16 research outputs found

    Ant-colony and nature-inspired heuristic models for NOMA systems: a review

    Get PDF
    The increasing computational complexity in scheduling the large number of users for non-orthogonal multiple access (NOMA) system and future cellular networks lead to the need for scheduling models with relatively lower computational complexity such as heuristic models. The main objective of this paper is to conduct a concise study on ant-colony optimization (ACO) methods and potential nature-inspired heuristic models for NOMA implementation in future high-speed networks. The issues, challenges and future work of ACO and other related heuristic models in NOMA are concisely reviewed. The throughput result of the proposed ACO method is observed to be close to the maximum theoretical value and stands 44% higher than that of the existing method. This result demonstrates the effectiveness of ACO implementation for NOMA user scheduling and grouping

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    Enhancing the bees algorithm using the traplining metaphor

    Get PDF
    This work aims to improve the performance of the Bees Algorithm (BA), particularly in terms of simplicity, accuracy, and convergence. Three improvements were made in this study as a result of bees’ traplining behaviour. The first improvement was the parameter reduction of the Bees Algorithm. This strategy recruits and assigns worker bees to exploit and explore all patches. Both searching processes are assigned using the Triangular Distribution Random Number Generator. The most promising patches have more workers and are subject to more exploitation than the less productive patches. This technique reduced the original parameters into two parameters. The results show that the Bi-BA is just as efficient as the basic BA, although it has fewer parameters. Following that, another improvement was proposed to increase the diversification performance of the Combinatorial Bees Algorithm (CBA). The technique employs a novel constructive heuristic that considers the distance and the turning angle of the bees’ flight. When foraging for honey, bees generally avoid making a sharp turn. By including this turning angle as the second consideration, it can control CBA’s initial solution diversity. Third, the CBA is strengthened to enable an intensification strategy that avoids falling into a local optima trap. The approach is based on the behaviour of bees when confronted with threats. They will keep away from re-visiting those flowers during the next bout for reasons like predators, rivals, or honey run out. The approach will remove temporarily threatened flowers from the whole tour, eliminating the sharp turn, and reintroduces them again to the habitual tour’s nearest edge. The technique could effectively achieve an equilibrium between exploration and exploitation mechanisms. The results show that the strategy is very competitive compared to other population-based nature-inspired algorithms. Finally, the enhanced Bees Algorithms are demonstrated on two real-world engineering problems, namely, Printed Circuit Board insertion sequencing and vehicles routing problem

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Pertanika Journal of Science & Technology

    Get PDF

    Applied Methuerstic computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Autoencoder-based techniques for improved classification in settings with high dimensional and small sized data

    Get PDF
    Neural network models have been widely tested and analysed usinglarge sized high dimensional datasets. In real world application prob-lems, the available datasets are often limited in size due to reasonsrelated to the cost or difficulties encountered while collecting the data.This limitation in the number of examples may challenge the clas-sification algorithms and degrade their performance. A motivatingexample for this kind of problem is predicting the health status of atissue given its gene expression, when the number of samples availableto learn from is very small.Gene expression data has distinguishing characteristics attracting themachine learning research community. The high dimensionality ofthe data is one of the integral features that has to be considered whenbuilding predicting models. A single sample of the data is expressedby thousands of gene expressions compared to the benchmark imagesand texts that only have a few hundreds of features and commonlyused for analysing the existing models. Gene expression data samplesare also distributed unequally among the classes; in addition, theyinclude noisy features which degrade the prediction accuracy of themodels. These characteristics give rise to the need for using effec-tive dimensionality reduction methods that are able to discover thecomplex relationships between the features such as the autoencoders. This thesis investigates the problem of predicting from small sizedhigh dimensional datasets by introducing novel autoencoder-basedtechniques to increase the classification accuracy of the data. Twoautoencoder-based methods for generating synthetic data examplesand synthetic representations of the data were respectively introducedin the first stage of the study. Both of these methods are applicableto the testing phase of the autoencoder and showed successful in in-creasing the predictability of the data.Enhancing the autoencoder’s ability in learning from small sized im-balanced data was investigated in the second stage of the projectto come up with techniques that improved the autoencoder’s gener-ated representations. Employing the radial basis activation mecha-nism used in radial-basis function networks, which learn in a super-vised manner, was a solution provided by this thesis to enhance therepresentations learned by unsupervised algorithms. This techniquewas later applied to stochastic variational autoencoders and showedpromising results in learning discriminating representations from thegene expression data.The contributions of this thesis can be described by a number of differ-ent methods applicable to different stages (training and testing) anddifferent autoencoder models (deterministic and stochastic) which, in-dividually, allow for enhancing the predictability of small sized highdimensional datasets compared to well known baseline methods
    corecore