22 research outputs found

    A new approach for diagnosability analysis of Petri nets using Verifier Nets

    Get PDF
    In this paper, we analyze the diagnosability properties of labeled Petri nets. We consider the standard notion of diagnosability of languages, requiring that every occurrence of an unobservable fault event be eventually detected, as well as the stronger notion of diagnosability in K steps, where the detection must occur within a fixed bound of K event occurrences after the fault. We give necessary and sufficient conditions for these two notions of diagnosability for both bounded and unbounded Petri nets and then present an algorithmic technique for testing the conditions based on linear programming. Our approach is novel and based on the analysis of the reachability/coverability graph of a special Petri net, called Verifier Net, that is built from the Petri net model of the given system. In the case of systems that are diagnosable in K steps, we give a procedure to compute the bound K. To the best of our knowledge, this is the first time that necessary and sufficient conditions for diagnosability and diagnosability in K steps of labeled unbounded Petri nets are presented

    Diagnosability of discrete event systems using labeled Petri nets

    Get PDF
    In this paper, we focus on labeled Petri nets with silent transitions that may either correspond to fault events or to regular unobservable events. We address the problem of deriving a procedure to determine if a given net system is diagnosable, i.e., the occurrence of a fault event may be detected for sure after a finite observation. The proposed procedure is based on our previous results on the diagnosis of discrete-event systems modeled with labeled Petri nets, whose key notions are those of basis markings and minimal explanations, and is inspired by the diagnosability approach for finite state automata proposed by Sampath in 1995. In particular, we first give necessary and sufficient conditions for diagnosability. Then, we present a method to test diagnosability that is based on the analysis of two graphs that depend on the structure of the net, including the faults model, and the initial marking

    The Complexity of Diagnosability and Opacity Verification for Petri Nets

    Get PDF
    International audienceDiagnosability and opacity are two well-studied problems in discrete-event systems. We revisit these two problems with respect to expressiveness and complexity issues. We first relate different notions of diagnosability and opacity. We consider in particular fairness issues and extend the definition of Germanos et al. [ACM TECS, 2015] of weakly fair diagnosability for safe Petri nets to general Petri nets and to opacity questions. Second, we provide a global picture of complexity results for the verification of diagnosability and opacity. We show that diagnosability is NL-complete for finite state systems, PSPACE-complete for safe Petri nets (even with fairness), and EXPSPACE-complete for general Petri nets without fairness, while non diagnosability is inter-reducible with reachability when fault events are not weakly fair. Opacity is ESPACE-complete for safe Petri nets (even with fairness) and undecidable for general Petri nets already without fairness

    Une approche efficace pour l’étude de la diagnosticabilité et le diagnostic des SED modélisés par Réseaux de Petri labellisés : contextes atemporel et temporel

    Get PDF
    This PhD thesis deals with fault diagnosis of discrete event systems using Petri net models. Some on-the-fly and incremental techniques are developed to reduce the state explosion problem while analyzing diagnosability. In the untimed context, an algebraic representation for labeled Petri nets (LPNs) is developed for featuring system behavior. The diagnosability of LPN models is tackled by analyzing a series of K-diagnosability problems. Two models called respectively FM-graph and FM-set tree are developed and built on the fly to record the necessary information for diagnosability analysis. Finally, a diagnoser is derived from the FM-set tree for online diagnosis. In the timed context, time interval splitting techniques are developed in order to make it possible to generate a state representation of labeled time Petri net (LTPN) models, for which techniques from the untimed context can be used to analyze diagnosability. Based on this, necessary and sufficient conditions for the diagnosability of LTPN models are determined. Moreover, we provide the solution for the minimum delay ∆ that ensures diagnosability. From a practical point of view, diagnosability analysis is performed on the basis of on-the-fly building of a structure that we call ASG and which holds fault information about the LTPN states. Generally, using on-the-fly analysis and incremental technique makes it possible to build and investigate only a part of the state space, even in the case when the system is diagnosable. Simulation results obtained on some chosen benchmarks show the efficiency in terms of time and memory compared with the traditional approaches using state enumerationCette thèse s'intéresse à l'étude des problèmes de diagnostic des fautes sur les systèmes à événements discrets en utilisant les modèles réseau de Petri. Des techniques d'exploration incrémentale et à-la-volée sont développées pour combattre le problème de l'explosion de l'état lors de l'analyse de la diagnosticabilité. Dans le contexte atemporel, la diagnosticabilité de modèles RdP-L est abordée par l'analyse d'une série de problèmes K-diagnosticabilité. L'analyse de la diagnosticabilité est effectuée sur la base de deux modèles nommés respectivement FM-graph et FM-set tree qui sont développés à-la-volée. Un diagnostiqueur peut être dérivé à partir du FM-set tree pour le diagnostic en ligne. Dans le contexte temporel, les techniques de fractionnement des intervalles de temps sont élaborées pour développer représentation de l'espace d'état des RdP-LT pour laquelle des techniques d'analyse de la diagnosticabilité peuvent être utilisées. Sur cette base, les conditions nécessaires et suffisantes pour la diagnosticabilité de RdP-LT ont été déterminées. En pratique, l'analyse de la diagnosticabilité est effectuée sur la base de la construction à-la-volée d'une structure nommée ASG et qui contient des informations relatives à l'occurrence de fautes. D'une manière générale, l'analyse effectuée sur la base des techniques à-la-volée et incrémentale permet de construire et explorer seulement une partie de l'espace d'état, même lorsque le système est diagnosticable. Les résultats des simulations effectuées sur certains benchmarks montrent l'efficacité de ces techniques en termes de temps et de mémoire par rapport aux approches traditionnelles basées sur l'énumération des état

    Model checking of mobile systems and diagnosability of weakly fair systems

    Get PDF
    PhD ThesisThis thesis consists of two independent contributions. The rst deals with model checking of reference passing systems, and the second considers diagnosability under the weak fairness assumption. Reference passing systems, like mobile and recon gurable systems are everywhere nowadays. The common feature of such systems is the possibility to form dynamic logical connections between the individual modules. However, such systems are very di cult to verify, as their logical structure is dynamic. Traditionally, decidable fragments of -calculus, e.g. the well-known Finite Control Processes (FCP), are used for formal modelling of reference passing systems. Unfortunately, FCPs allow only `global' concurrency between processes, and thus cannot naturally express scenarios involving `local' concurrency inside a process. This thesis proposes Extended Finite Control Processes (EFCP), which are more convenient for practical modelling. Moreover, an almost linear translation of EFCPs to FCPs is developed, which enables e cient model checking of EFCPs. In partially observed systems, diagnosis is the task of detecting whether or not the given sequence of observed labels indicates that some unobservable fault has occurred. Diagnosability is an associated property, stating that in any possible execution an occurrence of a fault can eventually be diagnosed. In this thesis, diagnosability is considered under the weak fairness (WF) assumption, which intuitively states that no transition from a given set can stay enabled forever - it must eventually either re or be disabled. A major aw in a previous approach to WF-diagnosability in the literature is identi ed and corrected, and an e cient method for verifying WF-diagnosability based on a reduction to LTL-X model checking is presented

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    A More General Theory of Diagnosis from First Principles

    Full text link
    Model-based diagnosis has been an active research topic in different communities including artificial intelligence, formal methods, and control. This has led to a set of disparate approaches addressing different classes of systems and seeking different forms of diagnoses. In this paper, we resolve such disparities by generalising Reiter's theory to be agnostic to the types of systems and diagnoses considered. This more general theory of diagnosis from first principles defines the minimal diagnosis as the set of preferred diagnosis candidates in a search space of hypotheses. Computing the minimal diagnosis is achieved by exploring the space of diagnosis hypotheses, testing sets of hypotheses for consistency with the system's model and the observation, and generating conflicts that rule out successors and other portions of the search space. Under relatively mild assumptions, our algorithms correctly compute the set of preferred diagnosis candidates. The main difficulty here is that the search space is no longer a powerset as in Reiter's theory, and that, as consequence, many of the implicit properties (such as finiteness of the search space) no longer hold. The notion of conflict also needs to be generalised and we present such a more general notion. We present two implementations of these algorithms, using test solvers based on satisfiability and heuristic search, respectively, which we evaluate on instances from two real world discrete event problems. Despite the greater generality of our theory, these implementations surpass the special purpose algorithms designed for discrete event systems, and enable solving instances that were out of reach of existing diagnosis approaches
    corecore