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Abstract.  Mobile multimedia contents have been introduced in the market and their demand is growing every day due 

to the increasing number of mobile devices and the possibility to watch them at any moment in any place.  These 

multimedia contents are delivered over different networks that are visualized in mobile terminals with heterogeneous 

characteristics. To ensure a continuous high quality it is desirable that this multimedia content can be adapted on-the-fly 

to the transmission constraints and the characteristics of the mobile devices. In general, video contents are compressed 

to save storage capacity and to reduce the bandwidth required for its transmission. Therefore, if these compressed video 

streams were compressed using scalable video coding schemes, they would be able to adapt to those heterogeneous 

networks and a wide range of terminals. Since the majority of the multimedia contents are compressed using 

H.264/AVC, they cannot benefit from that scalability. This paper proposes a technique to convert an H.264/AVC 

bitstream without scalability to a scalable bitstream with temporal scalability as part of a scalable video transcoder for 

mobile communications. The results show that when our technique is applied, the complexity is reduced by 98% while 

maintaining coding efficiency.  

Keywords: Mobile Video, Video Adaptation, H.264/AVC, Scalable Video Coding (SVC), Temporal 

Scalability; 

1. Introduction 

Consumers’ demand for content on the move is growing day after day. They want to access the 

content they like, when and where they want. One of the most requested services are those that 

allow receiving and watching multimedia contents (movies, TV programs, live retransmissions, 

etc.) on mobile devices. 

There are different alternatives to transmit these contents from broadcasters to the users. One of 

them is the Mobile Internet Protocol Television (IPTV) [21] which delivers digital multimedia 

contents by Internet protocols, so users who have any kind of IP devices are able to watch various 

multimedia services including television on mobile terminals on the move. Other networks 



deployed specially for delivering multimedia contents to mobile terminals are Advanced Television 

Systems Committee - Mobile/Handheld (ATSC-M/H) [1] in North America and Digital Video 

Broadcasting Handheld (DVB-H) in Europe [7].  All of them are extensions of other existing 

networks for fixed services and introduce improvements for trying to overcome the difficulties for 

transmitting in mobile environments (fluctuating bandwidths, indoor reception, etc.). Even so, 

issues with the dynamic environment, the vulnerability of the links of transmission or bandwidth 

limitation are present. 

For delivering video over these networks ensuring continuous high quality image, it is important 

that the contents can be adapted to the receivers and the varying networks. On the one hand, this 

adaptation must occur in terms of bitrate to adapt to the constraints of the transmission due to the 

dynamic nature of the links of the network and on the other hand, in terms of bitrate or spatial 

resolution to fit into the different capabilities of a mobile terminal (battery lifetime, computing 

capacity, or screen resolutions). Therefore, real time video adaptation for mobile devices plays a 

crucial role. 

In general, the contents transmitted over these networks are compressed to make easier their storage 

and to reduce the bandwidth necessary for the transmission, so it is desirable that these compressed 

contents can adapt to these different terminals and networks [5][13][16]. This is possible using 

Scalable Video Coding (SVC) [12]. 

SVC provides different types of scalability such as temporal, spatial, quality or a combination 

allowing this adaptation on-the-fly. SVC was standardized in 2007 and is based on H.264/AVC 

[12]. The SVC video stream is divided into layers, one base layer which represents the lowest frame 

rate, the lowest spatial and the lowest quality resolutions and one or more enhancement layers 

which increase frame rate, add more spatial resolutions or more quality. By removing certain layers 

from the original bitstream, it is possible to adapt to the communication channel bandwidth and/or 

user device capabilities at every moment. 

Nowadays, most of the video content is still created in H.264/AVC without any type of scalability. 

To transform these existing video streams in H.264/AVC to SVC, which can be adapted to different 

network characteristics and user terminals, a video transcoder is proposed. Heterogeneous 

transcoding [26] is a technique for adaptation or conversion of one encoding format to another. A 

video transcoder is composed of a decoding stage followed by an encoding stage. The simplest 

transcoder is constructed by connecting a decoder which decodes the input bitstream with an 

encoder which forms a new bitstream with different characteristics. This transcoding step can be 

applied at the broadcaster side as shown in Fig. 1. 

 



 

Fig. 1. Example of an SVC transcoder for mobile environments 

 

The goal is to perform the required adaptation process faster than the concatenation of decoder and 

encoder. In particular, in this paper we propose a low complexity transcoder for transforming 

H.264/AVC bitstreams in Baseline Profile (P-picture based) without temporal scalability (frame rate 

variability) into an SVC bitstream with temporal scalability. That transcoding technique is capable 

to reduce coding complexity around 98% while maintaining coding efficiency. 

Our approach is based on reusing information such as residual data, motion vectors (MV), mode 

decision, etc. in the H.264/AVC decoding stage in order to reduce the mode decision and motion 

estimation tasks in SVC. The mode decision task is accelerated by building a decision tree using 

data mining techniques and then, uses it to narrow the possible mode decision. This idea is based on 

the high correlation between this information and the final SVC mode decision. The motion 

estimation task is accelerated by reducing the search area of the SVC encoder by building a new 

one using the information of the MV collected from the H.264/AVC bitstream. This is possible 

because those MVs represent approximately the amount of movement of the scene. 

The remainder of this paper is organized as follows. In Section 2, the state-of-the-art for 

H.264/AVC-to-SVC transcoding is discussed. Section 3 describes the technique background and 

temporal scalability in SVC. In Section 4 our approach is depicted. In Section 5 the implementation 

results are shown. Finally, in Section 6 conclusions are presented. 

2. Related Work 

In the last few years, different techniques for transcoding from H.264/AVC-to-SVC have been 

proposed. Most of the proposals are related to quality-SNR scalability, although there are few 

related to spatial and temporal scalability. 

For quality-SNR scalability, in 2006 Shen at al. proposed a technique for transcoding from 

hierarchically-encoded H.264/AVC to Fine-Grain Scalability (FGS) streams [18]. Although it was 

the first work in this type of transcoding, it does not have much relevance since this technique for 

providing quality-SNR scalability was removed from the following versions of the standard due to 



its high computational complexity. In 2009, De Cock et al. presented different open-loop 

architectures for transcoding from a single-layer H.264/AVC bitstream to SNR-scalable SVC 

streams with Coarse-Grain Scalability (CGS) layers [4]. In 2010, Van Wallendael et al. proposed a 

simple closed-loop architecture that reduces the time of the mode decision process by analyzing the 

mode information from the input H.264/AVC video stream and using it to build a fast mode 

decision model [25]. Then, in 2011, Van Leuven et al. proposed two techniques to improve the 

previous proposals [23][24]. 

Regarding spatial scalability, in 2009 a proposal was presented by Sachdeva et al. in [17]. The idea 

consists of an information single layer to SVC multiple-layer for adding spatial scalability to all 

existing non-scalable H.264/AVC video streams. The algorithm reuses available data by an efficient 

downscaling of video information for different layers. 

Finally, for temporal scalability, in 2008 a transcoding method from an H.264/AVC P-picture-based 

bitstream to an SVC bitstream was presented in [6] by Dziri et al. In this approach, the H.264/AVC 

bitstream was transcoded to two layers of P-pictures (one with reference pictures and the other with 

non-reference ones). Then, this bitstream was transformed to an SVC bitstream by syntax 

adaptation. In 2010, Al-Muscati et al. proposed another technique for transcoding that provided 

temporal scalability in [2]. The method presented was applied in the Baseline Profile and reused 

information from the mode decision and motion estimation processes from the H.264/AVC stream. 

During that year we presented an H.264/AVC to SVC video transcoder that efficiently reuses some 

motion information of the H.264/AVC decoding process in order to reduce the time consumption of 

the SVC encoding algorithm by reducing the motion estimation process time. The approach was 

developed for Main Profile and dynamically adapted for several temporal layers [8]. Later, in 2011, 

the previous algorithm was adjusted for the Baseline Profile and P frames [9]. In the same year, we 

presented another work [10] focusing in accelerating the mode decision algorithm, while our 

previous approaches focused only on motion estimation process. The present work is another 

straightforward step in the framework of H.264/AVC to SVC video transcoders where the 

approaches presented in [9] and [10] has been combined and adjusted to work together. 

3. Technical Background 

3.1 Scalable Video Coding 

Scalable Video Coding is an extension of H.264/AVC. SVC streams are composed of layers which 

can be removed to adapt the streams to the needs of end users or the capabilities of the terminals or 

the network conditions.  



The layers are divided into one base layer and one or more enhancement layers which employ data 

of lower layers for efficient coding.  

SVC supports three main types of scalability: 

1) Temporal Scalability: The base layer is coded at a low frame rate. By adding enhancement layers 

the frame rate of the decoded sequence can be increased. 

2) Spatial Scalability: The base layer is coded at a low spatial resolution. By adding enhancement 

layers the resolution of the decoded sequence can be increased. 

3) Quality (SNR) Scalability:  The base layer is coded at a low quality. By adding enhancement 

layers the quality of the decoded sequences can be increased. 

Our proposal is based in provides temporal scalability to a bitstream, so we are going to explain this 

with more detail below.  

In a sequence with temporal scalability, the base layer represents the lowest frame rate (with an 

identifier equal to 0). With one or more temporal enhancement layers (with identifiers that increase 

by 1 in every layer), a higher frame rate can be achieved. Fig. 2 shows a sequence encoded as four 

temporal layers. The base layer (layer 0) consists of frames 0 and 8 and provides 1/8 of the original 

frame rate. Frame 4 lies within the first enhancement temporal layer and, decoded together with 

layer 0, produces 1/4 of the frame rate of the full sequence. Layer 2 consists of frames 2 and 6; 

together with layers 0 and 1 it provides a frame rate that is 1/2 of the frame rate of the whole 

sequence. 

 

 

Fig. 2. Sequence with temporal scalability. Distribution of the eight first frames per every layer 

 

Temporal scalability can be achieved using P and B coding tools that are available in H.264/AVC 

and by extension in SVC. Flexible prediction tools make possible to mark any picture as reference 

picture, so that it can be used for motion-compensated prediction of following pictures. This feature 

allows coding of picture sequences with arbitrary temporal dependencies. In this way, to achieve 
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temporal scalability, SVC links its reference and predicted frames using hierarchical prediction 

structures [20] which define the temporal layering of the final structure. In this type of prediction 

structures, the pictures of the temporal base layer are coded in regular intervals by using only 

previous pictures within the temporal base layer as references. The set of pictures between two 

successive pictures of the temporal base layer together with the succeeding base layer picture is 

known as a Group of Pictures (GOP). As was mentioned previously, the temporal base layer 

represents the lowest frame rate that can be obtained. The frame rate can be increased by adding 

pictures of the enhancement layers. 

There are different structures for enabling temporal scalability, but the one used by default in the 

Joint Scalable Video Model (JSVM) reference encoder software [15] is based on hierarchical 

pictures with a dyadic structure where the number of temporal layers is thus equal to 1+ log2[GOP 

size].  

Temporal scalability based on P pictures was introduced in [20][27]. This technique provides lower 

latency and is particularly useful for multimedia communications like mobile video broadcasting or 

mobile digital television where the transmission of a scalable bitstream would be a good solution to 

address mobile terminals with several qualities. 

For a comprehensive overview of the scalable extension of H.264/AVC, the reader is referred to 

[20]. 

 

3.2 Motion Estimation Process 

The motion estimation process consists in finding a region in a reference frame that matches as 

much as possible to the current macroblock (MB). In order to find this region, search area situated 

in the reference frame is defined. That search area is centered on the current macroblock position 

and the region within the search area that minimizes a matching criterion is chosen. For elimination 

the temporal redundancy, motion vectors between every MB or sub-MB and that block which 

generates the most appropriate match inside the search area of the reference frame are calculated. 

The process is illustrated in Fig. 3. 



 

Fig. 3. Motion Estimation Process 

3.3 Mode Decision Process 

In H.264/AVC and its extension SVC, the pictures are partitioned into MBs. For every MB a 

prediction is created from previously encoded data and is subtracted from the MB to form a 

residual. By selecting the best prediction options for an individual MB, an encoder can minimize 

the residual size to produce a highly compressed bitstream. 

H.264/AVC and SVC support both intra prediction and inter prediction. Intra prediction only 

requires data from the current picture, while inter prediction uses data from a picture that has 

previously been coded and transmitted (a reference picture) and is used for eliminating temporal 

redundancy in P and B frames.  

SVC supports motion compensation block sizes ranging from 16x16, 16x8, 8x16 to 8x8; where 

each of the sub-divided regions is an MB partition. If the 8x8 mode is chosen, each of the four 8x8 

block partitions within the MB may be further split in 4 ways: 8x8, 8x4, 4x8 or 4x4, which are 

known as sub-MB partitions. Moreover, SVC also allows intra predicted modes, and a skipped 

mode in inter frames for referring to the 16x16 mode where no motion and residual information is 

encoded. Therefore, both H.264/AVC and SVC allow not only the use of the MBs in which the 

images are decomposed but also allow the use of smaller partitions by dividing the MBs in different 

ways. MB and sub-MB partitions for inter prediction are shown in Fig.4. 

 



 

Fig. 4. Macroblock and sub-macroblock partitions for inter prediction 

 

4. Proposed Video Transcoding 

One of the computationally most intensive tasks involved in the SVC encoding process is the inter-

prediction process. This process involves the mode decision and the motion estimation tasks 

described previously. The key idea behind the proposed transcoder is to accelerate those tasks using 

information collected in the H.264/AVC decoding stage. On the one hand, MB mode decision is 

accelerated using a decision tree that has been obtained using Machine Learning tools and, on the 

other hand motion estimation process was accelerated by reducing the search area. Both proposals 

are combined and adjusted to work together.  

In the next subsections we will describe these algorithms. 

4. 1 Fast Mode Decision Algorithm 

As mentioned previously, the SVC encoder part of the H.264/AVC-to-SVC transcoder takes a large 

amount of time for searching exhaustively all inter and intra modes to select the best for each 

macroblock. 

The main goal of this proposal was to reduce the time spent by this mode decision process, trying to 

narrow the set of macroblock partitions to be checked by the encoder by using a decision tree 

generated by data mining techniques. 

Although the prediction structure (and, as a result, the frames used as a reference) of H.264/AVC 

without temporal scalability (in this case using an IPPP pattern) and SVC are not the same, some 

data generated by H.264/AVC and transmitted into the encoded bitstream can help us to find out the 

best partitioning structure. For example, in Fig. 5, the correlation between the residual and MV 

length calculated in H.264/AVC with respect to the MB coded partition done in SVC are shown. 

 



 

 

 

(a) Original frame 

 

(b) Residual H.264/AVC 

 

(c) MVs in H.264/AVC 

 

(d) MB mode decision in SVC 

Fig. 5. Exploiting the correlation using Machine Learning 

 

Taking into account these observations, the information that need to be extracted from the 

H.264/AVC decoder process will be: 

1) Residual: The amount of residual of every block of 4x4 pixels is used by the decoder to 

reconstruct the decoded macroblock, so this information will be available in the decoding process. 

For our purpose, only the residual data of the luma component was extracted. 

2) Motion vectors: This information is available as well in the decoding process. The motion 

vectors of each MB were extracted. 

Mode decision of H.264/AVC: The macroblock partitioning of each MB in H.264/AVC is related to 

the residual and the motion vectors and can give us valuable information. 

We emphasize that this information is gathered inside the transcoder, more in particular, in the 

H.264/AVC decoding part, and that it only has to be passed to the second half of the transcoder 

(SVC encoder part). 

4.1.1 Generating the decision tree 

Machine learning is a scientific discipline concerned with the design and development of algorithms 

that allow computers to evolve behaviors based on empirical data. It has the decision making ability 

with low computation complexity, basically, if-then-else operations. 

 

 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data


In this framework, we used ML tools in order to convert into rules the relationships between some 

data extracted from H.264/AVC decoding process and the MB mode partitioning of SVC (this 

could be seen as the variable to understand). By using these rules instead of the MB partition 

algorithm of the SVC encoder, we can speed up this process. In this paper, a decision tree with three 

levels of decision is presented.  This decision tree narrows the mode decisions that can be chosen by 

the standard. 

To build the decision tree we used the WEKA software [11]. WEKA is a collection of machine 

learning algorithms for data mining tasks and also contains tools for data pre-processing, 

classification, regression, clustering, association rules, and visualization. 

For every macroblock, the extracted information is used to generate the decision tree (and then to 

decide the macroblock partitioning). Some operations and statistics are calculated for this data:  

1) Residual of the whole macroblock: The residual of all the 4x4 blocks of pixels (res4x4) within 

the MB are added.  

2) Length of the average of the motion vectors of a macroblock: First of all, the mean of each 

component of all the MVs of the H.264/AVC MB and sub-MB is calculated. This MV is the motion 

vector of the MB that we will use. Then, the length of the resulting MV is calculated.  

3) Mean of variances of the residual of 4x4 blocks within a macroblock: For every block of 4x4 

pixels, the variance of the its residuals is calculated. Then, the mean of the variances resulting of 

this process is done.  

4) Variance of means of the residual of 4x4 blocks within a macroblock: For every block of 4x4 

pixels, the mean of its residuals is calculated. Then, the variance of these means is done. 

 The information enumerated together with the SVC encoder mode decision were introduced and 

then, an ML classifier was run. In this case, the well-known RIPPER algorithm [3] was used. The 

process for building the decision tree for H.264/AVC-to-SVC transcoding is shown in Fig. 6. The 

training file was generated using the sequence Football and only taking into account the frames 

within the enhancement temporal layer.  

 



 

Fig. 6. Process for building the decision tree for H.264/AVC-to-SVC transcoding 

 

The binary decision tree obtained has three decision levels: 

1) 1
st
 level: Discriminates between LOW {SKIP, 16x16, 16x8, 8x16} and HIGH COMPLEXITIY 

{INTRA, 8x8, 8x4, 4x8, 4x4} modes. 

2) 2
nd

 level: Inside the LOW COMPLEXITY bin, a decision between {SKIP, 16x16} or {16x8, 

8x16} is made. 

3) 3
rd

 level: Inside the HIGH COMPLEXITY bin, a decision between {8x8, 8x4, 4x8} or {4x4, 

INTRA} is made. 

This tree was generated with the information available after the decoding process and does not 

focus the final MB partition, but reduces the set of final MB that can be chosen by SVC encoder. 

This is represented in Fig. 7 where the white circles represent the set of MB partition where the 

reference standard can choose into. 

 

 

Fig. 7. Decision tree 
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The ML process gave us a decision tree that classified correctly in about 87% of cases in the 1st 

level, 80% in the 2nd level and 93% in the 3rd level as is shown in Table 1: 

Table 1. % of correct choice of MB group 

Classification of MB groups 

Mode decision equal to the standard (%) 

Sequence 1st level 2nd level 3rd level 

Hall 96.83 97.27 93.25 

City 92.34 82.35 88.60 

Foreman 87.84 79.46 93.00 

Soccer 88.25 86.50 88.88 

Harbour 80.23 66.86 94.55 

Mobile 79.14 67.00 99.24 

Average 87.44 79.91 92.92 

 

This decision tree is composed of a set of thresholds for the H.264/AVC residual and for the 

statistics related to it. Since the MB mode decision, and hence the thresholds, depend on the 

Quantization Parameter (QP) used in the H.264/AVC stage, the residual, the mean and the variance 

threshold will be different at each QP. The solution is to develop a single decision tree for a QP and 

adjust the mean and the variance threshold used by the trees basing on the QP. 

 

4. 2 Reducing the Search Area 

As said previously, the idea of motion estimation task consists of eliminating the temporal 

redundancy in a way to determine the movement of the scene. For this purpose, in H.264/AVC 

MVs between every MB or sub-MB and the block which generates the lowest residual inside the 

search area of the reference frame are calculated. These MVs represent, approximately, the amount 

of movement of the MB.  

Since the MVs, generated by H.264/AVC and transmitted into the encoded bitstream, represent, 

approximately, the amount of movement of the frame, they can be reused to accelerate the SVC 

motion estimation process by reducing the search area dynamically and efficiently.  

The main challenge to overcome in this transcoding architecture is the mismatching between GOP 

sizes, GOP patterns and prediction structures. While the starting encoded bitstream in H.264/AVC 

is formed by IPPP GOP patterns without temporal scalability, the final SVC bitstream needs 

conforming hierarchical structures (see Fig. 2). This fact leads to different MVs in both H.264/AVC 

and SVC. Furthermore, MB partitions developed by H.264/AVC can be different from SVC ones as 



shown in Fig. 3 so the number of MVs associated to an H.264/AVC MB can be different from the 

number of MVs associated to the corresponding SVC MB as illustrated in solid line in Fig. 8. 

 

Fig. 8. Example MB in H.264/AVC with its MVs and the matching MB in SVC with its corresponding MVs 

 

As Fig. 9 shows, there is not always a one-to-one mapping between previously calculated 

H.264/AVC MVs and the incoming SVC MVs. The present approach tries to tackle with this 

problem. 

 

Fig. 9. MB partitions generated by H.264/AVC (left) and SVC (right) for the 2
nd

 frame in the Foreman QCIF sequence 

4.2.1 First stage: Initial Reduced Search Area 

The new reduced search area proposed uses the incoming MVs from H.264/AVC to determine a 

small area to find the real MVs calculated in SVC which is depicted in Fig. 10. 

 

Fig. 10. Proposed reduced search area 

 

This smaller search area is determined by the circumference centered in (0,0) point for each MB or 

sub-MB. This circumference has a radius which varies dynamically depending on the length of the 

average of the incoming vector for a specific MB (in dash line in Fig. 8) and the temporal layer 

which the frame is in. The average of the incoming MVs of a determined MB is used to overcome 
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the situation explained previously where the number of MVs associated to a MB are different. The 

dependency of the layer will be explained in Section 4.2.2. 

4.2.2 Second Stage: Adjusting the reduced search area 

As it mentioned previously, MVs generated in H.264/AVC are re-used to generate a new small area 

defined by a circumference with the incoming MV for this MB as its radius. 

Something to keep in mind is that these MVs for each MB have been calculated in H.264/AVC 

using a reference frame that could have a different distance from the current frame. In general, GOP 

structures in SVC with temporal scalability lead to longer distances between a frame and its 

reference frame than in H.264/AVC. As it could seen in Fig. 2, with hierarchical pictures structures, 

the distance between both frames is longer when the temporal layer decreases. 

To deal with this different prediction distance, a correction factor is introduced so the circumference 

generated previously is multiplied by a factor that depends on which temporal layer the current 

frame is in. This process is illustrated in Fig. 11. 

 

 

Fig. 11. Variation of initial search area depending on temporal layer 

 

Here, coef depends on the number of the temporal layer (n) where the frame is in as defined in (1). 
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5. Performance Evaluation 

In this section, results from the implementation of the proposal described in the previous section are 

shown. Test sequences with varying characteristics were used, namely Foreman, Harbour, Mobile, 

City, Soccer and Hall in CIF resolution (30 Hz) and QCIF resolution (15 Hz).  

These sequences were encoded using the H.264/AVC Joint  Model (JM) reference software [14], 

version 16.2, with an IPPP pattern with a fixed QP = 28 in a trade-off between quality and bitrate. 

Then, for the reference results, the encoded bitstreams are decoded and re-encoded using the JSVM 
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software, version 9.19.3 [15] with temporal scalability, Baseline Profile, different values of QP (28, 

32, 36, 40) and GOP sizes of 4, 8 and 16. 

For the results of our proposal, encoded bitstreams in H.264/AVC are transcoded using the 

technique described in Section 4. This technique was applied to the two enhancement temporal 

layers with highest identifier because, as it was shown in Fig. 12, those temporal layers is where 

most encoding time is spent. In these results, the training sequence Football has been excluded 

because it is not appropriate to test the results of a decision tree using the sequence that was used to 

generate it. 

From Table 2 to Table 4 the results for ∆PSNR, ∆Bitrate and Time Saving (TS) are shown when 

our technique is applied compared to the reference transcoder. ∆PSNR and ∆Bitrate are calculated 

according to the Bjøntegaard-Delta metric [22]. 

Time Savings are calculated for the full sequence (Full Seq.) and for the temporal layers where the 

technique is applied to (Partial). To evaluate it, (2) is calculated where Tref denotes the coding time 

used by the SVC reference software encoder and Tpro is the time spent by the proposed algorithm. 

 
( )

% 100
ref prop

ref

T T
Time Saving

T


 

 
(2) 

 

∆Bitrate represents bitrate increase, ∆PSNR the difference in quality and a negative value means 

reduction and, finally, Time Saving represents complexity reduction for transcoding the bitstream. 

The values of PSNR and bitrate obtained with the proposed transcoder are very close to the results 

obtained when applying the reference transcoder (re-encoder) while around 80% of reduction of 

computational complexity in the full sequence and 98% in the specific layers is achieved. 

Moreover, our proposal is able to approach the RD-optimal transcoded (re-encoded) reference 

without any significant loss. 

Fig. 13 shows the difference between the MB partitioning made by the reference transcoder and the 

proposed algorithm, with GOP = 4, CIF resolution and a QP value of 28 in sequences City, Soccer 

and Foreman. Those encoding processes were run under the same conditions. 

 

 

 

 

 

 



 

(a)  QCIF resolution  and GOP = 4 

 

(b)  CIF resolution  and GOP = 4 

 

(c)  QCIF resolution  and GOP = 8 

 

(d) CIF resolution  and GOP = 8 

 

(e) QCIF resolution  and GOP = 16 

 

(f) CIF resolution  and GOP = 16 

Fig. 12. Encoding time (%) in Baseline Profile for each temporal layer with different resolutions and GOP sizes 

 

Table 2. RD performance and time savings of the approach for GOP = 4 and different resolutions 

RD performance and time savings of H.264/AVC-to-SVC transcoder 

GOP = 4 

QCIF (15 Hz) CIF (30 Hz) 

Sequence 
∆PSNR 

(dB) 

∆Bitrate 

(%) 

Time Saving (%) ∆PSNR 

(dB) 

∆Bitrate 

(%) 

Time Saving (%) 

Full Seq. Partial Full Seq. Partial 

Hall 0.222 -0.02 85.91 99.14 0.331 -0.53 86.64 99.08 

City 0.066 1.87 86.13 99.11 0.204 0.59 87.23 99.27 

Foreman 0.259 2.16 83.25 97.01 -0.108 2.92 84.64 97.70 

Soccer 0.037 2.51 81.77 94.52 0.022 2.30 82.58 95.60 

Harbour 0.112 -0.82 85.38 98.44 0.181 -1.43 87.30 98.87 

Mobile 0.151 -0.17 84.33 98.19 0.246 -2.30 85.24 98.24 

Average 0.141 0.92 84.46 97.74 0.146 0.26 85.61 98.13 

∆PSNR: Difference in quality (negative means quality loss); 

∆Bitrate: Bitrate increase; Time Saving: complexity reduction. 
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Table 3. RD performance and time savings of the approach for GOP = 8 and different resolutions 

RD performance and time savings of H.264/AVC-to-SVC transcoder 

GOP = 8 

QCIF (15 Hz) CIF (30 Hz) 

Sequence 
∆PSNR 

(dB) 

∆Bitrate 

(%) 

Time Saving (%) ∆PSNR 

(dB) 

∆Bitrate 

(%) 

Time Saving (%) 

Full Seq. Partial Full Seq. Partial 

Hall 0.159 0.35 80.00 98.74 0.026 0.45 79.84 98.87 

City -0.003 2.61 80.02 99.12 0.178 1.25 79.83 99.04 

Foreman 0.219 3.03 77.29 96.89 0.005 3.48 78.78 97.73 

Soccer 0.066 2.96 75.45 94.49 0.000 2.55 76.96 95.67 

Harbour 0.052 0.02 78.63 98.40 0.077 -0.38 79.46 98.37 

Mobile 0.038 0.57 79.24 98.36 0.248 -1.37 79.31 98.34 

Average 0.089 1.59 78.44 97.67 0.089 1.00 79.03 98.00 

 

Table 4. RD performance and time savings of the approach for GOP = 16 and different resolutions 

RD performance and time savings of H.264/AVC-to-SVC transcoder 

GOP = 16 

QCIF (15 Hz) CIF (30 Hz) 

Sequence 
∆PSNR 

(dB) 

∆Bitrate 

(%) 

Time Saving (%) ∆PSNR 

(dB) 

∆Bitrate 

(%) 

Time Saving (%) 

Full Seq. Partial Full Seq. Partial 

Hall 0.327 0.52 77.63 97.86 -0.671 1.65 76.17 98.99 

City -0.035 3.06 77.54 97.87 -0.138 1.90 76.22 99.10 

Foreman 0.088 3.12 73.98 95.49 -0.097 4.78 75.06 97.65 

Soccer 0.063 3.32 73.81 93.55 0.032 3.66 73.43 95.71 

Harbour 0.204 0.86 77.34 97.27 0.285 -2.60 75.68 98.46 

Mobile 0.030 0.91 76.41 97.07 0.232 -0.39 75.93 98.45 

Average 0.113 1.97 76.12 96.52 -0.060 1.50 75.42 98.06 

 

 

 

 

 



   

(a) 1st P-frame of City sequence 

  

(c) 1st P-frame of Soccer sequence 

  

(c) 1st P-frame of Foreman sequence 

Fig. 13. MB partitioning for the proposed H.264-to-SVC transcoder  (left) compared to the reference one (right). 

 



6. Conclusions 

In this paper, a proposal for adapting H.264/AVC bitstreams to SVC streams with temporal 

scalability has been presented. This scalability makes it possible to adapt the video contents to 

different mobile devices regarding frame rate. Moreover, by applying our proposal, the complexity 

of inter prediction process is reduced, and therefore, the complexity of the adaptation. The 

experimental results show that it is capable to reduce the coding complexity by around 98% where 

it is applied while maintaining the coding efficiency. 
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