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Abstract1— In this paper two algorithms for video 

summary generation and coding are proposed. Two distortion 

metrics used in the video summary generation algorithm are 

compared and an algorithm with reduced computational 

complexity is presented. The paper also proposes two frame 

structures in the temporal domain suitable for coding using 

temporal scalability of the H.264/SVC.  
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I. INTRODUCTION 

It is expected that in the near future, data networks will 

provide high-quality multimedia communication services 

in which the content quality is adapted to the 

processing/power of the terminal, the network conditions, 

and the user’s preferences. In particular, in video 

communications, scalable coding is considered an 

important functional technology of video coding as it 

enables this type of adaptability to constrained terminals 

and network. Although it might not be suited to all 

communication scenarios, it proves to be useful in many 

video networking applications. For example, a method to 

cope with diverse user requirements in video 

communication is to use streams with spatial and temporal 

scalability, which allows signal resolution adaptation. The 

video coding standards, H.262|MPEG-2, H.263 and 

MPEG-4 Visual support temporal scalability, with 

particular relevance to H.264/AVC whose temporal 

scalability exhibits increased flexibility because of its 

reference picture memory control. For supporting temporal 

scalability with reasonable number of temporal layers, no 

changes to the design of H.264/AVC were required.[1]. 
The increasing availability of video and audio in 

personal computers, PDA and mobile phones creates a 

strong demand for short versions of the coded data either in 

spatial or temporal domain. Such short versions are useful 

to rapidly provide some information about the content of a 

long video or set of videos to users. Video summarization 

automatically creates a short version, or subset of key 

frames, which contains as much information as possible of 

the original video. From a video summary, the user should 

be able to evaluate if a video is interesting or not. For 

example, if a documentary contains a certain topic of 

his/her interest. Video summarization introduces distortions 

at the playback stage and this distortion is related to the 
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conciseness of the summary whereby a more succinct 

summary implies higher distortion [2-5]. 

The regular scheme used in H.264/SVC to achieve 

temporal scalability is not directly applicable to the 

temporal scalable coding of video summaries as these are 

obtained by a non-uniform temporal sampling of the full 

time-resolution sequence. In this work we propose two 

methods of coding video summaries, using a modified 

scheme of the H.264/SVC temporal scalability. With these 

methods we can have a scalable bitstream with several 

temporal layers including the video summary of the 

original sequence. Using these methods the viewer can 

extract the video summary from the bitstream without 

having to decode the higher temporal layers and then 

quickly browse through the video. If the user wants to see 

the video (at full temporal resolution), it is necessary to 

decode all temporal layers (including the video summary 

layers). The various temporal layers allow frame rate 

adaptation to user's terminal and its preferences. Two 

algorithms of video summarization were implemented 

based on a suboptimal temporal partition of the original 

video sequence into windows of variable size. Both 

algorithms use  temporal rate-distortion optimization, and 

use Dynamic Programming (DP) to find the optimal 

solution [6-8]. 

II. DEFINITIONS AND FORMULATIONS 

The temporal rate of a summary is defined as the ratio 

given by the number of frames selected to the video 

summary m, over the total number of frames of original 

sequence, n, that is R(S)=m/n. 

Frame distortion between two frames j and k is denoted 

by d(fj,fk). Different metrics can be used to calculate frame 

distortion. In this paper the mean squared error (MSE) and 

a metric based on a principal component analysis (PCA) 

are used. The MSE metric is given by  

 
height-1 width-1

2
j k MSE j k

y=0 x=0

1
d(f ,f ) = (f (x,y)-f (x,y))

height*width
   (1) 

The PCA metric is the Euclidean distance between two 

frames in PCA space. The PCA metric is given by  

 
PCA

2

j k j k
d(f ,f ) = T(D(f ))-T(D(f ))  (2) 

where D denotes a down scaling process applied to the 

original frames and T is the PCA transform.  

Frame-by-frame distortion d(fk,fk-1) is a metric that 

reflects the “changes” of the video sequences, where fk is 

the current frame and fk-1 is the previous one. 
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Temporal distortion D(S) is defined as the average 

frame distortion between the original and the reconstructed 

sequence and is given by 

 
n-1

k k
k=0

1
D(S)= d(f ,f ')

n  (3) 

where fk is current frame and fk
’ 
is the reconstruct frame. If 

fk
’ 

does not belong to the video summary then it is 

substituted by the most recent frame belonging to the video 

summary. The video summarization process can be framed 

as a temporal rate-distortion optimization problem[6] 

where the objective is to find the subset of images of the 

original video that provides its best representation within a 

given rate budget Rmax (i.e. without using more than 

m=Rmax*n images). If a temporal rate constraint Rmax is 

given, resulting from processing power of the terminal or 

the transmission rate and user’s preferences, the optimal 

video summary S
*
 is the one that minimizes the 

summarization distortion, given by 

 

*
maxS

S =arg mim D(S), s.t. R(S) R
 (4)

 

where R(S) is temporal rate and D(S) is the average frame 

distortion. 

III. DISTORTION METRICS COMPARISON 

In order to choose the most appropriate distortion metric to 

use in video summarization algorithm, the PCA and MSE 

metric are compared. Simulations were preformed on a PC 

with a 2.4GHz processor and 1.0 GB of RAM memory. In all 

simulations the temporal rate R(S) was 0.4 (good threshold 

between distortion and conciseness of video summary). The 

computational complexity is measured by processing time. 

The video sequences “foreman” and “mother daughter” were 

used with QCIF@30fps resolution to MSE metric and 

(8x6)@30fps resolution to PCA metric. The results of 

“mother daughter” are not presented in this paper, since 

similar performance and behavior was observed as for 

“foreman” sequence.  

 

TABLE 1 - Computational complexity for “foreman” 

sequence 

n m R(S) MSE [s] PCA [s] 

20 8 0.4 0.75 3.78 

40 16 0.4 12.16 6.48 

60 24 0.4 61.73 42.01 

80 32 0.4 194.61 117.36 

100 40 0.4 478.00 273.60 

 

 

 

 

 

 

 

 

 

TABLE 2 - Summary frames of “foreman” sequence 

n m MSE  PCA 

20 8 0,2,4,6,8,10,12,17 0,3,5,6,10,12,14,18 

40 16 
0,2,4,6,8,10,12,16,18,20,22,

25,29,32,35,37, 

0,3,5,6,10,12,14,18,20,21,2

4,25,29,30,32,34 

60 24 
0,1,2,4,6,8,10,12,15,17,19,2

1,24,28,30,32,35,37,40,43,4

7,50,52,55, 

0,3,6,10,12,14,18,20,24,25,

29,30,32,34,35,38,42,44,46,

47,49,51,54,57 

80 32 

0,2,4,6,8,10,12,15,17,19,21,

24,28,30,32,35,37,40,43,47,

50,52,55,63,65,67,69,71,72,

74,76,78 

0,3,6,10,12,18,20,24,25,29,

30,32,34,35,38,42,44,46,47,

49,51,54,57,60,62,63,65,68,

73,74,76,79, 

100 40 

0,2,4,6,8,10,12,15,17,19,21,

24,28,30,32,35,37,40,43,47,

50,52,55,63,65,67,69,71,72,

73,74,76,78,80,84,87,89,92,

94,97 

0,3,6,10,12,14,18,20,24,25,

29,30,32,34,35,38,42,44,46,

47,49,51,54,57,60,62,63,65,

68,73,74,76,77,78,80,86,88,

93,97,98 

 

The computational complexity for the video sequence 

“foreman” is shown in Table 1. It is understandable that 

computation complexity increases when the relation n-m 

increases for both the MSE and PCA distortion metrics. 

Overall, the PCA metric results in lower-complexity than 

MSE, but for small values of n (e.g. 20) the MSE metric is 

faster. This difference is due to the scaling process used 

with the PCA metric and included in the computational 

complexity. The PCA metric is faster than MSE, because 

the resolution of sequence is different. When these metrics 
are computed with images of the same resolution, the 

processing time of the PCA is higher than MSE metric and 

the implementation of MSE metric is simpler than PCA 

metric.  

Fig. 1 shows the frame-by-frame distortion for the 

“foreman” sequence. In the plot is possible to single-out 

video shots with high activity, for example 270-330, and 

regions with low activity, see 350-400. In the figure we 

present the distortion values using the two metrics, where 

the values of the PCA based distortion were upward by a 

factor of 100. We observe identical activity profiles up to 

scale factor. 

 
Fig. 1 - Frame-by-frame distortion for the “foreman” 

sequence 

Based on the results of Fig. 1 a sub-optimal 

summarization algorithm was proposed, where a variable 

size search window is used. Its size is based on the activity 

level as defined for Fig. 1. 
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IV - A SUB-OPTIMAL FAST VIDEO SUMMARIZATION 

ALGORITHM 

The sub-optimal fast video summarization algorithm is 

based on the reduction of search window of video 

sequence. The algorithm defines the distortion threshold, as 

given by  

 
n-1

treshold k k-1
k=1

D(S) = (1 nseg) d(f , f )  (5) 

where nseg is number of segments. The original n frames 
are divided into segments whose number (nseg) is defined 
beforehand. The distortion threshold is used to determine 
the number of frames that belong to each segment, for a 
constant temporal rate R(S) in the segment. After 
determination of the number of frames in the segment, the 
algorithm searches the optimal video summarization for the 
segment. The proposed algorithm was implemented in C++. 
The pseudo-code of proposed algorithm is given by: 
 
Definition the number_of_segments; 
Find distortion_threshold; 
For (segment i =1 till number_of_segments) 
 While (total _distortion <= distortion_threshold ) 

  Frame x belongs to segment i 
  Increment the Frame number  
  Calculate total_distortion 

 End 
End 
Definition the summary frames in segment i  
Find the optimal video summarization in segment i 
 

Fig. 2 represents the segmented windows for the 

“foreman” sequence of 100 frames for nseg=4 segments and 

distortion threshold computed as described previously. The 

number and the frames retained in each segment were 

found through a processing loop that compares the 

distortion threshold value and the successive addition of the 

frame-by-frame distortion. The processing stops when the 

latter becomes larger than the former. To ensure a constant 

R(S), the number of frames we keep in the summary for 

each segment is varied according to m=R(S)*n where n is 

the number of frames of the segment and m is the number 

of frames included in the summary (e.g. segment 1 has 

m=11 and n=27 and segment 2 has m=17 and n=42). 

Following the determination of m and n the optimal video 

summarization process is applied in each segment [6]. 

 
Fig. 2 - Frame segmentation of "foreman" sequence 

In the tables 3-4 we show the results of sub-optimal fast 

video summarization algorithm for “foreman” sequence 

using the MSE and PCA metrics. Each table shows 

processing time, summary frames and average distortion 

for different nseg segments (0-original algorithm, 3, 4 and 

5). When the original sequence is divided in three 

segments, the computational complexity is 14 of the 

complexity of summarizing the entire sequence as one 

segment and the average distortion is approximately the 

same. As it is shown in the tables the increase in the 

number of segments results in a decrease of computation 

complexity with a slight increase in average distortion. The 

decrease of computer complexity is independent of the 

sequence and distortion metric. These results were 

expected as the division of the video sequence into 

segments decreases the size of the search windows used by 

the algorithm and the optimal summarization is found 

faster.  

 

TABLE 3 – Proposed computer complexity reduction 

algorithm for “foreman” sequence with MSE metric 
Number 

of 

segments 

Processing 

time [s] 
Summary frames 

Average 

Distortion 

(MSE) 

0 

478 

 

100% 

0,2,4,6,8,10,12,15,17,19,21,24,

28,30,32,35,37,40,43,47,50,52,

55,63,65,67,69,71,72,73,74,76,

78,80,84,87,89,92,94,97 

81.72 

3 

62 

 

14% 

0,2,4,6,8,10,12,16,18,20,22,25,

29,31,33,36,39,41,44,48,51,53

56,63,65,67,69,71,72,73,74,76,

78,80,84,87,89,92,94,98 

82.68 

4 

18 

 

3.8% 

0,2,4,6,8,10,12,16,19,21,24,27,

29,31,33,35,37,39,41,43,45,48,

50,52,55,63,65,67,69,71,73,75,

77,79,83,87,89,92,94,97 

86.35 

5 

11 

 

2.3% 

0,2,4,7,10,12,15,17,19,21,24,2

8,30,32,35,37,39,41,44,48,50,5

2,55,63,65,67,69,70,71,72,74,7

6,78,80,84,87,89,92,95,97 

86.97 

 

TABLE 4 - Proposed computer complexity reduction 

algorithm for “foreman” sequence with PCA metric 
Number 

of 

segments 

Processing 

time [s] 
Summary frames 

Average 

Distortion 

(PCA) 

0 

272.6  

 

100% 

0,3,6,10,12,14,18,20,24,25,29,

30,32,34,35,38,42,44,46,47,49,

51,54,57,60,62,63,65,68,73,74,

76,77,78,80,86,88,93,97,98 

1.43 

3 

41.7 

 

15% 

0,3,6,10,12,18,20,24,25,29,30,

32,34,35,38,42,44,46,47,49,51,

54,57,60,62,63,65,69,70,71,73,

74,76,79,80,86,88,93,97,99 
1.44 

4 

20.3 

 

7.45% 

0,3,6,10,12,14,18,20,21,24,25,

29,30,32,34,35,38,42,44,46,47,

49,53,57,60,62,63,66,69,70,71,

73,74,76,79,80,86,88,93,98 
1.46 

5 

15.2 

 

5.56% 

0,3,6,10,12,14,18,20,21,23,24,

25,30,34,35,38,42,44,46,47,49,

51,54,57,60,62,63,65,68,72,73,

74,76,77,78,80,86,88,93,96,98 
1.49 

 

V. CODING WITH TEMPORAL SCALABILITY  

In the previous sections (III and IV) we presented and 

examined the performance of two video summarization 

algorithms, published in[6] and our own fast solution. This 

section presents two temporally scalable video coding 

schemes, where the layers have non-uniform temporal 

sampling, in order to accommodate the coding of the 
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sequence that resulted from the process of temporal 

summarization. The schemes are based on the H.264/SVC 

coding tools and are able to produce a scalable bitstream 

which includes a video summary at different temporal 

layers. A normal scalable video bitstream comprises layers 

which allow extraction and rendering of video with 

different temporal, spatial and quality levels but so far no 

solution has been presented which includes summarization 

functionality in the scalable coding arrangement. We now 

suggest two approaches to achieve this goal. 

In Fig. 3, a scheme with two layers is hinted, where the 

video summary corresponds to the base layer and an 

enhancement layer (layer1) is added to permit decoding of 

the full temporal resolution. These two temporal layers 

have non-regular frame rate. The base layer can be 

independently decoded but layer 1 cannot be decoded by 

itself because it depends on the lower layer. A group of 

pictures (GOP) is defined in which the first and the first 

frames of the next GOP are coded as intra pictures, and the 

frames between the first and the first of the next GOP are 

coded as B pictures, with reference to the previous and next 

closer frames. In Fig. 3 and Fig. 4 the GOP is regular, but it 

can be made to vary dynamically with time, in order to 

match the video summary frame distribution. 

A somewhat similar method proposal with three temporal 

layers is presented in Fig. 4. Here the full resolution 

corresponds to all temporal layers and the video summary 

is divided into two layers, namely base layer and layer 1. 

The base layer is composed of key frames used in the 

coding process as reference frames. The enhancement layer 

pictures of the two schemes are coded as B pictures, where 

the reference pictures are restricted to previous and 

following pictures. If the previous or next reference picture 

is not in the same layer, the algorithm uses the reference 

pictures of inferior layers. These schemes are compatible 

with the syntax of H.264/SVC which supports the dynamic 

GOPs. The JSVM (H.264/SVC reference software) decoder 

should also be capable of decoding bitstreams with any 

temporal coding structure. However, the JSVM encoder 

can only be configured to use a fixed GOP size. 
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VI. CONCLUSIONS AND FUTURE WORK 

In this work a new algorithm was presented that achieves 

reduction of the computational complexity of an optimal 

video summarization algorithm, published in [6], with 

gains of nearly 90% at about the same average distortion. 

On the one hand, by increasing the number of segments, 

our sub-optimal fast video summarization algorithm 

achieves lower computational complexity at the expense of 

a small increase in summary distortion. On the other hand 

as the number of segments decrease, the computational 

complexity increases and the distortion approaches that of 

the Zhu Li summarization algorithm’s. 

Two distortion metrics (MSE and PCA) were compared 

in the summarization algorithm. It was found that PCA 

metric is better in terms of computational complexity than 

the MSE metric. We have also proposed two temporal 

scalable examples to code video with inclusion of one or 

more summary layers. For future work these methods will 

be implemented in the SVC reference codec in order to 

evaluate their performance. The proposed methods are 

suitable for a wide range of applications where user’s time, 

power and bandwidth are limited. Another application is on 

video-on-demand systems where they will provide the user 

with a tool to review summarized versions of the videos to 

make it easier selecting the one(s) he wants to see. 
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