657 research outputs found

    Scalable video transcoding for mobile communications

    Get PDF
    Mobile multimedia contents have been introduced in the market and their demand is growing every day due to the increasing number of mobile devices and the possibility to watch them at any moment in any place. These multimedia contents are delivered over different networks that are visualized in mobile terminals with heterogeneous characteristics. To ensure a continuous high quality it is desirable that this multimedia content can be adapted on-the-fly to the transmission constraints and the characteristics of the mobile devices. In general, video contents are compressed to save storage capacity and to reduce the bandwidth required for its transmission. Therefore, if these compressed video streams were compressed using scalable video coding schemes, they would be able to adapt to those heterogeneous networks and a wide range of terminals. Since the majority of the multimedia contents are compressed using H.264/AVC, they cannot benefit from that scalability. This paper proposes a technique to convert an H.264/AVC bitstream without scalability to a scalable bitstream with temporal scalability as part of a scalable video transcoder for mobile communications. The results show that when our technique is applied, the complexity is reduced by 98 % while maintaining coding efficiency

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Livrable D3.4 of the PERSEE project : 2D coding tools final report

    Get PDF
    Livrable D3.4 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D3.4 du projet. Son titre : 2D coding tools final repor

    Random Linear Network Coding for Wireless Layered Video Broadcast: General Design Methods for Adaptive Feedback-free Transmission

    Full text link
    This paper studies the problem of broadcasting layered video streams over heterogeneous single-hop wireless networks using feedback-free random linear network coding (RLNC). We combine RLNC with unequal error protection (UEP) and our main purpose is twofold. First, to systematically investigate the benefits of UEP+RLNC layered approach in servicing users with different reception capabilities. Second, to study the effect of not using feedback, by comparing feedback-free schemes with idealistic full-feedback schemes. To these ends, we study `expected percentage of decoded frames' as a key content-independent performance metric and propose a general framework for calculation of this metric, which can highlight the effect of key system, video and channel parameters. We study the effect of number of layers and propose a scheme that selects the optimum number of layers adaptively to achieve the highest performance. Assessing the proposed schemes with real H.264 test streams, the trade-offs among the users' performances are discussed and the gain of adaptive selection of number of layers to improve the trade-offs is shown. Furthermore, it is observed that the performance gap between the proposed feedback-free scheme and the idealistic scheme is very small and the adaptive selection of number of video layers further closes the gap.Comment: 15 pages, 12 figures, 3 tables, Under 2nd round of review, IEEE Transactions on Communication

    Video summary generation and coding using temporal scalability

    Get PDF
    In this paper two algorithms for video summary generation and coding are proposed. Two distortion metrics used in the video summary generation algorithm are compared and an algorithm with reduced computational complexity is presented. The paper also proposes two frame structures in the temporal domain suitable for coding using temporal scalability of the H.264/SVC
    • …
    corecore