be a corresponding nearly confluent
flow on Gi. (Again, x is defined on the empty set A(Gi).) Since F ⊆ A(Gi) = ∅,
we know F = ∅. Also, inflowx(v) = 0 which, combined with condition 2, implies
d+(v) = d−(v) =: f ∈ {0, 1, . . . , U}. Finally, condition 3 implies z(v) = free.
Thus, every entry must have the form (∅, (free), (f), (f)) as claimed and this
concludes the proof.

Introduce node. The remaining types of nodes require a much more complex handling.
Therefore, we sketch the basic ideas first. Introduce nodes are algorithmically handled
in two steps. First, the new vertex v is added to the bag as a free vertex without
any flow entering or leaving it. Afterwards we can designate some of the arcs incident
to v to carry flow to or from v, say along (w,w′), i.e. either w or w′ is identical to
v. This must change the state of w to nonfree and it affects the balance of the
receiving vertex w′. Of course, one needs to ensure that the arc capacity is not exceeded
and that the receiving vertex actually requires that much additional incoming flow, i.e.
d+(w) ≤ min{u(w,w′), d−(w′)} must hold.

Lemma 3.11. Consider an Introduce node i ∈ I with child j and v the unique
vertex in Bi \ Bj . Let (F, z, d−, d+) ∈ SET (j). Choose some f ∈ {0, . . . , U}. Then
(F, z, d−, d+) ∈ TABLE(j) if and only if
(F, z ← (v : free), d− ← (v : f), d+ ← (v : f)) ∈ TABLE(i).

Proof. ⇒ Let x be a flow corresponding to (F, z, d−, d+) ∈ TABLE(j). Let x̄ be
the extension of x to A(Gi) with flow value 0. We claim that x̄ matches the new
entry of TABLE(i) and show that the conditions of Definition 3.9 are met. Note
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that x̄ is a nearly confluent flow. Also, F contains exactly those arcs of A[Bi] that
have non-zero flow (condition 1), because this was true for A[Bj ] and all arcs in
A[Bi] \ A[Bj ] carry no flow. Condition 2 is still satisfied for w ∈ Bj and, because
inflowx̄(v) = 0 also for v by construction. Similarly, condition 3 is met by v, since
v is set to be free. Conditions 4 and 5 are unaffected. Therefore, the claim holds.

⇐ Let x be a flow for (F, z ← (v : free), d− ← (v : f), d+ ← (v : f)) ∈ TABLE(i)
with F ⊆ A[Bj ] as this was implied by (F, z, d−, d+) ∈ SET (j). Since {a ∈ A[Bi] :
x(a) > 0} = F ⊆ A[Bj ], no flow can leave or enter v from Bj . By Lemma 3.8.4,
there is no arc between v and V (Gi) \Bi either. Therefore, restricting x to A(Gj)
only removes arcs with flow 0 and thus, it results in a nearly-confluent flow again.
Since the conditions for TABLE(j) are a subset of those in TABLE(i) and x is
unchanged for the vertices in Bj , we can conclude (F, z, d−, d+) ∈ TABLE(j).

Once the vertex is added, one can designate arcs that carry flow to v or away from
v as follows. We will call sending flow across an arc like this a “push operation”. Note
that it applies to any kind of node, but we only use it for Introduce nodes.

Lemma 3.12. Let i ∈ I and (F, z, d−, d+) ∈ SET (i). Let v ∈ Bi with z(v) = free and
consider some arc (v,w) ∈ A(Bi) \ F such that F̄ := F ∪ {(v,w)} is in F(Bi). Suppose
0 < d+(v) ≤ min{u(v,w), d−(w)}.

Then (F, z, d−, d+) ∈ TABLE(i) if and only if
(F̄ , z ← (v : nonfree), d− ← (w : d−(w)− d+(v)), d+) ∈ TABLE(i).

Proof. For brevity, let z̄ := z ← (v : nonfree) and d̄− := d− ← (w : d−(w)− d+(v)).

⇒ Let x be a flow on Gi that corresponds to (F, z, d−, d+) ∈ TABLE(i). Let x̄ :=
x ← ((v,w) : d+(v)). We claim that x̄ is a nearly-confluent flow that shows
(F̄ , z̄, d̄−, d+) ∈ TABLE(i). Assuming 0 < d+(v) ≤ u(v,w), the function x̄ is a
flow and F̄ are the arcs of A[Bi] that carry flow. Also, since z(v) = free, there
was no outgoing arc of v that carried flow before (v,w) was used, so x̄ is a nearly
confluent flow.
The conditions in Definition 3.9 on all vertices but v and w are unchanged, so
it remains to check these two vertices. Condition 3 and outflowx̄(v) = x̄(v,w) =
d+(v) > 0 forces z̄(v) = nonfree, while outflowx̄(w) is unchanged. In fact, only
outflowx̄(v) and inflowx̄(w) are changed. The change from outflowx(v) = 0 to
outflowx̄(v) = d+(v) matches condition 4. And inflowx̄(w)+ d̄−(w) = inflowx(w)+
d+(v) + d−(w)− d+(v) = d+(w) satisfies condition 2. Note that d̄−(w) = d−(w)−
d+(v) is non-negative by the assumption on d+(v).

⇐ Let x̄ be the flow on Gi corresponding to (F̄ , z̄, d̄−, d+) ∈ TABLE(i). We will set
the flow on (v,w) to 0, i.e., let x := x̄← ((v,w) : 0), and claim that x corresponds
to (F, z, d−, d+). Clearly, x is a nearly confluent flow and F satisfies condition 1
of Definition 3.9. All vertices but v and w are again unaffected. For v, there is



62 3.2 Confluent flows on graphs with small treewidth

no outgoing edge anymore and thus, outflowx(v) = 0 matches z(v) = free. Con-
dition 4 does not apply to v anymore and none of the values in condition 2 were
changed for v, so it remains valid.
For w, most values are unaffected by the loss of the incoming edge, except
inflowx(w). Also, the only entry of the table changed is d−(w). Since inflowx(w)+
d+(v) = inflowx̄(w)−x̄(v,w)+d+(v) = inflowx̄(w) by condition 4, we have d+(w) =
inflowx̄(w)+d̄−(w) = (inflowx(w)+d+(v))+(d−(w)−d+(v)) = inflowx(w)+d−(w),
satisfying condition 2.

It remains to show that we can always construct all entries for an Introduce node
with these two constructions.

Lemma 3.13. Consider an Introduce node i ∈ I with child j and v the unique vertex
in Bi \Bj. Let (F, z, d−, d+) ∈ SET (i).

Then (F, z, d−, d+) ∈ TABLE(i) if and only if it can be produced by a sequence of push
operations from some entry (F̄ , z̄, d̄−, d̄+) ∈ TABLE(i) with F̄ ∈ F(Bj), z̄(v) = free

and d̄−(v) = d̄+(v).

Proof. ⇐ First note that if (F, z, d−, d+) is the result of such a sequence of push
operations, then Lemma 3.12 applied repeatedly implies that it is an entry of
TABLE(i).

⇒ Let (F, z, d−, d+) ∈ TABLE(i) and x be a corresponding flow. We use induction on
|F \A[Bj ]|. If |F \A[Bj ]| = 0, then F ∈ F(Bj) and z(v) must be free. Furthermore,
by condition 2 in Definition 3.9, we have d+(v) = d−(v) + inflowx(v) = d−(v),
because no arcs incident to v carry flow. Thus, (F, z, d−, d+) is itself the desired
entry.
Now assume |F \A[Bj ]| > 0. Pick an arc in F \A[Bj ]. This is either an arc (v,w) or
(w, v), but we can treat it all the same as some (w,w′). Note that z(w) = nonfree

must hold, which implies d+(w) = x(w,w′) and 0 < x(w,w′) ≤ u(w,w′), because
(w,w′) ∈ F and x is a flow. Let x̄ := x ← ((w,w′) : 0). Then x̄ is again a nearly
confluent flow. Let F̄ := F \ {(w,w′)}, z̄ = z ← (w : free) and d̄− ← (w′ :
d−(w′)+d+(w)). We claim that x̄ justifies (F̄ , z̄, d̄−, d+) ∈ TABLE(i). Clearly, F̄
matches x̄ and w must be free as its outflow is now 0. The only values affected
by the change from x to x̄ are outflowx(w) and inflowx(w′). Since z̄(w) = free,
condition 4 does not matter for w anymore.
Note that inflowx̄(w′) = inflowx(w′) − x(w,w′) = inflowx(w′) − d+(w) and, thus,
d+(w′) = inflowx(w′) + d−(w′) = inflowx̄(w′) + d+(w) + d−(w) = inflowx̄(w′) +
d̄−(w′), satisfying condition 2 for w′ again. Finally, d̄−(w′) ≥ d−(w′) ≥ 0 and
d̄−(w′) = d−(w′) + d+(w) = d+(w′) − inflowx(w

′) + d+(w) ≤ d+(w′)− x(w,w′) +
d+(w) = d+(w) ≤ U , thus the only changed value still obeys the boundaries.
Therefore, we know (F̄ , z̄, d̄−, d+) ∈ TABLE(i).
We want to apply Lemma 3.12 to the new entry (F̄ , z̄, d̄−, d+), which will result
in (F, z, d−, d+) again. However, we still need to check the conditions for this



3 ALGORITHMS FOR CONFLUENT FLOWS 63

push operation on (w,w′) to finish the induction. We know z̄(w) = free and
(w,w′) ∈ A(Bi) \ F̄ and that F̄ ∪ {(w,w′)} = F is in F(Bi). Also, d+(w) =
x(w,w′) ∈ {1, . . . , u(w,w′)} holds, as well as d+(w) ≤ d+(w) + d−(w) = d̄−(w′),
so we are allowed to use the push operation.

This finally concludes the handling of Introduce nodes. Algorithm 3.2 presents a
sample implementation.

Algorithm 3.2: INTRODUCE

Input: i ∈ I
Output: Array TABLE(i)

Set j := child of i;1

Set v to the unique vertex in Bi \Bj;2

foreach (F, z, d−, d+) ∈ TABLE(j) do3

foreach f ∈ {0, 1, . . . , U} do4

z̄ := z ← (v : free);5

d̄− := d− ← (v : f);6

d̄+ := d+ ← (v : f);7

TABLE(i) := TABLE(i) ∪ (F, z̄, d̄−, d̄+);8

Initialize queue Q = ∅;9

foreach (F, z, d−, d+) ∈ TABLE(i) do10

append (F, z, d−, d+) to Q;11

while Q 6= ∅ do12

(F, z, d−, d+) :=pop(Q);13

foreach w ∈ Bi with z(w) = free do14

foreach (w,w′) ∈ A[Bi] do15

F̄ := F ∪ {(w,w′)};16

z̄ := z ← (w : nonfree);17

d̄− := d− ← (w′ : d−(w′)− d+(w));18

if 0 < d+(w) ≤ u(w,w′) ∧ d̄−(w′) ≥ 0 then19

if (F̄ , z̄, d̄−, d+) 6∈ TABLE(i) then20

append (F̄ , z̄, d̄−, d+) to Q;21

TABLE(i) := TABLE(i) ∪ (F̄ , z̄, d̄−, d+);22

return TABLE(i);23

Join node. For a Join node i with children j and k, we “sum” selected entries of
TABLE(j) and TABLE(k) in such a way, that one of the children carries no flow at
all on the bag Bi = Bj = Bk. Note that the bagends Gj and Gk are disjoint elsewhere.
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Thus, we do not have to worry about exceeding capacities there, or changing the already
fixed value d+.

Lemma 3.14. Let i ∈ I be a Join node with children j, k ∈ I. Let (F̄ , z̄, d̄−, d̄+) ∈
SET (i).

Then (F̄ , z̄, d̄−, d̄+) ∈ TABLE(i) if and only if there are entries (F, z, d−, d+) ∈
TABLE(j) and (F ′, z′, d′−, d′+) ∈ TABLE(k) satisfying

a) F = F̄ and F ′ = ∅,

b) z(v) = free or z′(v) = free ∀v ∈ Bi,

c) z̄(v) = free ⇐⇒ z(v) = z′(v) = free ∀v ∈ Bi,

d) d̄+ = d+ = d′+

e) d̄− = d− + d′− − d+.

Proof. ⇐ Let x and x′ be the flows on Gj and Gk, respectively, corresponding to
the entries in TABLE(j) and TABLE(k). Note that Gj and Gk are subgraphs
of Gi and extend those flows to Gi with 0. Let x̄ := x + x′. We claim that x̄ is
the desired flow. First of all note that by Lemma 3.8 part 3 the bagends Gj and
Gk share only the vertices of Bi and in particular they can only share the edges
A[Bi]. Since F ′ = ∅, all of x′ is 0 on A[Bi]. Thus, each edge of Gi can only carry
positive flow in one of x and x′, so x̄ obeys the capacity constraints. Similarly,
x̄ is nearly confluent. If it was not, some vertex in Bi would have two outgoing
arcs carrying flow. This cannot happen with just the edges from x or x′, so the
vertex was nonfree in both flows. This contradicts the condition of the lemma
that z(v) = free or z′(v) = free for all vertices.
It remains to show that x̄ matches (F, z̄, d̄−, d+), i.e. the conditions of Defini-
tion 3.9. (Note that F = F̄ and d+ = d̄+, so this is the desired entry.) Only
x contributes flow on A[Bi] to x̄ and F is also derived entirely from x, so con-
dition 1 is satisfied. Since outflowx̄(v) = outflowx(v) + outflowx′(v), this is 0 iff
z(v) = z′(v) = free and in exactly this case z̄(v) = free as well, as demanded
by condition 3. Also, outflowx(v) > 0 implies z(v) = nonfree, thus z′(v) = free

leading to outflowx′(v) = 0 and vice versa. So for a vertex with z̄(v) = nonfree,
we obtain d+(v) = outflowx(v) + outflowx′(v) = outflowx̄(v) as required in condi-
tion 4. Now consider condition 2 for some v ∈ Bi: d+(v) is equal for both table
entries and also for the new entry. Then inflowx̄(v) = inflowx(v) + inflowx′(v) =
d+(v) − d−(v) + d′+(v) − d+(v) = d+(v) − d̄−(v). So this condition is satisfied as
well. Finally, the balance conditions for the vertices in Gi \ Bi are carried over
from the two separate flows.

⇒ Let x̄ be the flow on Gi corresponding to (F̄ , z̄, d̄−, d̄+) ∈ TABLE(i). We need to
construct appropriate flows x and x′ on Gj and Gk. Choose x := x̄|A(Gj ) as the
restriction of x̄ to the arc set of Gj . Similarly, choose x′ := x̄|A(Gk) ← (A[Bi] : 0)
as the restriction of x̄ to Gk, but set to 0 on all arcs in Bi. Note that x̄ = x + x′
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if x and x′ are extended with 0 to the entire arc set of Gi, because Lemma 3.8.3
shows that Gj and Gk have exactly the vertices of Bi and in particular the arcs
in A[Bi] in common.

Clearly, x and x′ are nearly confluent flows satisfying the capacity conditions,
and so they correspond to some entries in (F, z, d−, d+) ∈ TABLE(j) and
(F ′, z′, d′−, d′+) ∈ TABLE(k). Actually, there are many choices for these
entries, as a flow does not determine d+ and d− for a free vertex, but only
their difference. We can assume that d+(v) = d̄+(v) for all v ∈ Bi with
z(v) = free, as long as we ensure that d+(v) and d−(v) stay within 0, 1, . . . , U .
If we increase d+(v), there is no problem because d−(v) ≤ d+(v) = d̄+(v) ≤ U .
If we had to decrease d+(v), note that then for the new values we have
d−(v) = d+(v) − inflowx(v) ≥ d̄+(v) − inflowx̄(v) = d̄−(v) ≥ 0, so this is also
unproblematic. Similarly, we can assume d′+(v) = d̄+(v) for all v ∈ Bi with
z′(v) = free.

We can now show that entries chosen like this satisfy the conditions claimed in the
lemma.

a) x equals x̄ on A[Bi] and so F = F̄ holds. The flow x′ is 0 on A[Bi], implying
F ′ = ∅.

b) Suppose for some v ∈ Bi, z(v) = z′(v) = nonfree. Since z(v) = nonfree,
there is some arc (v,w) that carries flow in Gj . The same arc (v,w) carries
flow in x̄. Similarly, z′(v) = nonfree implies the existence of an arc (v,w′)
that carries flow in Gk and Gi. However, this cannot be the same arc as (v,w)
because A(Gj)∩A(Gk) = A[Bi], but x′ is 0 on A[Bi]. But then flow leaves v
via two arcs in x̄, a contradiction.

c) Note that z̄(v) = free iff there is no flow-carrying arc leaving v in x̄. Since
x̄ = x + x′, this is equivalent to neither x nor x′ having flow-carrying arcs
leaving v. By the definition of TABLE, this holds iff z(v) = z′(v) = free.

d) For a vertex v with z(v) = free, we have d+(v) = d̄+(v) by construction,
and similarly z′ = free implies that we chose d′+(v) = d̄+(v). Now suppose
z(v) = nonfree, which implies z′(v) = free and z̄(v) = nonfree as we
just proved. Then x must have a flow carrying arc (v,w), while x′(v,w) = 0.
Thus, d̄+(v) = x̄(v,w) = x(v,w) + x′(v,w) = x(v,w) = d+(v). Analogously,
z′(v) = nonfree implies z(v) = free and z̄(v) = nonfree, and again
d̄+(v) = x̄(v,w) = x′(v,w) = d′+(v).

e) By definition of TABLE(i), d̄−(v) = d̄+(v) − inflowx̄(v), which decomposes
into d̄−(v) = d+(v) − inflowx(v) − inflowx′(v) = d−(v) − (d+(v) − d−(v))
as claimed, using the definition of TABLE(j) and TABLE(k) and the just
proven property d̄+ = d+ = d′+.
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Again, we present a sample implementation in Algorithm 3.3.

Algorithm 3.3: JOIN

Input: i ∈ I
Output: Array TABLE(i)

Set j := first child of i;1

Set k := second child of i;2

foreach (F, z, d−, d+) ∈ TABLE(j) do3

foreach (∅, z′, d′−, d+) ∈ TABLE(k) do4

Set ok := true;5

foreach v ∈ Bi do6

if z(v) = free ∧ z′(v) = free then7

z̄(v) := free;8

else if z(v) = free ∨ z′(v) = free then9

z̄(v) := nonfree;10

else11

ok := false;12

d̄−(v) := d−(v) + d′−(v)− d+(v);13

if d̄−(v) < 0 then14

ok := false;15

if ok = true then16

TABLE(i) := TABLE(i) ∪ {(F, z̄, d̄−, d+)};17

return TABLE(i);18

Forget node. It remains to describe the process for Forget nodes. In this case, the
vertex v that leaves the bag suddenly needs to satisfy any remaining imbalance d−(v)
with its own supply d(v), if it uses an outgoing arc at all. Otherwise, it should not try
to send any flow.

Fortunately, Forget nodes are easy to handle. As long as the vertex that left the
bag satisfies the flow conservation constraint, either by using its own supply d(v) or by
not being part of the flow at all, everything works out fine.

Lemma 3.15. Let i ∈ I be a Forget node and j ∈ I its unique child. Let Bj\Bi = {v}.
Let (F, z, d−, d+) ∈ SET (i).

Then (F, z, d−, d+) ∈ TABLE(i) if and only if there is an entry (F̄ , z̄, d̄−, d̄+) ∈
TABLE(j) with F = F̄ ∩ A[Bi], z = z̄|Bi

, d− = d̄|−Bi
and d+ = d̄|+Bi

, satisfying one of
the following conditions:

(i) z̄(v) = free and d̄+(v) = 0 or

(ii) z̄(v) = nonfree and d̄−(v) ≤ d(v).
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Proof. ⇐ Let x be a flow in Gj corresponding to (F̄ , z̄, d̄−, d̄+) ∈ TABLE(j) and
satisfying the assumptions of the lemma. Note that Gi = Gj , even though v is not
in Bi. Then x can also be considered as a nearly confluent flow on Gi. It remains to
show that it matches the entry of TABLE(i) as claimed. However, x is not changed
and the conditions of TABLE(i) are a subset of the conditions of TABLE(j), the
only exception being the flow conservation constraint for v. First suppose z̄(v) =
free, i.e., no flow leaves v, and d̄+(v) = 0. Then inflowx(v)+d̄−(v) = d̄+(v) = 0, so
there is no flow entering v either. Thus, v satisfies the flow conservation constraint
with balx(v) = 0. Otherwise, the lemma assumed z(v) = nonfree and d̄−(v) ≤
d(v). This implies outflowx(v) = d̄+(v) = inflowx(v) + d̄−(v) ≤ inflowx(v) + d(v).
So outflowx(v) − inflowx(v) ≤ d(v). Also, outflowx(v) = inflowx(v) + d̄−(v) ≥
inflowx(v) shows the other side of the flow conservation constraint.

⇒ Let x be a flow on Gi corresponding to (F, z, d−, d+) ∈ TABLE(i). Using Gi = Gj

again, we consider x on Gj and claim that it is the desired flow. Choose F̄ ⊆ A[Bj ]
according to x. All entries of z̄, d̄−, d̄+ can be chosen for w ∈ Bi exactly as
in z, d−, d+ as they only depend on x. Note that this already satisfies all the
properties claimed in the lemma except those for v, where we have not fixed any
values yet.

If inflowx(v) = outflowx(v) = 0, let z̄(v) := free and d̄+(v) := d̄−(v) := 0. This
also satisfies the conditions of TABLE(j) for v. Otherwise, let z̄(v) := nonfree

and d̄+(v) := outflowx(v) and d̄−(v) := balx(v) = outflowx(v) − inflowx(v). Since
x satisfied 0 ≤ balx(v) ≤ d(v), this satisfies condition 2 and 4 of Definition 3.9.
Furthermore, this yields an entry as claimed in the lemma.

We also present an implementation in Algorithm 3.4.

Algorithm 3.4: FORGET

Input: i ∈ I
Output: Array TABLE(i)

Set j := child of i;1

Set v to the unique vertex in Bj \Bi;2

foreach (F, z, d−, d+) ∈ TABLE(j) do3

if z(v) = free ∧ d+(v) = 0 then4

TABLE(i) := TABLE(i) ∪ {(F ∩A[Bi]), z|Bi
, d−Bi

, d+
Bi
};5

else if z(v) = nonfree ∧ d−(v) ≤ d(v) then6

TABLE(i) := TABLE(i) ∪ {(F ∩A[Bi]), z|Bi
, d−Bi

, d+
Bi
};7

return TABLE(i);8
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3.2.4 Putting it all together

Well-equipped with algorithms for the four node classes, one can then formulate a dy-
namic program that computes all tables, represented as arrays containing |SET (i)| ∈
O(2(k+1)22k+1U2(k+1)) = O(U2k+2) bits. Thus, we obtain the following theorem.

Theorem 3.16. There is an algorithm that given a nice tree decomposition (I,T ) com-
putes all tables correctly and runs in time polynomial in |I| and U , assuming that the
width k of (I,T ) is constant.

Proof. It is clear that computing the tables bottom-up will result in |I| calls to the
subroutines handling the different cases of nodes in the tree decomposition. It just
remains to show that the running time is as claimed. We will represent each table as a
binary array of size |SET (i)|, which is polynomial in |U | if k is a constant.

1. For a Leaf node, Lemma 3.10 gives an explicit statement of TABLE(i). This
requires O(|U |) insertions.

2. For an Introduce node, an algorithm would first have to insert the new vertex
as a free vertex for any entry of the existing table (Lemma 3.11). This requires
O(|SET (j)||U |) insertions. Starting from this table, a breadth-first search can be
employed to produce all combinations of pushing flow across arcs as in Lemma 3.12.
Every entry has to be considered only once in the BFS, and can produce at most
|A[Bi]| ≤ k(k + 1) new entries. Lemma 3.13 shows that this creates all entries.

3. For a Join node, the algorithm can simply loop over all combinations of pairs
from the tables of the children that match the conditions of Lemma 3.14. Only
if they are all satisfied, the entry is inserted into TABLE(i). This requires
O(|SET (j)||SET (k)|) checks. Additionally, Lemma 3.14 also states that such
two entries always exist to create an entry of TABLE(i).

4. For a Forget node, the algorithm applies the rules from Lemma 3.15 to produce
only valid entries. The same lemma also shows that these are all entries that need
to be considered. This is a simple projection for O(|SET (j)|) entries.

Thus, the algorithm computes each table in time polynomial in |U |, proving the overall
running time to be polynomial in |I| and |U |.

Algorithm 3.5 is a sample implementation for the process described in Theorem 3.16.

We can now apply the previous theorem to solve the Maximum Confluent Flow

problem as follows.

Theorem 3.17. Maximum Confluent Flow on graphs with an arbitrary number of
sinks and with treewidth bounded by some constant k can be solved in pseudo-polynomial
time.
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Algorithm 3.5: MaximumConfluentFlowBoundedTreewidth

Input: G = (V,A), supplies d : V → N0, capacities u : A→ N0, a sink t ∈ V with
δ+(t) = ∅, a bound on the maximum confluent flow value U , a nice tree
decomposition (I,T ) with bags Bi of G, root r and Br = {t}

Output: TABLE(i) for each i ∈ I according to Definition 3.9
Initialize empty arrays TABLE(i) for all i ∈ I;1

Set J := I;2

while J 6= ∅ do3

Choose i ∈ J such that all children of i are not in J ;4

if i has 0 children then5

TABLE(i) := {(∅, (free), (f), (f)) : 0 ≤ f ≤ U};6

else if i has 1 child j and |Bi| = |Bj |+ 1 then7

TABLE(i) := INTRODUCE(i);8

else if i has 1 child j and |Bi| = |Bj | − 1 then9

TABLE(i) := FORGET(i);10

else if i has 2 children then11

TABLE(i) := JOIN(i);12

J := J \ {i};13

return TABLE(i) for each i ∈ I14

Proof. Consider an instance G = (V,A), u, d, S, T and c. It is assumed that the
treewidth of G is at most k. W.l.o.g. we can assume that no vertex has larger supply
than it could send to a sink by itself. This can be assured in polynomial time by solving
the BottleneckShortestPath problem, e.g., with a modified Dijkstra’s algorithm
(cf. [83]). In particular, these values are finite.

First we preprocess the instance to obtain a graph G′ with a single supersink t∗:
Remove all arcs leaving the sinks. Then add a supersink t∗ and connect each old sink
t to it by an arc (t, t∗) with capacity min{c(t),∑(v,t)∈A u(v, t)}. The supersink has
infinite sink capacity and no supply, while the old sinks T now become normal vertices,
i.e. T ′ = {t∗}. Notice that this preprocessing does not change the solution of Maximum

Confluent Flow since sinks are not allowed to send out flow to any other vertex.
Also, the treewidth of this new instance is at most k + 1 because a tree decomposition
of G can be turned into a tree decomposition of G′ by simply adding t∗ to every bag.

Next we compute a nice tree decomposition of G′ with width at most k + 1 and with
polynomially many nodes, as described in Lemma 3.6. Finally, we run the dynamic
program from Theorem 3.16 on the modified instance with U :=

∑

v∈V d(v) to compute
TABLE(r) for Br = {t∗}. Note that the overall running time is pseudo-polynomial in
the size of G and its demands and capacities.

Now, we claim that the solution is the maximum value f ∈ {0, 1, . . . , U} such that
(∅, (free), (0), (f)) ∈ TABLE(r). This value can be extracted from the table easily. To
see that it is indeed the solution, first recall that the maximum value of a nearly confluent
S-T ′-flow is the same as the maximum value of a confluent S-T ′-flow (Observation 2.9).
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Note that Gr = G and that every nearly confluent S-T ′-flow x induces an entry in
TABLE(r) of the form (∅, (free), (0), (balx(t∗))). On the other hand, all table entries
of this kind correspond to a nearly confluent flow x which satisfies the flow conservation
constraint in every vertex except t∗. Since d−(t∗) = 0, we have d+(t∗) = inflowx(t∗)
and outflowx(t∗) = 0 because z(t∗) = free, so the value of the flow must be equal to
d+(t∗).

3.2.5 Constructing an FPTAS

The previous results can be extended to an FPTAS for Maximum Confluent Flow.

Theorem 3.18. Maximum Confluent Flow on graphs with |V | nodes and treewidth
bounded by some constant k can be approximated within a factor of (1− ε) for any ε > 0
in time polynomial in |V | and 1/ε.

Proof. Again the input is G = (V,A), u, d, T and c and we assume that the supplies d
are all individually routable. We first have to bound the value f∗ of an optimal solution.
With dmax := maxv∈V d(v), we obtain dmax ≤ f∗ ≤∑

v∈V d(v) ≤ |V |dmax =: U .
We will use a simple rounding scheme to obtain the approximation. Let ε′ := ε/|V |2

and round down all numerical values to multiples of ε′U . Call these new values ũ, d̃

and c̃. For example, ũ(a) :=
⌊

u(a)
ε′U

⌋

ε′U . If we further scale the instance by (ε′U)−1, we

obtain integral values between 0 and ⌊1/ε′⌋. We run the algorithm to solve this scaled
down integral instance. Theorem 3.17 shows that the running time is polynomial in the
size of the graph and Ũ := (ε′U)−1

∑

v∈V d̃(v) ∈ O(|V |/ε′) = O(|V |3/ε). Thus, this is a
polynomial time algorithm overall.

Let f denote the optimum value of the rounded instance scaled back to the original
range by a factor of ε′U . (The optimum value scales with the parameters.) We need to
show f ≥ (1− ε)f∗ to conclude this proof.

Consider a confluent S-T -flow x with value f∗ for the original instance. Standard
flow theory tells us that we can decompose it into at most |Fx| ≤ |V | paths P ∈ P
carrying flow from the sources to the sinks. Cycles do not occur in Fx by definition. We
denote the flow on each path with x(P ), and

∑

P∈P x(P ) = f∗ must hold. Rounding

the flow on each path to x̃(P ) :=
⌊

x(P )
ε′U

⌋

ε′U yields a path decomposition of a new flow

x̃ where all flow values are multiples of ε′U . Rounding down individual paths results
in a larger loss due to rounding than for d, u or c, so x̃ obeys all rounded capacities.
Thus, x̃ is a confluent S-T -flow that is feasible in the rounded instance and has value
∑

P∈P x̃(P ) ≥ ε′U
∑

P∈P(x(P )
ε′U − 1) = f∗ − |V |ε′U . Since f is the optimum value of a

feasible flow in the rounded instance, it follows that f ≥ val(x̃) ≥ f∗ − |V |ε′U .
Recalling the bounds on f∗, we obtain f ≥ f∗ − |V |ε′U = f∗ − |V |2ε′dmax = f∗ −

εdmax ≥ f∗ − εf∗ = (1− ε)f∗ as claimed.

As usual in dynamic programming, backtracking provides the solution, i.e. the actual
S-T -flow, for both algorithms. Note that it is also possible to modify the exact dynamic
program in order to handle, e.g., lower capacities on arcs or all-or-nothing flows. How-
ever, since the accuracy of the rounded instance is limited, these conditions only carry
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over in an O(ε)-precise way to the approximation algorithm, i.e. lower bounds may be
violated by at most ε′U since all numerical values are rounded down.

3.3 Confluent flows on outerplanar graphs

One observation encourages to reconsider the gap between easy and hard confluent flow
problems despite the hardness results on trees: On cycles with a single sink Maximum

Confluent Flow can be solved efficiently. There are only |V | possibilities to split the
flow – the flow on one side of this split point reaches the sink clockwise, the flow on the
other side moves counterclockwise.

We will now extend this approach to outerplanar graphs, which look “somewhat like
cycles” but are complex enough to foil a brute force approach. The ideas presented in
this section fall into two groups. First, we explore the hierarchy of a certain class of
self-contained induced subgraphs to enable dynamic programming. Second, we analyze
and exploit the properties of the dynamic programming solutions to achieve polynomial
running times by expressing the data in a compressed way.

3.3.1 Outerplanar graphs

Definition 3.19 (Outerplanar graph). An undirected graph G = (V,E) is called
outerplanar, if it has an embedding in the plane such that all vertices lie on the outer
face. We will call a digraph outerplanar if the underlying undirected graph is outerplanar.

Outerplanar graphs are exactly those graphs that do not have K4 or K2,3 as minor [27]
and they can be recognized in linear time [114]. The usual drawing of an outerplanar
graph places all vertices on a circle and all edges are embedded within that circle (Fig-
ure 14). A fascinating result [72] shows that given any outerplanar graph G = (V,E)
and any set of points P in the plane in general position (i.e., no 3 points lie on the same
straight line) with |P | = |V |, one can find an embedding of G such that the vertices are
mapped to P and all edges are represented by straight lines. Actually, with this result
outerplanar graphs can be easily seen to be the largest graph class that admits such an
embedding for every given point set. There is an O(|V | log3 |V |) algorithm to find such
an embedding, and a simpler O(|V |2) algorithm exists as well [22]. We will use this
results and always embed the outerplanar graph on a (regular) n-gon.

3.3.2 Solving confluent flows on outerplanar graphs

In this section we will explore the intrinsic structure of outerplanar graphs that limits
the number of choices for the single sink case of Maximum Confluent Flow that
need to be considered by a dynamic program.

We start with a high-level description of the algorithm. As mentioned above we can
assume that we are given a straight-line embedding of a bidirected outerplanar graph
G = (V,A) on the regular n-gon, and that the vertices are labelled clockwise v0 to vn−1.
We may also assume that the entire outer cycle is part of the graph in both directions.
Adding these arcs with capacity 0 cannot lead to any crossings by simple geometric
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Figure 14: A maximal outerplanar graph and a possible spanning in-tree. An
outerplanar graph consists of up to 2|V | − 3 edges (or 4|V | − 6 arcs respectively)
and therefore contains an exponential number of spanning in-trees. The chords
admit zigzag paths for flow units.

arguments. An arc (vi, vj) with |i − j| > 1 is called chord . Since we only consider the
single sink case, let the (unlimited) sink be v0, located at the bottom of the cycle. For
the sake of brevity, we think of vertices with low indices as being left of vertices with
higher indices instead of saying “in counterclockwise direction”.

Our dynamic program works on “slices” cut out of the cycle. More precisely, for i < j,
we consider the graph induced by {vi, vi+1, . . . , vj}, which we denote by Gi,j. This is
again an outerplanar graph (with the same embedding as in G). We will only consider
subgraphs Gi,j that are self-contained, i.e. no vertex vk with i < k < j is adjacent to a
vertex outside of Gi,j.

Definition 3.20. Gi,j denotes the self-contained induced subgraph G[{vi, vi+1, . . . , vj}].

We want to capture all the relevant information about the flow inside of Gi,j in the
dynamic program. Since Gi,j is self-contained, we only need to know the balance at
vi and vj . Once this information is available, we will join consecutive Gi,j and Gj,k to
obtain the values for Gi,k.

Recalling treewidth and tree decompositions (cf. Definition 3.4), the subgraphs Gi,j

also have another interpretation. Outerplanar graphs are 2-trees and therefore they
have treewidth at most 2 [24]. Let (vi, vj) be a chord in our embedding. Since every
arc has to be contained in a bag by definition of treewidth, {vi, vj} is a bag of every
nice tree-decomposition of width 2 of the outerplanar graph. Remember, that bags only
change slowly due to Introduce and Forget nodes. Therefore, the subgraph Gi,j is
equal to the bagend induced by {vi, vj}. However, we want to develop a polynomial
time algorithm. Hence, the pseudo-polynomial dynamic program in Section 3.2.2 is not
powerful enough. Furthermore, we have seen a graph with treewidth 2 in Figure 3,
that was used in the NP-hardness proof. That is, there is something special about
outerplanar graphs that we have to exploit. This will be uncovered in Lemma 3.23.
Hence, a tree decomposition and the results of Section 3.2 are of minor use here.
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To determine the balance balx(vi) and balx(vj) for the dynamic program, consider an
optimum confluent S-T -flow x on G. The flow-carrying arcs induce an in-tree pointing
towards the sink which we can greedily extend to a spanning in-tree. The path from any
vertex in Gi,j to v0 must either travel through vi or vj . This gives rise to three cases.

1. The support graph of a confluent flow could induce two trees on Gi,j which must
then be rooted at vi and vj . That is, flow is splitted into two components and
some flow units leave Gi,j at vi and the other leave at vj. We denote this case by
SPLITi,j. To compute the corresponding entries in the dynamic program, we can
treat vi and vj as sinks in a smaller confluent flow instance consisting only of Gi,j.
Since this instance would have two sinks, we may connect them to a supersink, at
least in mind.

2. Otherwise, the tree of flow carrying arcs induces only one component in Gi,j which
is either rooted at vi or vj. If it is rooted at vi, then we say the flow is routed left
and treat vi as a sink. This is the case LEFTi,j. But it may be that additional
flow enters Gi,j at vj in an optimum solution. Therefore we have to treat vj as a
source with undetermined supply. For a dynamic program, we therefore have to
know the flow value at vi for all possible supplies of vj .

3. In the other case, called RIGHTi,j, the flow leaves Gi,j through vj , which acts as
sink, while vi is a variable source.

The dynamic program needs a separate table for each of the three cases. For SPLITi,j,
all dominating pairs (in terms of Pareto maximal) of flow values arriving at vi and vj are
computed. We will show that there can be only (j − i) such values, as these situations
can be characterized by a split point between vi and vj .

For LEFTi,j (and analogously for RIGHTi,j), the desired table is a function describing
the maximum flow that can reach the temporary sink vi for each possible amount of
supply at vj, and not just for d(vj). Without further effort, these tables would have a
pseudo-polynomial size. However, this function is what we want to call simple: For every
unit of additional supply at vj , the output at vi can increase by 1 or remain unchanged.
We will show that the number of times this behavior changes is bounded by (j − i)2.
If we additionally perform the entire computations with such a piecewise description of
the tables in mind, we obtain a polynomial running time. Corresponding lemmata and
proofs will follow in the next section.

To have a more symmetric notation, we actually want to split up the single uncapaci-
tated sink v0 into two sinks: We introduce a new node vn between v0 and vn−1 and make
it a second sink. The capacities between vn−1 and vn are inherited from the former arcs
(vn−1, v0) and (v0, vn−1), but there is no arc added between v0 and vn. All the chords
to and from v0 remain at v0. Both sinks again have infinite capacity. One can easily see
that the original instance has the same Maximum Confluent Flow value as the new
instance, because capacities did not change. We will further assume that these sinks use
no outgoing arc because they have infinite demands. These preparations allows us to
focus on the following kind of instances:
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Definition 3.21 (Outerplanar instance). An outerplanar instance consists of an
outerplanar graph G = (V,A) with the vertices V = {v0, . . . , vn} embedded on the regular
(n + 1)-gon and labelled clockwise, arc capcities u, supplies d, and sinks v0 and vn with
infinite demand. Furthermore, all arcs along the outer cycle except (v0, vn) and (vn, v0)
must be in A.

The following definitions formalize the dynamic programming tables.

Definition 3.22. Consider an outerplanar instance and i, j ∈ N0 with 0 ≤ i < j ≤ n.

• Let Gi,j := G[{vi, vi+1, . . . , vj}].

• Let LEFTi,j(z) : N0 → N0 be the maximum value of a confluent S-T -flow in Gi,j

with capacities u, supplies d except d(vi) := 0, d(vj) := z, and c(vi) :=∞.

• Let LEFTi,i(z) := 0 for all z ∈ N0.

• Let RIGHTi,j(z) : N0 → N0 be the maximum value of a confluent S-T -flow in Gi,j

with capacities u, supplies d except d(vi) := z, d(vj) := 0 and c(vj) :=∞.

• Let RIGHTi,i(z) := 0 for all z ∈ N0.

• Let SPLITi,j ⊆ N2
0 contain exactly those pairs (lk, rk) with lk = LEFTi,k(dk) and

rk = RIGHTk+1,j(dk+1) for k ∈ {i, . . . , j − 1}.
Figure 15 shows an example why the RIGHT functions for larger subgraphs are not

trivial. The crucial observation is that more flow entering on the left does not increase
the output on the right immediately, but at some point the optimal solution might
switch to an in-tree that allows for more capacity on the chord, but routes less of the
flow originating inside Gi,j to the right, still resulting in a net gain. In contrast, if the
chord is not needed to route anything past Gi,j , then it is usually more effective to route
the flow from vertices on the left through the chord instead of along the outer cycle.
Finding the right balance between capacity on the chord and sending flow from inside
to the outside is the trick. Note that this leads to optimal solutions that send flow in a
zigzag path (see Figure 14) to the sink, which is quite unlike the flow in a cycle.

We now show the reasoning behind the definition of SPLITi,j and how we can compute
the optimum Maximum Confluent Flow value from SPLIT0,n. The key property of
the outerplanar embedding is that if we consider two undirected chords {vi, vj} and
{vk, vl} with i < j and i < k < l, these chords would cross if and only if i < k < j < l.
This can be extended to paths: If there is a path from vj to vi (going left) and from vl

to vk, then these paths must have a vertex in common if i < k < j < l. But neither
chords in an outerplanar graph nor flow carrying paths in a confluent flow are crossing
each other. Thus, there always is a vertex vm with the highest index that sends flow to
v0 in an optimum solution and no flow is sent between G0,m and Gm+1,n. This yields
the next lemma.

Lemma 3.23. Consider an outerplanar instance. Let x be a confluent S-T -flow for this
instance. W.l.o.g., assume v0 and vn use no outgoing arc. Then there exists some m ∈
{0, . . . , n−1} such that all flow-carrying arcs Fx lie in the arc set A(G0,m)∪A(Gm+1,n).
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Figure 15: Confluent flow on a bagend: (a) The supplies d are underlined and the
optimal solution is written as x/u on the arcs. (b) The plot of RIGHT3,6 and the
defining in-trees below.

Proof. For i ∈ {0, 1, . . . , n}, let Pi be the path from vi to either v0 or vn in Fx, or Pi = ∅
if there is no path from vi to the sinks in Fx. Let m := max{i : 0 ≤ i ≤ n − 1 ∧ ∅ 6=
V (Pi) ⊆ {v0, v1, . . . , vi}}. Since i = 0 is always admissible, m is properly defined. We
claim that this is the desired index.

Suppose there exists an arc in Fx \ A(G0,m) ∪ A(Gm+1,n). We need to treat the two
directions of this arc slightly differently.

If there is an arc (vi, vj) from G0,m to Gm+1,n, then Pm cannot contain vi, which would
imply containing vj as well, because Pm does not contain any vertex with a larger index
than m. Then there must be a chord (vk, vl) in Pm with l < i < k ≤ m < j that enables
Pm to bypass vi. However, (vk, vl) would cross the chord (vi, vj).

Now that we have established that no chord carries flow from G0,m to Gm+1,n, we
consider the case that there is a chord (vj , vi) carrying flow in the other direction. Since
vn has no outgoing flow, j < n must hold. This implies V (Pj) = V (Pi) ∪ {vj} and Pi

cannot use any chord going back to Gm+1,n as just shown. This makes j > m eligible
for the choice of m, a contradiction.

Given SPLIT0,n, it is now trivial to find the optimum Maximum Confluent Flow

value.

Lemma 3.24. The optimum Maximum Confluent Flow value of an outerplanar
instance is

max
(l,r)∈SPLIT0,n

(l + r).

Proof. Choose (l, r) that attains the maximum. By definition of SPLIT0,n, this implies
the existence of two confluent flows on the disjoint subgraphs G0,k and Gk+1,n with sinks
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v0 and vn, respectively, and with the original demands. Thus, we can easily combine
them to obtain a feasible solution. (Note that for k = 0 or k = n − 1, one of the
subgraphs consists of a single vertex and no arc. Thus, the flow is actually an empty
function. This is not a problem, though, as LEFTi,i and RIGHTi,i are always 0.)

On the other hand, Lemma 3.23 shows that for any confluent S-T -flow x there always
is an index m where the outerplanar graph is split by Fx. Plugging m into the definition
of SPLIT0,n, we see that the optimum solution gives an entry (l∗, r∗) ∈ SPLIT0,n with
l∗ and r∗ being the amount of flow sent to the two sinks. Then l + r ≥ l∗ + r∗ must be
true, but the latter is the optimum value.

3.3.3 Dynamic programming

We will now show how one can compute the functions LEFT and RIGHT efficiently in
a dynamic program, which immediately implies the computation for SPLIT as well. As
mentioned above, we compute the values for Gi,j from self-contained subgraphs Gi,m

and Gm,j . For this we need to ensure that this is always possible.

Lemma 3.25. Consider an outerplanar instance. For j − i ≥ 2, 0 ≤ i < j ≤ n, there
always exist m ∈ {i+ 1, . . . , j − 1} such that there is no arc in G between {vi, . . . , vm−1}
and {vm+1, . . . , vj} besides maybe (vi, vj) and (vj , vi).

Proof. Let j − i ≥ 2. If vi has no incoming arc from or outgoing arc to {vi+2, . . . , vj−1},
then simply choose m := i + 1. This already fulfills the statement of the lemma.

Otherwise let m := max{m′ : i < m′ < j∧ ((vi, vm′) ∈ A∨ (vm′ , vi) ∈ A)}. This is now
well-defined. Any arc between a vertex in {vi+1, . . . , vm−1} and a vertex in {vm+1, . . . , vj}
would be a chord, because it bypasses vm. Then such a chord would also cross the chord
(i,m) or (m, i), which is a contradiction to the assumed embedding of G. Any other arc
which the lemma forbids would have to be incident to vi. Then it either contradicts the
choice of m or is actually a chord between vi and vj , which is allowed.

Lemma 3.26. Consider an outerplanar instance. Let 0 ≤ i < m < j ≤ n be as in
Lemma 3.25, that is, Gi,m and Gm,j are self-contained. Assume the chords (vi, vj) and
(vj , vi) exist but maybe with capacity 0.

1. Then LEFTi,i+1(z) = min{u(vi+1, vi), z} holds.

2. Then RIGHTi,i+1(z) = min{u(vi, vi+1), z} holds.

3. Define

CHORDLEFTi,j(z) := max
(l,r)∈SPLITi,j

l + min{u(vj , vi), z + r}.

Then

LEFTi,j(z) = max{LEFTi,m (LEFTm,j(z) + d(m)) ,

CHORDLEFTi,j(z)}

holds.
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4. Define

CHORDRIGHTi,j(z) := max
(l,r)∈SPLITi,j

r + min{u(vi, vj), z + l}.

Then

RIGHTi,j(z) = max{RIGHTm,j (RIGHTi,m(z) + d(m)) ,

CHORDRIGHTi,j(z)}

holds.

Proof. 1. The value LEFTi,i+1(z) is the maximum value of a confluent flow over the
single arc (vi+1, vi) with supplies d(vi) = −∞ and d(vi+1) = z. The claim follows
obviously.

2. Similarly for RIGHTi,i+1.

3. For a fixed z, LEFTi,j(z) is defined to be the maximum confluent flow value in
Gi,j that can leave vi if the supply of vj is z and the intermediate vertices have
their usual supply, but vi has no supply of its own. Let x be such an optimal
confluent flow and consider Fx. Since the single sink cannot use an outgoing arc,
(vi, vj) 6∈ Fx holds. First consider the case (vj , vi) 6∈ Fx: Then any flow originating
in {vm, . . . , vj} must be routed through vm to reach vi, by the choice of m. Thus,
we can see this as additional supply on vm. The maximum supply available at vm

is then LEFTm,j(z) + d(m). So the maximum flow reaching vi if (vj , vi) 6∈ Fx is
LEFTi,m(LEFTm,j(z) + d(m)), which constitutes the first part of the maximum
that defines LEFTi,j(z).

Now suppose that (vj , vi) ∈ Fx. Then x can be interpreted as a flow on Gi,j but
with sinks vi and vj and ignoring the flow on the chord. (It may not be the optimal
confluent flow for this instance, though.) We can apply Lemma 3.23 to this smaller
instance, yielding a k ∈ {i, . . . , j− 1} such that the two trees pointing towards the
sinks in Fx are contained in {vi, . . . , vk} and {vk+1, . . . , vj}, respectively. Then the
flow value of x in this new instance is at most LEFTi,k(dk) + RIGHTk+1,j(dk+1).
Note that if k = i or k = j, the special case definitions of LEFTi,i ≡ 0 and
RIGHTj,j ≡ 0 ensure that these sinks by themselves do not contribute any flow
value.

Since vj is not really a sink, but has supply z and uses the chord (vj , vi) to send
to vi, the flow value of the contribution from vj is increased by z and bounded by
u(vj , vi). So assuming x is the optimal confluent flow, we then obtain LEFTi,j(z) =
LEFTi,k(dk) + min{u(vj , vi),RIGHTk+1,j(dk+1) + z}.
Since we do not know if (vj , vi) is used (if it is available at all) and which vertex
vk is the splitting point, we have to try all combinations and take the maximum
value. The function CHORDLEFTi,j(z) summarizes all cases where (vj , vi) ∈ Fx,
and is therefore the only other option that needs to be considered for the maximum
defining LEFTi,j(z).
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4. As for LEFTi,j.

3.3.4 Simple functions

Using the formulae developed in the previous section to evaluate the functions at certain
values of z is not advisable in a polynomial algorithm. Computing LEFTi,j or RIGHTi,j

in the interesting case where there is a chord (i, j) or (j, i) with positive capacity relies
on SPLITi,j. This again relies on LEFT and RIGHT evaluations for j − i subgraphs,
which can be computed recursively. In particular, the same pair of indices might oc-
cur in different subtrees of the recursion. So we want to use a dynamic programming
approach instead, which computes the required values in a bottom-up way. There is
one big problem, though, compared to the recursion: We do not know for which values
of z we need to evaluate the LEFT and RIGHT functions, so we will compute the en-
tire functions! Done näıvely, this only yields a pseudo-polynomial algorithm because z
may take pseudo-polynomially many values. However, we can describe these functions
efficiently, making use of their simple “stair-case” form as seen in Figure 15(b). Even
better, we can carry out the computations in Lemma 3.26 on these efficient descriptions
much faster than for all values of z by themselves.

Definition 3.27 (Simple function). Let f : N0 → N0 be a function such that f(z+1) ∈
{f(z), f(z) + 1} for all z ∈ N0. Then we call f a simple function. Such a function can
be described by f(0) and the (inclusion maximal) intervals on which f increases. We
denote the size of this set of intervals by 〈f〉.

For example, for the simple function in Figure 15(b) we store f(0) = 4 and the set
of increasing intervals {[0, 3], [4, 5], [6, 7]}. Note that it is easy to store the 〈f〉 intervals
describing f in a linked list. This trivially allows the evaluation of f(z) in O(〈f〉).

Lemma 3.28. LEFTi,j and RIGHTi,j are simple.

Proof. As LEFTi,j describes a maximum flow value, LEFTi,j(z + 1) ≥ LEFTi,j(z),
because the flow cannot become worse with higher supply by using the same in-forest Fx

of flow carrying arcs. Also LEFTi,j(z +1) ≤ LEFTi,j(z)+1 holds, because any in-forest
used for LEFTi,j(z + 1) could have been used for LEFTi,j(z), losing at most one unit of
flow. RIGHTi,j is simple by the same arguments.

We can operate on simple functions as follows:

Lemma 3.29. Let f1 and f2 be two simple functions.

1. g(z) := f1(f2(z)) is simple and 〈g〉 ≤ 〈f1〉+ 〈f2〉.

2. g(z) := max{f1(z), f2(z)} is simple and 〈g〉 ≤ 〈f1〉+ 〈f2〉.

3. For c ∈ N0, g(z) := f1(z) + c is simple and 〈g〉 = 〈f1〉.

4. For c ∈ N0, g(z) := f1(z + c) is simple and 〈g〉 ≤ 〈f1〉.
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In all cases, g can be computed in time linear in 〈f1〉 and 〈f2〉, where applicable.

Proof. 1. The definitions immediately imply f1(f2(z + 1)) ≤ f1(f2(z) + 1) ≤
f1(f2(z))+1 and f1(f2(z+1)) ≥ f1(f2(z)). So, g(z) is simple. Whenever f1(f2(z))
changes between increasing and constant behavior there has to be a change in the
behavior of f1 or f2. Therefore f1(f2(z)) can have at most 〈f1〉 + 〈f2〉 intervals
on which it increases. The computation can be carried out by a scan through
the interval list of f2, pushing another pointer in f1 forward whenever f2(z) has
increased enough.

2. g(z + 1) ≥ f1(z + 1) ≥ f1(z) and g(z + 1) ≥ f2(z + 1) ≥ f2(z), so g(z + 1) ≥
max{f1(z), f1(z)} = g(z). On the other hand, if g(z + 1) = f1(z + 1), then
g(z+1) ≤ f1(z)+1 ≤ g(z)+1, and analogously for the case g(z+1) = f2(z+1). So,
g(z) is simple. Any increasing interval of g(z) must be contained in an increasing
interval of f1(z) or f2(z). However, the same increasing interval of f1(z) or f2(z)
cannot cause more than one increasing interval in g(z): If it did, the endpoints of
the subintervals would still have the same values and distances as in the original
function, so the slope in between must always be 1 for g(z), meaning that the
increasing interval in g(z) was uninterrupted.
The computation is a scan along both functions simultaneously.

3. This only shifts the constant f1(0).

4. This shifts the entire function to the left by c. All intervals ending before c have
to be deleted, and f1(0) adjusted accordingly.

We can now apply these considerations to the recursive definitions in Lemma 3.26.

Lemma 3.30. For all 0 ≤ i ≤ j ≤ n the following holds:

1. |SPLITi,j| ≤ j − i (assuming i < j).

2. 〈LEFTi,j〉 ≤ (j − i)2.

3. 〈RIGHTi,j〉 ≤ (j − i)2.

Proof. 1. All the entries in SPLITi,j are determined by one of the values of k ∈
{i, . . . , j − 1}.

2. We use induction on j− i. For j− i = 0, the claim holds because LEFTi,i ≡ 0 and
〈LEFTi,i〉 = 0. Similarly elemental, for j − i = 1, we note 〈min{uvj ,vi

, z}〉 ≤ 1.

Induction and Lemma 3.29 yield 〈LEFTi,m(LEFTm,j(z) + d(m))〉 ≤ (j − m)2 +
(m− i)2.

Now consider CHORDLEFTi,j. It is the maximum over |SPLITi,j | ≤ j − i simple
functions of size at most 1. So 〈CHORDLEFTi,j〉 ≤ j − i. This plus the size of
LEFTi,m(LEFTm,j(z)+ d(m)) bounds the size of LEFTi,j due to the computation
by a maximum over the two. But (j −m)2 + (m− i)2 + j − i ≤ (j −m)2 + (m−
i)2 + 2(j −m)(m− i) because i < m < j, and the latter is simply (j − i)2.



80 3.3 Confluent flows on outerplanar graphs

3. As above.

Now all the pieces for a polynomial algorithm for Maximum Confluent Flow on
outerplanar graphs with one sink are set up.

Theorem 3.31. Maximum Confluent Flow on an outerplanar graph G with a single
sink can be solved in polynomial time.

Proof. First, find an embedding of G and transform the input into an outerplanar in-
stance. Then, starting with j − i = 0 and proceeding towards j − i = n, compute all
SPLITi,j, then LEFTi,j and RIGHTi,j inductively in a dynamic program. For each of
these pairs (i, j), SPLITi,j can be computed from various LEFTi,k and RIGHTk+1,j,
with k − i < j − i and j − (k + 1) < j − i. Having done so, compute LEFTi,j from
SPLITi,j, LEFTi,m and LEFTm,j with i < m < j, and similarly for RIGHTi,j. Impor-
tantly, all of these calculations are performed on the interval representation of the simple
functions.

3.3.5 Runtime analysis

Lemma 3.30 shows that at no time the size of SPLIT can be larger than j − i, while
LEFT and RIGHT need at most (j − i)2 entries to describe them. Computing each
SPLITi,j requires O(n) evaluations of LEFT and RIGHT functions, each of which can
be done in O(〈LEFT〉) = O(n2). So for each SPLITi,j we need at most time O(n3).
Computing LEFT requires 2 evaluations of LEFT and the maximum over O(n) entries
in SPLIT. So this takes O(n2) time. Note that we can find the splitting point m with
a simple greedy strategy by checking the existence of O(n) arcs, as shown the proof of
Lemma 3.26. Clearly, this is dominated by O(n3). So for each pair (i, j) we can find all
necessary functions in O(n3), and the entire table is computed in O(n5). Finally, the
maximum value can be found in O(n) from SPLIT0,n, as noted in Lemma 3.24.

While the running time might not seem too good, here are a few things to consider:
So far, we do not know of any instance, where LEFT and RIGHT actually have more
than linearly many intervals. Maybe one can tighten the analysis of Lemma 3.30, which
would immediately imply a faster running time. Furthermore, a better algorithm is
already possible because not all pairs (i, j) are actually required to compute SPLIT0,n.
Indeed, the costly computation of SPLITi,j is only needed if there is a chord (vi, vj) or
(vj , vi) because otherwise CHORDLEFT is not a good option. But there are only O(n)
chords in an outerplanar graph (actually, any planar graph has only O(n) edges), so an
improved algorithm would need to construct SPLITi,j only for O(n) pairs of indices. To
keep it simple, we ignored this matter of fact in the construction of our algorithm, but
a running time of O(n4) could already be realized by a proper implementation.

3.3.6 Confluent flows and minors

A minor M of an undirected graph G is a graph that can be obtained out of a subgraph
of G by zero or more edge contractions. Outerplanar graphs are exactly those graphs
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that do not contain a K4 nor a K2,3 as a minor [27]. They are in particular series-parallel
graphs, which are exactly those graphs that are K4-free [24]. But we cannot hope to
solve Maximum Confluent Flow on this larger class of K4-free graphs in polynomial
time because the NP-hard problem with treewidth 2 (see Section 2.4, Figure 4) is
series-parallel. In this section we will try to identify the K2,n as the key minor for the
complexity of confluent flows. We start with the following lemmata.

Lemma 3.32. Let G be a (undirected) graph which does not contain the complete bipar-
tite graph K2,3 as a minor. If G contains the complete graph K4 as a minor, then the
K4 is an induced subgraph G.

Proof. Assume, that G contains the K4 as minor, but G is K4-free. Thus, there is
a sequence of edge contractions on a subgraph G′ of G, which lead to the K4. Let
(G′, G1, G2, . . . , Gk = K4) be the sequence of the resulting graphs. There exists a min-
imum index i such that Gi contains a K4 as induced subgraph. W.l.o.g. i = k, i.e. the
K4 is created in the last step for the first time. All redundant nodes and vertices can
be deleted before. Gk−1 has 5 nodes and at least 7 edges (since the resulting K4 has 4
nodes and 6 edges). Thus, Gk−1 is a K5 with up to three deleted edges. These three
missing edges cannot be incident to the same node, because this implies a K4 on the
other 4 nodes. With the same argument, at least two edges have to be missing. On the
other hand, 6 vertices are involved in three edges. Hence, at least one vertex is incident
to at least two missing edges by the pigeonhole principle in this case.

Now, it is easy to check the remaining cases for Gk−1. In fact, there is only one case
where Gk−1 contains only 7 edges and can be transformed to a K4. The graph and its
induced K2,3 are presented in Figure 16. Each case with 8 edges also contains a induced
K2,3. Hence, we have a contradiction.

A

B

A

A

B

Figure 16: Minimum example for a graph which contains a K4 as a minor but not
as an induced subgraph. Nevertheless, it contains a K2,3 as an induced subgraph.
The both partitions of the bipartite subgraph are labeled with A and B.

Lemma 3.33. Let G be a (undirected) graph which does not contain the complete bipar-
tite graph K2,3 as a minor. Furthermore, let G contain the K4 as an induced subgraph.
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Let v and w be two arbitrary vertices of this induced K4, then there is no path between
v and w which contains any other vertices than the nodes of the K4.

Proof. Assume there exists a path P which contains a vertex not belonging to the K4.
W.l.o.g. P starts at v, ends at w and contains no other vertices of the K4. Delete all
nodes and edges which do not belong to the K4 or P . Contract the edges of P until only
two edges remains. The resulting graph has a K2,3 as an induced subgraph (Figure 17),
a contradiction.

A

B

A

A

B

Figure 17: Two nodes of a K4 connected via a path always induces a K2,3.

With these two lemmata, it is easy to understand the structure of a graph that contains
no K2,3 as a minor. The graph may contain some induced K4 subgraphs. Deleting all
edges of these K4 the graph decomposes in some outerplanar components. Lemma 3.33
ensures that two induced K4 or an induced K4 and an induced outerplanar subgraph
have at most one common vertex. Furthermore, it guarantees a tree structure of these
components, since there are no paths connecting two nodes of a K4. The underlying
tree H can be constructed easily. For each induced K4 and each induced maximal out-
erplanar component add one vertex. Connect two nodes if and only if the corresponding
components have a common vertex. H is similar to the block graph of G. Note that two
nodes corresponding to outerplanar components are never connected directly since we
consider only maximal outerplanar components. Thus, each cycle in H would contain at
least one node corresponding to a K4. Therefore, a cycle would induce a forbidden path
between two nodes of the K4. Hence, H contains no cycles. We can use this underlying
tree structure to solve Maximum Confluent Flow on graphs without K2,3 minor.

Corollary 3.34. If G contains no K2,3 as a minor, then Maximum Confluent Flow

with a single sink can be solved in polynomial time.

Proof. We exploit the underlying tree structure. First, construct H by decomposing
G into maximal outerplanar components and K4 components. H is a tree, thus the
direction of flow is well defined on H and therefore on each component. W.l.o.g. the
sink is contained in only one component, which corresponds to the root of H (add a
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new sink and connect it to the old one via one arc). The components have at most
one common vertex. These vertices act as temporary sources or sinks and we compute
a maximum confluent S-T -flow for each component starting at the leaves of H. The
incoming flow of a temporary sink defines the maximum demand of the corresponding
source in the parent component. This implies that the maximum value of a confluent flow
in G is equal to the maximum value of a confluent flow in the root component. Maximum
values of confluent flows on outerplanar components are processed as in Theorem 3.31.
K4 components have fixed size, therefore a maximum confluent flow can be found in
O(1). Obviously, the number of components is bounded by the size of G. Thus, the
claim follows.

Note that there is no polynomial time algorithm for the class of K3,3-free graphs
(unless P = NP), as this allows a K2,k, which can again model a Partition instance
(cf. Section 2.4, Figure 4). However, there is room for one stronger conjecture:

Conjecture 3.35. For any constant k ∈ N, Maximum Confluent Flow on K2,k-free
graphs can be solved in polynomial time.

A graph that is K2,k-free is probably too restrictive to contain arbitrarily large NP-
hard subproblems like Partition. In particular, this weaker requirement could also
allow outerplanar graphs with up to k − 1 sinks modeled by a supersink. However, an
algorithm for this problem might be quite involved.

3.4 Planar graphs with all terminals on the boundary

3.4.1 Boundary instances

The class of outerplanar graphs is a very restricted graph class. In this section, we relax
the restrictions by allowing some additional nodes and arcs inside the cycle. In other
words, we consider planar graphs with all terminals on a common face. For clearness,
we choose an embedding such that this face is the outer face, i.e. all sources and the
sink are placed on the boundary. Unfortunately, the results in this section do not hold
for an arbitrary number of sources. Instead, we always have to assume the number of
sources to be bounded by a constant k.

This section is motivated by related disjoint path problems. Okamura and Sey-
mour [123] studied edge disjoint paths in the above-mentioned setting. They proved
an existence theorem under a certain evenness condition (cf. Section 2.3.3). Several fast
algorithms for edge disjoint paths in this so-called Okamura-Seymour-case were devel-
oped [13, 86, 148]. Furthermore, this was also generalized to multicommodity flows on
such graphs, e.g. [151].

Definition 3.36 (Boundary instance). A boundary instance consists of an embedded
planar graph G = (V,A), where the set of k sources {s1, . . . , sk} and a single sink t lie
on the boundary of this embedding. The sources are labeled counterclockwise such that
t is placed between sk and s1. Furthermore, arc capacities u, infinite supplies d at the
sources, and an infinite sink capacity are given.
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For brevity, we use infinite demands here. This is no restriction for Maximum Con-

fluent Flow. As always, limited demands can be simulated by adding new sources
with infinite demand and arcs with the desired capacity ahead of the original sources.

Again, we start with a high-level description. The algorithm is based on recursive
bottleneck path computations. However, we cannot take the first bottleneck path that
comes along, since a bad choice may block other paths.

At this point, we will exploit the special properties of the boundary instance. It
provides an orientation between paths, i.e. we can define whether a path is left or right
of another path. This also defines a partial ordering of arbitrary paths. For paths of a
confluent flow which must not cross, we obtain a total ordering. Therefore, for a certain
source sl and a capacity z, we will define a left most transshipment , i.e. the path from
sl to t that is left of every other path among all sl-t-paths which provide a capacity of
at least z flow units.

Furthermore, Algorithm 3.1 for trees tells us that we can process the sources in any
order, when the in-tree is given. Consequently, we will process them in their natural
ordering, that is from s1 to sk. We will start with exploring all critical left most trans-
shipments from s1 to t. This leaves a residual network for each path and we will continue
with the next source recursively.

Lemma 3.37. Given two paths from si to t and from sj to t in a boundary instance,
let i < j. If both paths meet in a node v in a confluent flow, then flow from sl, i < l < j
also passes through v.

Proof. The claim is obvious. Since the graph is planar and all terminals are on the
boundary, there is no possibility that any paths bypass each other.

3.4.2 Preliminaries

Let us start with the definitions for left of and left most transshipment . On the one
hand, left and right are very intuitive. On the other hand, a robust definition is rather
technical. Figure 18 explains left and right in a simple way.

Given a boundary instance with sources ordered counterclockwise and a path P from
sl to t, we add the arc (t, sl) crossing the outer face. Now, we consider the dual graph
Ḡ of G = (V,A ∪ {(t, sl)}), i.e. each face of the graph is identified by a vertex and two
vertices are connected if the corresponding faces share a common arc. Let v̄l of the dual
graph be the node corresponding to the face adjacent to t and s1, . . . , sl. Similarly, v̄r

is the node corresponding to the face adjacent to t and sl, . . . , sk. The cycle P ∪ (t, sl)
defines a cut in the dual graph. Furthermore, it splits Ḡ in exactly two connected
components. Let V̄l be the node set of the component which contains v̄l and V̄r is the
node set of the component which contains v̄r. Now, Vl ⊆ V is the node set of all vertices
adjacent to faces which correspond to nodes in V̄l. Vl is the node set left of P . Similarly,
Vr is defined as the node set right of P . Vl ∩ Vr is exactly the node set visited by P .

Definition 3.38 (Left of, right of). Given a boundary instance and a path P from si

to t. P separates the vertices into two sets Vl and Vr as above. A path P ′ from sj is left
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tsl P

left of

right of

(t, sl)

· · ·

· · ·

s1

sk

Figure 18: A path P in a boundary instance with the node sets left and right of
P .

of P if it only visits vertices of Vl. Similarly, a path is right of P , if it only visits nodes
of Vr.

Obviously, there exist paths that are neither left nor right of P . Thus, left of defines
a partial ordering. Note that this relation is reflexive, i.e. each path is left of itself.

Definition 3.39 (Left most transshipment). Given a boundary instance with sink
t, a specified source s and a value z, a left most transshipment lmt(s, z) is a path Ps,z

from s to t and a flow on this path with value equal to z, such that z ≤ mina∈Ps,z u(a)
and z > mina∈P ′ u(a) for all paths P ′ left of Ps,z.

Obviously, a left most transshipment is well-defined, i.e. it is unique. Furthermore, it
is easy to compute if the embedding is given. If we have found such a path we may also
use it at full capacity, that is its bottleneck capacity. The following definition increases
the flow value of a left most transshipment up to its bottleneck.

Definition 3.40 (Left most flow). Given a boundary instance with sink t, a specified
source s and a value z, a left most flow lmf(s, z) is a path Ps,z̄ from s to t and a flow with
flow value equal to z̄ on this path, such that z ≤ z̄ = mina∈Ps,z̄ u(a) and z > mina∈P ′ u(a)
for all paths P ′ left of Ps,z̄.

The intention of a left most flow is the following. Assume we want to send at least
z units of flow from s1. We should send these flow units in a way such that we do not
block confluent flow from other sources. Ps1,z̄ seems to be a good choice. However, this
is not completely true.

On the one hand, Ps1,z̄ is optimal before it reaches its bottleneck. We cannot use any
other path left of Ps1,z̄, because there is none. Thinking of Ps1,z̄ as part of an in-tree, it is
used at full capacity, which is also desired. Furthermore, there is no use that additional
flow from other sources is routed to this first part of the path, since the bottleneck is
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still ahead. On the other hand, it is easy to see that Ps1,z̄ can be a bad choice after its
bottleneck. Maybe, flow from s2 has to meet Ps1,z̄ directly after the bottleneck arc. Now,
the confluent condition forces this flow to follow Ps1,z̄ which may limit the additional
capacity drastically (cf. Figure 19).

t

s1

s2

v10/3
0/1

v2

2/4

v3
0/4

v4
2/2

0/4

v5

2/3

2/5

v6

0/7

0/5

s3

0/5 0/1

Figure 19: Boundary instance with a left most transshipment of 2 flow units from
s1 to t. The arc labels denote arc flow and arc capacity in the form flow/capacity.
Assume, we are going to send flow from s2 to t. There is a path which provides
a capacity of 4. Unfortunately, this path meets the previous path at v4, thus, we
have to pick up these two flow units. Consequently, we may only send 3 flow units
from s2 via v3, v4, and v6 to t. However, we should also consider sending only
one additional flow unit via v5, since this may provide additional capacity for flow
originating at s3.

Nevertheless, we maintain the idea of a left most flow for the remaining section. For a
source sl, we will first choose the flow value that should be shipped at least. Afterwards,
we search for a path on the left side of the network, which provides enough capacity.
Finally, we increase flow on this path up to its bottleneck capacity and continue with
the next source sl+1.

However, if we meet the path from the previous source sl−1, then we will usually have
to re-route flow. That is, we should look for a new left most flow with respect to the
sum of the flow values starting at the meeting point. We prepare this computation by
defining a residual network .

Definition 3.41 (Residual network). A residual network is a boundary instance with
an additional label q : V → N0. For the original instance, q ≡ 0.

The label is used to keep track how much flow already passes a certain node v. The
labels can also be seen as a temporary storage. If a path from another source meets this
node v, both the stored flow and the new flow have to be routed together to the sink.
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Otherwise, we would break the confluent flow condition in v. For small amounts of flow,
the previous sl−1-t-path may provide enough capacity such that the new path P can
simply follow the previous path. For higher flow values, we have to re-route the stored
flow q(v).

For determining the capacity of such a new path P which meets a node with label
greater than 0, the capacities of the remaining arcs have to be reduced by the amount
of collected stored flow units. Assume, all sources from s1 to sl−1 are already processed
and we are going to send z flow units along a sl-t-path P = ((v1, v2), . . . , (vr−1, vr)),
i.e. s = v1 and t = vr. First, we have to check, whether this path provides enough
capacity for sending z units of flow. This is true, if u((vj , vj+1)) ≥ z + max1≤i≤j q(vi)
∀j = 1, . . . , r − 1. Note that labels are not additive, since we may follow the previous
path or meet it twice, thus, a label indicating the same flow units may appear several
times. Afterwards, we use P at its bottleneck capacity z̄ > z and update the residual
network as follows.

Procedure 3.42 (Update of the residual network). If flow is sent on a path
P = ((v1, v2), . . . , (vr−1, vr)) with bottleneck capacity z̄, then the residual instance is
updated as follows:

1. Delete all nodes and incident arcs of V \Vr, that is all nodes left of P besides the
path itself.

2. Update the labels along P : q(vj) = q′(vj) + z̄ with q′(vj) = max1≤i≤j q(vi).

3. Delete all outgoing arcs of all vertices that P visits before it reaches its last bottle-
neck arc.

4. Delete all remaining nodes that are in the same connected component as the sink.

The embedding of the remaining nodes and arcs is not changed.

This procedure is reasonable. Since we are going to process the sources in ascending
order, the left part of the network in the residual instance contains no more sources.
Furthermore, the confluent flow condition permits crossing the path P . Thus, the left
side of the network is not accessible for the remaining sources and the first update rule
deletes it. The second update rule collects all flow values stored along P and propagates
them. Thus, the labels are set to the current confluent flow that arrives at these nodes.
Update rule 3 ensures the confluent flow condition on the first part of P before its
bottleneck arc by deleting all alternative arcs. Note that each node with label greater
than 0 is on the boundary of the updated residual instance. Furthermore, starting next
to the sink, the labels are decreasing in counterclockwise direction.

Summarizing, the labels provide an interface to the current flow pattern of flow sent
from s1, . . . , sl to t in the part of the network which was already deleted. Originally,
the flow stored in the labels was sent to the sink via these paths, it is equivalent to the
current outflow of the nodes along the sl-t-path. With help of the labels, we keep track
of the flow for re-routing purposes.
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Now, we are prepared to discuss the choice of the next flow-carrying path P in detail.
Assume we have already processed all sources from s1 to sl, we proceed with sl+1 and we
are going to send z flow units. Following the mantra of this section we try to stay as left
as possible. If the new flow-carrying path P arrives at a node v on the boundary with
label greater than 0, then it has to carry along this stored flow for the remaining way
to the sink or it would break the confluent condition. Unfortunately, a path providing
enough capacity for the summed flow value may imply a long detour on the right side of
the instance. Consequently, it could be better to avoid picking up flow in this node v.

Further, we cannot directly apply the left of relation if the flow value changes on a
path. Assume, we may choose between two possibilities P ′ and P ′′ for the next path.
P ′ is a path leading directly to the sink t without hitting the boundary, its bottleneck
capacity is z′. On path P ′′ we are going to send only z′′ < z′ flow units. Thus, P ′′

can start left of P ′, but it may arrive at a node v on the boundary. If z′′ + q(v) > z′,
then the re-routing could force the P ′′ to the right side of P ′. An example is depicted
in Figure 20.
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Figure 20: Assume we are trying to send 2 units of flow from s to t in the residual
instance. The node labels are depicted inside the nodes. The arc labels denote arc
flow and arc capacity as in Figure 19. On the left side, the 2 flow units are sent
to a node on the boundary, where another 2 flow units are stored. Now, 4 units
have to be shipped and the capacity constraints force the path to the right side. In
the residual instance on the right side, the path also stays as left as possible, but it
avoids the boundary except for t. Furthermore, this path provides capacity for one
more flow unit. Thus, it is very important, where the new path hits the boundary.

We will use a workaround to avoid these difficulties. The update procedure has deleted
all nodes left of the sl-t-path, thus, only nodes on the boundary between t and sl have
a label with value greater than 0. We number the nodes on the boundary with a label
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greater than 0 in counterclockwise order from w0 = t to wh. Hence, the index also
provides a distance measure along the boundary. Furthermore, we set w∞ := sl+1.

Given a path P , it may visit several nodes wi. We use P i,j to denote the part of P
between wi and wj which must not visit any other vertex wr. Thus, there is a unique
decomposition of P into paths P∞,ri ◦ P ri,ri−1 ◦ · · · ◦ P r1,0. Now, we consider paths,
which use P∞,r as first part for an arbitrary r ∈ {0, . . . , h− 1}.

Definition 3.43 (Left most flow in a residual network). Given a residual network
with a specified source s = w∞ and nodes with label greater than 0 on the boundary
labeled counterclockwise from w0 = t to wh, a value z ∈ R≥0, and a number r ∈ N0, a
left most flow in the residual network lmf(s, z, r) is a path P = P∞,ri ◦P ri,ri−1 ◦· · ·◦P r1,0

and a flow on this path with flow value equal to z̄ such that

1. z̄ ≥ z is the remaining capacity of P with respect to the capacities in the residual
instance,

2. P does not visit wj for any j > r, i.e. ri = r,

3. P rj ,rj−1 is the path of a left most transshipment from wrj
to wrj−1

with flow value
z + q(wj) ∀j ∈ {1, . . . , i}.

In easier words, we are looking for a path from s to t which provides capacity z. We
strictly avoid the nodes with stored flow on the boundary near to the source, but we have
to visit wr. Whenever we visit a node on the boundary, we pick up the flow stored in the
label. For the remaining journey, we try to stay as left as possible until we visit another
node on the boundary. This influence of the parameter r is depicted in Figure 21.

Please note that such a left most flow in a residual network may not exist, even if there
is a path with capacity at least z. If we pick up too much flow in the boundary nodes, we
may not find a way without exceeding an arc capacity. Nevertheless, computing a left
most flow in the residual network for given values z and r is very easy, e.g. by a simple
depth-first-search strategy using the embedding. At each node, the left most outgoing
arc with respect to the incoming arc is tried first. We do not use an arc, if it does not
provide enough capacity or if it leads to a forbidden node on the boundary.

3.4.3 An algorithm for boundary instances

Now, we can give an algorithm for Maximum Confluent Flow on boundary instances.
The (planar) graph contains m arcs, thus, there are at most O(m) = O(n) reasonable
choices for bottleneck capacities z̄. These capacities are reduced by at most k different
values of flow on previous paths. Algorithm 3.6 simply enumerates all O(kn) possibilities
of flow values sent out by the k sources in the residual network. Furthermore, there are
at most n nodes on the boundary and the algorithm enumerates all choices of r for the
left most flow in the residual network. That is, we use brute force to guess the optimal
values of z and r for each source.

Lemma 3.44. Algorithm 3.6 is correct.
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Figure 21: Nearly the same boundary instance as in Figure 19 with an additional
arc from v3 to v6. On the right side, the corresponding residual network with node
labels is depicted. We may route 3 flow units from s2 via v4, but this will pull 2
additional flow units to the arc (v6, t), which attains its maximum capacity. Hence,
v3 may only send one flow unit directly to t. More flow can be reached, if we consider
lmf(s2, 2, 0), i.e. r = 0. Now, we are not allowed to visit v4 = w2. Thus, we do not
pick up any flow, the path with the arc (v3, v6) is chosen and the arc (v6, t) is only
loaded with two units of flow. Therefore, s3 can send 3 additional flow units via
v6. However, choosing lmf(s2, 1, 2) and lmf(s3, 5, 0) will yield the optimal solution
of 8 flow units for this choice of the first path. Still, one more flow unit could be
reached, if we had considered the upper path for s1.

Proof. First, we prove that the algorithm computes a feasible confluent flow and returns
its flow value. For each source, the algorithm computes a single path which is a necessary
condition. Thus, we have at most k paths. We have to show how these paths are merged
correctly when they meet. We process the sources in strict cyclic order, thus it suffices
to show that a new path is merged with the path computed in the previous recursion
step. It cannot meet any other path computed so far without meeting the previous one,
cf. Lemma 3.37. This is realized by the Update Procedure 3.42.

The new path cannot meet the previous path before its last bottleneck. With all
outgoing arcs deleted this is a dead end. The path after the bottleneck arc is marked
with the labels. If the path arrives at a node with a label q(v) > 0 for the first time,
all further arc capacities are reduced by this value (cf. Definition 3.40). This conforms
to re-routing this stored flow and finding a common bottleneck for the combined flow.
Remember that labels are not additive. Furthermore, the previous path was computed
by a left most flow. The update rule already deleted the left part of the network.
Therefore, the new path will be right of the previous path.

Additionally, if we find an increased label, this implies that the previous path was
merged with its predecessor path. Thus, the maximum label is propagated to route all
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Algorithm 3.6: ConfluentBoundary

Input: residual instance I
Output: maximum confluent flow value

if residual network contains no sources then1

return 0;2

Set L := sorted list of all residual capacities (u(a) − q(v)) ∀a ∈ A ∀v ∈ V ;3

Determine h such that s1 = wh;4

Initialize M as an empty list;5

foreach z ∈ L do6

foreach r ∈ {0, . . . , h} do7

compute (P, z̄) := lmf(s1, z, r);8

if there exists a left most flow for z then9

Compute residual instance Ī (Procedure 3.42);10

Rename sources of Ī (decrease index by 1);11

z′ := ConfluentBoundary(I);12

Insert z̄ + z′ in M ;13

return max M ;14

stored flow in a confluent manner. Note that labels appear in ascending order due to
the properties of the boundary instance. Finally, the update rule sets the labels to the
current flow values along the path.

In summary, the computed paths never cross and are merged correctly. A confluent
flow can be constructed by backtracking in the recursive Algorithm 3.6. Furthermore,
the algorithm returns a value for the remaining instance plus the flow from the current
source. Hence, also the flow value is calculated correctly.

Second, we show that our algorithm calculates a solution that is at least as good as an
optimal solution. Given a boundary instance, let T be an in-tree of an optimal solution.
First, compute a maximum confluent flow on T by the help of Algorithm 3.1. Choose
the sources in ascending order, i.e. s1, . . . , sk. This does not change the value of the
optimal solution, but it may change the flow distribution on the tree. Now, we compare
this optimal solution source by source with the solution computed by Algorithm 3.6.

We start with s1. Let si send zi flow units in the optimal solution computed by Algo-
rithm 3.1. We denote the unique paths in the in-tree T from si to t by Pi. Furthermore,
this algorithm uses P1 at its bottleneck capacity.

For s = s1 and z = z1 Algorithm 3.6 now computes (P 1, z̄) = lmf(s1, z1, h) with
z̄1 ≥ z1. Obviously, this path is left of P1. Remember, that each path is left of itself.
Hence, both paths can be identical.

Now, we continue with s2. Consider P2 in the residual instance and determine its
bottleneck capacity b2. Furthermore, let w be the node where P 1 and P2 meet each
other. Of course, we do not know P2 in the algorithm, but since we also enumerate over
r, there is a value r′ with w = wr′ . We consider two cases:
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1. If z̄1 = z1, then b2 ≥ z2 holds. Furthermore, our algorithm will compute (P 2, z̄2) =
lmf(s2, b, r

′). By definition of the left most flow in a residual network, this path
P 2 is left of P2, since both parts of P 2 (before and after wr′) are left of the
corresponding parts of P2. Additionally, z̄2 ≥ z2.

2. If z̄1 > z1, then b2 < z2 is possible. However, our algorithms again computes
(P 2, z̄2) = lmf(s2, b2, r

′). Similarly, the computed path is left of P2. Furthermore,
any gap of z̄2 to z2 is compensated by the overachievement of s1 with z̄1 flow units.
To be more precise, z1 + z2 ≤ z̄1 + z̄2 holds.

For k = 2, this already yields the optimal solution. For the succeeding sources, we
continue iteratively with the same procedure. For a suitable choice of wr, we compute a
path P i which does not meet P i−1 before the path Pi from the optimal solution would
meet it. Thus, among many sequences of values r, the algorithm also considers a certain
sequence (r1, . . . , rk) and a certain sequence (z1, . . . , zk) such that P i meets P j in the
same node where Pi would meet P j ∀j < i. Furthermore,

∑i
j=1 zj ≤

∑i
j=1 z̄j holds.

Since Pi provides enough capacity – it is a path in the optimal solution and P i does not
collect more flow on the boundary than Pi would do – it follows that P i is left of Pi.

Thus, among many other solutions, our algorithm computes a sequence of paths P i

with bottleneck capacities z̄i such that P l−1 is left of P l and
∑l

i=1 zi ≤
∑l

i=1 z̄i ∀l ∈
N, l ≤ k. Whenever a source si does not send zi units of flow like in the considered
optimal solution, this missing flow was already compensated by the preceding sources.
Therefore, for l = k, we have a solution that provides at least the optimal value.

In easier words, Algorithm 3.6 enumerates over two parameters. The parameter r
describes the topology of the in-forest of the confluent flow, i.e. it chooses the distance
from the sink, where two neighboring paths P i and P i+1 should meet. Simultaneously,
the parameter z considers all reasonable flow values on these paths. Both parameters
influence the actual in-forest that is computed. Among all optimal in-forests the one ‘as
left as possible’ is chosen.

Theorem 3.45. Let G be a planar graph with all terminals on the boundary and a
single sink. If the number of sources is bounded by a constant k, then the Maximum

Confluent Flow can be solved efficiently.

Proof. We have already provided Algorithm 3.6 and its proof of correctness (see
Lemma 3.44). Thus, we only need to discuss its running time. Obviously, the algo-
rithm has a recursion depth of k, since one source is eliminated in every recursion step.
At each function call, we have to compute up to O(kn2) left most flows in the resid-
ual network. One left most flow computation can be done in polynomial time, e.g. by
a simple depth-first-search strategy using the embedding. Assume, we have a counter-
clockwise ordering of the incoming and outgoing arcs of each node, this can be calculated
even in linear time. Furthermore, we use a sorted list of all arc capacities. This list has
to be sorted only once and can be updated accordingly.

Hence, the running time of an algorithm following this approach contains at most a
factor (kn)2k, i.e. Maximum Confluent Flow can be solved in O(n2k).
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Note that the presented running time is a very rough estimation. Furthermore, Al-
gorithm 3.6 can be accelerated in various parts. For example, the computation of left
most flows in the residual network will fail very often for higher values of z and several
values of r. Furthermore, we can skip all values of z in the loop, that are smaller than
or equal to z̄ computed in the last iteration.

3.5 Conclusion and open problems

In the previous chapter and in this one, we have studied various aspects of confluent flows.
We presented some complexity results and tried to tackle the dual problem via confluent
cuts. We have demonstrated an exact pseudo-polynomial time algorithm and an FPTAS
for Maximum Confluent Flow on graphs with bounded tree-width which matched
with our hardness results. Furthermore, we presented algorithms for outerplanar graphs
and graphs with all sources on the boundary, both restricted to a single sink. However,
some questions remain unresolved.

Future research should look into approximation algorithms (not schemes, as those
cannot exist) for Maximum Confluent Flow on general graphs or improve the in-
approximation bound from Theorem 2.12. Maybe one can even show that Maximum

Confluent Flow cannot be approximated within a constant factor. Restricted to uni-
form capacities, this is unlikely because of the 13.29-approximation by Chen et al. [29]
for the All-or-Nothing variant of Maximum Confluent Flow.

Furthermore, improving the cut definition is an attractive challenge. Of course, com-
puting the minimum capacity of such a matching cut is at least as hard as computing
the maximum value of a confluent flow. Nevertheless, a confluent cut at least for planar
graphs with strict duality would be very interesting. The gap of Proposition 2.21 can
certainly be reduced.

Finally, one may shorten or even close the gap between easy and hard confluent flow
problems. One could start with a proof of Conjecture 3.35. It could also be worthwhile
to study intersection graphs (cf. [24]). For paths, the intersection graph H of a graph G
can be defined as follows: for each path in G add a vertex to H. Two nodes in H are
connected if and only if the corresponding paths cross each other. Since such paths have
to be avoided in confluent flows, it is conceivable that an analysis of the properties of
intersection graphs may also provide deeper insight in confluent flow related problems.
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4 Traffic Signal Coordination

A reduction of traffic jams will certainly improve the quality of life in the cities. How-
ever, simply expanding the infrastructure is often impossible due to space limitations.
Besides strengthening public transport an increase of network performance seems to be
a suitable way to cope with the boosting traffic. While the roads themselves do not
allow much control of the traffic flow, signalized intersections provide a lot of traffic sig-
nal parameters ready to be optimized. Especially the coordination of numerous traffic
signals at different intersections in a network seems worthwhile. The main concept of a
so-called ‘green wave’, i.e. the coordination of traffic signals along an arterial road, was
already introduced by Adolph [1] in 1925.

In this chapter we present a short survey on traffic signal optimization. We start with
fixing the notation, introduce basic optimization concepts afterwards and build a bridge
to traffic assignment. We close with a discussion of the computational complexity of
offset optimization.

As a main intention of this chapter the reader should gain insight in the different
concepts of traffic signal optimization. Each solution has advantages and disadvantages
and is affected by the different approaches of traffic engineers or mathematicians. Finally,
this should enable the reader to classify a new model for traffic signal optimization that
will be presented in Chapter 5.

4.1 Introduction to traffic signals

4.1.1 A brief history of traffic signals

The traffic signal is much older than the automobile. On December 10, 1868, the World’s
first traffic signal was installed near the British Houses of Parliament in London at the
intersection of George and Bridge Street. This traffic signal was invented by the railway
engineer J. P. Knight and with its semaphore arms it also resembled railway signals. For
night use red and green gas lamps were installed. The signal was manually operated by
a policeman, who could turn the latern with a lever. Unfortunately, the gas powered
light exploded on January 2, 1869.

Surprisingly, this first traffic signal was already equipped with the typical red and
green light representing stop and go. Why these colors are used is not completely clear.
Most likely they were derived from those in maritime navigation. Navigation lights
on ships are nearly as old as seafaring itself. The oldest known law was enacted by
Byzantine Emperor Leo III the Isaurian in 740. It ordered a white light on anchored
ships6. During the centuries several rules and systems coexisted, but with the upcoming
fast steam ships at the beginning of the 19th century a uniform system had to be created.
In 1847, the leading seafaring nation Great Britain took the initiative and established
a green light for the starboard (right) side, a red light for the port (left) side of a ship
and a white masthead light, all to be shown between sunset and sunrise and at poor
visibility. Why the attendant admirals and commanders decided this way is not told,

6This rule is still in effect.
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but it gathered worldwide acceptance and changed only little since then [81]. With the
rule priority to right this choice of lights has the following implication. A ship coming
from the right side has the right of way, a ship coming from the left has to give way. At
night, seeing a red light means seeing the left side of a ship. Hence, this ship is coming
from the right side, i.e. one has to stop. Seeing a green light means seeing the right side
of a ship, which is therefore coming from the left and one may go ahead.

The modern electric traffic signal was invented in 1912 by the policeman Lester Wire
from Salt Lake City, Utah. The next red-green electric traffic light followed in 1914
in Cleveland, Ohio. While the early traffic signals were operated manually, the first
automatic signal got a US patent in 1917. The first traffic signal with a third color to
provide a warning for color changes was also invented by a police officer. This design by
William Potts was first installed in Detroit, Michigan in 1920.

In Europe, traffic signals were first established in Paris, France and Hamburg, Ger-
many in 1922. A famous traffic signal is the traffic signal tower at the Potsdamer Platz,
Berlin, Germany, installed on October 21, 1924 (see Figure 22). It was a five sided tower
with a cabin for a policeman on its top. On each side there were a clock and four traffic
lights: red, blue (instead of amber), green and white. The white light allowed crossing
for pedestrians. The traffic signal even increased congestion due to curious onlookers in
the first weeks in operation.

Figure 22: Traffic signal tower at Potsdamer Platz, Berlin, 1925. (Source: Bun-
desarchiv, Bild 102-01702)

Traffic signals in other metropolises followed, e.g. Milan in 1925, London and Vienna
in 1926, Munich and Prague in 1927, Bremen and Nuremberg in 1928, Barcelona in
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1929 and Moscow, Leningrad and Tokyo in 1930. Smaller cities like Helsinki or Basel
obtained their first traffic signals in the 1950s.

In Europe the first traffic signals especially for pedestrians were established in Copen-
hagen, Denmark in 1933. But these traffic lights still resembled small sized traffic signals
for automobiles. On February 5th, 1952 the first automatic pedestrian lights display-
ing the famous ‘Walk’ / ‘Don’t Walk’ were set up in New York City. Meanwhile, Karl
Peglau, Chief Psychologist of German Democratic Republic’s Traffic Authority, thought
of pedestrian lights suitable for children. On October 13th, 1961, he presented the first
Ampelmännchen pictograms (see Figure 23). The traffic lights were upgraded with a
mask that shows the silhouette of a man. The red man with his outstretched arms
looks like a crossing guard, the green man is walking energetically. Starting from Berlin,
the Ampelmännchen spread over the GDR. In 1982, it became a TV star in the reg-
ularly broadcasted children’s bedtime television program Unser Sandmännchen. Once
in a month, Stiefelchen and Kompasskalle entertained with stories about road safety.
At the Czech festival for road safety education film in 1984, this series won the Special
Award by the Jury and the Main Prize for Overall Accomplishments [77]. Four decades
after its introduction, Daniel Meuren of the German weekly Der Spiegel described the
Ampelmännchen as uniting ‘beauty with efficiency, charm with utility, sociability with
fulfilment of duties’ [113]. Although the Ampelmännchen was the best pedestrian sig-
nal from a psychological point of view, it did not become a worldwide standard. Yet,
optically poorer pictograms can be found in a lot of cities around the world.

Figure 23: The Ampelmännchen.

4.1.2 The language of traffic signals

There is no unified terminology in the field of traffic engineering. Even when considering
traffic signals there is no unified notation. John Q. Public is speaking of traffic lights,
stoplights, traffic lamps, traffic signals, stop-and-go lights or even semaphores. But also
the notation used by traffic scientists varies from country to country. Touching other
scientific fields like mathematics, physics or psychology the number of terms used in
traffic theory increases further. Fortunately, following this thesis only requires basic
knowledge of traffic terms and we fix the notation in this section.

For further information, we refer to official handbooks, in particular the Highway
Capacity Manual for the United States of America [146] and the Handbuch für die Be-
messung von Straßenverkehrsanlagen (HBS) [60] as well as the Richtlinien für Lichtsig-
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nalanlagen (RiLSA) [61] for Germany. There are also several good textbooks on traffic
and traffic signals, e.g. [46, 69, 76, 130, 141]. More compactly, Warberg et al. [149] and
Papageorgiou et al. [124] present surveys on traffic signal optimization.

Mathematically, we model the road network of a city as a directed graph G = (V,A).
The nodes v ∈ V represent the intersections. The arcs e ∈ A correspond to the connect-
ing roads. Each arc e has a capacity u(e) and a transit time t(e) which is derived from
its length and the speed limit.

Traffic signals are signaling devices positioned at road intersections (or other locations,
e.g. pedestrian crossings) to control competing flows of traffic and to regulate the right
of way.

Traffic signals at intersections are characterized by various parameters. The most
important ones are cycle time, red-green split , order of the phases and the offset between
traffic signals at adjacent intersections. Each single traffic light has a characteristic
sequence of red and green that appears periodically with cycle time Γ. The proportion
between red and green is called red-green split. All traffic lights at an intersection are
grouped together to signal groups which again are grouped together to a traffic signal.
The (interior) offset of their sequences is fixed to avoid collisions. These parameters are
depicted in Figure 24.

Despite amber phases are depicted in the diagram, we do not use them further to
avoid unnecessary complications. For our models we add this safety relevant times to
the red phase.

W

X Y

Z

W
X
Y
Z

ΨY/Z

cycle time Γ

Figure 24: Signal plan for an intersection. Each of the four directions has its own
signal group W,X, Y, and Z. Each group can consist of several traffic lights, e.g. a
light for each lane. This signal has cycle time Γ. Green and red times are depicted
in the diagram. At phase shifts there is also a short time of amber. The green phase
of Z is extended, for example to enable left-turning. Time is measured relatively to
a fixed point during one cycle. Ψ denotes the interior offset of a traffic light, i.e. the
relative point in time this signal turns green. Thus, ΨW = ΨX = 0 and ΨY = ΨZ .

If all traffic signals in a network have the same cycle time, one can also look at the
offsets of the intersections with respect to a global system time. That means, given a
fixed signal plan for an intersection, the offset of this intersection is the time span that
the start of this plan is shifted with respect to the global system time. Let a car need t
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units of time to bridge the distance between two consecutive intersections. If the green
phase of the second traffic signal group starts exactly t time units after the green phase
of the first one, the car experiences a green wave.

W1

X1

Y1

Z1

W2

X2

Y2

ρ1

ρ2

(node) offset

(link) offset φY2,Z1

Figure 25: Signal plans for two traffic signals. The signals have offsets of ρ1 and
ρ2 relative to a global system time. Therefore, the signal group W2 at signal 2
turns green exactly ρ2 − ρ1 time units after the signal group W1 at signal 1 does.
Furthermore, it is assumed that one may travel from intersection 2 facing signal
group Y2 on link e to intersection 1 facing signal group Z1. When the difference
φY2,Z1

= φe is near to the travel time modulo Γ on the corresponding link we have
a progressive signal setting.

The offset parameters for our study are depicted in the signal plans in Figure 25. To
determine all points in time a signal turns green, one has to add the (node) offset of
the intersection, the (interior) offset of the signal group and an integer multiple of the
cycle time. The link offset φX,Y denotes the relative difference between offsets of two
consecutive traffic lights along a road (link).

All of these parameters can be used for traffic signal optimization. In this thesis we
will concentrate on optimizing the offsets of all traffic signals in a network and we assume
all other parameters to be fixed.

Additionally, we assume a unified cycle time at each traffic signal. Note that this is
not a hard restriction; if traffic signals in the network have different cycle times, then
the least common multiple of all cycle times can be used as a unified cycle time instead,
which, on the other hand, may significantly increase the size of the model.

Let the street network be represented by a directed graph G = (V,A) with node set
V and arc set A. We will use the notation in Table 1. We also refer to the sequence of
red and green lights as operating sequence of a traffic signal.
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n ∈ V = {1, . . . , N} intersection indices
e ∈ A = {1, . . . , M} link indices
Γ cycle time
ρn (node) offset of intersection n
φe edge offset on link e
X, Y, Z, . . . signal groups
Ψn

A interior node offset of signal A at intersection n
Θ = {θ1, . . . , θk} a set of commodities with source node, sink node, and

demand, i.e. θ = (sθ, zθ, dθ) ∈ V 2 × R+

fθ(e) link flow for commodity θ ∈ Θ on a link e
fe total link flow on link e, i.e. fe =

∑

θ∈Θ fθ(e)
ue capacity of link e
te free speed travel time on link e

Table 1: Notation for traffic lights and signals in a network model.

4.1.3 Safety constraints

The main intention of traffic signals is the safe guidance of road users at busy intersec-
tions. To avoid collisions at crossing streets several constraints have to be considered.
Obviously, two crossing directions should never have green at the same time. Further-
more, there has to be enough time to clear the intersection at phase shifts (clearance
time). The signal plan in Figure 24 takes this into account by a short time of red for all
directions. In practice there are further simple rules for signal plans, e.g. each direction
has to get green during one cycle. Other constraints are not that familiar, for example
if a light switches to green there is also a minimum time before it may switch back to
red.

Thinking of left-turners or pedestrians, one could write books about traffic signals
at a single intersection. Actually, there are some books, e.g. [61, 146]. Furthermore,
several rules are country-specific. Therefore, we leave the safety aspect to experts in this
engineering aspect. With all interior parameters fixed by a traffic engineer, a safe crossing
of an intersection can be guaranteed. Changing only offsets between consecutive signals
is non-hazardous. In this thesis we will concentrate on this and mainly shift complete
signal plans.

Additionally, this approach is also compatible to the infrastructure, commissioning,
and traffic guiding principle of many cities. Due to their complexity, most intersections
are designed independently. That is a few signal plans are developed for each intersection
based on local traffic information. For safety reasons, the signal plans are encoded in
read-only memory and the signal is operated by a micro-controller. Most signals are
connected to a central server. Among other things, this server monitors the traffic
signals and sends the global time signal. Therefore, it is easy to change (node) offsets.
Changing other parameters will involve a complete, expensive analysis and evaluation
of the affected intersection.
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4.1.4 Controlling traffic signals

There are three major types of traffic signal systems: pretimed, actuated and adaptive
signals. We briefly present their main properties and discuss their potential for opti-
mization.

Pretimed signals. Pretimed signals use fixed signal plans. Most pretimed traffic signals
have several plans for different daytimes. Assuming stable demand within a certain time,
they provide an excellent chance of installing green waves. Furthermore, no additional
hardware is needed. On the other hand, they cannot react to unexpected changes of
traffic density.

Actuated signals. Actuated signals are based on pretimed signals, i.e. the phase se-
quence is also fixed in a signal plan. Additionally, they are equipped with detectors
that measure the current traffic flow. They can lengthen or shorthen the green periods
accordingly. So, they can respond to traffic changes. However, it becomes impossible to
setup progressive signals. This can be partly repaired by fixing a common cycle time.
That is for each lengthening one of the next phases has to be shortened to keep the
cycle. In this case, a coordination in at least one direction is possible.

Adaptive signals. Adaptive signals completely rely on detector data. In the simplest
setting, the traffic light turns green when a car arrives at the sensor. More intelligent
systems also use historical detector data to make short time predictions of traffic volume
and several signals communicate and work together. First and foremost, key aspects are
reliable detection and stability of the system. Additionally, one hopes that these systems
also provide low travel times for the road users. One main advantage of adaptive traffic
signals is the possibility to integrate a priority for public transport. For instance, a phase
can be skipped to directly give green to a bus or tram. Summarizing, adaptive traffic
signals are very competitive at low traffic flow, e.g. at night. At rush-hour, the quality
depends on the ability to cause green waves itself. This also means that an adaptive
traffic signal setting falls back to a pretimed signal in this situation.

4.2 Traffic assignment

We cannot optimize traffic signals without discussing traffic assignment . Traffic assign-
ment deals with route choices of the road users and describes the distribution of traffic
in the road network. Traffic assignment can be seen from an administrative point of
view, where a central authority tries to reduce the total travel time of the whole system.
Or it can be seen from a game theoretical point of view, where each road user decides
locally to optimize her/his experienced travel time. A precise definition will be given
after the introduction of the necessary parameters. Obviously, there is a feedback be-
tween the problem to coordinate the traffic signals and assigning traffic units to paths
in the network.
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4.2.1 Motivation

Most road users are interested in the fastest route to their destination. Locals often know
all the shortcuts in their home town. Assume, you have two routes to your destination
of equal length when traveling with free speed. Obviously, your route choice will depend
on the traffic volume on the particular route and the coordination of traffic signals along
this route. If one of the routes provides a green wave, you will probably arrive much
earlier. Consequently, every change of pretimed signal plans may influence the travel
times in the road network and thus, it may also influence the road choice of the users.

The associated aging of pretimed traffic signal plans [15] is very important but often
unappreciated in the optimization of traffic signals: It can be observed that some traffic
signal coordinations, once having been very efficient, become worse over time. Increasing
traffic in general and road users changing to optimized arterial roads lead to higher
waiting times and may disturb the fine-tuned coordination.

Therefore traffic signal coordination and the traffic assignment should be considered
as one single optimization problem. Hereby, traffic signal coordination means an opti-
mal choice of the parameters of the traffic signals such that the road users reach their
destinations as fast as possible. Traffic assignment describes the corresponding traffic
pattern.

4.2.2 System optimal flows

We use flow and multicommodity flow to define traffic assignment. In the notation of
Table 1, a flow is a function f : A → R≥0 that has to fulfill capacity bounds and flow
conservation constraints. We also require that the demands of all the commodities θ ∈ Θ
have to be satisfied. In the multicommodity case capacities are shared by the different
commodities, i.e.

∑

θ∈Θ fθ(e) = f(e) ≤ ue. Furthermore, a travel time function te is
given for each link.

A traffic assignment problem is the distribution of traffic flow in a street network satis-
fying demands of flow between origin and destination pairs of nodes. Assignment meth-
ods are looking for an optimal way to distribute the traffic flow in the network according
to different objective functions. One option for this objective function is to minimize
the total transit time spent by all flow particles in the network,

∑

e∈A f(e)t(f(e)).

In the following, we address the real-world application by using the notation road user,
traffic participant, and traffic flow. These terms correspond to flow unit, flow particle,
and flow in the theoretic model, respectively.

It matches to our experience that the travel time on a road is not independent of the
traffic flow on this road. The more cars are on the road, the more time we need. Thus,
te(f(e)) : R+

0 → R+
0 is the travel time function describing the time a flow particle needs

to traverse arc e in dependence of the amount of flow f(e) on arc e.

In the literature, these travel time functions are also called link performance function
or latency function [46, 69, 141]. Commonly, they are assumed to be non-linear, convexe,
increasing functions (cf. Figure 26). Assume, we are equipped with link performance
functions for each link. An assignment of flow to arcs, that minimizes the total travel time
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of all road users with respect to these travel time functions, is called system optimum.
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Figure 26: A typical link performance function. Starting at the free speed travel
time, the average travel time increases with increasing flow. Sometimes the capacity
bound on the link is implicitly forced by a pole at f(e) = ue. Note that the link
performance function does not capture traffic signal coordination or variation of
flow values over time.

4.2.3 User equilibria and Wardrop’s principles

While the system optimal solution is good for the system as a whole, it might be unfair
to single users that could improve their own travel time by changing to a faster path.
However, they will disturb traffic flow there and thus, the total travel time would increase.

In 1952, Wardrop [150] characterized the difference between a system optimum and
an user equilibrium for a fixed origin-destination pair with two simple principles. His
first principle reads as follows:

The journey times on all the routes actually used are equal, and less than
those which would be experienced by a single vehicle on any unused route.

A flow which fulfills this principle for each commodity is called user equilibrium flow.
Please note that Wardrop considered uncapacitated networks. In contrast, Wardrop’s
second principle characterizes the system optimum.

The average journey time is a minimum.

This concept of user equilibria is often used for modeling the behavior of traffic in
street networks, where experienced users adjust their paths to minimize their own travel
times until a stable situation is reached. A similar concept was developed by Nash at
the same time [120]. Obviously, there is a gap between the value of the ‘selfish’ user
equilibrium and the system optimum. This gap is sometimes called price of anarchy . A
detailed survey on selfish routing can be found in [132].
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A famous example for the impact of selfish routing is Braess’s Paradox [23]. Braess
constructed a small network with load dependent travel times. Surprisingly, adding a
new link to this network increased the average travel time. Even more surprisingly, this
effect was also observed in real world traffic, e.g. in Stuttgart, New York, and Seoul [99].
We present a version of Braess’s Paradox in Figure 27.

s

v1t = f

v2
t = 1

t = 0 z

t = 1

t = f

Figure 27: Example for Braess’s Paradox. The additional road is dashed. Travel
times are displayed at the links. Each road has capacity ue = 1 and we send one
flow unit from s to z, i.e. Θ = {(s, z, 1)}. Without the new road we should send 0.5
flow units on the upper and on the lower road each. This yields a total travel time
of 2 · (0.52 + 1 · 0.5) = 1.5. With the new road, every flow particle can improve its
own travel time from f + 1 to 2f by switching to the route (s, v1, v2, z). However,
this will slow down the other particles on the links (s, v1) and (v2, z). Finally, all
flow particles choose the new road, i.e. f = 1, yielding a total travel time of 2. Thus,
the price of anarchy is 4

3 .

The problem of finding the user equilibrium is referred to as equilibrium traffic as-
signment problem. Due to the properties of the link performance functions (e.g. non-
linearity), the traffic assignment problem cannot be solved by simply applying standard
network flow algorithms but requires more involved approaches. For continuous, non-
decreasing latency functions in uncapacitated networks, Roughgarden and Tardos [133]
provide an existence theorem. Moreover, it can be shown, that a flow is at a Nash
equilibrium if it solves the following convex optimization problem.

min
∑

e∈A

∫ f(e)

0
te(x)dx

s. t.
∑

e∈δ−(v)

fθ(e)−
∑

e∈δ+(v)

fθ(e) = 0 ∀θ ∈ Θ, ∀v ∈ V \{sθ, zθ}

∑

e∈δ+(sθ)

fθ(e) = dθ ∀θ ∈ Θ

∑

e∈δ−(zθ)

fθ(e) = dθ ∀θ ∈ Θ

fθ(e) ≥ 0 ∀e ∈ A

For non-decreasing link performance functions the objective is obviously convex.
Roughgarden and Tardos [133] also provide bounds for the price of anarchy. Surprisingly,
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these bounds are independent of the network topology [131]. For affine linear travel time
functions the gap between system optimum and user equilibrium is at most 4

3 .

Correa, Schulz, and Stier-Moses [37] extend the results of Roughgarden and Tardos
to capacitated networks. Whereas flow values are often bounded implicitly by a pole
in the travel time function in the former approach, we now consider a strict capacity
bound. Consequently, Wardrop’s first principle is no longer valid, since the capacity
of the shortest paths may be reached first. Remaining flow particles have to choose
longer paths. Even in the case of linear travel time functions, the value of capacitated
user equilibria is no longer unique and the price of anarchy, i.e. the ratio of cost of
the worst user equilibrium to that of the system optimum, jumps to infinity. Correa
et al. characterize capacitated user equilibria by the non-existence of unsaturated paths
that are shorter than any path actually used. They focus on a special convex sub-class
of equilibria, based on a mathematical programming approach by Beckmann, McGuire
and Winsten [14].

Please note that the described static traffic model does not capture any time-dependent
behavior. For example, (static) link performance functions cannot handle platoons of
traffic arriving at different points in time. All flow particles on a particular road are as-
sumed to experience the same travel time. Thus, these static link performance functions
are also not capable of capturing the dynamic properties of coordinated traffic signals.

4.2.4 Dynamic Flows

So far, the presented static assignment techniques conflict with the dynamics of traffic
signals. Therefore, models are needed that can capture the development of flow in a
timely fashion. One approach are dynamic flows or flows over time. Already Ford and
Fulkerson [59] considered flows with a time component. An excellent survey on dynamic
flows is presented by Skutella [142].

Now, a flow over time f with time horizon T is a (Lebesgue-integrable in the second
parameter t) function f : A × [0, T ) → R+

0 . f(e, t) is the rate of flow or load entering
link e at time t. Flow particles entering e at time t arrive at the head of e at time t + te.
The amount of flow that passes a link e can be calculated as

∫ T
0 f(e, t)dt.

We now have two possibilities to introduce a capacity for dynamic flows. We may
simply restrict the flow rate, i.e. f(e, t) ≤ u(e). On the other hand, we may restrict

the amount of flow that enters a link during a certain period of time, i.e.
∫ t̄+τe

t̄ f(e, t)dt
∀t̄ ∈ [0, T − τe). Thus, there can occur peaks in the flow rate which balance over time.
Dynamic flows with such a capacity constraint are also called bridge flows.

Furthermore, flow conservation has to ensure that flow cannot leave a node before
it arrives there. Additionally, one assumes that flow can be stored in a node for some

time. In detail, for a non-terminal v ∈ V ,
∑

e∈δ−(v)

∫ t̄−te
0 f(e, t)dt ≥∑

e∈δ+(v)

∫ t̄
0 f(e, t)dt

∀t̄ ∈ [0, T ). If we require a strict equation, then flow must not be stored at intermediate
nodes. Demands are handled similarly.

If the flow is induced by a static flow, i.e. it uses only s-z-paths Ps,z with a constant
flow rate in the time interval [0, T − t(Ps,z)), then the dynamic flow is called temporally
repeated flow .
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In this setting, various interesting problems appear. In the Maximum Flow over

Time problem, we want to send as much flow as possible from a source s to a sink z
until the time horizon T is reached. This problem can be solved with the Ford-Fulkerson
algorithm for static maximum flows. In detail, one computes a path decomposition of a
maximum flow on a slightly modified network and derives a temporally repeated flow.

Earliest arrival flows are a variant of this problem. The goal is to find a single s-z-flow
over time that simultaneously maximizes the amount of flow reaching the sink z up to
any time t ≥ 0. Surprisingly, such flows exist. However, it seems unlikely that they can
be computed in polynomial time [142].

The Quickest Flow problem corresponds to a transshipment in minimum time. For
a single source and a single sink, it can be computed efficiently by maximum flows over
time and a Megiddo search of the time horizon [26]. Surprisingly, for multiple sources
or sinks, this problem is not equivalent to a maximum flow over time. However, Hoppe
and Tardos present an efficient algorithm [78, 79].

Minimum cost flows over time are NP-hard [90]. Considering multiple commodities,
Maximum Flow over Time is also hard [75]. Klinz and Woeginger [91] study a slightly
modified integral version of dynamic flows. Here, arcs are called dedicated if flow blocks
an arc as long as the transmission continues. This also yields NP-hard problems.

Many dynamic flow problems can be solved using time-expanded networks. Already
Ford and Fulkerson introduced time-expanded networks in their seminal work on network
flow theory [59]. In this expanded network, for every node, several copies of this node are
added to the graph, one for each desired time step. These nodes are connected by arcs,
where the various copies of the vertices are connected accordingly to the travel times
of the original arcs. Additionally, arcs connecting consecutive copies of the same node
may allow waiting. We give a precise definition and Figure 32 shows a simple network
together with its time-expanded network.

Definition 4.1 (Time-expanded network). Let G = (V,A) be a network with ca-
pacities u : A → N and non-negative integral transit times tl. For a given time horizon
T ∈ N, the corresponding time-expanded network GT = (V T , AT ) is constructed as fol-
lows.

1. For each node v ∈ V , we create T copies v0, v1, . . . , vT−1, thus V T = {vt|v ∈ V, t ∈
{0, 1, . . . , T − 1}}.

2. For each arc e = (v,w) ∈ A, we create T − te copies l0, e1, . . . , eT−te−1 where arc
et connects node vt to node wt+te . Arc et has capacity u(et) = u(e).

3. Additionally, there are waiting arcs from vt to vt+1 ∀v ∈ V and ∀t ∈ {0, 1, . . . , T −
2}.

The big advantage of flows over time compared to static flows is the opportunity to
capture the complete time-dependent behavior of the journey of a flow unit in a given
network. In contrast, a static flow can only describe the time-independent behavior of
this journey. This yields a very powerful approach and it was already suggested to use
flows over time in traffic networks [94] or logistics [57]. Our new model for traffic signal
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Figure 28: Simple example of a 4-vertex graph together with its time-expanded
network for time horizon T = 8. The network is presented in a perspective view.
The graph itself is embedded in the xy-plane. The time is displayed along the
vertical t-axis. Corresponding arcs have the same color. Waiting arcs (black) allow
buffering of flow units in a node for some time.

coordination in Chapter 5 will be based on this concept. Unfortunately, the model for
dynamic flows quickly becomes very large and a different input (e.g. dynamic demand)
is needed. Thus, we cannot apply this approach one-to-one to traffic signals.

4.2.5 Dynamic traffic assignment

Dynamic traffic assignment model (DTA; see, e.g., [34, 144] for surveys) is a general
term for several similar approaches which try to extend traffic assignment with static
link performance functions to a dynamic model with a time component. The travel time
which a road user experiences on a road now depends on the arrival time of this traffic
participant at the road and the actual traffic flow on this road at this time. Consequently,
a road user chooses its route and a departure time.

DTA models have in common that they try to compute a user equilibrium with an
iterative approach. However, the methodologies are quite different, but they share a
similar overall model structure. One may identify three major steps [34]. Firstly, given
a set of route choices, the resulting travel times are computed. Various network loading
models including both analytical and simulation-based approaches are used in this step.
For example, several queueing models are tested [144]. Secondly, the new shortest routes
are computed for each origin-destination pair and each departure interval with respect
to the new link travel times. Thirdly, given the updated route sets, vehicles are assigned
to new routes. If the stopping criterion is not met, then one returns to the first step.

Summarizing, these models focus on varying demand over time, but they still use
standard travel time functions. Unfortunately, as pointed out in [144], the queueing
models lead to non-monotone and non-differentiable route travel times. Hence, solutions,
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if they exist at all, are hard to find, non-unique, and heuristic solution methods are
suggested. Furthermore, some DTA models cannot ensure that a user on a link who
enters the link earlier than another user will also leave it sooner than the second user.

Additionally, these approaches do not–to the best of our knowledge–capture changing
coordinations of traffic signals. Some of them do not provide the accuracy to handle the
very fast changes in traffic density caused by traffic signals. But traffic signals and their
coordination are the main reason for platoons of cars in inner-city traffic. Thus, there
is a time-dependent change of flow on an even finer level. It seems to be essential that
a model for traffic signal coordination also captures these platoons.

4.2.6 Computing assignments

As already mentioned in the introduction (Section 1.2.2), several combinatorial algo-
rithms are known for the single commodity maximum flow problem. Similar approaches
can be used to solve assignments with linear cost functions, but additional difficulties
occur. In the style of Ford and Fulkerson, one may use a residual network and aug-
menting paths. Here, cycles with negative total cost are a crucial problem. These cycles
can be canceled by pushing flow backwards on them. Always augmenting flow on cycles
with minimum mean cost yields a polynomial running time. Alternatively, negative cost
cycles can be avoided by using the successive shortest paths algorithm which yields a
pseudo-polynomial running time. Using capacity scaling, this algorithm can be used
to compute minimum cost flows efficiently. A detailed presentation of the algorithms
mentioned in this section can be found in [2].

Minimum cost flows are easily formulated as a linear program and thus, they can be
computed with the simplex method. This approach can be accelerated significantly by
exploiting the special structure of the underlying network problem [2]. Given a flow
x, an arc e is called restricted arc if x(e) = 0 or x(e) = u(e). A flow x is a spanning
tree solution if there exists a spanning tree such that every non-tree arc is a restricted
arc. One can show that the problem always has an optimal spanning tree solution. The
network simplex algorithm (see, e.g., [2]) starts with a feasible spanning tree solution and
improves it iteratively maintaining this property until it becomes optimal. Besides linear
programming multicommodity instances can be solved with approximation algorithms,
e.g. [67].

Convex cost functions can be approximated with piecewise linear functions. Subse-
quently, an arc with a piecewise linear cost function can be transformed to a set of
parallel arcs with different linear cost functions. For each linear piece of the original
function, an arc with a linear cost function with the same slope is used. The capacity
is adjusted to the length of the interval of the linear segment. If a small amount of flow
is assigned to these arcs, only the cheapest arc, i.e. the one with the lowest slope, is
used. If the flow value is increased, then the arcs with higher cost functions have to
be used, too. Combining both steps with an algorithm of the first passage of this sec-
tion yields a combinatorial approximation algorithm for the minimum cost flow problem
with convex cost functions. Due to the substantially increased network size, the running
time of this algorithm is not polynomial in the input size. A generalization of the ca-
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pacity scaling algorithm with successive shortest paths solves the convex flow problem
efficiently [2]. Alternatively, convex programming can be used to handle convex cost
functions exactly [122].

Besides these combinatorial and mathematical programming approaches, there exist
various heuristic methods using, e.g., simulation and genetic programming for deter-
mining traffic assignment solutions. The agent-based simulation tool MATSim (cf. Sec-
tion 4.3.5) is an example for one of these strategies, where assignment is realized by an
iterative simulation and replanning. On the one hand, the traffic assignment approach
in MATSim is similar to some DTA models. On the other hand, MATSim provides
features like public transport, traffic signals and many more. Thus, although we only
summarize the assignment approach here, MATSim should not be reduced to a pure
assignment model.

Actually, the non-cooperative road users (also known as agents) of MATSim play a
game on the underlying network to find user equilibria. In the simplest case, each link
has a constant travel time and it is modeled by a queue. An agent is directly assigned
to this queue when it enters the link and it has to stay in the queue until the travel time
has expired. Further, the storage of a queue and the number of agents that can leave a
queue in a certain time interval are limited. The queue also guarantees the first in first
out property. Hence, agents can move through the network in a timely fashion. The
model is extended with lanes, intersections and traffic signals.

Each agent is equipped with a set of plans. Each plan consists of activities, i.e. a
destination in the network and a duration, and a route connecting these activities. In
every iteration step, each agent chooses one plan with respect to a score for execution.
All chosen plans are evaluated simultaneously in a simulation run. The experienced
travel time is used to update the scores of the plans. Afterwards, a fixed amount of road
users may change their plans by varying the departure time or computing an alternative
route. This process is repeated until a convergence criterion is reached.

Summarizing, MATSim is built-up around an evolutionary algorithm and the assign-
ments computed by MATSim can be interpreted as stochastic user equilibria [117].

This concept admits to compute user equilibria for very complex systems where not all
relations are known in terms of a closed mathematical formulation. However, discussing
these approaches more detailed we would slightly drift away from a strict mathematical
modeling of traffic flow and simulation issues would come into play.

4.3 Optimizing traffic signals

The idea of coordinating traffic signals is nearly as old as the traffic signal itself. As
mentioned in the introduction of this chapter, Adolph [1] patented his concept of ‘green
waves’ in 1925. But it was not before 1964, when Morgan and Little [116] started a
broad analysis and presented a graphical solution for calculating maximal time slots and
bandwidths for a single road.

By now there exist various models to transform the concept of a ‘green wave’ to a whole
network of roads. It is impossible to discuss all of them here. However, we will give a
survey on the–to the best of our knowledge–most important and pioneering approaches.
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In the last decades, a number of models were presented, allowing for different phenom-
ena of urban traffic. The concepts in this section can be distinguished by various points
of view. We will present heuristic approaches as well as strict mathematical program-
ming approaches. Other models use direct search techniques. The models will address
different parameters (offset, red-green split, cycle length and combinations thereof), sce-
narios (single intersections, arterial roads, networks), and signals (pretimed, actuated,
adaptive). They try to optimize different objectives (minimizing travel time, delay,
number of stops, fuel consumption, and combinations thereof; maximizing greenbands).
Furthermore, we have to distinguish between theoretical and practical approaches.

4.3.1 Measures of performance

The performance of traffic signal optimization can be measured by different parameters.
One of the first measures used in the literature is the bandwidth of greenbands (cf. Fig-
ure 29). A greenband consists of several consecutive intersections on a certain route and
a time interval such that all road users arriving at the first signal during this time slot
experience a green wave on this route. Bandwidth is the width of the greenband, i.e. the
time span in which the green wave is available. However, it is difficult to apply this
concept on networks. Nowadays, the most common measure is the average delay or the
number of stoppages. A weighted combination of those has also been used.

When considering the traffic assignment problem and an optimal traffic signal coor-
dination simultaneously, however, measuring delays and stoppages is not a good choice.
Traffic participants may now choose arbitrary routes. Thus, taking only stops and delay
into account, a road user may choose a very long detour through the network just to
avoid stopping or waiting in front of a red traffic light. This is rather unrealistic as most
road users are interested in the fastest way to their destination. Therefore, one may
choose the total or average travel time (transit time + delay) as the measure of quality
of the solution. However, this measure is rarely used in the literature.

Furthermore, Sun et al. [143] have shown that the number of stops and delays are very
sensitive to changes of the cycle time. Long cycle times minimize stops while short cycle
times lead to less delay. Thus, if combining these two measures in an objective function,
slight changes in the weighting may lead to very different coordinations.

There are also several other measures of performance, e.g. preferences for public trans-
port and pedestrians or fuel consumption, that are not discussed in this thesis.

4.3.2 Optimization of pretimed signals

Assuming fairly stable demands within certain divisions of time, the usage of pretimed
traffic signals appears reasonable. All approaches presented in this section introduce a
simplified traffic model and suggest a solution method. However, they vary significantly
in the model assumptions and the optimization techniques.

In 1964, Morgan and Little [116] presented MAXBAND, a graphical method for max-
imizing bandwidth. The concept of bandwidth is displayed in Figure 29.

Little [106] developed this approach further, using mixed-integer programming. This
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Figure 29: Time-space-diagram showing the coordination of four consecutive traf-
fic lights. Many traffic planning tools visualize signal coordination in this way. The
distance is displayed on the horizontal axis, the time moves on in vertical direction.
Cars in the light blue area arrived at all predecessing signals at green. But only
in the dark blue zone, there is a green wave through all four signals. This area is
the greenband. Its width is called bandwidth. Some optimization approaches like
MAXBAND try to maximize this parameter.

program adjusts optimal values for offsets and a common cycle time for a bi-directional
road. Two years later, a graph-theoretical model for minimizing delay was developed by
Allsop [4]. Hereby, the solution is successively extended from a solution of a sub-network.

Shortly after, Robertson [128] presented his theoretical work on the optimization of
offsets. He uses a simplified simulation approach and a genetic algorithm to optimize
this traffic signal parameter. These results led to the development of TRANSYT7, until
now a most widely used tool for inner-city traffic optimization. TRANSYT provides
mainly two different heuristic techniques to improve a so-called performance index. It
is presented more detailed in Section 4.3.5.

Gartner et al. [68] presented a mixed integer programming approach for network co-
ordination in the mid-1970s. They developed MITROP8, which was one of the first
approaches for networks that used integer programming. Gartner et al. introduce sat-
uration deterrence functions to capture the influence of offsets. Further, they propose
a piecewise linear approximation of these functions such that a mixed integer linear
program can be formulated. The integer programming formulation also contains cycle
constraints for each cycle in the network, i.e. the algebraic sum of the edge offsets along
this cycle has to be an integral multiple of the cycle time. The importance of these
equations is easy to understand. Assume to go for a round trip on an arbitrary cycle.
Let φi be the ith edge offset on this cycle, i.e. the second signal turns to green exactly

7TRAffic Network StudY Tool
8Mixed Integer TRaffic OPtimization
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φ1 time units after the first signal. The third traffic signal turns to green φ2 time units
after the second signal and thus, φ1 + φ2 time units after the first signal. On the one
hand, if the round trip is finished and we are standing in front of the first traffic signal,
then all edge offsets have summed up. On the other hand, the first traffic signal is still
in cycle with itself, i.e. if it turns green, then a certain number periods have passed by.
Hence, cycle constraints ensure the consistency of edge offsets. As a consequence, an
integral variable is needed for every cycle in the network.

In 1977, Allsop and Charlesworth [5] presented an example that coordination and
assignment interact. They suggest an iterative approach for optimizing both problems.

Serafini and Ukovich [139] studied the scheduling of periodic events. As an outcome,
they also presented an involved mathematical model for the coordination of pretimed
traffic signals [140] in 1989. In their context, phase changes of traffic signals are events.
The authors define several kinds of constraints for signals, conflicts, coordination, and
cycles. More precisely, they introduce a lower and an upper bound for the link offset on
each road. Thus, their approach is a feasibility problem.

Recently, Wünsch et al. [95, 115] presented a further development of the approach of
Gartner et al. [68]. They replace the saturation deterrence functions by a more realistic
platoon model. In their model flow units are bundled during the red phase of a traffic
light. When the signal switches to green, the flow particles resume their journey together
as a platoon. Hence, they will also arrive at the next intersection as a platoon. This
approach admits a very realistic estimation of waiting times at traffic signals which are
derived as the integral over the queue length. For a fixed assignment, i.e. the waiting
time only depends on the offsets, a piecewise linear approximation of these offset induced
delays is used to turn the problem formulation into a mixed integer program. Here,
Wünsch [154] also focusses on the cycle constraints introduced by Gartner et al. [68].
Cycle constraints apply to every cycle in a network and street networks constists of a
huge number of cycles. Wünsch proves that it is sufficient to demand cycle constraints
on a subset of cycles which span all other cycles in the network. To accelerate the mixed
integer programming, he searches for minimal cycle bases which reduce the number of
integer variables.

4.3.3 Adaptive traffic signals

It is often seen as a handicap that pretimed traffic signals cannot react to fluctuations
in traffic flow, whereas traffic itself is seen as a stochastic process. Consequently, in the
last decades, big efforts have been made on developing highly adaptive traffic signals
which are able to react on changes in traffic volume immediately. The approaches differ
significantly from those of pretimed signals.

On the one hand, adaptive signal control can be seen as a problem of interdisciplinary
control theory. The usual objective of control theory is stability of the dynamical system.
A controller reacts on the input and tries to manipulate the system such that it follows a
reference without oscillating. The same is true for adaptive signal control. Primarily, the
system tries to avoid building up congestion. Furthermore, even a single road user should
get green within a certain amount of time. Optimization is more or less a secondary
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goal. Furthermore, real-time feasibility is a critical aspect for the applicability of these
techniques in practice.

On the other hand, one can also account the problem to online optimization. Thus,
all adaptive control strategies are heuristic techniques based on limited information.
However, hardly any analysis concerning this point of view can be found in the literature.
It would be very interesting to compare the heuristic solutions to optimal offline solutions.

Most solutions consist of a traffic model and a complex system of detectors and traffic
signals. They focus on the following questions:

• Which detectors are used?

• Where are these detectors placed?

• Which traffic signal gets which information?

• How does the signal react on the information?

These questions also include that information on traffic is propagated in the traffic
network in space and in time. Some systems also use historical data to predict future
traffic. Adaptive signal control techniques are often evaluated with the help of micro-
simulations which yields very realistic results.

There are several competing approaches for optimizing adaptive traffic signals. A
survey of common approaches is, e.g., presented by Friedrich [63, 64]. Representatively,
we discuss two recently published systems.

The first model is based on a cell transmission model for networks developed by
Daganzo in a series of papers [39, 40, 41, 42, 43]. The underlying cellular automaton
model was qualified for traffic theory by Nagel and Schreckenberg. In their famous
paper [119], the authors explain spontaneous congestions on freeways with help of the
modified one-dimensional binary cellular automaton rule 184. The name of the rule is a
Wolfram code. It defines the evolution of the states of the cellular automaton (cf. [105]).
Daganzo extends this approach to traffic networks with intersections. Further, he studies
gridlocks in this system. Almasri and Friedrich [6] extend this model with an adaptive
signal control. A genetic algorithm is used for optimization. Due to the high computation
time the limit for practical applicability is already reached for the comparatively small
test network with six intersections.

The second approach was recently presented by Lämmer [102]. The three basic com-
ponents are a local prediction of future traffic, a local optimization with a priority index
for the next phase, and a local stabilization to force an average and a maximal period.
This system is going to be tested in reality at seven intersections in Dresden, Germany.
Lämmer states stability as one of the main problems of adaptive systems. He suggests
an underlying pretimed signal coordination as a guideline to stabilize the system. Fur-
ther, he states that an adaptive system has to be runned below saturated traffic demand
to prevent degeneracy [103]. Therefore, offset optimization is also important for the
operation of adaptive traffic signals
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4.3.4 Simultaneous coordination and assignment

Most of the approaches presented so far did not consider assignment. But each change
of a traffic signal parameter will also change travel times for at least a few road users.
Allsop and Charlesworth recognized the feedback between an optimized coordination and
traffic assignment [5]. In 1977, they proposed an iterative approach. Signal timings are
optimized with TRANSYT. Afterwards, an equilibrium traffic assignment is computed.
These steps are repeated until no change in the coordination occurs. Obviously, using
heuristic methods iteratively, one may only hope to derive a local optimum. Even worse,
this approach may lead to a decline of network performance as shown by Dickson [48].

Despite the interaction of signal coordination and traffic assignment, only few research
was spent in the combined optimization. For example, Chiou [31, 32] presented a bilevel
formulation based on the approach of Allsop and Charlesworth. She uses a gradient
projecting method for calculating local optima. Further, she presents a subgradient
method for a non-smooth single-level formulation of the problem [33]. Recent results were
also made by Bell and Ceylan [16] as well as Teklu et al. [145] using genetic programming.

4.3.5 Tools

So far, we have seen several (theoretical) approaches for traffic signal optimization. In
this section, we will present some tools and software kits, that are actually used by traffic
engineers to optimize and control traffic signal systems.

Optimization. TRANSYT is a widely accepted software tool for modeling, analyzing,
and optimizing traffic signal settings. It is based on an approach by Robertson [128].
It is developed by the Transport Research Laboratory. TRANSYT supports several
sophisticated traffic models, including the Cell Transmission Model and the Platoon
Dispersal Model, to derive a so-called performance index (PI). Normally, this index
is a parametrized sum over stoppages and delays in the network. TRANSYT uses
optionally a genetic programming approach or a gradient search technique for improving
this performance index. On the one hand, the detailed objective function is seen as a
big advantage of TRANSYT since also other aspects like fuel consumption can be taken
into account. On the other hand, the obtained solution significantly depends on the
parameter choice of the user.

Another widely used traffic planning tool is VISUM, developed by ptv AG in Karls-
ruhe, Germany. It provides several tools for all kinds of inner-city traffic from a single
intersection up to a whole town. VISUM features various state-of-the-art static traffic
assignment techniques. The tool also supports the optimization of traffic signals, e.g. by
a plug-in based on the approach of Wünsch. Further, VISUM provides tools for planning
public transport or for estimating pollution.

Signal control. Of course, an offline optimization of traffic signals is not sufficient, the
signal have to be operated in practice. We briefly discuss two tools that are actually
used to control traffic signals. Both of them fall into the category of actuated signals.
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Since both systems are based on pretimed signals this also emphasizes the need for well
coordinated signals.

SCOOT9 was primarily developed by Bretherton et al. [80] and presented in 1981. It
uses TRANSYT to optimize green splits, offsets and cycle length in real time. Based
on prevailing traffic conditions SCOOT modifies those parameters in small steps to keep
track with changing traffic conditions. SCOOT is used all over the world and is still
enhanced.

A similar system mainly used in Germany is Sylvia+ [135]. This method is also based
on a coordinated pretimed signal coordination. Depending on the recent traffic, Sylvia+
can extend or shorten a single phase of the traffic signal. However, changing phase
durations in an arbitrary manner will completely disturb the underlying coordination.
Therefore, Sylvia+ uses a recovery algorithm to restore the common cycle. Whenever a
phase is extended, another phase in the same period has to be shortened by the same
amount of time. Thus, at least for one direction, a green wave can be maintained.

Simulation. Micro-simulation is essential in the development of new traffic signal coor-
dination methods. Not every coordination can be tested in practice. We briefly present
two simulation tools, namely MATSim and VISSIM, that we will also use to evaluate
our approach for signal coordination in Chapter 6.

The software MATSim is mainly developed at TU Berlin and ETH Zurich and is
a multi-agent transport simulation tool based on queue models. MATSim is a multi-
purpose simulation tool. Among others, it can be used for a traffic microsimulation in
inner-cities. It provides lanes, queues and traffic signals, but the dynamics of agents are
reduced to their bare essentials. It is capable of simulating large scale traffic networks
and computing traffic assignment using an iterative approach. See [112] for more details
on this software.

The tool VISSIM from ptv AG provides a microscopic traffic simulation with state-of-
the-art longitudinal dynamics and lane change models [126]. VISSIM is widely accepted
to produce very realistic results. It also supports several additional features like pedes-
trians and public transport which are far beyond our purposes. VISUM and TRANSYT
provide a link to VISSIM.

Despite their different simulation approaches, both tools provide measured travel times
for the commodities and they visualize congestion. Thus, we can use at least these
parameters to evaluate signal coordinations and to compare both tools.

4.3.6 Conclusions

There are many reasons for the usage of coordinated pretimed traffic signals. Considering
rush hour situations with high demand at every road, also adaptive coordinations will
fall back to fixed time coordinations. Furthermore, pretimed signal settings are the basis
for widely used actuated signal systems. Additionally, due to the high costs of sensor
technologies and a lacking acceptance of car-to-car or car-to-traffic-signal communication

9Split Cycle and Offset Optimization Technique
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for data privacy reasons, a complete adaptive control is out of range for many cities.
Thus, the importance of well coordinated pretimed signals will persist the next years.

On the one hand, most approaches for traffic signal coordination use heuristic methods
to improve the signal settings. This is especially true for the combined optimization of
signal coordination and traffic assignment. These models are somewhat unsatisfying
from a mathematician’s point of view. Despite the solutions operate well in practice,
one has no guarantee of optimality. On the other hand, models designed for exact
solution methods often make inaccurate assumptions on the traffic flow model. Thus,
one can perhaps solve the model exactly, but the applicability is sometimes disputable.

4.4 Complexity of signal coordination

Closing the short survey on traffic signal optimization, we discuss the complexity of the
signal coordination problem in this section. The formulation and analysis essentially
depends on the chosen model. Various proofs of complexity for different approaches can
be found in the literature. All of them have in common that the offset optimization
problem for traffic signal coordination is NP-hard. Network coordination is closely
related to the Periodic Event Scheduling Problem (PESP). Serafini and Ukovich [139]
proved NP-completeness for the PESP by reducing the Hamiltonian Cycle Problem.
Wünsch [154] provides a reduction from PESP to his formulation of the Network Signal
Coordination problem.

In the following we show that traffic signal coordination is an NP-hard problem also
in our traffic model. This result is presented before the introduction of our model, since
it also applies to more general models and it is not restricted to our approach. More
precisely, we consider traffic signal coordination in a general dynamic network flows
setting with constant transit times. The network contains traffic signals where waiting
is possible. Building up on this assumption we define the signal coordination problem
as follows.

Problem 4.2 (Signal Coordination Problem).
Input: Network G = (V,A) with arc capacities u(e) and travel times consisting of a
constant transit time t(e) per arc plus waiting time at the intersection; a set of traffic
signals with arbitrary but fixed operating sequences at some of the intersections vn ∈ V ,
n ∈ {1, . . . , N}; a cycle time Γ that is the same for all traffic signals; commodities θ ∈ Θ,
θ = (sθ, zθ, dθ) with origin sθ, destination zθ, demand dθ and fixed routes.
Output: A dynamic flow on the fixed routes and a set of offsets {ρ1, . . . , ρN} which
minimize the total travel time, i.e. the sum over the travel times of all road users.

Theorem 4.3. Offset optimization of traffic signals is NP-hard, even with travel times
consisting of constant transit time per arc plus waiting time at the intersection.

Proof. First, let us fix the decision version of the Signal Coordination Problem:
Given a network G = (V,A) with capacities, travel times, commodities and traffic signals
as in Definition 4.2 and a value t∗, is there a coordination (set of offsets) that induces a
total travel time equal to or less than t∗.
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We reduce the Signal Coordination Problem from the 3-Partition Problem

which is NP-complete [66]. The problem is to decide whether 3m integers can be
partitioned into m sets of 3 integers of equal sum. More formally:

3-Partition Problem:

Input: multiset S = {x1, . . . , x3m} of 3m integers
Question: Is there a partition of S into disjoint triples S1, . . . , Sm that all
have the same sum C = 1

m

∑3m
i=1 xi?

The 3-Partition Problem remains NP-complete when C
4 < xi < C

2 ∀i ∈
{1, . . . , 3m}.

Given an arbitrary instance S = {x1, . . . , x3m} of 3-Partition we show how this
instance is used to build an instance of the the Signal Coordination Problem such
that the Signal Coordination instance has a solution if and only if the 3-Partition

instance has a solution.

Figure 30 shows the network used for the reduction. We create 3m roads with a
demand of xi, (i = 1, . . . , 3m) flow units in each road (C = 1

m

∑3m
i=1 xi and C

4 < xi <
C
2 ∀i ∈ {1, . . . , 3m} as above). There is only one path to the destination for each
commodity, thus route choice is fixed. Each road has a transit time of zero time units
and there is a traffic signal at the end of each road that has a cycle time of m time units
and is green for exactly one time unit in each period. Waiting is only allowed at the
traffic signals. The capacity of these m roads is not bounded, thus all demands may
pass the signal during one period.

However, all roads lead to a narrow road e, which starts after the signals and ends at
the destination. This road has a capacity of u(e) = C flow units per time unit.

...

x1

traffic signals

destination

demands

x2

x3
u(e) = 1

m

P

xi

x3m

Figure 30: Traffic network for reduction from 3-Partitioning. The narrow road
at the exits forces perfect coordination.

As the capacity of the narrow road cannot be exceeded, flow units will have to wait
in front of the traffic signals when this small road at the exit is congested. If too much
traffic signals turn green at the same time, flow units will even have to wait in front of
green signals. More precisely, each signal is green for only one time step within the time
horizon m. To make sure that no more than m time steps are needed for getting all flow
units to the destination this one time step has to be used for sending all flow units of a
commodity at once through the signal. Since xi > C

4 , no more than three commodities
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can be sent at once. Hence, exactly three signals have to be green at the same time step
such that the capacity of the narrow road is exhausted.

Thus, if the related 3-Partition Problem has a Yes answer, we can use the exit
road at maximum capacity all the time and we need m time units to empty the network.
If the 3-partitioning has no Yes solution, then there will be congestion in the network
and flow units will have to wait for the next green cycle yielding a higher total travel
time. Consequently, the Signal Coordination Problem is at least as hard as the
3-Partition Problem.

When allowing route choice and by considering related hard problems like Partition

or Numerical 3-Dimensional Matching [66] even more realistic traffic networks than
the one in the proof of Theorem 4.3 can be constructed and be used for the hardness
proof. For example, one can find a planar network with node degree at most three for
modeling partition by the help of signals and traffic (Figure 31). The main idea of the
constructions is using traffic signals for sorting, assigning and splitting traffic. Yet, it
should be pointed out that Partition (in contrast to 3-Partition) is weakly NP-hard.

...
x2x1 x3 xn

destination

demands

traffic signals

u = 1
2

P

xi

Figure 31: Traffic network for reduction from Partition. All road users at origin
k start at time t = k. For each road, a free speed travel time of one time unit
is assumed. All traffic lights have the same signal plan and four phases of equal
length as follows: green for right turners→ red → green for left turners→ red. The
narrow roads at the right end of the network limit the traffic to u = 1

2

∑k
i=1 xi per

time unit. If there is a partition of the demands into two sets of equal size, we can
find a coordination which allows the road users to switch to the upper or lower road
according to the partition without waiting at the traffic signals.
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5 A New Model

5.1 Motivation

In this chapter, we will develop our combined model for traffic signal coordination and
traffic assignment. We have already seen several models for at least one of these problems
in Chapter 4. With these insights of advantages and disadvantages, we fix the key points
that our model should provide, first.

The time-dependent behavior of traffic signals is one of the most important properties
of our problem. Thus, our model has to capture this dynamic behavior. Flows over time
are an adequate mathematical model that can be extended with traffic signals. Fur-
thermore, this will allow mathematical programming techniques. Most practitioners do
not concentrate on sound mathematical models, but they are mainly interested in good
results that are applicable in practice. Most established models for signal coordination
use genetic programming or other heuristic approaches. From a mathematician’s point
of view, this is not satisfying. For us, the guarantee of optimality or at least a measure
of the quality of a solution is of the same importance as the solution value itself. Several
approaches presented in Section 4.3 do not fulfill this requirement. Actually, none of the
known models for simultaneous optimization of coordination and assignment provides a
dual bound. Our model should improve this, i.e. it should be suitable for applying an
exact mathematical programming approach.

In Section 4.3.1, we have discussed several possibilities for measuring the performance
of coordinated signals and came to the conclusion that only total travel time which con-
sists of transit times and delay, seem reasonable for the assignment problem. Thus, our
objective is to minimize the total travel time in our combined model. Given a network
G = (V,A) with fixed capacities, transit times, commodities and traffic signals with
fixed signal plans, we define the Traffic Signal Coordination Traffic Assign-

ment Problem (TSCTAP) to be the problem of finding a set of offsets and a traffic
assignment, such that the total travel time is minimized.

Most likely, a traffic engineer would have to be convinced of a model without flow
dependent travel times. The more cars are on a road, the more the average travel
time increases. Classical link performance functions have this property, but they do
not capture any time-dependent behavior like traffic signals or fluctuating flow values.
Hence, some traffic experts think that link performance functions are not sufficient to
model inner-city traffic [118]. Our model should capture such typical effects of traffic
like platoons of cars. Further, we need a handy concept for travel times that does
not disturb our exact mathematical programming approach. Therefore, we make the
following simplifying assumption in our traffic model. The travel time on a link in the
network splits into two components: the free speed travel time that is needed to bridge
the distance of the link, and the waiting time in front of the intersection, i.e. in front of a
traffic signal. In particular, we assume the free speed travel time to be independent of the
load of the street. Although this assumption is not justified on highways or in rural areas,
it is appropriate in inner-cities, where the distance between consecutive intersections is
comparably small and a strict speed limit is present. The speed of a single car does not
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differ much from the speed of a platoon of cars. The waiting time mainly depends on
the offsets of the subsequent traffic signals. This assumption will allow the formulation
of flow dependent travel times in an implicit manner. We will thoroughly discuss the
consequences of this assumption and its influence on system optima and user equilibria
in this chapter.

Based on these assumptions, we properly define our problem:

Problem 5.1 (Traffic Signal Coordination Traffic Assignment Problem).
Input: Network G = (V,A, u) with capacities u : A→ N0 and travel times consisting of
a constant transit time per arc, i.e. t : A → N0, plus waiting time at the intersection;
a set of traffic signals with arbitrary but fixed operating sequences at some of the inter-
sections vn ∈ V , n ∈ {1, . . . , N}; a cycle time Γ that is the same for all traffic signals;
commodities θ ∈ Θ, θ = (sθ, zθ, dθ) with origin sθ, destination zθ and demand dθ.
Output: A dynamic flow and a set of offsets {ρ1, . . . , ρN} which minimize the total
travel time, i.e. the sum over the travel times of all road users.

Now we have stated the basics of our input and output and can state the aims and
anticipated properties of a model that we would like to get:

• Develop a model for simultaneous optimization of traffic signal coordination and
traffic assignment. Consider feedback between coordination and assignment.

• Capture time-dependence:

– dynamic travel times without static link performance functions,

– traffic signals, and

– fluctuating traffic, e.g. platoons.

• Objective: total travel time (transit time + delay).

• Realize flow dependent travel times via constant travel times plus flow dependent
waiting times.

• If possible, approximate user equilibria with system optimal solutions.

• Solvability with mathematical programming. Provide dual bounds.

• Compute solutions of practical relevance, i.e. demonstrate applicability of the
model with simulation results.

We will show that most of these aims and properties can infact be achieved by our new
model. In the following, we first describe the various parts of this new model that are
combined to solve the TSCTAP. These parts cover the cyclic time-expansion, expansion
of intersections, and implementation of traffic signals. Building on these notions, we
will give a mixed integer programming formulation, study basic properties, and discuss
various subsequent improvements of the model. Afterwards, Chapter 6 is dedicated to
the evaluation of our model with help of simulation tools.

Please note that some of the results were already presented at conferences [96, 97, 98].
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5.2 The new model

5.2.1 Cyclically time-expansion

As explained earlier, for traffic signals and their coordination, a time-dependent model,
capable of describing the time-offset between consecutive intersections, is a vital in-
gredient. Hence, flows over time and time-expanded networks seem to be the suitable
mathematical model.

Yet, time-expanded networks are rather inefficient if the time horizon is large, since
the number of time steps determines the number of network copies that have to be
provided. However, since traffic signals have a periodical behavior it is not necessary to
use a full time horizon expansion. Instead, we suggest a cyclic time-expansion where we
expand only a time interval of size of the cycle time Γ and use only k ∈ N time steps of
size t = Γ

k .
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Figure 32: Simple example of a 4-vertex graph together with its time-expanded
graph similar to the example in Figure 28 in Section 4.2.4. Again, the graph is
embedded in the 2-dimensional Euclidean plane and the expansion is displayed
along the third axis. In our model this time expansion is reduced to a cyclic time
expansion with finitely many time steps. Waiting arcs allow buffering of flow units
in a node for some time.

Furthermore, we add the arcs according to transit times modulo k with adjusted
capacities. Of course, this treatment only applies to the indices of the incident nodes,
the original transit time of an arc is preserved for further calculations. To model the
ability to wait in front of an intersection, all copies of one node v are cyclically connected
in chronological order with waiting arcs (vi, vi+1). Again, vk−1 is connected to v0 which
yields a cyclically rolling horizon (see Figure 32 and 34). A cost of one time unit is
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assigned to each waiting arc.

Please note that there is almost no difference between transit arcs and waiting arcs in
the model. On waiting arcs one only moves in time whereas on regular arcs one moves
in space and time. On all arcs the cost is the travel time on this arc. Thus, waiting
time is travel time on waiting arcs. Hence, both kinds of arcs are treated in the same
way and we do not need to explicitly distinguish between them in the modeling of traffic
assignment.

5.2.2 Expanded intersections

To model intersections with different lanes, turning directions, and interior traffic signal
offsets, we use a standard approach from traffic networks. Before the time expansion
is employed, every intersection node is split up into several nodes for incoming and
outgoing traffic; interior arcs connect the lanes (see Figure 33). Each of these arcs is
assigned to one traffic light.

Figure 33: Expanded intersection with arcs for each turning alternative. The
incoming nodes of the horizontal road are subdivided into three nodes to model
different lanes and queues for the turning directions. The vertical road is smaller,
thus, all cars are waiting in the same queue.

We will refer to the set of all interior arcs of intersections by E ⊂ A. By choosing
appropriate capacities u(e) and transit times t(e), e ∈ E, these interior links form
different queues, i.e. flow on the waiting arcs, for the several turning directions, because
they limit the outgoing flow of the waiting arcs.
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5.2.3 Modeling traffic signals

The traffic signals themselves can be modeled by binary decision variables that switch
the capacities of the interior arcs at an intersection on or off, depending on the signal
plan and the corresponding time step (see Figure 34). For each traffic light a matrix
Qe ∈ {0, 1}k×k is given; here Qe

ij = 1 means that the particular traffic light is green at
time step j when using offset iΓ

k . So each row stands for a certain offset and determines
the operating sequence of the traffic light for this specific offset. For each interior arc e
of the not time-expanded graph we create such a matrix. The signal plan is completely
encoded in these matrices.

Qe =









0 0 1 1 · · · 0 0
0 0 0 1 1 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .









For each intersection n we introduce k binary variables bn = (bn
1 , . . . , bn

k) ∈ {0, 1}k
with constraint

∑k
i=1 bn

i = 1 that describe the chosen offset at the intersection. More
precisely, bn

i = 1 is equivalent to offset ρn = iΓ
k at intersection n. By multiplying this

characteristic vector bn with Qe and the capacity u(e) of a lane, we can switch the
capacities of the links on or off and thus, represent the green and red lights.

Using f(e) ≤ bnQeu(e) for all interior lanes of an intersection (where u(e) is chosen
in correspondence to the granularity of the time-expansion) we can map the complete
dynamic behavior of traffic signals in our model.

t = 3
‘road’ arc ‘interior’ arc

t = 1

Figure 34: Cyclic time-expansion of a traffic signal. The gray arcs starting at the
red phase of the signal are switched off and thus have zero capacity.

Putting together the various parts of the model we get the following definition of
cyclically time-expanded networks.
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Definition 5.2 (Cyclically time-expanded traffic network). A cyclically time-
expanded traffic network is a network, that is obtained from a traffic network G = (V,A)
by

(i) expanding the intersections with arcs for turning alternatives and lanes,

(ii) cyclic time-expansion with respect to the cycle time, and

(iii) expanding signal plans.

5.2.4 Modeling traffic assignment

Building up on the cyclically time-expanded network, we can now consider the traffic
assignment problem within this framework. Although flow can be considered to travel
in a time-dependent manner through the cyclically time-expanded network, one should
rather see this model as a static model that just captures some time-dependent aspects
of traffic flow. Due to the cyclic repetition of the vertex and arc copies, a flow particle
traveling through this network can be seen as a representative of a whole set of temporally
repeated particles at every multiple of the cycle time.

On the other hand, there is a closely related interpretation of static network flow for
traffic networks. In this interpretation one considers a flow-carrying path in the static
network as a mapping of a corresponding amount of flow particles traveling over time
through the traffic network at the corresponding flow rate. In other words, a flow-
carrying path in the static network represents a constant rate of flow on this path in the
‘real’ time-dependent traffic network.

This interpretation suggests how to put together the two models, the cyclically time-
expanded network on the one hand and the static traffic assignment model on the other
hand. Basically, the demands for the different commodities have to be subdivided to
the number of layers/time steps in the cyclically time-expanded network. The precise
construction is given in the following.

Given (static) commodities θ ∈ Θ, θ = (sθ, zθ, dθ) in the original (static) network
(sending dθ units of flow from node sθ to node zθ), one has to extend them to the
cyclically expanded network. Each demand has to be scaled to time Γ and can be
divided uniformly among all copies of sθ. The constraints for the sink nodes should be
less restrictive, i.e., no uniform distribution is required. We propose to use a super-source
and a super-sink, connected by a backward arc, as shown in Figure 35.

5.3 Mixed integer programming formulation

Let G = (V,A) be a cyclically time-expanded traffic network and commodities θ ∈ Θ,
θ = (sθ, zθ, dθ), capacities u : A → N, a set E ⊂ A of interior arcs at intersections
with associated matrices Qe for each e ∈ E, travel times t(e) for each link e ∈ A and
flow functions fθ : A → R for each commodity. Now we can formulate a mixed integer
program for TSCTAP.

We extend a common multicommodity min-cost circulation program for the cyclically
time-expanded network by adding the binary variables and capacity constraints above.
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Figure 35: Demand splitting for commodities.

min
∑

e∈A

∑

θ∈Θ

t(e)fθ(e)

s. t. 0 ≤
∑

θ∈Θ

fθ(e) = f(e) ≤ u(e) ∀ e ∈ A \ E (18)

∑

e∈δ+(v)

fθ(e) =
∑

e∈δ−(v)

fθ(e) ∀ θ ∈ Θ ∀ v ∈ V (19)

fθ((zθ, sθ)) = dθ ∀ θ ∈ Θ (20)

k
∑

i=1

bn
i = 1 ∀ n ∈ {1, . . . , N} (21)

f(e) ≤ bnQeu(e) ∀ e ∈ E (22)

f(e) ≥ 0, bn ∈ {0, 1}k

The constraints of type (18) fix the capacity bounds, type (19) implements the flow
conservation and the constraints (20) force the circulation. Equation (21) ensures that
exactly one offset is chosen at each intersection, and (22) permits flow only on arcs that
are switched on with respect to the chosen offsets.

5.4 Properties of the model

First, we examine the assignment problem for fixed traffic signals.

Theorem 5.3. Using the cyclically time-expanded network the traffic assignment prob-
lem for a fixed traffic signal coordination and for a fixed time granularity can be solved
efficiently.

Proof. If the traffic signal coordination is fixed, then all binary decision variables in our
model are also fixed. Therefore, we obtain a standard linear program (LP) for the traffic
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assignment problem. Since the LP has polynomial size with respect to the input, i.e. the
cyclically time-expanded network, it can be solved in polynomial time, e.g. by using the
ellipsoid method [73].

Instead of using a standard LP solver for the assignment problem, one can exploit
the network structure of the problem: as explained in Section 5.2.4, for each commodity
artificial source and sink nodes can be added to create a circulation problem for these
commodities with the help of a backward arc. One can apply this to all commodities
and finally remove all arcs that are switched off by the decision variables. Now, any
algorithm for the Minimum Cost Multicommodity Circulation problem can be
used. Thus, we can also take advantage of fast combinatorial approximation algorithms
(e.g. [67]) to solve the assignment even faster.

We can also observe an interesting property of the optimal solution, even for arbitrary
signal coordinations.

Observation 5.4. An optimal solution (system optimum) of the proposed multicom-
modity min cost flow problem is also a user equilibrium.

Proof. Consider a flow with minimum total travel time, i.e. a system optimal flow. All
transit times of arcs in the model are independent of the flow on that particular arc.
Therefore, any route change of a single road user has no influence on the transit times
of the arcs. By the optimality of the flow the new route cannot be shorter than the old
one, since this would imply an improved system optimal solution, a contradiction.

By Wardrop’s principle, a flow is in a user equilibrium, if the route choice of a single
user does not improve on its travel time. Consequently, a system optimal solution of our
model is also an user equilibrium.

We confirm that this result holds if the cyclically time-expanded model is seen as a
common static network. We compute a static assignment in a – although time is encoded
indirectly – static network and we apply a result from static network flows. Furthermore,
using a network with capacities user equilibria are not unique [37]. Thus, Observation 5.4
does not provide any statement about the relevance of this user equilibrium. In general, it
is not guaranteed that this specific traffic assignment can be achieved in reality. Before
we get back to the implications of Observation 5.4 in Section 5.5.3 and a dynamic
interpretation, we have to study travel times in the cyclically time-expanded network
first.

5.5 Analyzing link performance

So far, we have introduced a model with constant, flow independent transit times on
links. This might seem too restrictive for a lot of practitioners in the first moment. How-
ever, there is infact a time-dependent behavior and it is captured in the time expansion.
We will now try to uncover this time dependency by an analysis of our model on a single
link with a traffic signal. Furthermore, we support the observations by a simulation of
traffic on this link.
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We will see that travel time on a link depends on numerous parameters, e.g. the dis-
tribution of incoming flow values over time. Furthermore, flow particles on the same link
at different times will experience different travel times. We use link performance to term
the average travel time on a link. We will not present a closed function for computing
travel times. Nevertheless, we use the term inherent link performance function according
to related traffic assignment models with flow dependent travel times. In the following,
we fix most of the parameters and restrict the inherent link performance function to a
small subset of its domain to at least demonstrate the most important properties of this
implicit link performance in the cyclically time-expanded model.

5.5.1 Link performance of a single road

We consider a very small network which consists of a single road with a traffic signal in
the middle similar to the network in Figure 34. Assume a set of flow values assigned to
the network and a fixed coordination to be given. The total waiting time in this small
network can be determined by multiplying flow value and transit time and summing over
all waiting arcs. Increasing flow will increase the waiting time, because more flow will
be assigned to the waiting arcs. Furthermore, due to the bounded capacities, the flow
units on the waiting arcs may not leave completely on the first green outgoing arc if the
arc does not provide enough capacity. Instead, the flow will have to use more waiting
arcs until the accumulated flow is drained off. This relation is illustrated in Figure 36.
Therefore, if the incoming flow is raised linearly on all copies of an arc, then the growth
of the waiting time will be not linear but rather quadratic. More precisely, the obtained
function is piecewise linear, but converges to a quadratic function if the length of the
timesteps in the expansion converges to zero.

In Figure 37 we present the relation between flow and average waiting time on a single
link in the cyclically expanded network, i.e. our network consists of only one road with
a traffic signal. The traffic is equally distributed on all copies of this link, a traffic signal
with a cycle time of 60 seconds and a red time of 20 seconds is put at the end of the
road and a free speed travel time of 10 seconds is assumed. Additionally, a capacity
reduction from two lanes to one lane at the traffic signal was used. We now compute
the average travel time on this link with respect to the flow value. The obtained travel
time in Figure 37 demonstrates the capability of our waiting arc model: although using
only constant travel times the inherent, implicit link performance functions of the model
are not linear. Even better, they seem to resemble common standard link performance
functions (cf. Figure 26).

Please note that Figure 37 visualizes the average travel time. The individual travel
time of a single flow particle depends on its arrival time at the traffic signal. It ranges
from 10 seconds for flow units arriving at green with no waiting queue at the signal up
to 30 seconds for particles arriving at the beginning of the red phase. Further, we can
also compute the expected free speed transit time. With a probability of 2

3 we arrive at
the traffic signal at green. Thus, we arrive at red with a chance of 1

3 and the waiting
time is equally distributed between 0 and 20 seconds in this case. Thus, the expected
free speed travel time is 10 + 1

6 · 20 = 131
3 seconds.
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Figure 36: Accumulation of waiting time. The thickness of the arcs depicts the
flow value. On the left side, incoming flow is low. All flow accumulated during
the red phase can leave the signal directly when it becomes green. On the right
side, the flow is tripled. Thus, much more flow is accumulated on the waiting arcs.
Furthermore, due to the capacity bound of the outgoing street, more waiting arcs
have to be used. Waiting time increases in this scenario by a factor of 4.8.

This analysis suggests that our model can capture flow dependent travel times similar
to standard link performance functions. However, we assumed traffic to be equally
distributed over time. This is rather unrealistic for inner-city traffic. In particular,
traffic signals create platoons of cars. Thus, we extend our analysis to flows with quickly
changing traffic density.

5.5.2 Link performance for platoons of cars

In the cyclically time-expanded network platoons can be modeled by different flow values
on the copies of each particular arc. Some arcs may be used at full capacity, other
arcs may not be used at all. Varying flow values can be interpreted as platoons of
different lengths and densities. Thus, our model is capable of creating, splitting, merging,
compressing and stretching these platoons.

Let us return to the single road from above. Even in this small example, a platoon
can change the characteristics of the average waiting time dramatically. A platoon of
cars can be described by its length and its density. For simplicity, we fix the density to
be constant, thus the platoon length can be considered to be proportional to the average
link flow.

To visualize the occurring effects even better, we change the green time to 30 seconds
and the capacity of the outgoing road is set to twice the capacity of the incoming road.
The average travel time now depends on two parameters: the length of the platoon
and the arrival time of the head of the platoon at the traffic signal. In Figure 38, the
calculated average travel time is plotted versus the platoon length. On the left side, the
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Figure 37: Computed average travel time with respect to flow on a single link in
the cyclically time-expanded network. Incoming traffic is equally distributed over
time.

first flow unit arrives at the intersection 10 seconds before the signal turns green. On
the right side, the first flow particle arrives 20 seconds after the signal turned green. The
different characteristics show the influence of these two offsets on our travel times.
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Figure 38: Inherent link performance function for a platoon of cars in the cyclically
time-expanded model. On the left side, the platoon is arriving 10 seconds before the
signal turns green. Due to the higher capacity of the outgoing road the traffic signal
can be used to densify the platoon, e.g., the cars may leave on parallel lanes. The
first car of the platoon has to wait for the longest time, the last cars may pass the
signal without stopping. On the right side, the first flow particle arrives 20 seconds
after the signal turned green. Thus, small platoons can pass without stopping, long
platoons are splitted by the traffic signal which turns red 10 seconds after the head
of the platoon has passed.

Obviously, the implicit travel times in our model are quite different from standard



130 5.5 Analyzing link performance

static link performance functions found in traffic literature [46, 69]. There, link perfor-
mance functions are assumed to be convex and monotonically increasing. This simplifies
the analysis of user equilibria considerably. In contrast, the inherent link performance
functions in the cyclic time-expanded model may be decreasing or concave on some in-
tervals (see Figure 38). However, this is no inaccuracy or disadvantage of our model.
Anticipating the simulation results in Chapter 6, these characteristics of travel time
functions can be reproduced by state-of-the-art traffic simulation tools (see Figure 39)
which supports our model.
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Figure 39: Link performance for the same scenario as in Figure 38, but now
simulated and measured with VISSIM. Note that only the average travel time is
displayed. The actual time depends on the position of the car within the platoon.
Comparing to Figure 38, the predicted travel times fit remarkably well to the sim-
ulated travel times even without a careful calibration of our model.

Finally, the average travel time of a flow particle on a link in the cyclically time-
expanded model is depicted in Figure 40 with respect to both parameters platoon length
(i.e. traffic flow) and arrival time (i.e. offset of the signal). Hence, one can conclude that
the common assumptions on static link performance functions may be realistic in rural
areas or on highways. But they are not accurate enough for signalized inner-city traffic.
Further, it can be concluded that the cyclic time expansion is able to model both classical
link performance and link performance for traffic signal coordination and platoons.

5.5.3 Link performance in networks and user equilibria

We have seen that the inherent link performance of the cyclically time-expanded model
is flow-dependent. On the one hand, this is not really surprising. Even in minimum
cost flows the average cost per unit shipped from the source to the sink increases with
increasing demand. When the capacity of the cheapest path is reached, more expensive
paths have to be used for the remaining flow.

On the other hand, applying Wardrop’s principles and classical game theory, we can
conclude that the system optimum of our cyclically time-expanded model is also a user
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Figure 40: Calculated average travel time for a road user in a platoon with respect
to platoon length and arrival time at the traffic signal. The signal turns green at
t = 0 and red at t = 30. The inherent link performance functions of Figure 38 are
obtained as profile for t = 50 and t = 20. Note that for fixed platoon length one
obtains waiting time functions very similar to those used by Wünsch et al. [95, 115].

equilibrium (Observation 5.4). Does this result allow for effects, e.g. Braess’s paradox,
that are linked to flow dependent travel times?

First of all, Observation 5.4 is not a contradiction to classical game-theoretic results.
As shown by Correa et al. [37], the value of user equilibria in a network with capacities is
not unique. Thus, several equilibria may occur in the cyclically time-expanded network.

In the classical assignment with static link performance function, each flow particle
on a link experiences the same travel time on this link. If an additional flow unit is
assigned to a path containing this link, then this increases the travel time of all flow
particles, including the new one, by the same amount. In the case of capacitated links,
the saturation of some arcs restricts the route choice of the remaining flow units. This
is the main reason for the existence of multiple equilibria. According to the definition
of capacitated user equilbria (cf. [37]), only unsaturated paths are considered for an
alternative routing. A flow particle can only change its path through the network if
all links of the new path have sufficient remaining capacity. Thus, two flow particles
crossing twice may both improve by swapping the intermediate part of their routes.
Unfortunately, co-operation is not allowed and they may block each other.
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Considered statically, this applies one-to-one to the arcs and waiting arcs of the cycli-
cally time-expanded network. In contrast, the dynamic point of view in the cyclically
time-expanded model provides a new concept and interesting questions arise. Consider-
ing all copies of an arc in the cyclically time-expanded network together with the waiting
arcs as a single link, flow particles may experience quite different travel times depending
on their arrival time at the origin node. Further, we may apply the saying first come first
serve. Assume an additional particle is assigned to a link. If the flow particle arrives
earlier at the link than other flow units, it may simply jump the queue and push in at
the first position. Thus, it experiences the smallest travel time among all flow units and
all other particles are slowed down.

Now, we can also interpret the user equilibrium of Observation 5.4. In our system
optimum no road user can switch to another road to improve its travel time without
jumping into any queue. Using an unsatured path corresponds to always being the
last car in each queue on this path. Thus, we may think of our road users as friendly
or pessimistic10. They are friendly, because they join the queue at the end and they
do not push into queues. On the other hand, it seems they calculate the travel time
of an alternative route pessimistically by assuming to be always the last car in each
queue. Unfortunately, this interpretation also implies that this user equilibrium is of
minor practical relevance. Due to the traffic signals, road users are pushed right into
the queues and traffic is getting mixed up. The pessimistic point of view over-estimates
the travel times on alternative routes.

Concluding, for any user equilibrium we have to analyze whether there is a flow particle
that could improve its travel time by switching to another path with jumping into queues
permitted. We may speak of a fair or realistic user equilibrium if no such flow particles
exist. Such an equilibrium is most likely hard to compute exactly. It would imply an
assignment where a chronological ordering of the paths is defined. However, some flow
units may arrive at a certain node at the same time. One would still need a policy to
handle these situations. Even more complicating, we have dissolved the temporal order
in the cyclically time-expansion. There is no chance to determine, whether any event
happens before or after any other event. The concept of user equilibria in dynamic traffic
assignment is not applicable. Thus, we have to leave the evaluation of user equilibria as
an open question here. Fortunately, referring to the simulation results in Chapter 6, the
system optimum solution already provides improved coordinations of practical relevance.

Finally, we support the explanations above by a small example. The scenario is
similar to the Braess’s paradox in Section 4.2.3 and the underlying graph is displayed
in Figure 41. The network consists of 4 nodes and 5 arcs. Each link has a capacity of
u ≡ 1. The links (v1, v2), (v2, v3), and (v3, v4) have a transit time of 0 seconds, whereas
the other links have a transit time of 20 seconds. Traffic signals are installed in the nodes
v2, v3 and v4 with a cycle time of 60 seconds and a green time of 30 seconds for each
traffic light. All intersections have two turning directions and we choose interior offsets
of 0 and 30 seconds for the beginning of the green phases, respectively. Additionally,
there is one commodity from v1 to v4 with a demand of d units of flow per second.

10This decision is left to the reader.
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Figure 41: Small example of link performance in a network. Arc labels correspond
to the free speed travel time on the links in seconds. All links have the same capacity
u ≡ 1. All traffic signals are green for 30 seconds.

Braess’s paradox is originally a static network flow. If we consider the above scenario in
a static setting without capacities and disregarding the traffic signals, nothing surprising
will happen. With constant travel times, all flow particles choose the fastest path via v2

and v3. However, flow will use the paths ((v1, v2), (v2, v4)) and ((v1, v3), (v3, v4)) if we
introduce capacities and the capacity of the shortest path is exceeded.

Now consider a dynamic flow with capacities, still without traffic signals. Assume a
certain demand of flow units, all of them willing to start at time 0. In the first 20 seconds,
the path via v2 and v3 is used at full capacity, since there is no faster possibility to reach
v3. After this initial time, route choice depends on the right of way in node v3. If
the road users arriving from v2 have the right of way, then they will block the path
((v1, v3), (v3, v4)). All flow particles will use the fastest route, but some of them will
have to wait at v1 for a long time. If traffic participants coming from v1 have the right of
way in v3, then this path will be used. A flow unit could wait for more than 20 seconds
at v1 to use the fastest path or it could start directly traveling to v3. With the right of
way, this will be its fastest connection. For symmetry reasons, path ((v1, v2), (v2, v4)) is
also used with the same flow henceforward. Both possibilities are user equilibria in the
terms of Wardrop. Pushing other flow particles to other paths is not allowed. However,
only the second equilibrium is indeed system optimal.

With traffic signals, the right of way at v3 changes periodically. Each of the two
equilibria is given preference alternately. Consequently, the assignment may switch
between both solutions. In Figure 42 we present the system optimal flow pattern for a
50 % utilized capacity, i.e. d = 0.5, and incoming traffic equally distributed over time.
The model suggests a perfect coordination for the fast path via v2 and v3. However,
half of the flow particles arrive at v1 at red at the corresponding lane. Those who arrive
shortly after the beginning of the red phase choose the alternative route to avoid waiting.
The other flow units queue up for using the fast route.

The cyclically time-expanded model suggests a quite different solution when traffic
increases. For d = 1, both paths ((v1, v2), (v2, v4)) and ((v1, v3), (v3, v4)) are used, which
is indeed the sole possibility to handle the demand without exceeding capacities. Sur-
prisingly, the former quick connection via (v2, v3) is assigned a ‘red wave’ automatically.
Now, this is the slowest path between v1 and v4 and the system optimum is a stable user
equilibrium in this case.

With an appropriate choice of traffic signal plans and fixed offsets, we may also con-



134 5.6 Model improvements

v1

v2
0.42

v3
0.08

0.36 v4

0.06

0.44

Figure 42: Optimal solution for the small example of Figure 41 with 50 % load.
The arc labels correspond to the total flow on the link copies in the cyclically time-
expanded model. The fastest road via v2 and v3 is given an additional preference
by a perfect coordination.

struct system optimum assignments that are not stable user equilibria. Let us split
v1 into two nodes which admits two commodities with a fixed ratio of demands. If
we choose the parameters such that the path via v2 and v3 is only slightly faster than
((v1, v2), (v2, v3)), selfish flow particles of the first commodity will switch to this route.
However, they will block the second commodity traveling via v3 at the signal at v4, if
waiting is necessary there. A system optimal solution would prefer the upper path for
the first commodity.

Nevertheless, the example provides another observation. Metaphorically speaking, our
road users are very clever and they use the coordination at its limit. A driver knows
whether she will miss the green phase at a traffic signal several intersection in advance
and her route choice depends on this knowledge. In our small example, already the
arrival time at the first traffic signal provides enough information for a qualified choice
between three routes. This seems unrealistic for real world problems, since traffic is
never completely constant and depends on several stochastic influences. This effect may
be reduced by a proper calibration of the model, e.g. by decreasing capacities or green
times. Furthermore, flow particles can wait everywhere in the network, even in front of
green traffic lights. Additionally, they may wait such that other particles can overtake.
This happens when flow has to wait somewhere on its path anyway, but the passing
particle has to keep in time with a green wave on its path. We discuss this first-in
first-out property in Section 5.6.5.

5.6 Model improvements

In this section we propose some refinements and extensions of our model that allow for
an even more realistic modeling of road traffic in signalized networks.

5.6.1 Split and phase optimization

The first extension of the cyclically time-expanded model addresses split times and phase
order. Until now, we only considered offset optimization and assignment. However,
changes in assignment lead to different demands at single traffic lights. Thus, adjusting
split times could improve the capacity of an intersection. Optimizing the phase order of
large junctions with many lanes may also improve the coordination significantly.
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In contrast, the fixed interior offsets and split times of the present model are an
important advantage. The signal plans in the matrices Qe can be designed by a traffic
engineer who takes all safety aspects into account. If we try to optimize split times
and phase sequences, we have to take care of these rules. Hence, we will need much
more variables and constraints to ensure the interior logic of traffic lights at a single
intersection. We concentrate on the following constraints:

• Crossing directions must not have green at the same time.

• Some directions must have green at the same time.

• There has to be enough time to clear the intersection at phase changes before other
any other direction gets green.

• There has to be a minimum duration of each green and red phase.

In reality, many more constraints can occur, e.g. due to pedestrians. For simplicity,
we only discuss a small standard intersection with 2 phases as depicted in Figure 43.
The common cycle time is Γ and we use a cyclical expansion with k time steps. Thus,
in the following, all indices apply modulo k.

W

X
Y

Z

Figure 43: Simple intersection with four signal groups W,X, Y and Z.

The intersection n is expanded as usual. In contrast to the present model, we introduce
k binary variables bn

W = (bn
W,1, . . . , b

n
W,k) for each signal group that represent the status

of the signal directly. We refer to these variables as status variables. bn
W,i = 1 implies

that signal group W at intersection n is green at time step i. Otherwise, the signal is red.
These binary variables switch the capacities of the corresponding interior lanes directly,
i.e. we introduce constraints f(ei) ≤ bn

W,iu(ei) for each interior arc of the cyclically time-
expanded intersection. To keep the variables in a readable format, we will omit the index
n in the following.

Thus, we bypass the matrices Qe, but the signal can change in arbitrary sequences.
Therefore, we demand that the signal W switches from red to green and from green to
red only once during one cycle. Again, we use 2k binary variables bon

W = (bon
W,1, . . . , b

on
W,k)
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and boff
W = (boff

W,1, . . . , b
off
W,k), respectively. This variables act like the decision variables for

the offset in the present model and we refer to them as decision variables. Thus, bon
W,i = 1

means that signal group W switches from red to green at time step i. The following
constraints fix the number of switching operations per cycle to 1.

k
∑

i=1

bon
W,i = 1 and

k
∑

i=1

boff
W,i = 1

Now, we link the decision variables to the status variables. Remember to regard time
modulo k.

bW,i − bW,i−1 ≤ bon
W,i ∀i ∈ {0, . . . , k − 1}

Thus, if bon
W,i = 1, then the signal may switch to green, i.e. bW,i−1 = 0 and bW,i = 1. If

bon
n,W,i = 0, then bW,i−1 = bW,i, that is the status is not changed. Similarly, we formulate

the constraints for switching the signal to red.

bW,i − bW,i−1 ≥ −boff
W,i ∀i ∈ {0, . . . , k − 1}

However, it is not guaranteed that the signal switches at all. We combine this with a
constraint for minimum green and red times. If the signal should be green for at least g
time steps, we require:

k
∑

i=1

bW,i ≥ g.

If the signal should be red for at least r time steps, we require:

k
∑

i=1

bW,i ≤ k − r.

Therefore, if the signal is green for at least one time step and it is red for at least one
time step, two switching operations are forced.

So far, we can switch traffic lights and we can control capacities. We continue with the
safety constraints. Crossing directions must not have green at the same time. However,
red for both directions is possible. Obviously, the following constraints ensure safe
crossing for two signal groups W and X (cf. Figure 43).

bW,i + bX,i ≤ 1 ∀i ∈ {0, . . . , k − 1}
Furthermore, we have to guarantee a clearance time. Together with the previous

inequality, a clearance time of at least one time step is forced by the following constraint.

boff
W,i + bon

X,i + bon
X,i+1 ≤ 1 ∀i ∈ {0, . . . , k − 1}

Thus, if signal group W switches to red in time step i, then X cannot switch to green
at the same time step or at time step i + 1. Longer clearance times are possible. One
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may even insert another phase. Hence, clearance time constraints have to be formulated
for each pair of traffic lights. In contrast, we may also fix the clearance time and the
phase order with the next equation if desired.

boff
W,i = bon

X,i−2 ∀i ∈ {0, . . . , k − 1}

Finally, if two signals should switch to green at the same time, e.g. group W and Y
in Figure 43, we may use the following constraints.

bon
W,i = bon

Y,i ∀i ∈ {0, . . . , k − 1}

Summarizing, we have introduced several linear equations or inequalities for the most
important safety constraints at a traffic signal. Their mode of action is mostly obvious.
Furthermore, it is easy to create a mixed integer program similar to the MIP presented
in Section 5.3 for a complete cyclically time-expanded network.

This MIP enables to optimize the signal plans and the traffic assignment simultane-
ously. Thus, offsets are optimized implicitly, since they are encoded in the new decision
variables.

Instead of k binary offset variables per intersection, we have 3k binary variables per
traffic light/lane. Hence, the MIP becomes large in practice and it is probably more
difficult to compute an exact solution.

5.6.2 Multiple signal plans

Traffic signals are often capable of switching between different programs or modes, e.g.,
different red-green splits. Our model can be extended to the case of several programs
or modes by adding these programs to the matrices Qe. Thus, the binary variables not
only choose the offset but also the operating sequence. This provides a trade-off between
the present model and the extension in Section 5.6.1.

5.6.3 Flow dependent travel times with fan graphs

As pointed out above, waiting arcs are a very useful tool to model flow dependent transit
times at traffic signals. In the literature, flow dependent travel times on long roads are
also motivated by the interaction between moving cars. So far, this is not captured by
our model, since we assume constant transit times on a link. For more realistic flow-
dependent travel times we can make use of a model used for flows over time. In [93]
a fan-like time-expanded network is suggested that models different travel times for
different flow-rates on a given arc. Consider two intersections v and u with free-speed
travel time τ on a = (v, u). Instead of only adding one arc at = (vt, ut+τ ) for each
time step of the expansion, several additional arcs at,i = (vt, ut+τ+i) are added and the
capacity is split among those copies. See Figure 44 for a visualization of such a fan.
Therefore, in a situation with low load the original arc at provides enough capacity and
all road users can be routed with the free speed travel time. Considering a rush-hour
scenario some flow units are assigned to the ‘slower’ copies at,i yielding an increasing
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average travel time. Note that this flow dependency does not touch the conclusion of
Proposition 5.4.

v1

v2

v3

v4

w1

w2

u = 1
2

w3

u = 1
3

w4

u = 1
6

Figure 44: A fan-like expansion to model time-dependent travel times. Note that
the capacities are not equally distributed.

5.6.4 Queues

Earlier, we introduced waiting arcs (vi, vi+1) between consecutive copies of a node v,
but up to now the capacities of these arcs have not been discussed. For modeling the
restriction of small streets, we propose choosing the capacity with respect to the length
of the street. This bounds the queue at a traffic signal and allows backing-up of traffic
over several consecutive intersections.

In particular, this may lead to traffic users waiting in front of green traffic signals.
Flow conservation propagates the limited capacity of the outgoing link and its waiting
arc to the incoming links of an intersection automatically. Thus, cars cannot pass a
signal when the outgoing road is blocked and green time elapses unused.

Furthermore, we introduced waiting arcs at all nodes in the network. However, a queue
directly behind the intersection is unrealistic. In the following, we set the capacity of
waiting arcs between nodes for outgoing traffic to zero. The capacity of waiting arcs
between nodes for incoming traffic is limited as above.

5.6.5 First-in first-out

Up to now, the queues of our model do not provide the first-in first-out property. Thus,
road users may overtake each other.

Overtaking in the queues can be reduced with help of confluent flows. Flow carrying
path of a confluent flow cannot cross each other (cf. Chapter 2). This can be used on the
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waiting arcs to disable passing. To achieve this, waiting arcs are expanded to a confluent
waiting net.

In detail, we also expand a node, where waiting is possible, in direction of the queue.
Let v ∈ V be a node in the unexpanded network. In the time expansion with k time
steps, we create copies v1, . . . , vk. Now, each node vi is split into k copies vi,1, . . . , vi,k.
We add arcs:

• from vi,j to vi,j+1 ∀i ∈ {1, . . . , k − 1} ∀j ∈ {1, . . . , k − 1},

• from vi,j to vi+1,j+1 ∀i ∈ {1, . . . , k − 1} ∀j ∈ {1, . . . , k − 1},

• from vi,j to vi+1,j ∀i ∈ {1, . . . , k − 1} ∀j ∈ {2, . . . , k − 1}.

Indices i apply modulo k. This yields the cyclically time-expanded waiting net. On
this part of the network, we demand confluent routing at all nodes vi,j , i = 1, . . . , k and
j = 2, . . . , k for all commodities concurrently. This confluent waiting net is connected to
the remaining cyclically time-expanded network. Arcs for incoming flow end in vi,1 with
travel times analogically to the cyclical time expansion. Similarly, arcs for outgoing flow
start in vi,k. The construction is displayed in Figure 45.

v1,1

vk,k

incoming outgoing

confluent routing

Figure 45: Example for a confluent waiting net for k = 4 time steps. We do not
need a capacity constraint for single arcs of the waiting net, since flow is bounded by
the outgoing arcs and the confluent conditions. The length of the queue (compare
Section 5.6.4) can be limited by bundle constraints on the total flow at a certain
time step.

Flow on the arcs is bounded by the capacity of the outgoing arcs and the confluent
routing conditions. Since flow cannot split, the capacity constraints of the outgoing arcs
automatically assign to every arc in the confluent waiting net. Confluent routing also
permits crossing of flow. Note that incoming flow may split once before the confluent
routing starts. Thus, flow can be grouped to fulfill the capacity constraint of the outgoing
road exactly, but cars cannot overtake each other. The order is preserved, a first-in first-
out queue is achieved.
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On the other hand, this is only a theoretical approach. Most confluent flows problems
are NP-hard. Thus, we cannot hope to solve the coordination problem with a confluent
subproblem efficiently.

5.6.6 Intersections without signals

Not all intersections in an urban area are equipped with traffic signals. We handle these
junctions as follows.

The intersection is expanded as usual. There exist no binary variables for switching
capacities on or off. Instead, we use bundle constraints for the capacity bound, i.e. the
capacity is shared between crossing lanes. In detail, if e1 and e2 cross each other, we
demand f(e1)+f(e2) ≤ max{c(e1), c(e2)} ∀i ∈ {0, . . . , k−1}. This reduces the capacity
of the intersection significantly. Furthermore, if there is a lane with right of way, we
delete the waiting edges for this direction. Thus, the corresponding traffic participants
cannot wait. Consequently, road users in the other direction have to give way.
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6 Experiments

In this chapter we evaluate the applicability of the presented model by discussing various
simulation results. We apply two well-established microscopic traffic simulation tools:
MATSim (TU Berlin) and VISSIM (ptv AG) for our studies on four different scenarios.

Furthermore, we analyze runtimes for solving the mixed integer program of our model
with CPLEX. We discuss the influence of several parameters and try to improve the
performance.

6.1 Scenarios

Real-world data for offset optimization is always hard to get. One needs detailed infor-
mation on the network, the traffic flow, and the signalization. Furthermore, we do not
just need load or usage information on the roads, but rather commodities with origin-
destination information. Additionally, we need geometric information about the position
of traffic lights, lanes etc. as input for the simulation tools.

Fortunately, we were able to collect the detailed data for four real-world scenarios with
help of several research partners.

• Braunschweig, Germany, 10 signalized intersections

• Cottbus, Germany, 32 intersections

• Denver, Colorado, 36 intersections

• Portland, Oregon, 16 intersections

6.1.1 Portland and Denver

Our research partner ptv AG kindly provided us with VISSIM-models for Portland
and Denver. We could extract the relevant data out of these models. Furthermore,
Wünsch [154] also uses parts of the inner-city networks of these two North American
cities to evaluate his platoon model. The author would like to thank Gregor Wünsch for
providing his results which admit the opportunity of benchmarks.

With a population of about 570,000 (2007), the city of Portland is the largest city in
the state of Oregon and one of the largest cities in the Pacific Northwest. However, we
only consider a small part of downtown Portland which is depicted in Figure 46. The
16 intersections of the chosen network between Broadway and 4th Avenue and between
Taylor Street and Madison Street are equipped with pretimed signals with a cycle length
of 54 seconds. Green times reach from 17 up to 31 seconds. All streets are one-way with
a varying number of lanes. Wünsch [154] identified 13 commodities.

We will use the Portland scenario to compare our model with the present coordination,
a coordination obtained with TRANSYT, and the platoon model of Wünsch. Restric-
tively, route choice is nonrelevant in this scenario. Most of the given commodities will
use the shortest paths to their destinations. The one-way streets lead to long detours



142 6.1 Scenarios

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Taylor Street

Madison Street

Broadway

4th Avenue

Figure 46: Network of downtown Portland, Oregon. The square between Broad-
way and 4th Avenue and between Taylor Street and Madison Street consists of 16
intersections with pretimed traffic signals and alternating one-way streets.

if one decides to leave the direct path. Thus, our model will not be able to show its
capability of simultaneous traffic signal optimization and traffic assignment.

As a similar example we investigate the inner-city of Denver. Located in the foothills
of the Rocky Mountains, Denver has about 600,000 inhabitants (2010) and is the capital
of the U.S. state of Colorado. We consider a 6 × 6-grid between Larimer Street and
Stout Street and between 15th Steet and 20th Street. Again, the signal settings of the 36
intersections could be extracted from a VISSIM-scenario. All traffic signals are pretimed
signals with a cycle time of 75 seconds. The network is presented in Figure 47.

These two scenarios show a typical North-American inner-city grid consisting of reg-
ularly arranged one-way streets. For better evaluating the interplay between our traffic
assignment and the signal coordination we were interested in a more complex street
network. Thus, we chose the German cities of Braunschweig and Cottbus to test our
model on a more European shaped city.

6.1.2 Braunschweig and Cottbus

The city of Braunschweig with its 250,000 inhabitants is located in the German federal-
state of Lower Saxony and its founding dates back in the 9th century. The presented
scenario was proposed by Sándor Fekete and his working group, who also provided most
of the data. The Bohlweg road leads from the Technical University of Braunschweig
to the main station. Due to a–most likely–bad coordination of several traffic signals for
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Figure 47: Network of downtown Denver, Colorado. The square between Larimer
Street and Stout Street and between 15th Steet and 20th Street consists of 36 inter-
sections with pretimed traffic signals.

pedestrians, the road is completely congested during rush-hour. The network is depicted
in Figure 48.

The 10 traffic signals in the Braunschweig scenario have a cycle time of 84 seconds.
With 7 signals in a row the network is ideal to test whether our model creates green
waves. For simulation, we also created a model of this network for MATSim and VISSIM.

The most complex network in our experiments represents the inner-city of Cottbus
(Figure 49). Located in the federal state of Brandenburg and about 75 miles south of
Berlin, it is the largest city in the district of Upper and Lower Lusatia with a population
of slightly more than 100,000. The settlement was founded by Sorbs in the 10th century
on a sandy island in the River Spree. The name ‘Chotibuz’ was first mentioned in records
in 1156.

The scenario consists of the whole inner-city between Bahnhofstraße, Stadtring, and
Nordring. The Brandenburg University of Technology is located in the Northwest near
intersection 19. The historical city-center can be found near intersections 26 – 29. The
network was created with data of the OpenStreetMap project. All intersections but one
are equipped with actuated traffic signals. The signal settings were measured by the
author. Most signals are also influenced by a priority for public transport. Nevertheless,
we will use the base plans without changes of phase durations. Commodities were
estimated with the traffic observed everyday in mind.
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Figure 48: Graph of the inner-city of Braunschweig. The Bohlweg leads from to
University in the North to the main station in the South. Arcs denote one-way
streets. Links with no arrow can be used in both directions. The traffic signals at
2, 4, 5, 8, and 9 enable crossing for pedestrians. They connect tram stations and
two shopping malls. Some minor roads are not displayed.

6.2 Test procedure

It takes more than real-world data to evaluate our cyclically time-expanded model. In
this section, we specify the remaining test procedure and highlight some essential factors.
For each scenario, our modus operandi consists of the following steps.

1. acquisition of data

2. creation of the corresponding cyclically time-expanded model

3. solving of the mixed integer program with CPLEX

4. construction of simulation models in MATSim and VISSIM

5. transfer of assignment and coordination from MIP solution to simulation

6. simulation runs with present coordination, optimized coordination, and random
coordinations

7. evaluation of the simulation runs



6 EXPERIMENTS 145

0
1 2 3

4
5

6

7

8

9

10

11

1213

14

15

16

17

18

19

20 21

22 23

24

25

26
2728

29

30

31

Nordring

Stadtring

Bahnhofstraße

River Spree

Figure 49: Network of the inner-city of Cottbus with an area of about 7.5 km2.
Only main streets are considered. Most traffic signals are actuated signals. In
contrast, traffic signals 8, 11, 30, and 31 are adaptive. Intersection 29 is not equipped
with a traffic signal. Meanwhile, intersection 6 is transformed to a roundabout.

6.2.1 Data processing

The scenarios and their generation were already presented in the previous section. How-
ever, two important sets of parameters are still missing. We decided to determine transit
times and capacities in an easy and documented manner for every scenario. Further-
more, these parameters are not adjusted afterwards to improve the performance of a
single instance. Parameter tuning always contains in itself the danger of a harmoniza-
tion with other coordination or simulation models on a special problem instance instead
of providing an independent approach. This concern is also addressed by using two dif-
ferent simulation tools for evaluation. Thus, the transit time of a single road is simply
calculated by (geometrical length of the road)/(speed limit on this road). Traffic liter-
ature specifies a capacity of 1,800 to 2,000 cars per hour on a single lane. For ease of
use, we apply a maximum capacity of one car every two seconds on each lane in our net-
works. Therefore, the capacity of a road is determined by multiplying the lane capacity
of 0.5 cars per second with the number of lanes of a road.

Given a network, the time expansion and the formulation of the mixed integer pro-
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gram is straightforward. We developed our own data format for storing cyclically time-
expanded networks with traffic signals. A C++-script expands the networks, generates
the MIPs and addresses them to CPLEX.

In contrast, transferring the network data and solution to the simulation tools is by
no means easy to accomplish. First, the simulation models for MATSim and VISSIM
had to be created. Especially VISSIM needs additional geometric information on lanes,
traffic signals etc. Thus, the simulation models can hardly be generated from the pure
network data automatically and a lot of time consuming manual work was necessary.

Furthermore, the solution of our model has to be transferred to the simulation models.
Traffic signals are excellently supported in both simulation tools. With the help of a
suitable naming convention, it is easy to copy offset values with a script. However, this
is complicated by the fact that we also optimize the assignment. Both simulation tools
handle route choice in different ways.

In VISSIM, each commodity has a source, a sink, and a prescribed and fixed route.
Hence, we calculate a path decomposition of our assignment. Afterwards, we create
new commodities in VISSIM with a one-to-one correspondence to the paths of the path
decomposition. The demands are adjusted to the flow values on the paths.

MATSim is based on agents. Each agents has a set of plans and it executes one of
them. Each plan consists of a source, a sink, and a route as well as a departure time.
Thus, each agent has a limited route choice. Furthermore, MATSim can generate new
plans for agents by shortest path calculations. An executed plan is evaluated and the set
of plans of an agent is updated similar to a genetic programming approach. Therefore,
we create basic plans for each path in the path decomposition. To transfer the demand,
we copy these basic plans in proportion to the flow and adjust the departure times
accordingly. Now, each agent is equipped with a unique plan. In the simulation process,
replanning is disabled.

6.2.2 Simulation

As mentioned before, for verifying and comparing our solutions to solutions of other
optimization techniques we use two different simulation software tools. We already
presented MATSim and VISSIM in Section 4.3.5.

Despite their different simulation approaches, both MATSim and VISSIM provide
measured travel times for the commodities and they visualize delays and congestion.
Additionally, we can also use our cyclically time expanded model to predict travel times
and delays, where delay corresponds to the accumulated waiting time at a certain traffic
light. Thus, we can compare the solutions of the two simulation tools and our model
in terms of these characteristic numbers. However, we have to be careful comparing
the optimized solution to the present coordination. Since we also optimize the traffic
assignment, delays are of limited information. Instead, we will consider traffic induced
costs. Assume, each road user travels on the fastest path in an empty network without
traffic signals. Summing these free speed transit times for all traffic participants yields
a lower bound on the travel time in the network. This trivial bound cannot be underbid
and we can only hope to minimize the additional travel time caused by signals and traffic.
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The difference to the measured total travel time is called traffic induced cost (TIC) and
we will measure the improvement of a coordination by means of this term.

Furthermore, the simulation in VISSIM is influenced by stochastical variations,
e.g. small changes in speed. Hence, each scenario was simulated at least 20 times and
we always present average values in the following. Moreover, each simulation run starts
with an empty network. Thus, the travel times of the first cars in a run provide little in-
formation. Therefore, we use an initial phase of one hour of simulated time. Afterwards,
we measure travel times of all cars in the network for a period of 5 hours of simulated
time. Additionally, every scenario was examined with different flow values reaching from
nearly empty streets to nose-to-tail traffic by scaling of demands.

Since we do not have coordination data of all of the considered cities or since some
signals are influenced by public transport, we also compare the optimized set of offsets to
sets of randomly chosen offsets. Although we are aware of the limited informative value
of random coordinations, the best random solution gives an impression of what can be
obtained by blind guessing. For every scenario, we also randomized 100 sets of random
offsets. For each set we used the cyclically time-expanded model to predict congestion.
Afterwards, the most promising offsets were simulated with the present assignment as
well as the optimized assignment obtained with our model.

6.3 Installing green waves

We start our case studies with the Braunschweig scenario (cf. Figure 48). With sev-
eral consecutive traffic signals, this scenario admits to test whether the cyclically time-
expanded model creates green waves. We consider three commodities. The first com-
modity (300 cars per hour) starts at intersection 1 and travels to intersection 7. The
second commodity with 150 cars per hour origins at Steinweg (intersection 10) and joins
the first commodity at intersection 3. It also ends at intersection 7. The third commod-
ity (300 cars per hour) travels in opposite direction from intersection 7 to 10. Table 2
and Figure 50 depict the improvement of the present coordination.

2
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5

6

7

1

Figure 50: Present (left) and optimzed coordination (right) for the Bohlweg in
Braunschweig. The signal plans from intersection 1 to intersection 7 are depicted.
They are shifted in time with respect to the offsets in Table 2.
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intersection transit time present optimized

1 0 67
10

2 48 69
17

3 0 0
12

4 6 76
7

5 15 81
8

6 54 39
8

7 (62) 47

Table 2: Present and optimized offsets for the Bohlweg in the Braunschweig sce-
nario. The cycle time is 84 seconds. Furthermore, free speed transit times between
consecutive intersections are presented in the second column. Note that the present
offset of intersection 7 could not be extracted from the data. Thus, the relative
offset of the optimized solution was used in the simulation for both coordinations.

Figure 50 demonstrates that a green wave is created by the cyclically time-expanded
model. The present coordination also appears suitable. However, these offsets do not
match to the transit times. The differences in performance are clearly visible, when we
compare the simulated travel times in Table 3.

commodity present optimized free speed

1 145 98 64
2 86 85 47
3 63 63 44

avg. 100 81 52

Table 3: Average travel times in seconds simulated by VISSIM in the Braunschweig
scenario for the three commodities.

The optimized coordination reduces the average traffic induced costs per road user
from 47.8 seconds to 28.8 seconds. Thus, about 40 % less delay is realized. Even for
higher demands, a significant reduction of traffic induced cost is possible with the same
coordination (see Table 4).

The improvement is not only visible in the tables above. The good performance of
our coordination is also observable directly in the simulation. Figure 51 shows details of
screenshots made in VISSIM.
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commodity present optimized

1 163 104
2 90 96
3 65 65

avg. 109 87

Table 4: Average travel times in seconds for the Braunschweig scenario with dou-
bled demands. Now, 1500 cars per hour enter the network. The travel time of
commodity 1 improves considerably compared to the present coordination. How-
ever, cars of commodity 2 need slightly more time.

Figure 51: Details of screenshots made in VISSIM (ptv AG). Traffic signals at
intersection 4 and 5 are shown. In the present coordination on the left side, a
red signal blocks the traffic such that cars have to wait in front of a green signal
at intersection 4. In the coordination optimized with the cyclically time-expanded
network and shown on the right side, traffic signal 5 turns green just in time when
the platoon of cars is arriving.

6.4 Comparison to established approaches

To compare our model to previous approaches we use the results of Wünsch [154] for
the Portland scenario and a part of the Denver scenario. Network data and simulation
results were kindly provided by the author of [154]. The benchmark is set by TRANSYT
(TRAffic Network StudY Tool, version Transyt-7F 10.1) and compared to Wünsch’s
platoon model (cf. Section 4.3.2).

As a reference, we also compare our solution to the present coordination. Unfortu-
nately, it is not known how this coordination was obtained. Most likely, it was designed
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by a traffic engineer by hand. Further, we include random offsets in our experiment.
Since all benchmark scenarios use prescribed routes, we disabled route choice in our

cyclically time-expanded model, i.e., we compare only the performance of coordination.
Due to the one-way streets, route choice has no big influence anyway.

Table 5 summarizes the simulation results for the Portland scenario. The running
time of the particular algorithm which calculated the coordination is given in brackets.

coordination delay

average random 30.1
best random 21.9
present 16.6
CYC. TIME-EXPANSION (10 s) 16.4
PLATOON MODEL (1 s) 16.1
TRANSYT (10 s) 22.2
TRANSYT (800 s) 15.9

Table 5: Simulation results for Portland (VISSIM).

For coordination without the assignment our approach yields competitive solutions.
The differences between the solutions most likely result from the differences of the traffic
model. TRANSYT uses a model with dynamics similar to the model in the simulation
tool VISSIM; the platoon approach and our approach make much more simplifying
assumptions. Furthermore, we did not use a fine-tuned calibration of travel times in our
model, yet. This will probably yield even less delay.

A similar result is obtained for the Denver scenario. This scenario has already a very
good coordination. Still, the solution of our cyclically time-expanded model slightly
reduces the average travel time from 117 to 113 seconds. A MATSim screenshot showing
delays is depicted in Figure 52. However, the present coordination applies to a larger
network. Thus, our coordination omits maybe some constraints of surrounding traffic
signals. More seriously, again only little rerouting occurs due the network structure with
one-way roads.

6.5 Advantages of simultaneous assignment

One of the main intentions of our model is feedback between traffic assignment and
coordination during the optimization process. We demonstrate the impact of our ap-
proach by the help of a small, idealized example. Given two parallel routes between two
intersections A and B with two additional intersections on each route (Figure 53, we
aim to find an optimal assignment for two commodities (A to B and B to A) and an
optimal coordination for the six traffic signals. We assume identical operating sequences
for each traffic signal (cycle time 60 s, green for 27 s) and a travel time of 20 seconds
between consecutive intersections.

For initially computing a static traffic assignment we assume that the same strictly
convex link-performance function is given for each link in the network. A conventional
approach would first determine the assignment by the help of these functions. Convexity
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Figure 52: Visualisation of delays in the Denver scenario in MATSim. White links
indicate a perfect coordination. On green links a small amount of waiting time is
accumulated. Only a few roads show significant congestion (orange).

A v1

v2

v3

v4
t = 20

v5

v6 B

Figure 53: Idealized example for demonstrating the impact of simultaneous routing
and offset optimization.

yields a fifty-fifty split for each commodity between upper and lower path in this simple
network. Therefore, we fix this split and optimize the coordination with our model and
compare this to the results of the simultaneous optimization.

For the fifty-fifty split there are many conflicts of traffic in opposite directions. The
simulation yields an average waiting time of 25.2 seconds for the best coordination.

In contrast, the computed solution of the simultaneous optimization with our model
is very different. The commodity from A to B is completely assigned to the lower path,
while the commodity from B to A is completely assigned to the upper path. This avoids
all conflicts with opposite traffic and allows perfect ‘green waves’. The average waiting
time is reduced to 6.1 seconds and occurs only at the first traffic signal where cars are
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assumed to appear randomly. The simultaneous assignment and coordination reduces
waiting time by 75 percent in this simple scenario.

Of course, the parameters in the example above were chosen ideally for maximum
effect. Furthermore, we did not consider any crossing traffic. However, the intended
advantage of simultaneous optimization in contrast to a successive approach is clearly
visible even in this very simple example. The same effect of separating traffic flows to
force ‘green waves’ is also observed in realistic scenarios like Cottbus, although the effect
on the waiting times is not as dramatic as in the constructed network. To prove this we
chose the following approach. First of all, determine a classical, static traffic assignment
with VISUM. VISUM is a traffic planning tool from ptv AG linked with VISSIM and
features various state-of-the-art static traffic assignment techniques. Secondly, fix this
assignment in our model to the route choice proposed by VISUM and optimize the traffic
signal coordination. Note that it is not trivial to assign flow to a certain path, because
it is not known which time slots will be chosen in the cyclically time-expanded network.
Instead, a new commodity is introduced for each path of the path decomposition of the
VISUM assignment. For each commodity, all arc capacities except those corresponding
to the arcs of the path are set to zero such that the flow is fixed to the route but it can
move freely in time. Thirdly, optimize signals and assignment simultaneously for the
same demands with our model and compare both solutions.

We chose the Cottbus scenario with 17 origin-destination pairs for this experiment.
The chosen demands correspond to 200 cars that enter the network during one cycle of
90 seconds. Optimizing with both strategies we observed that free route choice yields
11 % less additional traffic induced travel time (see Table 6 and Figures 54–57). Further-
more, VISUM assigns most commodities to their shortest paths and therefore opposing
commodities to the same road. In contrast, the cyclically time-expanded network model
suggests a circulation around the city center. More road users are assigned to the outer
circular road, bypassing the center. Nearly two third of them use the outer road in
clockwise direction, and only one third uses this road in counterclockwise manner.

total travel time traffic induced costs pure waiting time
in seconds in seconds in seconds

fixed routes 36,736 8,967 8,528
free assignment 35,729 7,960 4,821
best random 40,345 12,576 -

free speed 27,769 - -

Table 6: The traffic-induced costs are reduced from 9,000 to about 8,000 seconds.
These 1,000 seconds are saved every cycle, i.e. every 90 seconds. Remember that
the traffic induced costs do not only consist of the overall waiting time. In the case
of free assignment they also include additional travel times for detours which are
accepted to avoid congested roads. The total waiting time is about 4,800 seconds
per cycle.
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These completely different but high-performance assignments characterize the pre-
sented model. We believe that similar efficient results cannot be obtained without si-
multaneously considering assignment and coordination, i.e., a highly-adaptive traffic
signal optimization will have problems to find a competitive solution. These results also
suggest that traffic signal coordination could be used to actively route or redirect traffic.
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Figure 54: Traffic assignment calculated with VISUM for 17 commodities in the
Cottbus scenario. The color encodes the traffic density from dark green (up to
100 cars per hour and lane) to dark red (more than 800 cars per hour and lane)
separately for both directions. It is notable that the traffic is distributed fairly
equally in the network. Only a few commodities deviate from their shortest paths
due to exhausted capacities. Some changes in traffic density are caused by capacity
changes, i.e. a varying number of lanes.
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Figure 55: Traffic assignment for the same scenario as in Figure 54, calculated
with the cyclically time-expanded model. The traffic on the outer road is increased
in clockwise direction.
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Figure 56: Splitting of two commodities in the scenario of Figure 55. 400 road
users per hour travel from a shopping mall in the North (intersection 3) to a housing
area in the South (intersection 12). Their paths are displayed in red. The same
amount of cars is traveling in the opposite direction (green paths). VISUM assigns
all flow units to the shortest path which runs straight through the city center (not
shown in the diagram). In our model more than 50% of the road users join the
circulation on the outer road. Here, the color brightness encodes the traffic density
(dark means higher density).
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Figure 57: This diagram shows the waiting time integrated over all cars during
one cycle at each traffic signal after optimization with our model. Dark green
means total waiting time of less then 50 seconds, dark red stands for more than 400
seconds at the specific traffic signal. With the assignment in Figure 55 in mind the
waiting time on streets with high traffic volume is rather low. A good coordination
is found. The highest waiting times occur at the feeder roads where traffic is equally
distributed over time.
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6.6 Solving the MIP

For practical applications a model should be quickly solvable. Due to the time-expansion
and the decision variables, the MIP-formulation of our model is rather large. Table 7
shows the size of the Cottbus scenario with its 31 traffic signal controlled intersections,
14 commodities, and a cyclic expansion with 90 time steps (Γ = 90 seconds) and the
corresponding mixed integer program (MIP). The offset of one traffic signal is fixed to
reduce symmetry.

Number of

Network: nodes 15,570
arcs 31,410
decision variables 2,700

MIP: variables 80,211
constraints 159,821
non-zeroes 625,167

Table 7: Size of the expanded Cottbus network and its MIP.

Solving the mixed integer programs with CPLEX produces some expected and some
surprising effects. Optimal or near to optimal solutions are obtained very fast. For low
or medium traffic load, a good assignment and coordination for the regularly shaped
city of Portland is often calculated in less than 10 seconds and the optimal solution is
obtained in less than 60 seconds. For high load, the convergence is slower, but good
solutions are still computed quite fast. Unfortunately, it takes much longer to actually
prove that these solutions are optimal or close to optimal, i.e. to close the gap to the dual
bound. The dual bound increases slowly while the primal solution remains unchanged
(see also Table 8).

In scenarios with many conflicts between commodities with opposite directions,
e.g. Cottbus, and high load the gap cannot be closed at all by CPLEX. In some scenarios
a gap of up to 30 % remains even after hours of computation. Still, the obtained primal
solutions show very good performance in the simulation. On the other hand, even slight
disturbances like changing the demand of a commodity or changing a signal plan a little
bit may yield a completely different behavior of the solver and may significantly influ-
ence the running time. For example, changing the phase order of a single signal plan can
change the computation time by a factor of 10 and parameter tuning in CPLEX does
not give a uniform picture. In this section, we will mainly focus on these hard instances.

The highest hurdle is the computation of good dual bounds. This observation is
supported by data from the Cottbus scenario. The instance in Table 7 was solved using
CPLEX 12. We obtained a primal solution with objective function of value 44,100.
The best dual bound stayed at 37,025 even after one day of computation. To rate
the relevance of this dual solution we compare it to two trivial bounds. Calculating
the length of a shortest path for each commodity times the demand of this commodity
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yields a dual bound of 33,390. Calculating an assignment without traffic signals in the
unexpanded network yields a dual bound of about 35,180. Thus, the dual bound was
not significantly increased by CPLEX.

In the following, we present our efforts on the improvement of the formulation of the
mixed integer program to speed up the computation of good lower bounds. Unfortu-
nately, we had only little success so far. We will briefly summarize our experiences and
the occurring difficulties.

6.6.1 Influence of granularity

Up to now, we did not discuss granularity of our model in detail. From the practical
point of view, a granularity of one time step per second seems to be reasonable. With
a typical maximum flow rate of one car per 2 seconds and lane, we have to limit the
capacity of an arc in our model to 1/2 flow units per time unit. So, thinking of common
disturbances in real world traffic, this time expansion is fine enough.

In contrast, a rougher granularity yields fewer binary variables and the size of the
MIP is significantly reduced. With rougher granularity, we have to adapt the matrix
Q of the interior traffic signal plans, because the provided signal plans have a precision
of one second. This can be done by reducing or increasing green times. Therefore, the
value of the optimal solution will increase due to worse coordination, but it may also
change due to the inaccuracy of the matrix Q, i.e. increased green times. We study the
influence of granularity in the Portland scenario. We choose a scenario with very high
load and slow convergence. The results are presented in Table 8.

Granularity: 1s 3s 6s

initial 21,273/6,477 27,810/6,576 34,632/6,612
after 10 s 11,532/6,479 10,995/6,621 10,692/7,314
after 60 s 10,198/6,479 10,251/7,107 9,888/7,770
after 300 s 9,300/6,479 9,504/7,260 9,888/8,334
after 600 s 9,300/6,601 9,504/7,386 9,888/8,616
after 1 h 9,180/6,610 9,504/7,779 9,888/9,144
after 5 h 8,769/6,725 9,504/8,283 9,888/9,888

Table 8: Solution values (primal/dual) and calculation times for different choices of
granularity for the Portland scenario with routing enabled and very high traffic load.
For the finest granularity, the primal solution value stayed at 8,713 even after two
days of calculation, but the dual solution was slowly increasing to 7,049. Assuming
a behavior as for the other granularities, the primal solution after 5 minutes seems
to be only 6 % off of the optimum. Hence, convergence is very poor, but an optimal
or near to optimal solution is calculated rather fast.

A finer granularity slows down the convergence, but competitive solutions are still
obtained quite fast even for the finest cyclic time expansion. The primal solution after
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60 seconds of this finest expansion is only 3 % away from the optimal solution of the
roughest expansion. After five minutes, the solution with the finest granularity outper-
forms all solutions for rougher time steps.

On the other hand, it is much harder to compute lower bounds and prove optimality
for finer granularity. However, the dual bounds of the rougher cyclic time expansions
cannot be used for the finer expansions.

From a practical point of view, the better solutions are obtained for finer expansions.
From a theoretical perspective, optimality certificates – or at least good bounds – can
be obtained for rougher expansions. From an optimist’s point of view, the primal gap
seems to be much smaller than the dual gap.

Nevertheless, one may use a successive refinement to find good solutions even faster.
Given a solution for a rough granularity, we create the cyclically time-expanded network
for a finer granularity, but we admit offsets only near the given solution, i.e. several
binary decision variables are set to 0 a priori. With a successive refinement good solu-
tions can be found faster. Table 9 shows computations times for this approach and the
Braunschweig scenario. In this case, both solution values are also equal. This is not true
for arbitrary scenarios. Since we restrict our model to a subset of possible offsets, we
loose the guarantee on the optimality of our solution. Thus, one of our main objectives
is not reached. In most applications the decreased running time should not compensate
this disadvantage.

Granularity computation time
# of steps original refined

14 37 s 37 s
28 160 s 2 s
84 2,700 s 8 s

47 s

Table 9: Computation times for solving the MIP of the successively refined Braun-
schweig scenario (CPLEX 12). In each refinement step only 10 offsets near the best
offset of the previous solution are variable at each traffic signal. An optimal solution
for the finest granularity was found in 47 seconds instead of 45 minutes.

6.6.2 Column generation

Column generation often yields significant improvements of running times. We discuss
two different approaches.

First, we considered a path based formulation of the traffic assignment problem. This
formulation is exponential in size. But with column generation, i.e. increasing the set
of active path iteratively, min-cost-flow problems on large networks can often be solved
quickly [2].

For our model, we also implemented this approach, but we faced the following problem:
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changing one offset may turn the complete set of active paths infeasible. At this moment,
one loses all information and the iterative approach fails. One may now think of a slightly
relaxed path generation. We do not fix the paths in the cyclically time-expanded network
but in the original network. For example, consider a path in the original network with
ten traffic signals. With a cyclic time expansion of 60 steps (e.g. a cycle time of 60
seconds and one step per second), this implies a set of 6010 paths. Instead of this large
set, we fix the corresponding path in the original network. However, the set of reasonable
paths in the original inner-city network is small. For most commodities, not more than
10 paths have to be taken into account. Furthermore, even with each commodity fixed
to one such path, the problem is still very hard to solve. Thus, no time saving could be
achieved.

Second, one may think of a pattern generation approach for the binary offset variables.
Pattern generation is very helpful in many problems, e.g. cutting stock, to tackle the
combinatorial variety. Therefore, one may interpret the binary decision variables as a
pattern. But in our model, exactly one offset per intersection has to be fixed and each
combination of offsets for several intersections is feasible in principle. Thus, our patterns
have a very easy structure. Even more restricting, we are only allowed to choose exactly
one pattern in the solution. Hence, the relation to other pattern generation problems
is very poor and we can stop following this approach even without discussing how to
generate new patterns out of old ones.

6.6.3 Relaxation and Branch&Cut.

Relaxation and Branch&Cut are two standard techniques for solving mixed integer pro-
grams.

First, we consider the relaxation of our model, i.e., the binary conditions for the
decision variables bn

t are dropped and we add the constraint 0 ≤ bn
t ≤ 1 instead. Choosing

one offset out of a set of k offsets is still a tight constraint, i.e.
∑k

t=1 bn
t = 1 itself provides

integer feasible solutions. Hence, the difficulties occur in the inequalities for the capacity
bounds that are multiplied with the decision variables.

When solving this relaxed formulation one obtains shared offsets. Several of the de-
cision variables range in between 0 and 1. So to say, each traffic light is a little bit
green and a little bit red at the same time. Thus, this relaxation itself has no practical
meaning. Not surprising, the solution value is exactly the same value of the first dual
bound computed by CPLEX.

Therefore, we have to re-introduce the binary conditions via a Branch&Cut technique.
However, we did not succeed in developing a good branching strategy up to now. We
tried a blockwise branching, i.e. we shrank the interval of possible offsets in the style
of a binary search. For example, the whole set of consecutive offsets from bn

1 to bn
k/2 is

fixed to zero. Hence, the offset has to be somewhere in the interval (k/2, k]. The biggest
difficulty is computing good bounds for such a strategy.

The cyclically time-expanded model has a lot of very good solutions that are near to
optimal. Some of these solutions differ only slightly, other solutions imply quite different
routings and coordinations. Symmetries in the network tighten the problem. This also
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makes it very difficult to calculate good bounds, i.e. estimations on the traffic induced
costs. For each fixed decision, there are various re-routings and changes in the other
offset variables such that the optimal value does not change significantly. Hence, the
branching tree becomes very large and pruning is hardly possible.

This observation is also supported by the results presented in Figure 58. We took
a near to optimal solution from the Cottbus scenario. All but one offset are fixed and
we calculate the objective value with respect to the free offset. There occur three local
minima for quite different choices of the free offset. Furthermore, Figure 58 suggests
that there are various local optima in general. Thus, a local search strategy will also
fail.

0 20 40 60 80
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5.7
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x 10

4

Figure 58: Objective values for the Cottbus scenario. In a random coordination,
all but one offsets are fixed. The free offset (Intersection 15) is varied in steps of
5 seconds and optimal assignments are calculated. The corresponding total travel
time is displayed in the diagram.

6.7 Conclusion

The cyclically time-expaned model represents a perfect trade-off between static and
dynamic models. It provides enough dynamic behavior to capture traffic signals, but it
does not carry time dependency to excess.

Another main advantage of the presented cyclically time-expanded model is the simul-
taneous description of the traffic assignment problem and the traffic signal coordination
problem in an uncomplicated linear mixed integer programming formulation. The in-
teractions between road users and the traffic signal coordination are taken into account
and provide considerable potential for better solutions. Furthermore, our model allows
for an efficient solution of the traffic assignment problem when the signal coordination
is fixed.

The simulation results with MATSim and VISSIM suggest the applicability of our
model in real-world traffic optimization frameworks. In spite of the size of the MIP-
formulation good solutions are obtained quickly. In our solutions green waves, i.e.,
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progressive signal systems, are indeed created and traffic is assigned to well coordi-
nated arterial roads. The optimized coordination features lower travel times and less
congestion. The traffic induced costs are usually reduced by 10 to 75 % compared to
conventional two-step approaches for assignment and coordination.

Furthermore, our model assumptions of flow independent transit times are not too
simplifying. The link performance predicted by the cyclically time-expanded model
can be reproduced with the microscopic traffic simulation VISSIM. Quite surprisingly,
both simulation tools VISSIM and MATSim, despite their different approaches, produce
very similar results. Average travel times vary less than 5 % and the overall picture
of congestion is nearly identical. As a consequence, the coordinations obtained by our
optimization seem to be robust with respect to disturbances as both simulations rate
them equally; in particular, our optimization is not fine-tuned to fit the special properties
of a special simulation tool.

Summarizing, our model yields competitive solutions in a competitive time. The
advantage of a simultaneous optimization of traffic assignment and traffic signal coordi-
nation is clearly visible. Solving this mixed integer program with a common solver also
yields a dual bound for the solution. This guaranteed maximal gap to optimality allows
to evaluate the quality of the found solution and, thus, this is an advantage over heuristic
approaches like genetic programming or neural networks. Most state-of-the-art traffic
signal optimization tools like TRANSYT are very vulnerable to local optima and do not
provide any dual bound or any guarantee on the optimal solution at all. To the best
of our knowledge, there are no other models for a simultaneous optimization of traffic
assignment and traffic signal coordination, that use strict mathematical programming
and that do not drop significant properties of inner-city traffic.

Nevertheless, there remain some open tasks. The extension of the model to split
optimization as presented in Section 5.6.1 is very fascinating from the author’s point
of view. This will involve mainly two questions. Much more data will be needed to
model a single intersection. All safety constraints have to be formulated and integrated
into the mixed integer program. Building a scenario like Cottbus will be even more
time consuming. Further, the number of decision variables will increase significantly. It
will be much harder to compute good solutions, but this approach also provides great
potential for better traffic signal coordinations.

With overload, the cyclically time-expanded model simply turns infeasible. Especially
in a dynamic setting, one would expect that overload could be handled by extending the
time horizon, but the cyclic expansion provides no possibility to expand the time horizon.
Thus, other strategies for handling overload or scaling demands are needed. We have also
discussed the difficulty of determining stable user equilibria in Section 5.5.3. A concept
of equilibria that consider ‘pushing’ even without time as an indicator for causality,
is an interesting challenge. In the present model, road users of a commodity could
intentionally block other traffic participants to reduce traffic flow on their remaining
path which would reduce travel times for this commodity. Thus, user equilibria involve
many aspects and they are also linked to the handling of overload.

Combining both topics of this thesis also yields an interesting question. Most likely,
there will always be some road users that are unfamiliar with the network. These users
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will follow guideposts to their destination. A small percentage of the traffic can be routed
explicitly on a fixed route by a proper installation of these traffic signs. The influence
of some commodities routed confluently on the network capacity could be much greater.
This reminds of Stackelberg routing in game-theoretic approaches for traffic assignment.
Furthermore, one may study whether traffic signal coordination can be used to affect
assignments systematically. Urban planners may be interested in calming traffic near
schools or hospitals. ‘Red waves’ are certainly not the best idea, but providing well-
coordinated alternative routes is a reasonable possibility.

Expanding the model directly leads to another open question. The differences in the
performance of the solver even for very similar scenarios are not well understood, yet.
A good idea for a branch&cut strategy with a clever estimation of traffic induced costs
will directly lead to decreased computation times. Additionally, one may include other
solvers in the experiments.

The investigations of our cyclically time-expanded model can be extended to other
criteria like robustness. What happens with the system if one signal loses contact to the
main server and therefore its cycle. Furthermore, more accurate information and data
for other cities would enhance our portfolio of scenarios and improve the practical value
of our solutions.

Eventually, let us return to the question from the beginning of this thesis. What can
mathematics do to support the quest for stress-free, environment-friendly, and safe trav-
eling? For example, guideposts and traffic signals can be optimized with the help of
network flow theory to reduce congestion. We presented two new concepts concerning
confluent flows and offset optimization. Now, improving guideposts in a real application
or testing one of our optimized coordinations in reality would cap it all.
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[79] B. Hoppe and É. Tardos. The quickest transshipment problem. Mathematics of
Operations Research, 25:36–62, 2000.

[80] P. Hunt, D. Robertson, R. Bretherton, and R. Winton. Scoot – a traffic responsive
method of co-ordinating signals. Technical report, Traffic Reasearch Laboratory,
1981. Laboratory Report 1014.

[81] International Maritime Organization. Convention on the International Regulations
for Preventing Collisions at Sea, 1972.

[82] T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed tree-width.
Journal of Combinatorial Theory, Series B, 82(1):138–154, 2001.

[83] V. Kaibel and M. A. F. Peinhardt. On the bottleneck shortest path problem.
Technical Report 06-22, Konrad-Zuse-Zentrum f. Informationstechnik Berlin, 2006.

[84] N. K. Karmarkar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4:373–395, 1984.

[85] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103,
New York, 1972.

[86] M. Kaufmann and G. Klär. A faster algorithm for edge-disjoint paths in planar
graphs. In W.-L. Hsu and R. Lee, editors, ISA’91 Algorithms, volume 557 of
Lecture Notes in Computer Science, pages 336–348. Springer Berlin / Heidelberg,
1991.

[87] L. G. Khachiyan. A polynomial algorithm in linear programming. Sov. Math.,
Dokl., 20:191–194, 1979.

[88] J. Kleinberg. Approximation algorithms for disjoint paths problems. PhD thesis,
MIT, 1996.

[89] J. M. Kleinberg. Single-source unsplittable flow. In 37th Annual Symposium on
Foundations of Computer Science, pages 68–77, 1996.

[90] B. Klinz and G. Woeginger. Minimum-cost dynamic flows: The series-parallel case.
Networks, 43:153–162, 2004.



Bibliography 171

[91] B. Klinz and G. J. Woeginger. One, two, three, many, or: Complexity aspects of
dynamic network flows with dedicated arcs. Operation Research Letters, 22:119–
127, 1998.

[92] R. Koch, M. Skutella, and I. Spenke. Maximum k-splittable s,t-flows. Theory of
Computing Systems, 43:56–66, 2008.
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