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Abstract

This thesis consists of two independent contributions. The first deals

with model checking of reference passing systems, and the second con-

siders diagnosability under the weak fairness assumption.

Reference passing systems, like mobile and reconfigurable systems are

everywhere nowadays. The common feature of such systems is the

possibility to form dynamic logical connections between the individ-

ual modules. However, such systems are very difficult to verify, as

their logical structure is dynamic. Traditionally, decidable fragments

of π-calculus, e.g. the well-known Finite Control Processes (FCP),

are used for formal modelling of reference passing systems. Unfortu-

nately, FCPs allow only ‘global’ concurrency between processes, and

thus cannot naturally express scenarios involving ‘local’ concurrency

inside a process. This thesis proposes Extended Finite Control Pro-

cesses (EFCP), which are more convenient for practical modelling.

Moreover, an almost linear translation of EFCPs to FCPs is devel-

oped, which enables efficient model checking of EFCPs.

In partially observed systems, diagnosis is the task of detecting whether

or not the given sequence of observed labels indicates that some unob-

servable fault has occurred. Diagnosability is an associated property,

stating that in any possible execution an occurrence of a fault can

eventually be diagnosed. In this thesis, diagnosability is considered

under the weak fairness (WF) assumption, which intuitively states

that no transition from a given set can stay enabled forever - it must

eventually either fire or be disabled. A major flaw in a previous ap-

proach to WF-diagnosability in the literature is identified and cor-

rected, and an efficient method for verifying WF-diagnosability based

on a reduction to LTL-X model checking is presented.
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Chapter 1

Introduction

Many modern computing systems are able to perform simultaneously several

computations and also can interact with each other. This kind of ability is called

concurrency and the systems share this property are named concurrent systems.

However, concurrency increases their complexity making the detection of possible

faults harder. Thus, it is very common most people experience software and

hardware devices that do not perform as they should. To be overcome this effect,

it is necessary to be developed formal verification techniques, e.g. model checking

[17, 18], for verifying the correctness of such systems. Model checking checks

whether a specification property of the system under consideration is satisfied.

To be achieved this, initially a model must be designed, which describes the

behaviour of the system, using a formal language, like Petri nets [97] and process

algebras [20]. Then, all the possible states of the model are checked whether

satisfy the given specification property of the system.

Moreover, it is often the case, during the design process of systems, faults

are not possible to be ruled out. That happens because they may be part of the

systems or the environment where the systems evolve. Diagnosis is the procedure

that determines whether or not the system contains some fault. To that end,

diagnosability [87] is a key specification property for formal verification of large

and complex systems, because makes possible the detection of faults in a finite

time after their occurrence.

Modern concurrent systems enjoy a set of features like reconfigurability, logical

mobility and dynamic allocation of resources. The systems enjoy these features
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are called reference passing systems. These features make these systems very com-

plex and concurrency adds another layer of complexity too. As a result, formal

verification becomes a very challenging task because existing formal languages

are difficult to express the behaviour of these systems. Thus, new efficient formal

languages should be developed that can specify reference passing systems and

make their formal verification feasible.

This thesis introduces a formal specification language that is suitable for mod-

elling reference passing systems. Also, it is provided its translation to an existing

formalism for which an efficient verification technique has been developed in [52].

As it was mentioned earlier, diagnosability is a key property for formal verifica-

tion. Haar et al. in [44] proposed the weak diagnosis. This diagnosis, although it

uses the term ‘weak’, it is more powerful than the usual diagnosis as in [7]. Diag-

nosis can detect a fault that has occurred in the past [7]. However, weak diagnosis

can reveal faults that are concurrent or in the future of the observation, under the

weak fairness. Based on weak diagnosis, a first definition of diagnosability under

weak fairness was proposed in [1]. However, that definition is incompatible with

the notion of diagnosis in [44] and contains a major flaw. It is often the case that

due to the presence of some independent concurrent action in a system, it is not

possible this system to be diagnosed in a finite time. To this end, in this thesis

a notion of weakly fair diagnosability [35, 36] which corrects and supersedes the

one in [1], is presented and an efficient method for formally verifying weakly fair

diagnosability is developed.

1.1 Formal Verification of Reference Passing Sys-

tems

Many contemporary systems enjoy a number of features that significantly increase

their power, usability and flexibility [63]:

- Dynamic reconfigurability : The overall structure of many existing systems

is flexible. Nodes in ad-hoc networks can dynamically appear or disappear;

individual cores in Networks-on-Chip can be temporarily shut down to save

power; resilient systems have to continue to deliver (reduced) functionality
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even if some of their modules develop faults.

- Logical mobility : Mobile systems permeate our lives and are becoming ever

more important. Ad-hoc networks, where devices like mobile phones and

laptops form dynamic connections are common nowadays, and the vision of

pervasive (ubiquitous) computing [54], where several devices are simultane-

ously engaged in interaction with the user and each other, forming dynamic

links, is quickly becoming a reality.

- Dynamic allocation of resources : It is often the case that a system has sev-

eral instances of the same resource (e.g., network servers or processor cores

in a microchip) that have to be dynamically allocated to tasks depending

on the current workload, power mode, priorities of the clients, etc.

The common feature of such systems is the possibility to form dynamic logical

connections between the individual modules. It is implemented using reference

passing [20, 88]. A module can become aware of another module by receiving a

reference (e.g., in the form of a network address) to it, which enables subsequent

communication between these modules. This can be thought of as a new (logi-

cal) channel dynamically created between these modules. We will refer to such

systems as Reference Passing Systems (RPS).

As people are increasingly depended on the correct functionality of RPSs, the

cost incurred by design errors in such systems can be extremely high. However,

even the conventional concurrent systems are notoriously difficult to design cor-

rectly because of the complexity of their behaviour, and reference passing adds

another layer of complexity due to the logical structure of the system becoming

dynamical. Hence, computer-aided formal verification has to be employed in the

design process to ensure the correct behaviour of RPSs. However, validation of

such systems is almost always limited to simulation/testing, as their formal ver-

ification is very difficult due to either the inability of the traditional verification

techniques to express reference passing1 (at least in a natural way) or by poor

scalability of the existing verification techniques for RPSs.

1 Some existing tools like SPIN allow to send channels via channels; however, they do not
allow dynamic creation of new channels, which is often essential in RPSs.
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This is very unfortunate: As many safety-critical systems must be resilient

(and hence reconfigurable), they are often RPSs and thus have very complicated

behaviour. Hence, for such systems the design errors are both very likely and

very costly, and formal verification must be an essential design step. This thesis

addresses this problem by developing an efficient formalism that can specify RPSs

and make their formal verification feasible.

There is a number of formalisms that are suitable for specification of RPSs.

The main considerations and tradeoffs in choosing an appropriate formalism are

its expressiveness and the tractability of the associated verification techniques.

Expressive formalisms (like π-calculus [67] and Ambient Calculus [15]) are Tur-

ing powerful and so not decidable in general. Fortunately, the ability to pass

references per se does not lead to undecidability, and it is possible to put in place

some restrictions (e.g., finiteness of the control) that would guarantee decidability,

while still maintaining a reasonable modelling power.

Finite Control Processes (FCP) [20] are a fragment of π-calculus, where the

system is constructed as a parallel composition of sequential entities. Each se-

quential entity has a finite control, and the number of such entities is bounded

in advance. The entities communicate synchronously via channels, and have the

possibility to create new channels dynamically and to send channels via channels.

As π-calculus is the most well-known formalism suitable for RPS specification,

we fix FCPs (as a natural decidable and reasonably expressive fragment of π-

calculus) as the primary RPS specification formalism, from which a new extension

will be derived.

The development of this new subclass is essential because the processes con-

stitute RPSs often have ‘local’ concurrency that cannot be expressed with FCP.

To be more precise, an entity of an RPS can perform several instances of the

same action simultaneously. This can be thought of as server in a server-client

system that can serve several clients in parallel. Even if this behaviour is com-

mon, it cannot be modelled using FCP. In the literature, Meyer et al. in [65] was

introduced a translation of FCP to Petri Nets in order to formally verify mobile

systems. The proposed method was evaluated using various cases studies. In

particular, in one of the case studies a client-server system was used. Firstly, it

was modelled using FCP and then the FCP specification was converted to Petri

4



Nets [97]. Also, it was pointed out that the proposed technique can be applied

to a wider subclass of π-calculus. For this reason, it was modelled a concurrent

server and two clients. In this system when a client contacts with the server, the

server spawns a new session and is ready to serve another client. Thus, several

clients can be served in parallel. In this special case, even if the specification of

this system is not an FCP, it rsesults to a Petri net representation.

Moreover, in distributed systems, data can be transmitted from one source to

more than one destinations in a single transmission (multicasting). This kind of

behaviour is a special case of ‘local’ concurrency and can be met, for instance, in

of Internet of Things (IoT), cloud computing systems, and routing protocols in

multi-core processor systems. Using FCP to model multicasting is not optimal

because they are too restrictive. That happens because an FCP is a parallel com-

position of a finite number of sequential processes. However, with multicasting a

process can contain parallel actions.

To this end, a new subclass of π-calculus is developed and introduced in this

thesis to make feasible the practical modelling and formal verification of RPS,

the Extended Finite Control Processes (EFCP). It is inspired on the observations

were pointed out in [65] and on the fact that processes that constitute mobile

and reconfigurable systems often have ‘local’ concurrency. This work is new and

originally published in [50].

1.2 Diagnosability under Weak Fairness

It is often the case, during the design process of systems, faults are not possible

to be ruled out. That happens because they may be part of the system or the

environment where the systems evolve. Diagnosability [87] is a key specification

property for formal verification of large and complex systems, because makes

possible the detection of faults in a finite time after their occurrence.

The procedure of describing some abnormal behaviour of a system is called

diagnosis. In formal verification, diagnosability is a specification property that

ascertains whether it is possible the detection of fault by giving a set of observa-

tions [5]. When we are able to deduce the occurrence of a fault after observing

the system’s behaviour for fairly long time, we say that the system is diagnosable
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[57]. On the contrary, it is often the case that we cannot conclude about the

occurrence of a fault. In this case, the system is not diagnosable. Thus, more

sensors should be added in the system to be possible the detection of a fault.

Recent work [44] presented a diagnosis method that encompasses weak fair-

ness. There, concurrent systems are modelled by partially observable safe Petri

nets, and diagnosis is carried out under the assumption that all executions of the

Petri net are weakly fair, that is, the only infinite executions admitted are those

in which any transition enabled at some stage will be disabled at some later stage,

i.e. either it will actually fire later in that execution, or else some conflicting tran-

sition will fire. Under this assumption, a given finite observation diagnoses a fault

if no finite execution yielding this observation can be extended to a weakly fair

fault-free execution. The work in [44] gave a procedure for deciding this diagnosis

problem. It remained open for which systems this procedure reliably diagnoses

faults, i.e. how to determine whether a system is diagnosable under the weak

fairness assumption. In Chapter 4 [36], this problem is addressed.

In this thesis, a major flaw in a previous approach to WF-diagnosability in the

literature [44] is identified and corrected. In particular, based on the definition

of WF-diagnosability provided in [44] is possible a system can still be not diag-

nosable in finite time due to the occurrence of some unrelated concurrent action

as explained in detail in Chapter 4. Moreover, an efficient method for verifying

WF-diagnosability based on a reduction to LTL-X model checking is presented.

1.3 Related Works

In this section, we discuss related work on formal verification of RPS systems and

diagnosability.

1.3.1 Related work about formal verification of RPS

To formally verify mobile and reconfigurable systems a suitable specification for-

malism is a subclass of π-calculus, the FCP. There are two main approaches to

verification of FCP. The first one is to directly generate the reachable state space

of the model. This approach is relatively straightforward, but it has a number
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of disadvantages. In particular its scalability is poor due to the complexity of

the semantics restricting the use of heuristics for pruning the state space and the

need to perform expensive operations (like computing the canonical form of the

term) every time a new state is generated.

The alternative approach is to translate a π-calculus term into a simple formal-

ism, e.g., Petri nets [10, 97]. The translation to PNs bridges the gap between the

expressiveness and verifiability. While FCPs are suitable for modelling RPSs but

difficult to verify due to the complicated semantics, PNs are a low-level formalism

equipped with efficient verification techniques. This approach has a number of

advantages, in particular it does not depend on a concrete verification technique,

and can adapt any such technique for PNs. Furthermore, RPSs often are highly

concurrent, and so translating them into a true concurrency formalism like PNs

has a number of advantages, in particular one can efficiently utilise partial-order

reductions for verification, alleviating thus the problem of combinatorial state

space explosion [91]. That is, a small specification often has a huge number of

reachable states, which is beyond the capability of existing computers.

Examples of these approaches exist in the literature. The Mobility Work-

bench (MWB) [93] builds the state space of a π-calculus term on the fly. The

verification kit HAL [29] translates a model into a History Dependent Automaton

[74], which is then translated into a finite automaton that can then be verified

using standard methods. The technique in [51] translates the recursion-free frag-

ment of π-calculus into high-level PNs and verifies the latter using an unfolding

based technique for high-level PNs. The approach can express only finite runs,

and so its practical applicability is limited. In the approach developed in [71],

π-graphs (a graphical variant of π-calculus) are translated into high-level PNs.

The technique works on a fragment that is equivalent to FCPs. Viet Van Pham

in his thesis [73] encoded π-graphs into Petri nets. Based on this encoding it

was implemented a prototype tool that simulates π-graphs models and converts

them to Petri nets. The resulting Petri net models can be manipulated using the

SNAKES framework [81]. This framework provides all the necessary to define

and simulate most of Petri nets models.

The approach in [64] translates FCPs into safe low-level PNs, which are then

verified using an unfolding based technique. The experiments [64] indicate that
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this technique is much more scalable than the ones above, and it has the advantage

of generating low-level rather high-level PNs. However, in the worst case the

resulting PN is exponential in the size of the original FCP.

Complexity-theoretic considerations2 suggest that a polynomial-size transla-

tion of FCPs into low-level safe PNs must exist. Such a translation and the

associated software tools have been developed in [63].

However, RPSs have many kind of behaviours that cannot be expressed us-

ing FCP. To that end, a new formalism that extends FCP has been developed,

the EFCP [50]. This new subclass of π-calculus is more powerful and removes

expressiveness limitations of FCP. Particularly, EFCP syntax introduces replaces

the prefixing operator ‘.’ with a more powerful sequential composition ‘;’. To

that end, Petri Box Calculus [8] also uses ‘;’ as a sequence operator. A box is

a labelled Petri net. In Petri Box calculus there are five operator boxes; choice,

sequence, iteration, parallel composition and synchronisation. These operators

are related to Petri nets. For instance, in the case of sequence operator a Petri

net model is just an alternation of places and transitions [8]. The only similarity

with our sequential composition operator stays in the symbolic representation

and not behaviour. Our sequential operator is related to π-calculus and allows

us to syntactically define behaviours (i.e., local concurrency) that with prefixing

cannot be expressed. Moreover, we define a restriction to the proposed sequential

composition (see Section 3.2). Without this restriction, during the execution of

an EFCP process may be generated continuously new threads. Thus, our restric-

tion is essential in order to avoid the well-known state space explosion problem

[91]. In Petri Box calculus the sequence operator is more general and defines the

sequence of places and transitions in causal way without conflicts and loops.

An EFCP process can model the whole behaviour of a RPS, like a sequence

of possible actions, concurrency, multicasting etc., due to its expressiveness and

powerful syntax. In an EFCP process the order of actions is important for two

reasons. Firstly, the order of how the actions inside a process evolve must be

preserved. This is essential if one wants to model the system’s behaviour cor-

rectly. Secondly, as it is described in Section 3.2 our sequential composition has

2 FCPs and low-level safe PNs can simulate and be simulated by a Turing machine with
polynomially bounded tape.

8



a fundamental restriction to avoid the blow up of new generated processes that

can lead to state space explosion.

One may relate the translation from EFCP to FCP with Petri net branching

processes. A Petri net can model concurrent systems. The partial order semantics

of a Petri net, is the set of it processes [9, 40]. A process models a possible run of

a concurrent system. To that end, we can have branching processes that provide

a complete relationship between different runs of the system. In this case the

system has exactly on run. This branching run as introduced in [70] in the case

of a Petri net is called the unfolding of the net. In a branching run, if the

system has a conflict [40], the system divided into several, independent, parallel

copies of itself, one for each resolution of the conflict. Thus, each copy provides

a different behaviour of the system. In EFCP, now, in the translation to FCP

(see Section 3.4), new processes can be generated that models parts of the EFCP

process that violate the definition of FCP. Consequently, these new processes are

linked with the initial process in order to preserve the order of actions as provided

in the EFCP process. Thus, a similarity of EFCP with branching processes is the

causal relation between each part of the system.

Moreover, EFCP makes feasible the formal verification of RPSs. This is

achieved by translating EFCP to FCP. As a result, the resulting FCP specifi-

cation can be converted to PN [52], for which efficient verification techniques

exist.

1.3.2 Related work about diagnosability under weak fair-

ness

In [87] is presented a formal language framework that is suitable for diagnosis

and analysis of diagnosability properties of discrete event systems represented

by finite automata. Diagnosis can detect a fault that has occurred in the past

[7]. Diagnosis can also be applied in computer systems in order to evaluate their

security policy. Non-interference is a security policy model that is introduced in

[38, 39]. To that end, a computer can be thought of as a machine with inputs and

outputs. These inputs and outputs can be categorized as either low sensitivity or

high sensitive. A computer has the non-interference property iff any sequence of
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low inputs will produce the same low outputs, despite of what the high level inputs

are. Thus, if a low level user is working on the machine, it will respond in exactly

the same manner (i.e., on the low outputs) even if a high level user is working

with sensitive data. The low level user will not be able to obtain any information

about the activities (if any) of the user [39]. There is a case where, at the

time the computer system starts operating, if the computer has a high sensitive

information within it, or low users can create some high sensitive information at

a time subsequent to computer’s starting time (“write-up”), then the computer

can leak all that high sensitive information to the low users without violating the

security policy as presented in [95]. In this case it is possible to perform diagnosis

techniques in order to detect any violation of the non-interference diagnosis.

To that end, diagnosis and especially weak diagnosis can be applied in order

to evaluate another security policy model, the Bell-LaPadula [6]. This security

model does not suffer form the problem described above because it explicitly

forbid “read-up”. In this case, WF-diagnosability can verify whether a malicious

insider modified the Bell-LaPadula security policy, or if this will happen in a

future state, it can be detected.

Moreover, in [87] is introduced a technique for diagnosability verification that

uses a diagnoser. The diagnoser is an automaton that contains only observable

transitions and possible states of the system can be estimated by observing its

traces. The system under consideration can be modelled as a PN, where each

transition is labelled with the performed action. The actions are partitioned into

observable and unobservable. Moreover, some of the unobservable actions are

designated as faults. In [47, 90] improvements have been introduced, which were

based on the twin plant method, where the basic idea was to build a verifier

by constructing the synchronous product of the system with itself on observable

transitions. If the original system is given as a labelled Petri net, then the verifier

can be constructed directly, by synchronising the original net with its replica

at the Petri net level. The verifier is used for diagnosis of the system under

consideration. That is achieved by comparing every pair of executions in the

system that have the same projection on the observable transitions.

Nevertheless, the main drawback of the proposed state-based twin plant method

[47, 90] is the combinatorial state space explosion problem [91]. Meaning that,
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a large number of possible states can be created from a relatively small system

specification. To alleviate this issue PN unfolding techniques were applied in

[43, 58]. By applying PN unfolding we can obtain a finite and complete pre-

fix that represents all reachable markings of this PN. This can lead to memory

savings because executions are not considered as sequences of transitions but as

partially ordered sets. Initially, the PN unfolding was introduced in [61]. In [25] it

was improved and in [45] parallelised. In [27] the unfolding technique was applied

to distributed diagnosis and in [24] to LTL-X model checking. Moreover, in [42]

diagnosability based on observable partial orders is proposed. Also, in [59] the

twin plant method is applied for verifying diagnosability using PN unfoldings.

In [58] diagnosability verrfication is achieved using an existing parallel LTL-X

model checker that is based on PN unfoldings [23, 89]. Diagnosability is ex-

pressed as an LTL-X property of the verifier. To formally verify it, the verifier

and a Büchi automata are synchronised creating a net that accepts the nega-

tion of the diagnosability property. In [89] the LTL-X model checking proposed

in [24] was parallelised and extended to high level PN. Also, the work in [89]

was implemented in the Punf tool [49]. Then, verification is performed using

the unfolding-based LTL-X model checking [24]. PN unfolding is a quite effi-

cient technique as experimental results showed in [58]. In this thesis, we consider

diagnosability under the weak fairness assumption. Weak diagnosis can reveal

faults that are concurrent or in the future of the observation, under the weak

fairness. Based on weak diagnosis, a first definition of diagnosability under weak

fairness was proposed in [1]. In this thesis, a major flaw in a previous approach to

WF-diagnosability in the literature [44] is identified and corrected. Moreover, we

present an efficient method for verifying WF-diagnosability based on a reduction

to LTL-X model checking [35, 36].

1.4 Thesis Overview

The remainder of the thesis is organised as follows. First, the basic notions are

presented in Chapter 2. This chapter explains the principles of system formal

verification. In particular, it explains what model checking is. Also, the Linear

Temporal Logic and Linear Temporal properties are presented. Moreover, for-
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malisms like π-calculus and Petri nets are presented. Chapters 3 and 4 are based

on these formalisms.

In Chapter 3, we develop an extension of FCP, the EFCP [50], which is efficient

for modelling and verifying RPSs. FCP are a parallel composition of sequential

threads. As, a result threads in FCP cannot have ‘local’ concurrency. However,

this kind of behaviour is often in RPSs. EFCP removes this limitation. Thus,

systems that belong to IoT, cloud computing, routing protocols of multi-core

processors and generally systems that are highly concurrent and reconfigurable

can be modelled and verified. Further, we provide a translation of EFCP to FCP.

Then, the latter model can be translated to Petri Nets [52, 63] making the system

under consideration verifiable. To evaluate this new subclass of π-calculus the

SpiNNaker architecture has been used as a case study.

In Chapter 4, we consider diagnosability under the weak fairness assumption. A

major flaw in a previous approach to WF-diagnosability in the literature [44] is

identified and corrected. The approach in [44] contains a major flaw. It is often

the case that due to the presence of some independent concurrent action in a

system, it is not possible this system to be diagnosed in a finite time. Moreover, we

present an efficient method for verifying WF-diagnosability based on a reduction

to LTL-X model checking [35, 36].

Finally, in Chapter 5 we summarize the issues this thesis has addressed related

to model checking of RPSs and generally concurrent systems, its contributions

and their limitations.

1.5 List of Publications

Below is a list of publications contributing to the Thesis and the Chapters where

they are relevant:

Journals:

1. V. Germanos, S. Haar, V. Khomenko and S. Schwoon: Diagnosability under

Weak Fairness. Special Issue on Best Papers from ACSD’2014, ACM Press,
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ACM Transactions on Embedded Computing Systems 14(4), Article No. 69.

(Chapter 4)

2. V. Khomenko and V. Germanos: Modelling and Analysis Mobile Systems

Using π-Calculus (EFCP). In: LNCS Transactions on Petri Nets and Other

Models of Concurrency X, Vol. 9410, 2015, Springer Verlag. (Chapter 3)

Conference Papers:

1. V. Germanos, S. Haar, V. Khomenko and S. Schwoon: Diagnosability under

Weak Fairness. Proc. of ACSD’2014, Mokhov, A. and Bernardinello, L.

(Eds.). IEEE Computing Society Press (2014) 132-141. Selected as one of

best papers, nominated for the best paper award. (Chapter 4)
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Chapter 2

Basic Notions

In order to create tools for simulation or verification of systems, it is essential

to define formalisms to describe the behaviour of a system. Ideally, such a for-

malism should be expressive, easy to use in practice, and amenable to automatic

verification. In this chapter, principles of formal verification are explained, and

the well-known standard models of concurrency, Petri nets and π-calculus, are

presented.

2.1 System Verification Principles

A system under consideration can be modelled by a transition system in order to

be verified according to some formally specified properties. These properties can

be checked in an automated manner by model checking algorithms.

2.1.1 System Modelling

A system can be formally modelled using an appropriate formal language, like

Petri nets [86, 97] or a kind of process algebras.

A transition system (TS) [18] is a directed graph in which nodes represent

states, and edges depict transitions. States provide information about the system

at a certain point of its execution and transitions show the change from one state

to another.
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2. System Verification Principles

2.1.2 Model Checking

Model checking is one of the techniques that are used for verification purposes.

Algorithms that explore the state space of a given transition system are used.

However, a relatively small model can generate a very large state space, mak-

ing the verification infeasible. That happens because the number of states de-

pends on how many variables the system has and the size of their domain. This

means that the growth of the state space is exponential in the number of vari-

ables. For instance, if a is the domain of y variables, then the growth rate of

states is |a|y. That means, if just one Boolean variable is added to the model

then the size of the state space can be doubled. This is also called the state-space

explosion problem.

This has led to the development of techniques for alleviating this problem of

formal verification. A prominent technique has been introduced in [11] that ap-

plied ordered binary decision diagrams (OBDDs) [2] in order to represent implic-

itly transition relations of a given system. In [13, 62] McMillan verified systems

that have more that 1020 states using OBDDs to represent transition relations.

Coudert et al [19] and Pixley [75, 76, 77] have exploited OBDDs to check equiv-

alence of deterministic finite-state machines, however, their work is not related

to McMillan’s. This technique has been improved in [12] where systems that

have more than 10250 states were verified. Moreover, based on this approach the

symbolic model checker [62] has been developed.

In symbolic model checking, the transition relation of the system is represented

as a Boolean function and is not explicitly constructed. In the same way, Boolean

functions represent sets of states. As a result in many cases, the space needed

for Boolean functions is exponentially smaller compare with the one needed for

explicit representation.

We recall the definition of OBDDs provided in [16]:

Definition 1. Ordered Binary Decision Diagrams. Let A be a set of propo-

sitional variables, and ≺ a linear order on A. An ordered binary decision diagram

O over A is an acyclic graph (V, E ) whose non-terminal vertices (nodes) are la-

belled by variables from A, and whose edges and terminal nodes are labelled by

0, 1. Each non-terminal node u has out-degree 2, such that one of its outgoing
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2. System Verification Principles

edges is labelled 0 (the low edge or else-edge), and the other is labelled 1 (the

high edge or then-edge). If u has label ai and the successors of u are labelled

aj, ak, then ai ≺ aj and ai ≺ ak. In other words, for each path, the sequence

of labels along the path is strictly increasing with respect to ≺. Each OBDD

node u represents a Boolean function Ou. The terminal nodes of O represent the

constant functions given by their labels. A non-terminal node u with the label ai

whose successors at the high and low edges are u and w respectively, defines the

function Ou := (ai ∧ Ou) ∨ (¬ai ∧ Ow).

OBDDs are related to decision diagrams or trees [68]. We use the example

presented in [16] (see. Figure 2.1). In (a) we see the decision tree of the Boolean

function x ∧ (y ∨ z ). In (b) the same function is represented in a more concise

way. Here, we should note that we obtain the OBDD by merging isomorphic

subtrees and deleting redundant edges from the decision tree. In this example

the variable ordering is x ≺ y ≺ z.

Figure 2.1: (a) Decision tree for x ∧ (y ∨ z ), (b) OBDD for function x ∧ (y ∨
z ), and (c) a shared OBDD.

The number of nodes of the OBDD specifies its size and depends on the vari-

able order ≺. We can use shared OBDDs to represent several Boolean functions

at once. In (c) the nodes 1, 2, 3 represent the Boolean functions x ∧ (y ∨ z ), ¬x

∧ (y ∨ z ), and y ∨ z respectively.

Other prominent techniques to alleviate the state space explosion problem are

listed below [46]:

- Induction [46]. Often a large number of identical components exists in a
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2. System Verification Principles

model, so verification can be conducted by induction on this number.

- Abstraction [17]. A system can be modelled by abstracting from unimpor-

tant features.

- Partial order reduction [37]. Many interleavings of component traces in

asynchronous systems can be equivalent as far as satisfaction of the formula

to be checked is concerned. This can significantly reduce the size of the

model checking problem.

- Composition. This can be named as the ‘divide and conquer’ technique,

where the verification problem is split into several simpler verification prob-

lems.

2.1.3 Linear-Time Properties

A temporal property of a system can be specified using either the state-based

or the action-based model checking view. The difference between these two ap-

proaches is that in the action-based approach only action labels are used. Here, an

infinite sequence of actions a0a1a2 . . . performed by the transition system denotes

a computation. The atomic proposition a is true for a computation a0a1a2 . . . iff

a0 = a. On the other hand, in the state-based view only state labels (predicates)

are taken into account and an infinite sequence of states s0s1s2 . . . , where for each

i, si+1 is reachable from si in a single step, constitutes a possible computation.

There are cases that is not possible the state-based approach to be translated into

an action-based and vice versa. The reason is that we cannot always deduce from

the state labels the possible enabled actions. In addition, based on the action

labels it is not always possible to deduce their target state. Actions are atomic,

non-persistent occurrences that happen in a particular point in time. On the

other hand, states are related to things that and exist and they have a measur-

able value at any moment. Thus, in case we have an action-based representation

then in some case states are difficult to be deduced [4].

In Chapter 4 the state-based properties are verified. Therefore, they were

taken into consideration only the states’ atomic propositions for formulating the
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2. Linear Temporal Logic

properties of the case studies. That is, because only their atomic propositions are

‘visible’ and a sequence of them is referred as a trace of the transition system.

When one has to check whether a linear-time property holds or not, it is

assumed that the model under consideration does not have terminal states. Thus,

before the verification it is necessary to perform deadlock checking, and eliminate

any deadlocks found in the model.

In case a linear time property is violated, model checking tools provide a trace

demonstrating this violation. These traces are called counterexamples, and are

very helpful for debugging the models [46].

The first step to check whether a system satisfies some requirements is to

model it using some formal language. Then, the resulting model must be verified

w.r.t. the predefined requirements. These requirements are often formulated us-

ing Linear Temporal Logic (LTL) properties, which denote the accepted various

behaviours (i.e., traces) a transition system is allowed to show.

An LTL property is defined using the atomic propositions (AP) of the model,

and it characterises a subset of the infinite words over the alphabet of AP. A

transition system TS satisfies an LTL property φ, TS � φ, iff each of its infinite

traces satisfies φ. When a state, s, satisfies a LTL property φ, is written as, s �

φ. That is, s � φ iff all traces which start in this state respect φ. In the next

section, LTL properties and their logic will be presented in more detail.

2.2 Linear Temporal Properties and Logic

Modelling a concurrent system is a complicated and error prone process due

to synchronization errors. This can be alleviated by applying rigorous formal

reasoning. LTL can describe properties of concurrent systems at any level of

abstraction [30, 55]. That is, they define what behaviour a system must have and

analyse what it will do [55]. In other words, a temporal logic formula expresses

permissible behaviour of the system, and it is satisfied when it holds for every

execution of the system. In this section, initially fairness is covered, and then the

syntax of LTL formalism is presented.
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2. Linear Temporal Logic

2.2.1 Fairness

In concurrent systems, the behaviour when is a process is always pre-empted by

another process and so can never progress is called unfair. If one wants to have

fair behaviour, all processes eventually must be served [21] [22].

Moreover, it is very common during the modelling of concurrent systems to

exclude some specific behaviours, which may be unnecessary or unrealistic. This

can be achieved by applying appropriate fairness assumptions to the system.

Moreover, these assumptions are often useful when we want to verify liveness,

which states that eventually some progress will happen. (The use of fairness

assumptions does not make sense for safety properties, as any reachable state can

be reached by a finite trace, and finite traces are considered to be fair [4].) Thus,

fairness plays an important role in model checking.

2.2.2 Fairness Constraints

As mentioned previously, fairness constraints are of vital importance when a real-

istic concurrent model needs to be designed by ruling out unrealistic executions.

The most prominent notions of fairness constraints are unconditional, strong, and

weak fairness [56] [84] [53]; the following list shows their meaning:

1. Unconditional fairness : Every process gets its turn infinitely many times.

If a trace is unconditionally fair, this property holds infinitely many times.

2. Strong fairness : Every process that is enabled infinitely many times gets

its turn infinitely many times.

It means that if a transition is enabled infinitely many times, but not nec-

essarily always (i.e., there may be some finite periods during which the

transitions is not enabled), then it will be executed eventually.

3. Weak fairness : Every process that is continuously enabled from a certain

time instant on gets its turn eventually.

If a transition is continuously enabled, without periods in which the tran-

sition is not enabled, then it has to be eventually executed.
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2. Linear Temporal Logic

To verify whether an execution is unconditionally fair, it is enough to consider

the actions that occur along the execution. Nevertheless, when we want to check

whether an execution is strongly or weakly fair, the above consideration is not

enough. Instead, we need to take into account the enabled transitions in all

visited states as well. Note that fairness constraints are imposed on infinite

traces, because any finite trace is considered to be fair [4]. Also, different fairness

assumption rules can be made about different transitions.

2.2.3 Linear Temporal Logic

For checking the correctness of a system, one has to reason about the system’s

executions, and in the context of this thesis, about fairness issues. Formalisms

which treat these aspects are temporal logics. These formalisms extend proposi-

tional or predicate logic with modalities that allow one to refer to time [4]. They

can be used for describing the relative order of events. Linear Temporal Logic

(LTL) was proposed by Pnueli in 1977 for specifying the properties of infinite se-

quences of states (or actions) that are necessary for formally verifying computer

systems [80]. In LTL the occurrence of an event corresponds to the advance of a

single time-unit. Therefore, the time is discrete. The present moment refers to

the current state and the next moment corresponds to the immediate successor

state. Thus, we assume that the system behaviour is observable at the time units

0, 1, 2, ... [4]. The following definition (Def. 1) shows the syntax of LTL. Fig.

2.2 illustrates the semantics of temporal modalities of LTL.

Definition 2. The syntax of linear temporal logic is as follows:

φ ::= > | ⊥ | α | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (Xφ)

| (♦φ) | (�φ) | (φUφ)

where α is an atomic proposition.

Modalities can be combined together producing new temporal modalities and

describe LTL formulas as the following examples show:

� (p ∨ q) (2.1)
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2. Linear Temporal Logic

Figure 2.2: Illustration of LTL temporal connectives.

♦�φ (2.2)

The examples 2.1 and 2.2 state that always either p or q must hold, and

eventually always property φ must hold respectively.

An important subclass of LTL is LTL-X, which is the X-free fragment of LTL.

LTL model checking is based on the automata-based approach (see subsection

2.2.4) [92]. In [55], Lamport argued that every ‘sensible’ LTL property must be

expressible without the X operator. The ‘next’ is completely orthogonal to the

other modalities. Meaning that, its presence does not contribute to define any

of the other modalities in terms of each other. In addition, X cannot be derived

from any combination of the other modalities [46].

2.2.4 Büchi Automata-based LTL Model Checking

In this section we recall notions related to LTL model checking based on Büchi

automata (see [4, 34, 92] for more details), which will be used in Chapter 4.

A Büchi automaton is an extension of a non-deterministic finite state automa-

ton to infinite inputs. It accepts an infinite input sequence iff some corresponding

run visits any of the designated final states infinitely many times. The language of
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2. π-Calculus

a Büchi automaton is defined as the set of all infinite inputs that can be accepted.

In [92], it is presented an automata-based approach that formally verifies

whether a system S satisfies an LTL formula φ. Deciding whether all compu-

tations of S satisfy φ is equivalent to deciding whether some computation of S

satisfies ¬φ. For the latter case, ¬φ has to be converted into a Büchi automaton

A¬φ that accepts the computations satisfying ¬φ [34]. Afterwards, S and A¬φ

are synchronised so that the language of the resulting Büchi automaton S×A¬φ
is the intersection of the language of A¬φ and the set of all possible computations

of S. Thus, one can reduce the original verification problem to checking whether

the language accepted by the Büchi automaton S×A¬φ is empty, which is the

case iff there is not final state that is both reachable from the initial state and

lies on a cycle.

If an execution satisfying ¬φ is found, it is returned as an error trace, whereas

if there is no such execution then one can conclude that S � φ [4].

2.3 π-Calculus and FCP

The π-calculus [66, 88] is a formalism that can be used for modelling reconfig-

urable systems and reasoning about their behaviour [88]. The key idea of the

formalism is that messages and the channels they are sent on have the same type:

they are just names from some set Φ
df
= {a, b, x, y, i, f, r, . . .}, which are the sim-

plest entities of the π-calculus. This means a name that has been received as a

message in one communication may serve as channel in a later interaction. To

communicate, processes consume prefixes π.

Definition 3. (π-calculus) The grammar of processes and summations of π-

calculus

P ::= M p P | P ′ p νr : P p !P

M ::= 0 p π.P p M +M ′
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2. π-Calculus

where

π ::= a〈b〉 p a(x) p τ. (2.3)

The output prefix a〈b〉 sends name b along channel a. The input prefix a(x)

receives a name that replaces x on channel a. The input and output actions

are called visible actions and prefix τ stands for a silent action. The following

definition gives the grammar of π-calculus processes and a subclass of them, the

summations. The summation form represents a process that can evolve in one of

several options.

In the composition P | P ′, processes P and P ′ can evolve independently

and can interact via shared names. The replication !P behaves like an infinite

composition P | P | . . . . The rest cases are common with the syntax of FCP, and

they are explained below.

Finite Control Processes (FCP) [20], as described in [52], are a fragment of π-

calculus, where the system consists of a parallel composition of a fixed number of

sequential entities (threads). The control of each thread can be represented by a

finite automaton, and the number of threads is bounded in advance. The threads

communicate synchronously via channels, and have the possibility to create new

channels dynamically and to send channels via channels. These capabilities are

often sufficient for modelling mobile applications and instances of parameterised

systems, and the appeal of FCPs is due to combining this modelling power with

decidability of verification problems [20, 65].

Threads, also called sequential processes, are constructed as follows. A choice

process
∑

i∈I πi.Si over a finite set of indices I executes a prefix πi and then

behaves like Si. The special case of choices over an empty index set I = ∅ is

denoted by 0 — such a process has no behaviour. Moreover, when |I| = 1 we

drop Σ. We use
⊙

to refer to iterated prefixing, e.g. a1〈b1〉.a2〈b2〉.a3〈b3〉.a4〈b4〉.0
can be written as

(⊙4
i=1 ai〈bi〉

)
.0. A restriction νr : S generates a name r

that is different from all other names in the system. We denote a (perhaps

empty) sequence of restrictions νr1 . . . νrk by νr̃ with r̃ = r1 . . . rk. To implement

parameterised recursion, we use calls to process identifiers Kbãc. We defer the
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2. π-Calculus

explanation of this construct for a moment. To sum up, threads take the form

S ::= Kbãc p
∑

i∈I πi.Si p νr : S.

An FCP F is a parallel composition of a fixed number of threads:

F ::= νã.(Sinit ,1 | . . . | Sinit ,n).

Note that in FCPs the parallel composition operator | is allowed at the

top level, but not inside the threads, whereas in general π-calculus there is no

such restriction. We use Π to denote iterated parallel composition, e.g. the above

definition of an FCP can be re-written as F ::= νã :
∏n

i=1 Si.

Our presentation of parameterised recursion using calls Kbãc follows [88].

Process identifiers K are taken from some set Ψ
df
= {H,K,L, . . .} and have a

defining equation K(f̃) := S. Here S can be understood as the implementation

of identifier K. The process has a list of formal parameters f̃ = f1, . . . , fk that

are replaced by factual parameters ã = a1, . . . , ak when a call Kbãc is executed.

Note that both lists ã and f̃ have the same length. When we talk about an FCP

specification F , we mean process F with all its defining equations.

To implement the replacement of f̃ by ã in calls to process identifiers, we use

substitutions. A substitution is a function σ : Φ→ Φ that maps names to names.

If we make domain and codomain explicit, σ : A→ B with A,B ⊆ Φ, we require

σ(a) ∈ B for all a ∈ A and σ(x) = x for all x ∈ Φ \ A. We use {ã/f̃} to denote

the substitution σ : f̃ → ã with σ(fi)
df
= ai for i ∈ {1, . . . , k}. The application of

substitution σ to S is denoted by Sσ and defined in the standard way [88].

Input prefix a(i) and restriction νr bind the names i and r, respectively. The

set of bound names in a process P = S or P = F is bn (P ). A name which is not

bound is free, and the set of free names in P is fn (P ). We permit α-conversion

of bound names. The following statements provide the definition of α-conversion

[88]:

• If the name w does not occur in the process P , then P{w/z} is the process

obtained by replacing each free occurrence of z in P by w.

• A change of bound names in a process P is the replacement of a subterm
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2. π-Calculus

x(z).Q of P by x(w).Q{w/z}, or the replacement of a subterm νz Q of P

by ν : w Q{w/z}, where in each case w does not occur in Q.

• Processes P and Q are α−convertible, P = Q, if Q can be obtained from

P by a finite number of changes of bound names.

The following expression is an example of α-conversion:

y(z).z̄x.0 = y(w).w̄x.0

Therefore, w.l.o.g., we make the following assumptions common in π-calculus

theory and collectively referred to as no clash (NOCLASH), as introduced in

[52], henceforth. For every π-calculus specification, we require that:

• a name is bound at most once;

• a name is used at most once in formal parameter lists;

• the sets of bound names, free names and formal parameters are pairwise

disjoint;

• if a substitution σ = {ã/x̃} is applied to P then bn (P ) and ã ∪ x̃ are

disjoint.

Assuming (NOCLASH), the names occurring in a π-calculus specification

F can be partitioned into the following sets:

P public names that are free in F ;

R names bound by restriction operators;

I names bound by input prefixes;

F names used as formal parameters in defining equations.

The size of a π-calculus specification is defined as the size of its initial term

plus the sizes of the defining equations. The corresponding function ‖·‖ measures
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2. π-Calculus

the number of channel names, process identifiers, the lengths of parameter lists,

and the number of operators in use:

‖0‖ df
= 1

‖Kbãc‖ df
= 1 + |ã|

‖νr : P‖ df
= 1 + ‖P‖

‖K(f̃) := S‖ df
= 1 + |f̃ |+ ‖S‖

‖
∑

i∈I πi.Si‖
df
= 3|I| − 1 +

∑
i∈I

‖Si‖

‖
n∏
i=1

Si‖
df
= n− 1 +

∑n
i=1 ‖Si‖

It is not so simple to define reduction on terms of π-calculus, because two

subterms of a process-term may interact despite the fact that they may not be

adjacent. To define the behaviour of a process and the reduction on process terms,

we rely on a relation called structural congruence ≡. It is the smallest congruence

where α-conversion of bound names is allowed, + and | are commutative and

associative with 0 as the neutral element, and the following laws for restriction

hold:

νx.0 ≡ 0

νx.νy.P ≡ νy.νx.P

νx.(P |Q) ≡ P |(νx.Q) if x /∈ fn (P )

The behaviour of π-calculus processes is determined by the reaction relation →.

The reaction relations are defined by inference rules [66, 88]:

(Tau) τ.S +M → S (React) (x(y).S +M) |(x〈z〉.S ′ +N)→ S{z/y} |S ′

(Res)
P → P ′

νa.P → νa.P ′
(Struct)

P → P ′

Q→ Q′
if P ≡ Q and P ′ ≡ Q′
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2. π-Calculus

(Par)
P → P ′

P |Q→ P ′ |Q
(Const) Kbãc → S{ã/f̃} if K(f̃) := S

The rule (Tau) is an axiom for silent steps. (React) describes the communication

of two parallel threads, consuming their send and receive actions respectively and

continuing as a process, where the name y is substituted by z in the receiving

thread S. (Const) describes identifier calls, likewise using a substitution. The

remaining rules define → to be closed under structural congruence, parallel com-

position and restriction. By R(F ) we denote the set of all processes reachable

from F . The transition system of FCP F factorises the reachable processes along

structural congruence.

2.3.1 Normal form assumptions

We require that the sets of identifiers called (both directly from F and indirectly

from defining equations) by different threads are disjoint. This restriction corre-

sponds to the notion of a safe FCP [65] and can be achieved by replicating some

defining equations. The resulting specification F ′ is bisimilar with F and has size

O(n‖F‖) = O(‖F‖2). We illustrate the construction on the following example of

an FCP specification F (left) together with its replicated version F ′ (right):

K(f1, f2) := τ.L(f1, f2) K1(f 1
1 , f

1
2 ) := τ.L1(f 1

1 , f
1
2 )

L(f3, f4) := τ.K(f3, f4) L1(f 1
3 , f

1
4 ) := τ.K1(f 1

3 , f
1
4 )

K2(f 2
1 , f

2
2 ) := τ.L2(f 2

1 , f
2
2 )

L2(f 2
3 , f

2
4 ) := τ.K2(f 2

3 , f
2
4 )

K3(f 3
1 , f

3
2 ) := τ.L3(f 3

1 , f
3
2 )

L3(f 3
3 , f

3
4 ) := τ.K3(f 3

3 , f
3
4 )

Kba, bc |Kbb, cc |Lba, cc K1ba, bc |K2bb, cc |L3ba, cc

Intuitively, in the resulting FCP specification each thread has its own set of

defining equations. This normal form is applicable also to EFCP in Section 3.5.
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2. Petri nets

2.3.2 Match and mismatch operators

The match and mismatch operators are a common extension of π-calculus [52].

Intuitively, the process [x = y].P behaves as P if x and y refer to the same

channel, and as 0 otherwise, and the process [x 6= y].P behaves as P if x and y

refer to different channels, and as 0 otherwise.

2.3.3 Expressing polyadicity

Polyadic communication can be used to make modelling more convenient. Using

polyadic communication tuples of names can be exchanged in a single reaction.

More precisely, a sending prefix a〈x1. . .xm〉 (with m ≥ 0) and a receiving prefix

a(y1. . . yn) (with n ≥ 0 and all yi being different names) can synchronise iff m =

n, and after synchronisation each yi is replaced by xi, {yi/xi}. Formally,

(React) (a(ỹ) ; P1 +Q1) |(a〈x̃〉 ; P2 +Q2)→ P1{x̃/ỹ} |P2 if | ỹ |=| x̃ |

2.4 Petri nets

In this section, the basic definitions that describe Petri nets [72] are revised.

Petri nets are a mathematical modelling language which was developed originally

by Carl Adam Petri. Diagnosability under weak fairness, which is presented in

Chapter 4, is based on this formal method. The account presented here will follow

that in [97], [10], [96].

They have a simple graphical representation consisting of four symbols (ele-

ments) at the basic level. In the example shown in Figure 2.3, the elements used

are circles and squares to represent places and transitions, respectively. Dots

(tokens) are used to denote the holding of a condition at a specific point of time,

places contain tokens is to said to be marked. Arcs indicate the flow relation

between the respective circles and boxes.

Another representation method typical for nets, is the condition/event-nets.

Systems consisting of conditions and events form the most detailed description

level of marked nets. Here, conditions can, in contrast to places, carry only one

token.
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2. Petri nets

Definition 4. (Petri net) A Petri net is a quadruple N = (P,T,F,M0) where

• P and T are disjoint sets of places and transitions,

• F is a multiset of F ⊆ (P × T ) ∪ (T ×P ), called the flow relation,

• W : F → (N \ {0}) is the arc weight mapping,

• M0 is a non-null multiset of places, called the initial marking, which satisfies

the restrictions:

i. ∀t ∈ T ∃p ∈ P. Fp,t > 0 and ∀t ∈ T ∃p ∈ P. Ft,p > 0 and

ii. ∀p ∈ P. [M0b 6= 0 or (∃t ∈ T. Ft,p 6= 0) or (∃t ∈ T. Fp,t 6= 0)]

where a marking is a multiset of places, i.e. a function M : P → N =

{0,1,2,. . . } assigning a number of tokens to each place.

The pre- and postset of z ∈ P ∪ T are denoted by •z
df
= {y | (y, z) ∈ F} and

z•
df
= {y | (z, y) ∈ F}. If 〈p,t〉 ∈ F for a place p ∈ P and a transition t ∈ T, then

p is an input place of t. Reversely, if 〈t,p〉 ∈ F, then p is an output place of t.

A transition t ∈ T is enabled at a marking M, denoted M [t〉, if for every p ∈ •t,
M (p) ≥ 1. Such a transition can be fired, leading to a marking M ′ df

= M − •t+ t•,

where ‘–’ and ‘+’ stand for the multiset difference and sum, respectively. We

denote this by M [t〉M ′. For a finite sequence of transitions σ = t1. . . tk (k ≥0)

we write M [σ〉M ′ if there are markings M1,. . . ,Mk+1 such that M1 = M, Mk+1 =

M ′ and Mi[ti〉Mi+1, for i = 1,. . . ,k. If M = M0, we say σ is an execution of N.

Analogously, infinite executions can be defined.

The set of reachable markings of N is the smallest (w.r.t. ⊂) set [M0〉 con-

taining M0 and such that if M ∈ [M0〉 and M [t〉M ′ for some t ∈ T then M ′ ∈
[M0〉. A marking M is said to be coverable from M0, if there exists a marking

M ′ ∈ [M0〉 such that M (p) ≤ M ′(p) for all p ∈ P in N.

Figure 2.3 shows a classic Petri net model. Here, the initial marking is p1 7→
1, p2 7→ 1, p3 7→ 1, p4 7→ 0, p5 7→ 0. In the initial marking transition t1 can fire.

When it fires, it consumes the tokens from places p1, p2, and p3 and produces

tokens to places p4 and p5.
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2. Petri nets

Figure 2.3: A Petri net example. Places are represented graphically as circles,
transitions as squares, tokens as black dots. The transition when it fires, it
consumes the tokens from places p1, p2, and p3 and produces tokens to places p4

and p5.

A PN N is k-bounded if, for every reachable marking M and every place p ∈ P ,

M(p) ≤ k, and safe if it is 1-bounded. A marking of N is called a deadlock if it

enables no transitions. N is deadlock-free if none of its reachable markings is a

deadlock.
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Chapter 3

Extended Finite Control

Processes

3.1 Introduction

This chapter introduces Extended Finite Control Processes (EFCP), which add

new features to FCPs [20], in particular limited local concurrency within a thread,

while still allowing one to formally verify such systems. Thus, practical modelling

of reconfigurable systems becomes more convenient. A formal description of the

new formalism is presented, and an almost linear translation from EFCP to FCP,

which forms the basis for formal verification of reference passing systems, is in-

troduced in this chapter.

The threads in an FCP can communicate synchronously via channels, and

are able to create new channels dynamically and send channels via channels.

However, FCP threads are sequential processes, without any ‘local’ concurrency

inside them. This makes FCPs too restrictive when one wants to model scenar-

ios involving local concurrency within a thread, for instance, in case of routing

protocols in multi-core processor systems. An essential feature of such protocols

is the ability of a core to send a datum to several destinations concurrently.

EFCPs are sufficient for modelling many practical reconfigurable systems.

Moreover, since an efficient translation from FCPs to safe Petri nets exists [52, 63],

it can be reused for EFCPs (via an intermediate translation to FCPs that is
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3. The Syntax of Extended Finite Control Processes

developed). Hence efficient formal verification algorithms for Petri nets can be

used to verify EFCPs.

For example, the following process is an FCP, which is a parallel composition

of three sequential processes (threads).

K1 := a(x) . x〈b〉 . 0

K2 := νu : a〈u〉 . w〈u〉 . 0

K3 := w(t) . t(v) . 0

K1 |K2 |K3

Note that in FCPs the parallel composition operator ‘|’ can be used only in the

initial term, i.e. the threads are fully sequential and their number is bounded in

advance.

To be able to model a wide range of RPSs, a higher degree of freedom in the

syntax is required to specify their various behavioural scenarios. To that end, an

extension of FCPs, the EFCP, is introduced, which allows local concurrency and

replaces the prefixing operator ‘.’ with a more powerful sequential composition

operator ‘;’. Also, Box Alegbra [8] uses ‘;’ as a sequence operator, however, the

only similarity with our sequential composition operator stays in the symbolic

representation and not behaviour. The full EFCP syntax is defined in Section

3.2, and an example is given below.

K1 := νr :
(
(a〈r〉 | b〈r〉) ; (r(x) | r(y))

)
K2 := a(z) ; z〈c〉

K3 := b(w) ; w〈d〉

K1 |K2 |K3

(3.1)

3.2 The syntax of Extended Finite Control Pro-

cesses

To define the EFCP syntax the notion of finite processes is required. Such pro-

cesses have special syntax ensuring that the number of actions they can execute
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3. Operational Semantics and Structural Congruence

is bounded in advance.

The arguments of the parallel composition operator, when used inside a

thread, are limited to finite processes only. Similarly, the left hand side of sequen-

tial composition must be a finite process, but the right hand side is not required

to be such.

This new subcalculus is defined by a context-free grammar consisting of two

sub-grammars, one for the finite executed processes and one for generic processes.

Definition 5 (Grammar for finite processes).

F ::= 0 p π p F + F p F |F p νr̃ : F p F ; F

where π is a prefix as described in 2.3.

The syntax of the generic processes includes that of finite processes, but also

allows for extra features like recursive definitions.

Definition 6 (EFCP grammar). Let F be a finite process defined above. The

syntax of an EFCP thread is then

P ::= Kbx̃c p F p P + P p νr̃ : P p F ; P

An EFCP specification is comprised of a set of defining equations of the form

K(f̃) := P and an initial term of the form νr̃ :
∏n

i=1 Pi, where P and all Pi are

EFCP threads.

Note that an EFCP thread cannot contain the construction P |P (only the initial

term can have it), but it can contain F |F .

3.3 Structural congruence and operational se-

mantics

The structural congruence relation is used in the definition of the behaviour of a

process term. The choice ‘+’ and the parallel composition ‘|’ are commutative and

associative with 0 as the neutral element. Sequential composition ‘;’ is associative

with 0 as the neutral element, but not commutative.
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3. Operational Semantics and Structural Congruence

Definition 7. Structural congruence: The structural congruence ≡ is the

smallest congruence that satisfies the following axioms:

Alpha Conversion:

νr : P ≡ νr′ : P{r′/r} if r′ /∈ fn (P ).

a(x) ; P ≡ a(x′) ; P{x′/x} if x′ /∈ fn (P ).

Laws for sequential composition:

0 ; P ≡ P

F ; 0 ≡ F

(F1 ; F2) ; P ≡ F1 ; (F2 ; P )

Laws for restriction:

νr : 0 ≡ 0

(να)(νβ) : P ≡ (νβ)(να) : P

Laws for parallel composition:

F1 |(F2 |F3) ≡ (F1 |F2) |F3

F1 |F2 ≡ F2 |F1

F |0 ≡ F

Laws for summation:

P1 + (P2 + P3) ≡ (P1 + P2) + P3

P1 + P2 ≡ P2 + P1

P + 0 ≡ P

Definition 8. Structural operational semantics: The transition system of
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EFCP is defined by the following rules:

(Seq)
F → F ′

F ;Q→ F ′ ;Q
(Tau) τ ; P +Q→ P

(Res)
P → P ′

νr : P → νr : P ′
(Struct)

P → P ′

Q→ Q′
if P ≡ Q and P ′ ≡ Q′

(Par)
P → P ′

P |Q→ P ′ |Q
(Const) Kbãc → P{ã/f̃} if K(f̃) := P

(React) (x(y) ; P1 +Q1) |(x〈z〉 ; P2 +Q2)→ P1{z/y} |P2

Note that these rules are similar to the π-calculus rules in Section 2.3 with

the exception of the (Seq) rule expressing the semantics of our more powerful

sequential composition operator ‘ ; ’. Now, we will illustrate reduction using the

example 3.1 above.

K1 |K2 |K3

νr :
(
(a〈r〉 | b〈r〉) ; (r(x) | r(y))

)
| a(z) ; z〈c〉 | b(w) ; w〈d〉

By Res rule we have:

νr :
(
(a〈r〉 | b〈r〉) ; (r(x) | r(y)) | a(z) ; z〈c〉 | b(w) ; w〈d〉

)
Then, by React and Par rules we have:

νr : ((r(x) | r(y)) | r〈c〉 | r〈d〉)

3.4 Translation of EFCPs to FCPs

In this section, a formal description of the new formalism is presented, and an al-

most linear translation from safe EFCPs to safe FCPs is introduced. The purpose

of translating EFCP to FCP is for the latter to be translated to safe low-level

Petri nets [65], for which efficient verification techniques can be applied.
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3.4.1 Description

The translation has to eliminate the parallel composition operator inside threads

and the use of sequential composition. Since an FCP consists of sequential pro-

cesses (threads), any thread of an EFCP that is not sequential must be converted

to a sequential one. This can be done by shifting all the concurrency to the initial

term. Moreover, sequential composition has to be replaced by prefixing. To avoid

blow up in size, new declarations are introduced during this process.

To ensure that the order of actions is preserved and that the context (bind-

ing of channel names) is correct, extra communication between threads may be

required. New process definitions are introduced in two cases. The first is when

local concurrency exists within a thread, e.g.:

K[x] := νr : ((a〈x〉 | b〈r〉) ; τ)

Kbuc

The translation result is (see also SeqPar rule below):

K[x] := νr : (begin1〈x〉 . begin2〈r〉 . end1() . end2() . τ . 0)

K1 := begin1(x) . a〈x〉 . end1〈〉 . K1

K2 := begin2(r) . b〈r〉 . end2〈〉 . K2

Kbuc |K1 |K2

Here K1 and K2 are fresh PIDs and begin1, begin2, end1, end2 are fresh public

names. Note that the necessary context is passed to the auxiliary FCP threads

K1 and K2 using communication on begin1 and begin2.

The second case is when there is a sequential composition with a non-trivial

left-hand side, e.g.:

K[x] := νr :
(

(a〈x〉+ b〈r〉)︸ ︷︷ ︸
l.h.s.

; (c〈x〉+ d〈r〉)︸ ︷︷ ︸
r.h.s.

)
Kbuc
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This process is translated as follows (see also SeqChoice rule below):

K[x] := νr : (a〈x〉 . K1bx, rc+ b〈r〉 . K1bx, rc)

K1[x, r] := c〈x〉 . 0 + d〈r〉 . 0

Kbuc

Here K1 is a fresh PID. Note that the initial term did not change and that the

context is passed via parameters of a call.

3.5 Formal definition of EFCP to FCP transla-

tion

In this section, the translation is defined in a formal way. They are defined

the translation rules that are used for translating an EFCP specification to an

FCP one and the size of the translations is provided. Moreover, a example of

translation to EFCP to FCP is described to facilitate the process of how these

rules are applied. To evaluate our proposed theory we model the SpiNNaker

architecture using EFCP, and further we verify it using a developed tool that

translates the EFCP to FCP.

3.5.1 Translation

EFCP has the form
K1[x̃1] := P1

...

Kn[x̃n] := Pn

νr̃ : (Q1 | . . . |Qk)

where the syntax of each Pi is given by Definitions 5 and 6, and we assume that

no Qi in the initial term uses ‘|’ or ‘;’. Meaning that Qi is now an FCP thread.

To that end, the total number of the Q threads can be higher than the number of

EFCP processes. That happens because new threads can be created during the
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3. Formal Definition of EFCP Translation to FCP

translation process as we will see later on. Note that the EFCP is assumed to

be safe and to satisfy (NOCLASH). Safe EFCPs are defined similarly to safe

FCPs, see Sect. 2.3.1.

Definition 9. (Translation) The translation J·KB from EFCP to FCP is defined

inductively on the syntactical structure of the EFCP. Here B is the parameter of

the translation. It defines the context, the set of names that were bound prior to

the occurrence of the term to be translated. The translation is applied to each

process declaration separately:

JK[x̃] := P K∅
df
= K[x̃] := JP Kx̃∩fn(P ) (Decl)

Base cases:

J0KB
df
= 0 (Stop)

JπKB
df
= π . 0 (Pref)

JKbx̃cKB
df
= Kbx̃c (Call)

Parallel composition:

t
k∏
i=1

Pi

|

B

df
=

(
k⊙
i=1

begini〈B ∩ fn (Pi)〉

)
.

k⊙
i=1

endi() (Par)

where begini and endi are fresh public names and Ki are fresh PIDs.

Ki := begini(B ∩ fn (Pi)).
q
Pi ; endi〈〉 ;Ki

y
B∩fn(Pi)

, i = 1 . . . k
k∏
i=1

Ki is added concurrently to the initial term.

Restriction:

Jνr̃ : P KB
df
= νr̃ : JP K(B∪r̃)∩fn(P ) (Restr)
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Choice composition:

t
k∑
i=1

Pi

|

B

df
=

k∑
i=1

JPiKB∩fn(Pi)
(Choice)

Match and mismatch:

J[a = x] . P KB
df
= [a = x] . JP KB∩fn(P ) (Match)

J[a 6= x] . P KB
df
= [a 6= x] . JP KB∩fn(P ) (Mismatch)

Sequential composition base cases:

J0 ; P KB
df
= JP KB (SeqStop)

Jτ ; P KB
df
= τ . JP KB (SeqTau)

r
a〈b̃〉 ; P

z

B

df
= a〈b̃〉.JP KB∩fn(P ) (SeqSend)

r
a(b̃) ; P

z

B

df
= a(b̃).JP K(B∪b̃)∩fn(P ) (SeqRec)

Sequential composition inductive cases. In Sect. 3.4.1 we provide the ex-

planation and a number of examples of these cases:

t(
k∑
i=1

Pi

)
; P

|

B

df
=

t
k∑
i=1

(
Pi ;K[B ∩ fn (P )]

)|
B

(SeqChoice)

where K is a fresh PID (not added to the initial process)

K[B ∩ fn (P )] := JP KB∩fn(P )
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t(
k∏
i=1

Pi

)
; P

|

B

df
=

t
k∏
i=1

Pi

|

B∩
⋃k

i=1 fn(Pi)

. JP KB∩fn(P ) (SeqPar)

J(νr̃ : P ) ; P ′KB
df
= Jνr̃ : (P ; P ′)KB (SeqRestr)

After translating an EFCP to FCP, the resulting FCP specification it appears

to be behavioural equivalent with the initial EFCP. Thus, we need to investigate

the relationship between the transition systems generated by EFCPs and those

generated by the corresponding FCPs, with the view to prove the correctnes

of the proposed translation. In addition, the operational (rewrite rules) and

denotational (translation to FCP) semantics appear to be consistent, however,

they have not yet formally proved.

Moreover, as the examples in Section 3.4.1 show, the translation sifts the

concurrency inside of the process to the initial term. Thus, both the EFCP

and resulting FCP specification have the required level of concurrency. This is

obtained by the Par rule. Based on this rule, if a process has parallelism, it

generates new threads for each part that constitutes parallel composition. To

that end, we need to consider that the order of the actions in the process must

be preserved. Thus, new prefixes are added to link the threads with the initial

term and preserve the ordering.

Another case that we need extra communication between threads to preserve

the order of actions is in SeqChoice rule. In this case, this specification is not an

FCP one. We have a sequential composition of a choice composition, for example

of two terms (i.e., term1 and term2), in the left hand side and a process in the

right hand side. Our aim is to convert this process to an FCP that has the same

behaviour. In this case, either term1 or term2 will evolve, and then the process

in the right hand side must evolve. For this reason, in each term of the choice

composition we add a fresh PID and the process in the right hand side becomes

a new thread that has the same PID with the one in the choice terms. Thus,

a process that initially is not an FCP is converted to FCP and evolves in the
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same way as the original EFCP specification. The SeqRestr is the same as in

π-calculus. As it is explained in [88], it is an axiom that allows manipulation of

term-structure. It expresses that a restriction can be moved so as to include in

its scope a process in which the restricted name is not free.

3.5.2 An example of translation from EFCP to FCP

The following EFCP process models a client that communicates with a server.

Cburl, ipc := νq : (url〈ip, q〉 ; ip(a) ; Cburl, ipc)

Sburl′c := url′(ip′, q′) ; νx : ((νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉) ; Sburl′c

νurl′′, ip′′ : (Sburl′′c |Cburl′′, ip′′c)

The server is located at some URL, Sburl′c. A client can contact it by sending

its IP address ip on the channel url. At the same time it sends a question, q,

to the server, url〈ip, q〉. The client generates and sends a different question each

time, thus q is a restricted name. The client’s IP address and the question are

received by the server and are stored as ip′ and q′, url′(ip′, q′). The server runs

two computational threads, which communicate with one another via a temporary

internal channel x and produce an answer, and one of them sends the answer to

the client on ip′, νx : ((νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |x(v) ; (τ + τ) ; v〈a′〉), at which

point the server repeats its behaviour by calling Sburl′c. The client receives the

answer, ip(a), and is able to contact the server again, Cburl, ipc.
This specification is a safe EFCP satisfying (NOCLASH). Now, we translate

it to FCP in a stepwise manner. First, the declaration of C is translated according
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to the rules of Definition 9:

q
Cburl, ipc := νq : (url〈ip, q〉 ; ip(a) ; Cburl, ipc)

y
∅ = by Decl

C[url, ip] :=
q
νq : (url〈ip, q〉 ; ip(a) ; Cburl, ipc)

y
{url,ip} = by Restr

C[url, ip] := νq : (
q
url〈ip, q〉 ; ip(a) ; Cburl, ipc

y
{url,ip,q}) = by SeqSend

C[url, ip] := νq : (url〈ip, q〉 . Jip(a) ; Cburl, ipcK{url,ip}) = by SeqRec

C[url, ip] := νq : (url〈ip, q〉 . ip(a) . JCburl, ipcK{url,ip}) = by Call

C[url, ip] := νq : url〈ip, q〉 . ip(a) . Cburl, ipc

Finally, client process has been converted to FCP. It is now the server’s turn

to be translated to FCP. Again, the same procedure is followed.

JSburl′c := url′(ip′, q′) ; νx :
(
(νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉
)

; Sburl′cK∅ = by Decl

S[url′] := Jurl′(ip′, q′) ; νx :
(
(νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉
)

; Sburl′cK{url′} = by SeqRec

S[url′] := url′(ip′, q′) . Jνx :
(
(νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉
)

; Sburl′cK{url} = by SeqRestr

S[url′] := url′(ip′, q′) . Jνx :
(
((νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉) ; Sburl′c
)
K{url} = by Restr

S[url′] := url′(ip′, q′) . νx : J
(
(νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

(x(v) ; (τ + τ) ; v〈a′〉)
)

; Sburl′cK{url,x} = by SeqPar

S[url′] := url′(ip′, q′) . νx : J(νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉K{url,x} . JSburl′cK{url} = by Call

S[url′] := url′(ip′, q′) . νx : J(νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉K{url,x} . Sburl′c = by Par
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S[url′] := url′(ip′, q′) . νx : begin1〈x, ip′〉 . begin2〈x〉 .

end1() . end2() . Sburl′c

Here begin1, begin2, end1, end2 are fresh public names, K1 and K2 are fresh

PIDs, and (K1 | K2,) is added to the initial process.

K1 := begin1(x, ip′) . Jνr : x〈r〉 ; τ ; r(a) ;

ip′〈a〉 ; end1〈〉 ;K1K{ip′,x} = by Restr

K1 := begin1(x, ip′) . νr : Jx〈r〉 ; τ ; r(a) ;

ip′〈a〉 ; end1〈〉 ;K1K{ip′,x,r} = by SeqSend

K1 := begin1(x, ip′) . νr : x〈r〉 . Jτ ; r(a) ;

ip′〈a〉 ; end1〈〉 ;K1K{ip′,r} = by SeqTau

K1 := begin1(x, ip′) . νr : x〈r〉 . τ . Jr(a) ;

ip′〈a〉 ; end1〈〉 ;K1K{ip′,r} = by SeqRec

K1 := begin1(x, ip′) . νr : x〈r〉 . τ . r(a) .

Jip′〈a〉 ; end1〈〉 ;K1K{ip′,a} = by SeqSend

K1 := begin1(x, ip′) . νr : x〈r〉 . τ . r(a) .

ip′〈a〉 . Jend1〈〉 ;K1K∅ = by SeqSend

K1 := begin1(x, ip′) . νr : x〈r〉 . τ . r(a) .

ip′〈a〉 . end1〈〉 . JK1K∅ = by Call

K1 := begin1(x, ip′) . νr : x〈r〉 . τ . r(a) .

ip′〈a〉 . end1〈〉 . K1

43



3. Formal Definition of EFCP Translation to FCP

K2 := begin2(x) . Jx(v) ; (τ + τ) ;

v〈a′〉 ; end2〈〉 ;K2K{x} = by SeqRec

K2 := begin2(x) . x(v) . J(τ + τ) ;

v〈a′〉 ; end2〈〉 ;K2K{v} = by SeqChoice

K2 := begin2(x) . x(v) . J(τ ;K3bvc +

τ ;K3bvc)K{v} = by Choice

Here K3 is a fresh PID (not added to the initial process)

K2 := begin2(x) . x(v) . (Jτ ;K3bvcK{v} +

Jτ ;K3bvcK{v}) = by SeqTau

K2 := begin2(x) . x(v) . (τ . JK3bvcK{v} +

τ . JK3bvcK{v}) = by Call

K2 := begin2(x) . x(v) . (τ . K3bvc + τ . K3bvc)

K3[v] :=
q
v〈a′〉 ; end2〈〉 ;K2

y
{v} = by SeqSend

K3[v] := v〈a′〉 .
q
end2〈〉 ;K2

y
∅ = by SeqSend

K3[v] := v〈a′〉 . end2〈〉 . JK2K∅ = by Call

K3[v] := v〈a′〉 . end2〈〉 . K2
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Finally, the resulting FCP is:

C[url, ip] := νq : url〈ip, q〉 . ip(a) . Cburl, ipc

S[url′] := url′(ip′, q′) . νx : begin1〈x, ip′〉 . begin2〈x〉 . end1() . end2() . Sburl′c

K1 := begin1(x, ip′) . νr : x〈r〉 . τ . r(a) . ip′〈a〉 . end1〈〉 . K1

K2 := begin2(x) . x(v) . (τ . K3bvc + τ . K3bvc)

K3[v] := v〈a′〉 . end2〈〉 . K2

νurl′′, ip′′ : (Sburl′′c |Cburl′′, ip′′c |K1 |K2)

3.5.3 Size of the translation

One can easily check that every translation rule except (SeqChoice) yields a linear

size result, and that (SeqChoice) yields at most quadratic result. This quadratic

blow-up happens when it is necessary to pass a large number of bound names as

parameters of a call, as shown in the following example.

K := a(x̃) ;

(
N∑
i=1

τ

)
; b〈x̃〉

K

The translated process is:

K := a(x̃).

(
N∑
i=1

τ.K1bx̃c

)
K1[x̃] := b〈x̃〉 . 0

K

If |x̃| = N then the size of the translated specification is quadratic, as N calls

with N parameters each are created.

Note that this quadratic blow-up in (SeqChoice) is isolated, and the sub-

sequent translation of these calls by the (Call) rule cannot create any further

blow-up, and so the overall size of the translated process is at most quadratic.
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Furthermore, one needs a rather artificial process for this quadratic blow-up to

occur, and we conjecture that for practical EFCP models the translation will

usually be linear.

3.6 Case study

In this section, the applicability of the proposed formalism and its translation to

safe FCP is demonstrated using SpiNNaker [32] as a case study.

3.6.1 SpiNNaker architecture

SpiNNaker is a massively parallel architecture designed to model large-scale spik-

ing neural networks in real-time [69]. Its design is based around ad-hoc multi-core

System-on-Chips, which are interconnected using a two-dimensional toroidal tri-

angular mesh [14, 69]. Neurons are modelled in software and their spikes generate

packets that propagate through the on- and inter-chip communication fabric re-

lying on custom-made on-chip multicast routers [33, 78]. The aim of SpiNNaker

project is to simulate a billion spiking neurons in real time [3, 48, 85]. The

SpiNNaker architecture is illustrated in Figure 3.1.

Every node of the network consists of a SpiNNaker Chip multiprocessor (CMP),

which constitutes the basis of the system [28, 79]. It comprises 20 processing cores

and SDRAM memory. For the cores, synchronous ARM9 processors were used

because of their high power efficiency [85]. One of the processors is called monitor

processor and its role is to perform system management tasks and to allow the

user to track the on-chip activity. The other processors run independent event-

driven neural processes and each of them simulates a group of neurons. Each

processor core models up to around one thousand individual neurons.

The communication network-on-chip (NoC) provides an on- and off- chip

packet switching infrastructure [98], see Figure 3.2. Its main task is to carry

neural-event packets between the processors that can be located on the same or

different chips. Also, it transports system configurations and monitoring infor-

mation [79, 98]. The receiver of the data must be able to manage how long the

sender keeps the data stable in order to complete a Delay-Insensitive communica-

46



3. Case Study

Figure 3.1: The SpiNNaker architecture [31].

tion. This is achieved by handshaking. The receiver uses an acknowledgement to

show that data has been accepted. The acknowledgement follows a return-to-zero

protocol [79, 98].

Figure 3.3 illustrates a SpiNNaker system composed of 25 SpiNNaker chips at

a high level of abstraction. They are linked with each other by channels (e.g., c1,

c2, . . . ). According to the routing protocol [98] of SpiNNaker’s system, every chip

can generate and propagate a datum. Every chip is connected to six other chips

by bidirectional links as shown in Figure 3.3. This structure forms a Cartesian

coordinate system. For instance, P0 can communicate only with P1, P6, P5, P4,

P24 and P20. Thus, the communication happens in the first and third quadrant.

Every chip has a pair of coordinates. These coordinates are needed for the routing

plan of the system. It is possible for some chips to be faulty or congested. In such

a case, an emergency routing plan is followed to bypass this kind of issues [82, 83].

Thus, the redundancy of the SpiNNaker chips enhances the fault tolerance of the

system [41].
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Figure 3.2: The SpiNNaker chip organization [98].

3.6.2 Modelling SpiNNaker interconnection network

The flow-control mechanism of the interconnection network (IN) of SpiNNaker is

as follows. When a packet arrives to an input port, one or more output ports are

selected, and the router tries to transmit the packet through them. If the packet

cannot be forwarded, the router will keep trying, and after a given period of time

it will also test the clockwise emergency route. It will try both the regular and

the emergency route. Finally, if a packet stays in the router for longer than a

given threshold (waiting time), the packet will be dropped to avoid deadlocks.

To avoid livelocks, packets have an age field in their header. When two ages pass

and the packet is still in the IN, it is considered outdated and dropped [69].

The following EFCP models a 5 × 5 SpiNNaker configuration. A healthy

processor, HP, can execute either of the following scenarios:

• It can generate a new message, m, and process it by calling an auxiliary
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Figure 3.3: SpiNNaker network topology [98].

declaration MSEND.

• It can receive a message on any of its channels and process it using an

auxiliary declaration REC MSEND.

• It can become permanently faulty by calling an auxiliary declaration FP.

The definition of HP has six formal parameters corresponding to the six channels

connecting it to the neighbours, see Fig. 3.3. These parameters are named after
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points of the compass, e.g. ‘n’ stands for ‘north’, ‘ne’ stands for ‘north-east’, etc.

HP [n, ne, e, s, sw,w] := νm : MSENDbm,n, ne, e, s, sw, wc +

REC MSENDbn, n, ne, e, s, sw, wc +

REC MSENDbne, n, ne, e, s, sw, wc +

REC MSENDbe, n, ne, e, s, sw, wc +

REC MSENDbs, n, ne, e, s, sw, wc +

REC MSENDbsw, n, ne, e, s, sw, wc +

REC MSENDbw, n, ne, e, s, sw, wc +

FP bn, ne, e, s, sw,wc

The auxiliary declarations are as follows:

MSEND [m,n, ne, e, s, sw, w] sends message m on 0 or more of the channels and

becomes HP [n, ne, e, s, sw,w]. In particular, the message can be consumed,

forwarded or multicast. Clockwise emergency routes are used in case of

negative acknowledgement nack.

MSEND[m,n, ne, e, s, sw, w] :=

(
(
τ + n〈m〉 ; n(a) ;

(
[a = ack] ; τ + [a = nack] ; ne〈m〉 ; ne(a)

))
|(

τ + ne〈m〉 ; ne(a) ;
(
[a = ack] ; τ + [a = nack] ; e〈m〉 ; e(a)

))
|(

τ + e〈m〉 ; e(a) ;
(
[a = ack] ; τ + [a = nack] ; s〈m〉 ; s(a)

))
|(

τ + s〈m〉 ; s(a) ;
(
[a = ack] ; τ + [a = nack] ; sw〈m〉 ; sw(a)

))
|(

τ + sw〈m〉 ; sw(a) ;
(
[a = ack] ; τ + [a = nack] ; w〈m〉 ; w(a)

))
|(

τ + w〈m〉 ; w(a) ;
(
[a = ack] ; τ + [a = nack] ; n〈m〉 ; n(a)

))
)

;HP bn, ne, e, s, sw,wc

REC MSEND [c, n, ne, e, s, sw, w] receives a message on channel c and either
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negatively acknowledges (nack) it to simulate congestion or positively ac-

knowledges (ack) it and then consumes, forwards or multicasts it by calling

MSEND.

REC MSEND[c, n, ne, e, s, sw, w] := c(m) ; (

c〈nack〉 ;HP bn, ne, e, s, sw,wc+ c〈ack〉 ;MSENDbm,n, ne, e, s, sw, wc

)

FP [n, ne, e, s, sw,w] models a faulty process that does not send any messages

and negatively acknowledges (nack) all the received messages.

FP [n, ne, e, s, sw,w] := (

n(m) ; n〈nack〉+ ne(m) ; ne〈nack〉+ e(m) ; e〈nack〉+

s(m) ; s〈nack〉+ sw(m) ; sw〈nack〉+ w(m) ; w〈nack〉

) ; FP bn, ne, e, s, sw,wc

The initial term creates 25 concurrent instances of HP,
∏25

i=1HP b. . .c, and con-

nects them by channels as shown in Figure 3.3:

HP bc22, c23, c29, c35, c34, c28c | HP bc9, c10, c16, c22, c21, c15c |

HP bc59, c73, c3, c9, c8, c2c | HP bc48, c49, c55, c59, c72, c54c |

HP bc35, c36, c42, c48, c47, c41c | HP bc24, c25, c30, c37, c36, c29c |

HP bc11, c12, c17, c24, c23, c16c | HP bc60, c74, c4, c11, c10, c3c |

HP bc50, c51, c56, c60, c73, c55c | HP bc37, c38, c43, c50, c49, c42c |

HP bc26, c68, c64, c39, c38, c30c | HP bc13, c67, c63, c26, c25, c17c |

HP bc61, c75, c62, c13, c12, c4c | HP bc52, c70, c66, c61, c74, c56c |

HP bc39, c69, c65, c52, c51, c43c | HP bc18, c19, c27, c31, c69, c64c |
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HP bc5, c6, c14, c18, c68, c63c | HP bc57, c71, c1, c5, c67, c62c |

HP bc44, c45, c53, c57, c75, c66c | HP bc31, c32, c40, c44, c70, c65c |

HP bc20, c21, c28, c33, c32, c27c | HP bc7, c8, c15, c20, c19, c14c |

HP bc58, c72, c2, c7, c6, c1c | HP bc46, c47, c54, c58, c71, c53c |

HP bc33, c34, c41, c46, c45, c40c

The above specification is an EFCP and below its translation to FCP is given.

It has been obtained with the help of the developed tool Efcp2Fcp. First of

all, this EFCP must be translated to a safe EFCP. This is done automatically by

the tool by replicating the process declarations, HP , MSEND, REC MSEND,

and FP , so that each of the 25 threads has its own copies of these declarations:

HP i, MSENDi, REC MSENDi, FP i, i = 1 . . . 25. Also, the tool enforces

the (NOCLASH) assumptions by renaming the formal parameters and bound

names. However, below we disregard this renaming for the sake of clarity.

The translation of HP and REC MSEND is straightforward as they do not

use any special features of EFCP:

HP i[n, ne, e, s, sw,w] := νm : MSENDibm,n, ne, e, s, sw, wc +

REC MSENDibn, n, ne, e, s, sw, wc +

REC MSENDibne, n, ne, e, s, sw, wc +

REC MSENDibe, n, ne, e, s, sw, wc +

REC MSENDibs, n, ne, e, s, sw, wc +

REC MSENDibsw, n, ne, e, s, sw, wc +

REC MSENDibw, n, ne, e, s, sw, wc +

FP ibn, ne, e, s, sw,wc
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REC MSENDi[c, n, ne, e, s, sw, w] := c(m) . (

c〈nack〉 . HP ibn, ne, e, s, sw,wc+ c〈ack〉 . MSENDibm,n, ne, e, s, sw, wc

)

The translation of FP can be obtained by applying the (SeqChoice) rule:

FP i[n, ne, e, s, sw,w] :=

n(m).n〈nack〉.KFP ibn, ne, e, s, sw,wc+ ne(m).ne〈nack〉.KFP ibn, ne, e, s, sw,wc+

e(m).e〈nack〉.KFP ibn, ne, e, s, sw,wc+ s(m).s〈nack〉.KFP ibn, ne, e, s, sw,wc+

sw(m).sw〈nack〉.KFP ibn, ne, e, s, sw,wc+ w(m).w〈nack〉.KFP ibn, ne, e, s, sw,wc

KFP i [n, ne, e, s, sw,w] := FP ibn, ne, e, s, sw,wc

Here KFP i is a fresh PID.

The translation of MSEND is the most interesting one as it contains some

local concurrency that is not allowed in FCPs (below Ki
j, L

i
j and M i

j are fresh

PIDs and beginij and endij are fresh public names):

MSENDi[m,n, ne, e, s, sw, w] :=

begin1〈m,n, ne〉.begin2〈m,ne, e〉.begin3〈m, e, s〉.

begin4〈m, s, sw〉.begin5〈m, sw,w〉.begin6〈m,w, n〉.

end1().end2().end3().end4().end5().end6().HP ibn, ne, e, s, sw,wc

Ki
1 := begin1(m,n, ne).

(
τ.Li1 + n〈m〉.n(a).([a = ack].τ.M i

1 + [a = nack].ne〈m〉.ne(a).M i
1))

Li1 := end1〈〉 . Ki
1
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M i
1 := Li1

Ki
2 := begin2(m,ne, e).

(
τ.Li2 + ne〈m〉.ne(a).([a = ack].τ.M i

2 + [a = nack].e〈m〉.e(a).M i
2))

Li2 := end2〈〉 . Ki
2

M i
2 := Li2

Ki
3 := begin3(m, e, s).

(
τ.Li3 + e〈m〉.e(a).([a = ack].τ.M i

3 + [a = nack].s〈m〉.s(a).M i
3))

Li3 := end3〈〉 . Ki
3

M i
3 := Li3

Ki
4 := begin4(m, s, sw).

(
τ.Li4 + s〈m〉.s(a).([a = ack].τ.M i

4 + [a = nack].sw〈m〉.sw(a).M i
4))

Li4 := end4〈〉 . Ki
4

M i
4 := Li4

Ki
5 := begin5(m, sw,w).

(
τ.Li5 + sw〈m〉.sw(a).([a = ack].τ.M i

5 + [a = nack].w〈m〉.w(a).M i
5))

Li5 := end5〈〉 . Ki
5

M i
5 := Li5

Ki
6 := begin6(m,w, n).

(
τ + w〈m〉.Li6.w(a).([a = ack].τ.M i

6 + [a = nack].n〈m〉.n(a).M i
6))
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Li6 := end6〈〉 . Ki
6

M i
6 := Li6

The initial process is now as follows:

25∏
i=1

HP ib. . .c |
25∏
i=1

6∏
j=1

Ki
j

3.6.3 A tool implementation to automate the translation

from EFCP to FCP

For the proposed translation the Efcp2Fcp tool has been developed to automate

this process. It is a command line tool that can run in a Windows machine and

has been implemented in C++. Efcp2Fcp has been developed inside the Punf

platform. The following Figure. 3.4 show its architecture. It consists of 5 classes

and 3 header files which contains 40 functions and the total lines of code is almost

3500.

Figure 3.4: Efcp2Fcp Architecture.

Efcp2Fcp takes as an input a text file that contains an EFCP model. Then,

a parser is used in order to check that whether the model is syntactically correct.
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The parser has been implemented using the Bison parser generator. That was

one of the most important steps of whole development because any error in the

syntax we defined in the parser, leads to a faulty FCP model in the output. When

the parser verifies that syntax of the EFCP specification is correct, the function

that translates the EFCP input file to FCP is called. This function recursively

uses the rules of EFCP to FCP translation (see Section 3.5) and converts the

EFCP specification to an FCP one. When this process is finished, the output of

this function (the FCP model) is stored in new text file. In the early stages of the

development, the number of translation rules was less than the one is introduced

in this thesis. Thus, the approach of developing the translation function in a

recursive way made the implementation easier when new rules or modification in

the existing rules had to be added or made.

During the testing, the software have stable behaviour. However, it has not

been tested in large EFCP specification that consists of a big number of process to

evaluate further its performance and stability. Moreover, because of its recursive

functionality the tool can be extended, and new translation rules can be added if

it is necessary based on future research.

3.6.4 Formal verification of SpiNNaker architecture

As outlined in the introduction, formal verification is an important motivation of

this paper. It was performed as follows. First, the EFCP model of the 2x2

SpiNNaker network was automatically translated into an FCP model by the

Efcp2Fcp tool. Then the resulting FCP was then translated into a safe low-

level Petri net using the fcp2pn tool [52]. Some small adaptations had to be

done for the latter: fcp2pn requires choices to be guarded, i.e. each summand

must start with a prefix, match or mismatch. This was achieved by inlining the

calls to REC MSENDi and prefixing the first and last summands in the body

of HP i with τ . We also inlined the calls to Lij and M i
j as an optimisation – the

same effect could have been achieved automatically during the translation if rule

(SeqChoice) were avoiding the creation of a new PID whenever the size of P does

not exceed some pre-defined constant. The translation runtimes were negligible

(<2sec) in both cases, and the resulting Petri net contained 14844 places, 38864
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transitions and 292336 arcs.

Then deadlock checking was performed with the LoLA tool,1 configured

to assume safeness of the Petri net (CAPACITY 1), use the stubborn sets and

symmetry reductions (STUBBORN, SYMMETRY), compress states using P-invariants

(PREDUCTION), use a light-weight data structure for states (SMALLSTATE), and

check for deadlocks (DEADLOCK).

The verification runtime was 3223sec, and LoLA reported that the model

had a deadlock. In hindsight, this is quite obvious, as the model allows all the

processors to become faulty, after which they stop generating new messages and

the system quickly reaches a deadlock state.

3.6.5 Conclusion

The initial motivation of this research was the development of a formalism allow-

ing for convenient modelling and formal verification of Reference Passing Systems.

To that end, a new fragment of π-calculus, the Extended Finite Control Processes,

is presented in this thesis. EFCPs is an extension of the well-known fragment of

π-calculus, the Finite Control Processes. FCPs were used for formal modelling

of reference passing systems; however, they cannot express scenarios involving

‘local’ concurrency inside a process. EFCPs remove this limitation. As a result,

practical modelling of mobile systems becomes more convenient, e.g. multicast

can be naturally expressed.

An EFCP system specification, due to the local concurrency its processes may

contain, can yield a very large state space. Thus, to define the EFCP syntax the

notion of finite processes is required. Such processes have special syntax ensuring

that the number of actions they can execute is bounded in advance. To this

end, also a more powerful sequential composition operator ‘ ; ’ is used instead of

prefixing. Furthermore, an almost linear translation from safe EFCP to safe FCP

has been developed, which forms the basis of formal verification of RPSs. The

purpose of translating EFCP to FCP is for the latter to be translated to safe

low-level PN, for which efficient verification techniques can be applied.

In the translation we had to face two main challenges. Firstly, it has to elim-

1 Available from http://service-technology.org/tools/lola.
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inate the parallel composition operator iniside threads and the use of sequential

composition. Since an FCP consists of sequential processes (threads), any thread

of an EFCP that is not sequential must be converted to a sequential one. This has

be done by shifting all the concurrency to the initial term. Moreover, sequential

composition after the translation has been replaced by prefixing. To that end,

to avoid blow up in size, new declarations are introduced during this process.

Secondly, we have to ensure that the order of actions is preserved and that the

context (binding of names) is correct. To address these issues, we realised that

extra communication between threads may be required. As a result, new process

definitions are introduced in two cases. The first is when local concurrency exists

within a thread. The second case is when there is a sequential composition with

a non-trivial left-had side.

Moreover, a formal definition of the translation that consists of several rules is

defined and based on this formal definition a tool that automates the translation

has been implemented. The SpiNNaker case study demonstrates that EFCPs

allow for a concise expression of multicast communication, and is suitable for

practical modelling. The SpiNNaker’s EFCP model was translated to FCP and

then to PN. Then, deadlock checking was performed to the PN model with the

LoLA tool.

In our future work we intend to investigate the relationship between the tran-

sition systems generated by EFCPs and those generated by the corresponding

FCPs, with the view to prove the correctness of the proposed translation. More-

over, it should be noted that for formally verifying the SpiNNaker architecture,

we have used a small model (2x2). Although its small size, the resulting PN has

significantly large size which leads to a big verification time as well. To that end,

we would also like to evaluate the scalability of the proposed approach on a range

of models and optimise the translation, e.g. by reducing the number of generated

defining equations and by lifting it to non-safe processes.
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Chapter 4

Diagnosability under Weak

Fairness

4.1 Introduction

The diagnosability [1, 5, 36, 42, 43, 44, 47, 58, 59, 87, 90] of systems (e.g., au-

tonomous systems [26]) has become an interesting topic to both artificial intelli-

gence and control theory communities. For instance, a key feature of autonomous

systems is their high adaptivity. They operate by sensing the environment and

learn to make decisions on their actions without the need of any human interfer-

ence. The procedure of describing some abnormal behaviour of a system is called

diagnosis. In formal verification, diagnosability is a specification property that

ascertains whether it is possible the detection of fault given a set of observations

[5]. When we are able to deduce the occurrence of a fault after observing the

system’s behaviour for fairly long time, we say that the system is diagnosable

[57]. On the contrary, it is often the case that we cannot conclude about the oc-

currence of fault. In this case, the system is not diagnosable. Thus, more sensors

should be added in the system to be possible the detection of a fault.

Recent work [44] presented a diagnosis method that encompasses weak fairness

[94]. There, concurrent systems are modelled by partially observable safe Petri

nets, and diagnosis is carried out under the assumption that all executions of

the Petri net are weakly fair, that is, the only infinite executions admitted are
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those in which any transition enabled at some stage will be disabled at some later

stage, i.e. either it will actually fire later in that execution, or else some conflicting

transition will fire. Under this assumption, a given finite observation diagnoses a

fault if no finite execution yielding this observation can be extended to a weakly

fair fault-free execution. The work in [44] gave a procedure for deciding this

diagnosis problem. It remained open for which systems this procedure reliably

diagnoses faults, i.e. how to determine whether a system is diagnosable under the

weak fairness assumption. In this thesis, this problem is addressed.

Note that a first definition of diagnosability under weak fairness was proposed

in [1]. However, that definition is incompatible with the notion of diagnosis in

[44] and contains a major flaw, as explained below.

The following contributions are made in this chapter:

• A notion of weakly fair (WF) diagnosability is developed, which corrects

and supersedes the one in [1].

• We give two alternative characterisations of executions that witness viola-

tions of WF-diagnosability together with a proof of their equivalence.

• The special case where fault transitions are not WF is further investigated,

i.e. a fault is a possible outcome in the system but not one that is required

to happen. (The examples in Sect. 4.6 suggest that this is a reasonable

assumption in practice.) Under this assumption, the notion of a witness

can be significantly simplified.

• We develop a method for verifying WF-diagnosability in this case, and

evaluate it experimentally.

• A general method for verifying WF-diagnosability, which allows faults to

be WF.

The chapter is organised as follows: Sect. 4.2 discusses existing notions of

diagnosability and explains why they are problematic for concurrent systems.

Sect. 4.3 develops a new notion of WF-diagnosability and witnesses of its vio-

lation. Sect. 4.4 presents the construction of the verifier, which is evaluated in
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Sect. 4.6. Sect. 4.7 presents a generalised method for verifying WF-diagnosability,

which allows faults to be WF.

The work presented in this chapter was previously published as a conference

paper at ACSD’14 [36], and a journal paper has been submitted to ACM TECS

[35].

4.2 Petri nets and diagnosability

This section explains why the standard notion of diagnosability, as well as the

notion of WF-diagnosability developed in [1], are problematic, which motivates

the new definition, to be presented later.

Throughout the paper it is assumed that the system is modelled as a labelled

Petri net (LPN) N, where each transition is labelled with the performed action.

The actions are partitioned into observable and silent, i.e. there is a labelling

function ` mapping the LPN’s transitions to O ∪ {ε}, where O is an alphabet

of observable actions and ε /∈ O is the empty word denoting the silent action.

(Intuitively, observable actions correspond to controller commands and sensor

readings, while the silent action models some internal activity that is not recorded

by sensors.) This labelling function ` can be naturally extended to finite and

infinite executions of the LPN, projecting them to words in O∗ or Oω. We assume

that the LPN is free from deadlocks and divergencies, i.e. every execution of the

LPN can be extended to an infinite one, and every infinite execution of the LPN

has infinitely many observable transitions. Some of the transitions are designated

as faults; w.l.o.g., we assume that none of them is observable. An example in

Fig. 4.1 shows an LPN with the observable transitions t3, t4 and t5 with `(t3) = a,

`(t4) = b and `(t5) = tick (the other transitions are unobservable). Note that we

draw faults as black boxes, and the observable transitions are shaded.

The usual interleaving semantics is used in this paper; in particular, refer-

ences to time in temporal modalities like ‘eventually’ and ‘always’ are w.r.t. the

‘internal’ clock that progresses when some transition of the LPN fires.
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4. Petri nets and diagnosability

Figure 4.1: This LPN without t5 would be diagnosable, but t5 makes it undiag-
nosable. Making t3 WF makes the LPN diagnosable.

4.2.1 Standard diagnosability

Given a finite execution σ of the LPN, the observer sees the outputs of the system

`(σ) ∈ O∗, and needs to conclude whether some fault transition t has definitely

occurred in σ. In a diagnosable system, once a fault has occurred, the observer

is able to eventually detect this. That is, provided that the suffix of σ after the

first occurrence of a fault in it is sufficiently long, the observer should be able

to conclude that each infinite execution with a prefix having the same projection

`(σ) contains a fault, i.e. a fault has either already occurred or will definitely

occur in the future. Let us first recall the definition of standard diagnosability:1

Definition 10 (Diagnosability). An LPN is diagnosable iff for all its infinite

traces σ and ρ such that `(σ) = `(ρ), σ contains a fault iff ρ contains a fault.

In other words, a non-diagnosable LPN has two infinite executions having the

same projection onto the observable actions and such that one of them contains

1This definition is taken from [58]. It is subtly different from the original definition in [87],
but equivalent for finite state systems, and simpler to use in practice. (An LPN has finitely
many reachable markings iff it is bounded.)
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a fault and the other does not; such a pair of traces constitutes a witness of

diagnosability violation.

For example, the LPN in Fig. 4.1 is not diagnosable. Indeed, the diagnoser can

only conclude that the fault has occurred after observing a. However, the infinite

execution t2t
ω
5 contains a fault but never fires t3. Hence, the pair of executions

(t2t
ω
5 , t

ω
5 ) constitutes a witness of diagnosability violation. Nevertheless, if t5 is

removed, the LPN becomes diagnosable.

4.2.2 Weak fairness

The example in Fig. 4.1 exhibits a pathological property of this notion of diag-

nosability: a diagnosable system ceases to be such simply because some unrelated

concurrent activity is added to the specification. In practice, it is often reason-

able to assume that the system is keen to fire its enabled transitions, and cannot

perpetually ignore an enabled transition. In other words, one can consider the

LPN in Fig. 4.1 diagnosable, by declaring the infinite execution t2t
ω
5 impossible.

To capture this idea formally, the notion of weak fairness is helpful [94].

Suppose the designer wants to disallow some of the transitions to be perpetually

ignored when enabled. We call such transitions weakly fair (WF). An infinite

execution σ of the LPN is called weakly fair (WF) if for each WF transition t,

if t is enabled after some prefix of σ then the rest of σ contains some transition

in (•t)•, see Fig. 4.2. All finite executions are regarded as WF. We now can

use the set of WF executions as the semantics of the LPN, i.e. other executions

are considered impossible. Coming back to the example in Fig. 4.1, if t3 is WF

then the execution t2t
ω
5 is not WF and thus impossible, and so the LPN becomes

diagnosable.

It is tempting to derive the definition of WF-diagnosability simply by taking

Def. 10 and restricting it to WF executions. In fact, such an approach was taken

in [1], where an LPN N was said to be WF-diagnosable iff for all its infinite WF

executions σ and ρ such that `(σ) = `(ρ), σ contains a fault iff ρ contains a fault.

Unfortunately, this definition contains a major flaw, demonstrated by the

example in Fig. 4.3. This LPN would be said to be diagnosable, while it is not

possible for the observer to detect a fault in finite time, as one would have to
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Figure 4.2: (i) The execution (t1t2t3)ω is WF as no enabled transition is per-
petually ignored by it. (ii) The execution (t1t2)ω is not WF as t3 is enabled but
all the transitions in (•t3)• = {t3} are perpetually ignored. (iii) The execution
(t1t3)ω is WF: even though t2 is perpetually ignored, t1 ∈ (•t2)• = {t1, t2} is fired.

observe the infinite trace aω to positively conclude that the fault has occurred.

4.3 Weakly fair diagnosability

To fix the problems exhibited in Sect. 4.2, we present a corrected definition of

WF-diagnosability, where the possibility of detecting a fault in finite time is

imposed. Intuitively, it states that each infinite WF execution containing a fault

must have a finite prefix after which it is possible to conclude unambiguously that

the fault has either occurred or will inevitably occur in future. Below we denote

by ‘<’ the prefix relation on sequences.

Definition 11 (WF-diagnosability). An LPN is WF-diagnosable iff each infinite

WF execution σ containing a fault has a finite prefix σ̂ such that every infinite

WF execution ρ with `(σ̂) < `(ρ) contains a fault.

The LPN in Fig. 4.3 is not WF-diagnosable according to Def. 11, as for each

finite prefix (say, t1t
n
3 for some n ∈ N) of the infinite WF execution t1t

ω
3 containing

a fault, there is a finite execution (t2t
n
3 ) with the same projection to observable

actions, that can be extended to an infinite WF execution without a fault (e.g.

t2t
n
3 (t3t4)ω). As it was mentioned in Sect. 4.2.2, the transitions that are expected

to be weakly fair are denoted using the WF notation.

64



4. Weakly fair diagnosability

Figure 4.3: This LPN is WF-diagnosable according to the definition from [1],
but not according to the corrected definition (Def. 11 and Lemma 4.3.1). Note
that the observer cannot detect the fault in finite time.

In this example one can also identify a fault-free infinite execution t2t
ω
3 that

is in itself not WF, but each of its finite prefixes can be extended to an infinite

fault-free WF execution. As we shall see, such an execution can always be found

in a bounded LPN that is not WF-diagnosable.

Definition 12 (Witness for a bounded LPN). Let N be a bounded LPN. A pair

of infinite executions (σ, ρ) with `(σ) = `(ρ) is called witness (of WF-diagnos-

ability violation) if σ is WF and contains a fault, and every prefix of ρ can be

extended to an infinite fault-free WF execution.

Lemma 4.3.1 (WF-diagnosability of a bounded LPN). A bounded LPN N is

WF-diagnosable iff no witness of its WF-diagnosability violation satisfying the

conditions of Def. 12 exists.

Proof. If a witness satisfying Def. 12 exists then the condition of Def. 11 is vio-

lated, as for any prefix of σ one can choose a prefix of ρ with the same projection,

which can be extended to a fault-free WF execution, i.e. N is not WF-diagnosable.

In the reverse direction: Suppose N is not WF-diagnosable. Then, according

to Def. 11, there exists an infinite, WF, faulty execution σ such that for every

finite prefix σ̂ < σ there exists some infinite, WF, fault-free execution ρ with
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`(σ̂) < `(ρ). From σ, we shall construct a pair of executions (σ′, ρ′) constituting

a witness according to Def. 12.

Let K be the number of states (i.e. reachable markings) of N. Let m(σ, i)

denote the marking generated by the i-th observable transition in σ; since N has

no divergencies, it is well-defined for all i ≥ 1. Moreover, let s(σ, i, j) denote the

interval of σ starting after the i-th observable transition and ending at the j-th

observable transition, for all 0 < i < j. Furthermore, let k be the number of

observable transitions in σ before the first occurrence of a fault.

By the pigeonhole principle, some marking m must satisfy m = m(σ, i) for

infinitely many i, and thus one can construct an infinite, strictly ascending se-

quence of indices (ij)j≥0 such that i0 > k, and all j ≥ 0 satisfy (i) m(σ, ij) = m,

and (ii) s(σ, ij, ij+1) ∩ (•t)• 6= ∅ for every WF transition t enabled in m (such a

subsequence exists since σ is WF and m appears infinitely often). Let σ̂ be the

prefix of σ with |`(σ̂)| = iK .

Now, let ρ be an infinite, WF, fault-free sequence with `(σ̂) < `(ρ). By

the pigeonhole principle, there must be two indices 0 ≤ j1 < j2 ≤ K with

m(ρ, ij1) = m(ρ, ij2) = m′.

We are now ready to conclude. Consider the execution σ′, identical to σ up

to m(σ, ij1) and then executing s(σ, ij1 , ij2)
ω. This execution is infinite, contains

a fault, and is WF by construction. Moreover, let ρ′ be an infinite execution

identical to ρ up to m(ρ, ij1) and then executing s(ρ, ij1 , ij2)
ω. By construction,

`(σ′) = `(ρ′) but ρ′ does not contain a fault. Also, every prefix of ρ′ can be

extended to a WF fault-free execution by going to the next occurrence of m′ and

then appending any suffix of ρ starting at an occurrence of m′. Thus, (σ′, ρ′)

constitutes a witness.

Def. 12 is difficult to use due to the necessity to consider every prefix of ρ.

Lemma 4.3.2 provides an alternative characterisation for ρ. Its advantage is that

instead of considering infinitely many prefixes of ρ, it considers a single well

chosen one.

Lemma 4.3.2. Let N be a bounded LPN and ρ be an infinite execution. Then

the following two statements are equivalent:

1. every prefix of ρ can be extended to an infinite fault-free WF execution;
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2. ρ is fault-free and has a prefix ρ̂ such that ρ passes through the marking

reached by ρ̂ infinitely many times, and ρ̂ can be extended to an infinite

fault-free WF execution.

Proof. (1) ⇒ (2) Suppose every prefix of ρ can be extended to an infinite fault-

free WF execution (∗). Then ρ must be fault-free, as otherwise some prefix of

ρ would contain a fault, contradicting (∗). Since the LPN is bounded and ρ is

infinite, ρ passes through some marking m infinitely many times. Let ρ̂ be a

prefix of ρ that reaches m first time. By (∗), ρ̂ can be extended to an infinite WF

execution.

(1)⇐ (2) Suppose ρ is fault-free and has a prefix ρ̂ such that ρ passes through

the marking m reached by ρ̂ infinitely many times, and ρ̂ can be extended to an

infinite fault-free WF execution ρ̂ρ′. Since ρ passes through m infinitely many

times, every prefix of ρ can be extended to a longer prefix reaching m. In turn,

this longer prefix can be extended by ρ′ to an infinite fault-free execution, as ρ′

is enabled from m. Moreover, this execution is WF, as ρ̂ρ′ is WF, and ρ′ fully

determines whether the execution is WF or not.

We note that in certain practical cases, the witness definition can be simplified.

In particular, we consider the case when no fault transition is WF: Then one can

further simplify the requirements imposed on ρ in Lemma 4.3.2.

Lemma 4.3.3. Let N be a bounded LPN where no fault transition is WF, and

let ρ be an infinite execution. Then the following two statements are equivalent:

1. every prefix of ρ can be extended to an infinite fault-free WF execution;

2. ρ is fault-free.

Proof. The proof of (1)⇒ (2) is as in the proof of Lemma 4.3.2. As for the other

direction, suppose ρ is infinite and fault-free and take any finite prefix ρ̂ of ρ such

that ρ̂ρ′ = ρ. We construct an infinite, WF, fault-free continuation of ρ̂. If ρ itself

is WF then we are done. Otherwise there exists some WF transition t that is

enabled at some point in ρ after which ρ contains no more transition from (•t)•;

note that t is not a fault by the assumption. But this means that firing t cannot

disable any transition in the rest of the execution, so we can insert it anywhere
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Figure 4.4: A bounded LPN illustrating that the assumption about faults being
non-WF is essential for Lemma 4.3.3. Despite the presence of an infinite fault-free
execution tω1 , this LPN is trivially WF-diagnosable, as the fault must occur in
every infinite WF execution.

into ρ′ without disabling the rest of this execution. The repeated application of

this insertion process yields the required continuation of ρ̂, and it always can be

done in such a way that no enabled WF transition is perpetually ignored by the

insertion process, and no transition from ρ′ is indefinitely delayed by the newly

inserted transitions.

Lemma 4.3.3 provides another characterisation of ρ in witnesses provided

that the net contains no WF fault transitions. This result is central for the

WF-diagnosability verification method proposed in Sect. 4.4. Note also that this

characterisation is quite similar to the (flawed) definition from [1], but with the

following important differences: (i) it is limited to bounded LPNs without WF

faults, and (ii) ρ is not required to be WF. As an example, a witness of WF-

diagnosability violation for the LPN in Fig. 4.3 would be (t1t
ω
3 , t2t

ω
3 ); note that

the latter execution is not WF, but that each of prefix can be extended to a WF

execution.

It should be noted that the assumption that the faults are not WF is essential

for Lemma 4.3.3. Indeed, consider the LPN in Fig. 4.4, where tω1 constitutes an

infinite, fault-free execution as required by Lemma 4.3.3 (2) that has the same

observations as the faulty execution t2t
ω
1 . Nonetheless, this LPN is trivially WF-

diagnosable, as all its infinite WF executions contain the WF fault transition.

Thus, the assumption about the absence of WF faults cannot be dropped in

Lemma 4.3.3.
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Figure 4.5: An LPN similar to that in Fig. 4.3, but with a different choice of a
fault transition. It is not diagnosable but WF-diagnosable, as an occurrence of a
fault enables t4, which can be perpetually ignored under the non-WF semantics,
but must eventually fire — thus diagnosing the fault — under the WF semantics.

4.4 Checking WF-diagnosability

In this section we show how checking WF-diagnosability can be re-formulated in

terms of LTL-X [55, 80] model checking.

The proposed approach works for a bounded LPN N. We perform various

operations on N to obtain another bounded LPN V, called the verifier, which we

check against a fixed LTL-X formula (in particular, its size does not depend on

N). To achieve this, we exploit the ability of many existing model checkers to

handle weak fairness directly.1

We first introduce the operations on N needed to obtain V (Sect. 4.4.1), then

recall the approach for non-WF diagnosability (Sect. 4.4.2), and finally present the

modifications necessary to handle WF-diagnosability for the special case where

no fault transition is WF (Sect. 4.4.3). The general case of bounded nets is

considered in Sect. 4.7. We use the net in Fig. 4.5 as a running example.

1 The algorithm looking for an accepting (lasso-shaped) execution of a Büchi automaton
can be modified in such a way as to ignore non-WF executions.
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Figure 4.6: Fault tracking net Nft for the LPN in Fig. 4.5. Two additional
places, pf and pf , of which pf is initially marked indicating that no fault has
occurred so far, are added. A token moves from pf to pf , indicating that a fault
has occurred. The transition f ′ is added for each fault transition f to simulate
that a fault transition may fire several times.

4.4.1 Net operations

We are concerned with the state-based LTL-X verification. However, the defini-

tion of diagnosability in Sect. 4.3 is action-based, and thus has to be re-formulated

in terms of states. The first operation is defined for this purpose.

Fault monitor : We use the construction proposed in [58], we will need to keep

track of whether some execution contains a fault transition. Given N, the net Nft

denotes N extended with two additional places pf and pf of which pf is initially

marked, indicating that no fault has happened so far. Then we make every fault

transition move a token from pf to pf , indicating that a fault has occurred. Also,

since a fault transition may fire several times in N, another transition f ′ is added

for each fault transition f , in order to simulate these subsequent firings in Nft .

The construction is illustrated in Fig. 4.6, where it is applied to Fig. 4.5.

In terms of behaviour, N and Nft are equivalent in a strong sense. Suppose

that the transitions of N are injectively labelled, and the transitions of Nft retain

these labels, with the label of f and f ′ being the same. Then these two nets are

strongly bisimilar. Moreover, if pf in Nft is unmarked then a fault occurred in

the past.
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Stubs : We will want to know whether an infinite execution perpetually ignores

certain enabled WF transitions. Given a subset of N’s WF transitions and a fresh

initially marked place stub monitor , we can turn these transitions into stubs by

removing all their outgoing arcs and adding stub monitor to their presets, as we

proposed in [35, 36].

Stubs are not meant to be executed: in fact, the LTL-X formulae will make

such executions ‘irrelevant’ by demanding that stub monitor remains always

marked. Then, a ‘relevant’ WF execution that keeps stub monitor marked cannot

enable a stub forever.

Removing transitions : We can remove a given subset of transitions from an LPN,

together with their incoming and outgoing arcs [58].

Synchronising : Let N and N′ be two LPNs with disjoint sets of places and tran-

sitions. Intuitively, the synchronisation of N and N′ puts N and N′ side-by-side,

and then each observable transition t of N is fused (merged) with each transition

t′ of N′ that has the same label (each fusion produces a new transition, and t and

t′ remain in the result) as was proposed in [58]. Thus the synchronised net has

three types of transitions: those from N (e.g., t), those from N′ (e.g., t′), and the

fused ones (e.g., (t, t′)).

4.4.2 Verifying ordinary diagnosability

We recall the verification of (non-WF) diagnosability from [58] and show that it is

unsuitable for WF-diagnosability. Let N be the original LPN. The construction

works in the following steps:

1. Let Nft be the fault tracking net corresponding to N.

2. Let N′ be a copy of N with disjoint sets of places and transitions names.

3. Let Ns be the result of synchronising Nft and N′.

4. Remove from Ns all observable transitions of Nft .

5. Remove from Ns all observable and fault transitions of N′.

6. Call the resulting net V.
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WF

Figure 4.7: The (non-WF) verifier for the LPN in Fig. 4.5. Here, the Nft

is synchronised with N′ making the Ns. N′ is a copy of N. From Ns all the
observable transition of Nft and N′ and the fault transitions of N′ have been
removed. The resulting net is the verifier V. Here, transitions t3 and t4 are the
fused transitions (t3,t′3) and (t4,t′4) respectively.

The original net and its copy have disjoint sets of places and transitions names.

This is necessary because we need to distinguish the places and transitions that

exist in each net and to avoid possible errors in verification tools.

Moreover, Note that after V has been built, it is no longer necessary to re-

member which actions are visible and which are not, and so we can disregard all

the labelling and treat V as an unlabelled PN. This construction is illustrated in

Fig. 4.7.

It turns out [58] that N is diagnosable iff the following LTL-X property holds

for all traces of V:

diag
df
= � pf ,

i.e. one simply requires that no infinite trace of V contains an occurrence of a

fault. Thus, place pf always contains a token.
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Conversely, a counterexample satisfying ♦¬pf is an infinite execution of V

containing a fault; when projected to the parts corresponding to Nft and N′, it

gives a witness of (non-WF) diagnosability violation, i.e. two infinite executions

of N that have the same projection on the set of observable actions but the first

contains a fault while the second does not. Similarly, such a pair of executions

corresponds to an infinite trace of V, with the first being executed by the part

of V corresponding to Nft , and the second (without occurrences of faults) being

executed by the part of V corresponding to N′.

Unfortunately, this construction is not appropriate for WF-diagnosability,

even if the executions of the verifier are restricted to be WF. For example, con-

sider the net in Fig. 4.5. The verifier proposed in [58] is shown in Fig. 4.7. It

has an infinite execution containing a fault, t2t
′
1t
ω
3 , which, when projected to Nft

and N′, yields a pair of traces constituting a witness of diagnosability violation.

However, this verifier cannot be used for checking WF-diagnosability simply by

restricting its executions to be WF, as the same execution t2t
′
1t
ω
3 is actually WF,

since t4 is not permanently enabled by it (in fact, it is a dead transition in the

verifier). Therefore, this execution is a false negative (the original LPN is in fact

WF-diagnosable). Note that when this WF execution of the verifier is projected

to Nft and N′, the resulting pair of traces will not constitute a witness of WF-

diagnosability, as the former projection will be a non-WF execution of Nft that

perpetually ignores an enabled transition t4.

Below, we amend V to fix this problem for bounded LPNs with no WF faults.

4.4.3 Verifier for non-WF fault transitions

In this section we introduce a general verifier for bounded LPNs. Let N be a

bounded LPN, in which no fault transition is WF. We keep the basic idea of the

verifier construction from Sect. 4.4.2, i.e. verifier VWF will be the synchronisation

of two nets, and a counterexample to the LTL-X formula will give a faulty exe-

cution σ in one net, and a fault-free execution ρ in the other net, such that (σ, ρ)

is a witness.

The first important change is to check the formula only against WF execu-

tions. As seen in Sect. 4.4.2, this alone is not enough: The false counterexample
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obtained for Fig. 4.5 comes from the fact that VWF allows σ to perpetually ignore

a transition (here: t4) if ρ does not enable it. We use stubs to prevent this from

happening. More precisely, V is constructed as follows:

1. Obtain the net Ns as in Sect. 4.4.2; its fused transitions are declared non-

WF.

2. Turn in Ns the observable WF transitions of Nft into stubs; they remain

WF.

3. Remove from Ns all observable and fault transitions of N′.

4. In Ns, make the remaining transitions of N′ non-WF.

5. Call the resulting net VWF .

Fig. 4.8 shows the verifier VWF for the LPN in Fig. 4.5.

Now we can formulate WF-diagnosability of the original N as a fixed LTL-X

formula on VWF that has to be checked for infinite WF executions only:

diagWF
df
= � pf ∨ ♦¬stub monitor .

Thus a counterexample is an infinite WF execution containing a fault but no

stubs.

Theorem 4.4.1 (Correctness of specialised WF Verifier). Let N be a bounded

LPN where no fault transition is WF. Then N is WF-diagnosable iff all infinite

WF executions of VWF satisfy diagWF .

Proof. According to Lemma 4.3.1, N is WF-diagnosable iff no witness (σ, ρ) ex-

ists. Since no fault transition is WF, we can employ the simplified condition of

Lemma 4.3.3.

First, suppose diagWF is false, i.e. VWF has an infinite WF execution τ that

contains a fault and no stubs. Let σ and ρ be the projections of τ to Nft and

N′, respectively. We claim that (σ, ρ) is a witness. Indeed, since N has no

divergencies, τ must contain infinitely many observable transitions. Thus, both

σ and ρ are infinite, and `(σ) = `(ρ) holds; moreover, σ contains a fault but ρ

does not. Finally, σ must be WF because τ is and no stubs are fired.
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WF

stub_monitor

Figure 4.8: The WF verifier for the LPN in Fig. 4.5. We obtain the Ns as
in Sect. 4.4.2. Now, we declare the fused transitions t3 and t4 as non-WF. The
observable WF transitions of Nft are turned into stubs, and they remain WF.
All observable and fault transitions of N′ have been removed and we make the
remaining transitions of N′ non-WF. Here, transitions t3 and t4 are the fused
transitions (t3,t′3) and (t4,t′4) respectively.

For the reverse direction, it is fairly straightforward to see that any witness

(σ, ρ) gives rise to an execution τ of VWF violating diagWF , even if ρ satisfies

only the simplified condition from Lemma 4.3.3. Moreover, τ is WF because σ

is. The fact that ρ is not necessarily WF does not play a role, as ρ is executed

in the part of the verifier corresponding to N′ and so contains no WF transitions

by construction.

4.5 A summary of the WF-verifier construction

In this section we revise the whole process of the VWF construction and why the

formula that has to be verified at the end is as such. We will use the same figures
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4. Checking WF-diagnosability

Figure 4.9: An LPN similar to that in Fig. 4.3, but with a different choice of a
fault transition. It is not diagnosable but WF-diagnosable, as an occurrence of a
fault enables t4, which can be perpetually ignored under the non-WF semantics,
but must eventually fire — thus diagnosing the fault — under the WF semantics.

as is Section 4.4. We use the net in Fig. 4.9 as a running example. Initially we

provide the required steps for constructing the verifier, V, that verifies ordinary

diagnosability. In addition, we will explain why this construction is not suitable

for verifying WF-diagnosability.

The first step of the V construction is to build the fault monitor. As proposed

in [58], we will need to keep track of whether some execution contains a fault

transition. Given N, the net Nft denotes N extended with two additional places

pf and pf of which pf is initially marked, indicating that no fault has happened so

far. Then we make every fault transition move a token from pf to pf , indicating

that a fault has occurred. Also, since a fault transition may fire several times in

N, another transition f ′ is added for each fault transition f , in order to simulate

these subsequent firings in Nft . The construction is illustrated in Fig. 4.10, where

it is applied to Fig. 4.9.

The next step is to make a copy, N′, of Fig. 4.9. The original net and its

copy have disjoint sets of places and transitions names. This is necessary because

we need to distinguish the places and transitions that exist in each net and to

avoid possible errors in verification tools. Then, we synchronise these two nets.
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4. Checking WF-diagnosability

Figure 4.10: Fault tracking net Nft for the LPN in Fig. 4.5. Two additional
places pf and pf have been added of which pf is initially marked, indicating that
no fault has occurred so far. A token moves from pf to pf , indicating that a fault
has occurred. The transition f ′ is added for each fault transition f to simulate
that a fault transition may fire several times.

Intuitively, the synchronisation of N and N′ puts N and N′ side-by-side, and then

each observable transition t of N is fused with each transition t′ of N′ that has

the same label (each fusion produces a new transition, and t and t′ remain in

the result). Thus the synchronised net, Ns, has three types of transitions: those

from N (e.g., t), those from N′ (e.g., t′), and the fused ones (e.g., (t, t′)) [58].

Consequently, we remove the observable transition from N and N′ and the fault

transitions in N′. As proposed in [58], we can remove a given subset of transitions

from an LPN, together with their incoming and outgoing arcs. The resulting net

is the V as shown in Fig. 4.11

Note that after V has been built, it is no longer necessary to remember which

actions are visible and which are not, and so we can disregard all the labelling

and treat V as an unlabelled PN.

It turns out [58] that N is diagnosable iff the following LTL-X property holds

for all traces of V:

diag
df
= � pf ,

i.e. one simply requires that no infinite trace of V contains an occurrence of a

fault. Thus, place pf always contains a token.

Conversely, a counterexample satisfying ♦¬pf is an infinite execution of V
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WF

Figure 4.11: The (non-WF) verifier for the LPN in Fig. 4.5. Here, the Nft

is synchronised with N′ making the Ns. N′ is a copy of N. From Ns all the
observable transition of Nft and N′ and the fault transitions of N′ have been
removed. The resulting net is the verifier V. Here, transitions t3 and t4 are the
fused transitions (t3,t′3) and (t4,t′4) respectively.

containing a fault; when projected to the parts corresponding to Nft and N′, it

gives a witness of (non-WF) diagnosability violation, i.e. two infinite executions

of N that have the same projection on the set of observable actions but the first

contains a fault while the second does not. Similarly, such a pair of executions

corresponds to an infinite trace of V, with the first being executed by the part

of V corresponding to Nft , and the second (without occurrences of faults) being

executed by the part of V corresponding to N′.

Unfortunately, this construction is not appropriate for WF-diagnosability,

even if the executions of the verifier are restricted to be WF. For example, con-

sider the net in Fig. 4.5. The verifier proposed in [58] is shown in Fig. 4.7. It

has an infinite execution containing a fault, t2t
′
1t
ω
3 , which, when projected to Nft

and N′, yields a pair of traces constituting a witness of diagnosability violation.

However, this verifier cannot be used for checking WF-diagnosability simply by
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restricting its executions to be WF, as the same execution t2t
′
1t
ω
3 is actually WF,

since t4 is not permanently enabled by it (in fact, it is a dead transition in the

verifier). Therefore, this execution is a false negative (the original LPN is in fact

WF-diagnosable). Note that when this WF execution of the verifier is projected

to Nft and N′, the resulting pair of traces will not constitute a witness of WF-

diagnosability, as the former projection will be a non-WF execution of Nft that

perpetually ignores an enabled transition t4.

In this point, we amend V to fix this problem for bounded LPNs with no WF

faults. We keep the basic idea of the verifier construction above, the VWF will be

again the synchronisation of two nets.

The first important change is to check the formula only against WF execu-

tions. As seen in Sect. 4.4.2, this alone is not enough: The false counterexample

obtained for Fig. 4.5 comes from the fact that VWF allows σ to perpetually ignore

a transition (here: t4) if ρ does not enable it. We use stubs to prevent this from

happening. Given a subset of N’s WF transitions and a fresh initially marked

place stub monitor , we can turn these transitions into stubs by removing all their

outgoing arcs and adding stub monitor to their presets, as we proposed in [35, 36].

Stubs are not meant to be executed: in fact, the LTL-X formulae will make

such executions ‘irrelevant’ by demanding that stub monitor remains always

marked. Then, a ‘relevant’ WF execution that keeps stub monitor marked cannot

enable a stub forever.

More precisely, to construct the V we build the fault monitor as previously. We

synchronize the fault monitor with a copy, N′, of N but now the fused transitions

are declared non-WF and we obtain as before the. The next step is to turn in the

synchronised net, Ns, the observable WF transitions of fault monitor into stubs

that remain WF. As previously, we remove the observable transition from N and

N′ and the fault transitions in N′. Then, we make the remaining transitions of N′

non-WF. The resulting net is the weakly fair verifier, and is shown on Fig. 4.12.

Now we can formulate WF-diagnosability of the original N as a fixed LTL-X

formula on VWF that has to be checked for infinite WF executions only:

diagWF
df
= � pf ∨ ♦¬stub monitor .
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WF

stub_monitor

Figure 4.12: The WF verifier for the LPN in Fig. 4.5. We obtain the Ns as
in Sect. 4.4.2. Now, we declare the fused transitions t3 and t4 as non-WF. The
observable WF transitions of Nft are turned into stubs, and they remain WF.
All observable and fault transitions of N′ have been removed and we make the
remaining transitions of N′ non-WF. Here, transitions t3 and t4 are the fused
transitions (t3,t′3) and (t4,t′4) respectively.

The diagWF formula states that the VWF is diagnosable if place pf is always

marked or eventually the place stub monitor is empty. That is necessary because

if the faulty transition t′2 fires the WF stub transition will be enabled and after

firing the place stub monitor will become empty indicating the occurrence of

fault. Similarly if transitions t2 fires then the place pf becomes empty indicating

the fault. Thus a counterexample is an infinite WF execution containing a fault

but no stubs.
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Figure 4.13: The CommBox (n) benchmark (top) and the corresponding verifier
(bottom).

81



4. Experimental results

4.6 Experimental results

In this section we present experimental results for the proposed WF-diagnosability

approach. Furthermore, we demonstrate that the proposed approach can easily

be lifted from low-level Petri nets to high-level ones: both the used benchmarks

and the corresponding verifiers were modelled using high-level LPNs.

For the verification, the Maria (modular reachability analyser) tool [60] was

used. Since Maria supports modular verification, it was possible to exploit the

modular structure of the verifier (recall that it is built by synchronising two LPNs,

see Sect. 4.4) to significantly speed up the verification.

It should be noted that finding interesting benchmarks was a challenging task:

Despite a lot of theoretical work done in the area of diagnosability, rather few

practical experiments have been conducted. Moreover, we wanted benchmarks

where weak fairness is essential, i.e. removing some transitions from the WF set

would make the system undiagnosable. Hence, we designed the following two new

families of scalable benchmarks.

CommBox (n) Fig. 4.13 shows a high-level LPN modelling the system com-

prising commutator boxes and an inspector, together with the verifier. It models

n boxes commuting telephone calls. Normally, a box just handles telephone calls

(the normal execution transition), but occasionally it may register a fault (the

fault transition) in a telephone line. Such an event, however, does not take the

box out of action, and it still continues to commute calls (the normal execution

transition) and register further faults (the fault transition). Nevertheless, the

registered faults have to be considered and fixed, and so there is an inspector

visiting the boxes on a round trip and fixing them if necessary (the skip healthy

and fix transitions). It is assumed that fix is the only observable transition, and

one can be sure that a fault has occurred once it fires. Nevertheless, it is possible

that the inspector indefinitely postpones visiting the boxes (i.e. its transitions

are always preempted by, e.g., normal execution which is always enabled), and so

the system is undiagnosable. However, if the transitions modelling the inspector

are WF, the system becomes diagnosable, as after a fault the fix transition is

eventually executed.

82



4. Experimental results

Figure 4.14: The CommBoxTech (n) benchmark (top) and the corresponding
verifier (bottom).
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Vrf Vrf Modular
Benchmarks Time Time

CommBox (4) <1 <1
CommBox (5) 4 1
CommBox (6) 12 4
CommBox (7) 38 14
CommBoxTech (4) 17 6
CommBoxTech (5) 101 33
CommBoxTech (6) 561 162
CommBoxTech (7) 2995 Bug

Table 4.1: Experimental results for CommBox and CommBoxTech bench-
marks (all nets are diagnosable).

CommBoxTech (n) Fig. 4.14 shows an elaborated version of the above sys-

tem, together with its verifier: The inspector reports the faults to a technician,

who then fixes them. Again, the inspector’s and technician’s transitions must

both be WF to make the system diagnosable.

The experimental results are summarised in Table 4.1, where the meaning of

the columns is as follows (from left to right): name of the benchmark, verification

time, and verification time using the modular representation of the verifier. (The

time is measured in seconds.) All experiments were conducted on a PC with

64-bit Windows 7 operating system, an Intel Core i7 2.8GHz Processor with 8

cores and 4GB RAM (no parallelisation was used for the results in this table).

The Maria tool has confirmed that the diagnosability property holds for these

benchmarks. We also discovered a bug in Maria: for the CommBoxTech (7)

benchmark there is a mismatch between the verification outcomes in the standard

and modular modes.

We also wanted to check that the WF constraint is essential for diagnosabil-

ity, i.e. that if even one transition is removed from the WF set then the system

becomes undiagnosable. These results are summarised in Tables 4.2 and 4.3. The

meaning of the columns is as follows (from left to right): name of the benchmarks,

transitions that are WF enabled (‘X’ means that the transition is WF enabled,

otherwise is not, ‘×’), verification time, verification time using the modular rep-

resentation of the verifier, and whether the system is diagnosable. Again, the
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WF enabled Vrf Vrf Modular Diagnosable
Benchmarks skip healthy fix Time Time

CommBox (4) X × 1 <1 ×
× X 1 <1 ×

CommBox (5) X × 1 1 ×
× X 2 1 ×

CommBox (6) X × 2 1 ×
× X 2 2 ×

CommBox (7) X × 2 2 ×
× X 3 2 ×

Table 4.2: Experimental results for CommBox with reduced WF set.

time is measured in seconds.

The Maria tool confirmed that this is the case for the transitions skip healthy

and fix for the CommBox family, and for the transitions skip healthy, report and

fix for the CommBoxTech family. However, surprisingly, the CommBoxTech

benchmarks remain diagnosable even when the skip reported transition is removed

from the WF set: This is in fact correct, as skip reported can be enabled only

after some fault has been reported, i.e. some fault will be diagnosed due to the

fix transition even if skip reported never fires.

4.7 General verifier for bounded LPNs

Let N be a bounded LPN whose fault transitions may or may not be WF. The

consequences of having WF faults are exemplified by Fig. 4.4. Notice that in both

V and VWF , the fault transitions are removed from the component corresponding

to N′. However, in Fig. 4.4, the fault transition is enabled in the initial marking

and WF, hence unavoidable, so the LPN is trivially WF-diagnosable. However,

both V and VWF violate their respective LTL-X formulae in this example since

they allow N′ to ignore the permanently enabled WF fault transition.

To fix this problem, the construction of VWF is extended as explained below.

The generalised construction adds several places called control monitors. These

will be added to the presets and postsets of certain transitions, which allows one
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WF enabled Vrf Vrf Modular Diagnosable
Benchmarks skip healthy report skip reported fix Time Time

CommBoxTech (4) X X X × 2 1 ×
X X × X 17 6 X
X × X X 1 1 ×
× X X X 8 3 ×

CommBoxTech (5) X X X × 3 2 ×
X X × X 102 30 X
X × X X 2 1 ×
× X X X 42 14 ×

CommBoxTech (6) X X X × 3 2 ×
X X × X 560 147 X
X × X X 2 1 ×
× X X X 6 61 ×

CommBoxTech (7) X X X × 4 3 ×
X X × X 2853 Bug X
X × X X 3 2 ×
× X X X 1099 4 ×

Table 4.3: Experimental results for CommBoxTech with reduced WF set.

to distinguish different phases of an execution. While such a transformation does

not change the behaviour of a standard Petri net, the presence of weak fairness

requires a more elaborated construction. To illustrate this issue, suppose t is

WF and t′ is another transition with •t ∩ •t′ = ∅. Thus, if t is enabled then

firing t′ does not discharge an infinite WF execution from the obligation to fire a

transition from (•t)•. However, if the same control monitor place is added to the

presets of t and t′, the set of WF executions can change. To solve this problem

we introduce the following notion.

Definition 13. A WF-preserving control monitor mon w.r.t. a set of transitions

T is a set of fresh places {mon0} ∪ {mont | t ∈ T is WF }.

We use the following net operations involving control monitors.

(Simple) control : Let T be a set of transitions and p, p′ be two control monitor

places (which may be the same). To control T by (p, p′) means adding p to the

preset and p′ to the postset of each t ∈ T .

WF-preserving control : Let T be a set of transitions and mon,mon ′ be two WF-

preserving control monitors. We say that T is controlled by (mon,mon ′) if we

control each non-WF transition in T by (mon0,mon ′0) and each WF transition

t ∈ T by (mont,mon ′t).
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Activity monitor : Let T be a set of transitions and TWF
df
= {t ∈ T | t is WF}. An

activity monitor is used to make sure that an execution contains infinitely many

occurrences of transitions from T . Formally, an activity monitor a is a tuple of

WF-preserving control monitors (idlea, activea) that controls T , where all places

of idlea are initially marked. Moreover, we add a number of fresh WF transitions:

one that transfers a token from activea0 to idlea0, and one for each t ∈ TWF that

transfers a token from activeat to idleat . With a we associate the LTL-X formula

φa
df
= �♦ (activea0 ∨

∨
t∈TWF

activeat )

expressing that an execution contains infinitely many occurrences of T .

The ideas behind the general verifier V
gen
WF capable of handling WF faults

are as follows. It has three copies of the original LPN N, corresponding to the

executions σ, ρ, and the infinite fault-free WF continuation ρ′ of ρ̂ as in the

proof of Lemma 4.3.2. The first two copies are transformed and synchronised as

before and correspond to Nft and N′, to ensure that σ is WF, ρ is fault-free and

`(σ) = `(ρ). The LTL-X formula, as before, ensures that σ contains a fault. The

third copy, N′′, initially follows N′, in the sense that any transition modifying

the marking of N′ also modifies the marking of N′′ in the same way, so that the

markings of N′ and N′′ are the same for some time. Moreover, a separate set of

places P̄ corresponding to those in N′ is created, and it is ensured in a similar

way that the marking of P̄ is the same as that of N′ and N′′ for the same period

of time. However, at some non-deterministically chosen point of time, N′′ starts

running completely independently from N′ and the marking of P̄ stops changing

(the projection of the verifier’s execution up to this point to N′ corresponds to ρ̂).

The non-WF fault transitions of N′′ are removed, and its WF fault transitions

are turned into stubs, and the LTL-X formula will ensure that these stubs do

not fire and the projection of the execution onto this LPN is WF. Moreover, the

formula will ensure that ρ periodically passes through the marking stored in P̄

as required by Lemma 4.3.2 (2). For this, we employ the LTL-X formula

φmark
df
= �♦

∧
(p′,p̄)

#tok(p′) = #tok(p̄),
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where p′ runs through the places of N′ and p̄ is the place of P̄ corresponding

to p′. Note that this formula uses elementary propositions checking whether

two places contain the same number of tokens; such comparisons are supported

by mainstream model checkers, e.g. Maria. Lastly, two activity monitors are

added to this construction, to check whether the projections of any execution

of the verifier satisfying the formula to N′ and N′′ are infinite (this is unlike

the construction of VWF in Sect. 4.4.3, where the infinity of projections followed

automatically from the assumptions about N). This implies the infinity of the

projection to Nft , due to the assumptions about N.

We now describe the verifier’s construction in more detail:

1. Construct the net VWF as in Sect. 4.4.3, containing the two copies Nft and

N′ and a place stub monitor . Let N′′ be an additional copy of N. Add a

fresh set of places P̄
df
= { p̄ | p is a place of N′ }.

2. Remove from N′′ all non-WF fault transitions, and turn the WF fault tran-

sitions into stubs (re-using stub monitor); they remain WF.

3. Add an initially marked control monitor place in prefix and a WF-preserving

monitor after prefix w.r.t. the non-stub transitions T of N′′. Control the

transitions in T by (after prefix , after prefix ). Moreover, add a fresh non-

WF transition switch with the preset {in prefix} and the postset after prefix .

4. Let Tafter be the transitions of N′, including the fused transitions. Add a set

Tin containing a fresh non-WF copy t′ for each t ∈ Tafter with the same label.

For each place p of N′ in •t (resp. t•), add p and the corresponding places p′′

of N′′ and p̄ ∈ P̄ to the preset (resp. postset) of t′. Furthermore, Tin is con-

trolled by (in prefix , in prefix ) and Tafter by (after prefix 0, after prefix 0).

5. Introduce an activity monitor a′ that watches the fused transitions among

Tafter .

6. Introduce an activity monitor a′′ that watches all the visible transitions of

N′′.

7. Call the resulting net V
gen
WF .
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Figure 4.15: The general verifier V
gen
WF capable of handling WF faults for the

LPN in Fig. 4.4.

This construction is illustrated in Fig. 4.15.

As before, we formulate diagnosability of N as an LTL-X formula that needs

to hold for the infinite WF executions of Vgen
WF :

diaggen
WF

df
= � pf ∨ ♦¬stub monitor ∨ ¬φmark ∨ ¬φa′ ∨ ¬φa′′ .

The negation of this formula is

¬diaggen
WF = ♦¬pf ∧� stub monitor ∧ φmark ∧ φa′ ∧ φa′′ .

A counterexample thus has to commit a fault in Nft (but not in N′ as fault

transitions are removed from there), not execute any stub transitions, contain

infinitely many synchronised transitions and infinitely many visible transitions of

N′′. Additionally, the N′ part of Vgen
WF must pass through the marking stored in

P̄ infinitely often.

Theorem 4.7.1 (Correctness of general WF Verifier). A bounded LPN N is

diagnosable iff the corresponding verifier V
gen
WF satisfies diaggen

WF .
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Proof. (⇒) Suppose V
gen
WF does not satisfy diaggen

WF , i.e. it has a WF execution

τ satisfying ¬diaggen
WF . Hence τ satisfies φa′ and thus contains infinitely many

synchronised transitions. Let σ and ρ be the projections of τ to Nft and N′,

respectively (the latter projection includes all fused transitions, including both

Tin and Tafter). We claim that (σ, ρ) is a witness. Indeed, as in the proof of

Thm. 4.4.1 we obtain that σ is an infinite WF faulty execution of N. It remains

to prove that ρ satisfies the condition of Lemma 4.3.2 (2). Clearly, ρ is fault-free

by construction. Also, φa′ implies that τ contains switch. Let ρ̂ be a finite prefix

of ρ before the occurrence of switch, and m be the marking of N′ reached by ρ̂.

(A copy of m is stored in P̄ and is never changed after this point in time.) Then ρ

goes through m infinitely often because τ satisfies φmark . Let ρ′ be the projection

of τ to the transitions of N′′. These are controlled by after prefix , hence describe

an execution starting at m. That execution is infinite because φa′′ is satisfied; it

is WF because τ is, and it is fault-free because no stub has fired. Thus, (σ, ρ) is

indeed a witness.

(⇐) Let (σ, ρ) be a witness according to Def. 12. According to Lemma 4.3.2,

ρ goes infinitely often through some marking m, and a prefix ρ̂ reaching m can

be extended to an infinite WF fault-free execution ρ̂ρ′. Such a witness can be

transformed into an execution τ of V
gen
WF satisfying ¬diaggen

WF as follows. Prefix

ρ̂ is simulated by the transitions in Tin . Upon reaching m, the verifier can fire

switch. Up to this point, N′ and N′′ have the same marking, which is m. Then,

transitions from Tafter are used to simulate the continuation of ρ̂ in ρ, and N′′ is

used to simulate its infinite WF continuation ρ′. By assumption, σ and ρ′ are

infinite and WF, hence so is τ ; thus no stub needs to be fired, and φa′ ∧ φa′′ are

satisfied. Since σ contains a fault, τ satisfies ♦¬pf . Also, ρ passes through m

infinitely often, thus satisfying φmark . Hence diaggen
WF is violated by τ .

4.7.1 Conclusion

In this chapter we have identified a major flaw in the previous definition of WF-

diagnosability in the literature, and proposed a corrected notion. Based on weak

diagnosis, a first definition of diagnosability under weak fairness was proposed in

[1]. However, that definition is incompatible with the notion of diagnosis in [44]

90



4. General verifier for bounded LPNs

and contains a major flaw. It is often the case that due to the presence of some

independent concurrent action in a system, it is not possible this system to be

diagnosed in a finite time. In addition, we provide two alternative characterisa-

tions of executions that witness violations of WF-diagnosability together with a

proof of their equivalence.

Furthermore, the special case where fault transitions are not WF is further

investigated, i.e. a fault is a possible outcome in the system but not one that is

required to happen. The examples in Sect. 4.6 suggest that this is a reasonable

assumption in practice. Under this assumption, the notion of a witness can be

significantly simplified.

Moreover, under a simplifying assumption that the fault transitions are non-

WF, we have presented an efficient technique for verifying WF-diagnosability

based on a reduction to LTL-X model checking. The proposed approach works

for a bounded LPN N. We perform various operations on N to obtain another

bounded LPN V, the verifier, which we check against a fixed LTL-X formula. The

construction of our verifier is based on the proposed in [58] which is based on Petri

nets unfoldings. We have shown in Section 4.4.2 that the verifier in [58] is unsuit-

able for WF-diagnosability. Consequently, to address this issue in our proposed

verifier we introduce and use stub transitions and a place the stub monitor. Stubs

are transitions that are not meant to be executed: in fact, our LTL-X formulae

will make such executions ‘irrelevant’ by demanding that the place stub monitor

remains always marked. Moreover, an important advantage of this method is that

the LTL-X formula is fixed — in particular, the WF assumption does not have to

be expressed as a part of it (which would make the formula length proportional

to the size of the specification), but rather the ability of existing model checkers

to handle weak fairness directly is exploited. Furthermore, the construction has

been generalised to arbitrary bounded LPNs.

Furthermore, we created two families of scalable benchmarks, where the weak

fairness is essential for diagnosability. The proposed WF-diagnosability verifica-

tion method has been tested on these benchmarks, and the experimental results

demonstrate its feasibility in practice. For the verification, the Maria (mod-

ular reachability analyser) tool [60] was used. Since Maria supports modular

verification, it was possible to exploit the modular structure of the verifier to
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significantly speed up the verification. It should be noted that finding interesting

benchmarks was a challenging task: Despite a lot of theoretical work done in

the area of diagnosability, rather few practical experiments have been conducted.

Moreover, we wanted benchmarks where weak fairness is essential, i.e. removing

some transitions from the WF set would make the system undiagnosable. In

Section 4.6, the CommBox and CommBoxTech are presented, together with

their verifier. The former one models a system comprising commutator boxes

and an inspector, and the latter is an elaborated version of the former, where the

inspector reports the faults to a technician, who then fixes them. For future work

we intend to develop a theory of diagnosability of systems with strong fairness.
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Chapter 5

Conclusions

This thesis introduces a formal specification language that is suitable for mod-

elling reference passing systems. Also, it provides its translation to an existing

formalism for which an efficient verification technique has been developed in [52].

Moreover, a notion of weakly fair diagnosability [35, 36] which corrects and su-

persedes the one in [1], is presented and an efficient method for formally verifying

weakly fair diagnosability is developed.

In Chapter 3, a new fragment of π-calculus, the EFCP, is presented. The

initial motivation of this research was the development of a formalism allowing

for convenient modelling and formal verification of RPS. The validation of such

systems is almost always limited to simulation/testing, as their formal verification

is very difficult due to either the inability of the traditional verification techniques

to express reference passing (at least in a natural way) or by poor scalability of

the existing verification techniques for RPSs. This is very unfortunate: As many

safety-critical systems must be resilient (and hence reconfigurable), they are often

RPSs and thus have very complicated behaviour. Hence, for such systems the

design errors are both very likely and very costly, and formal verification must

be an essential design step.

Thus, new more efficient formal languages should be developed that can spec-

ify reference passing systems and make their formal verification feasible. The π-

calculus is the most well-known formalism suitable for RPS specification. EFCPs

is an extension of the well-known fragment of π-calculus, the Finite Control Pro-

cesses. FCPs were used for formal modelling of RPS; however, they cannot express
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scenarios involving ‘local’ concurrency inside a process. Extended finite control

processes remove this limitation. This is essential because the processes consti-

tute RPSs often have ‘local’ concurrency. For instance, systems belong to IoT,

cloud computing, routing protocols in multi-core processor systems etc., share

multicasting as a common feature. As a result, practical modelling of mobile

systems becomes more convenient.

An EFCP system specification, due to the local concurrency its processes may

contain, can yield a very large state space. Thus, to define the EFCP syntax the

notion of finite processes is required. Such processes have special syntax ensuring

that the number of actions they can execute is bounded in advance. To this end,

a more powerful sequential composition operator ‘ ; ’ is used instead of prefixing.

Furthermore, an almost linear translation from safe EFCP to safe FCP has been

developed, which forms the basis of formal verification of RPSs. The purpose of

translating EFCP to FCP is for the latter to be translated to safe low-level PN,

for which efficient verification techniques can be applied.

In the translation we had to face two main challenges. Firstly, it has to elim-

inate the parallel composition operator iniside threads and the use of sequential

composition. Since an FCP consists of sequential processes (threads), any thread

of an EFCP that is not sequential must be converted to a sequential one. This has

be done by shifting all the concurrency to the initial term. Moreover, sequential

composition after the translation has been replaced by prefixing. To that end,

to avoid blow up in size, new declarations are introduced during this process.

Secondly, we have to ensure that the order of actions is preserved and that the

context (binding of names) is correct. To address these issues, we realised that

extra communication between threads may be required. As a result, new process

definitions are introduced in two cases. The first is when local concurrency exists

within a thread. The second case is when there is a sequential composition with

a non-trivial left-had side.

Moreover, a formal definition of the translation that consists of several rules

is defined and based on this formal definition the Efcp2Fcp tool that automates

the translation has been implemented. The SpiNNaker case study demonstrates

that EFCPs allow for a concise expression of multicast communication, and is

suitable for practical modelling. The SpiNNaker’s EFCP model was translated
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to FCP and then to PN. Then, deadlock checking was performed to the PN model

with the LoLA tool.

In our future work we intend to investigate the relationship between the tran-

sition systems generated by EFCPs and those generated by the corresponding

FCPs, with the view to prove the correctness of the proposed translation. More-

over, it should be noted that for formally verifying the SpiNNaker architecture,

we have used a small model (2x2). Although its small size, the resulting PN has

significantly large size which leads to a big verification time as well. To that end,

we would also like to evaluate the scalability of the proposed approach on a range

of models and optimise the translation, e.g. by reducing the number of generated

defining equations and by lifting it to non-safe processes. Moreover, we intend

to develop a translation of Petri net to EFCP and the related tool. Thus, possi-

ble Petri net counter-examples, which may be created during model checking of

RPS, can be translated back to the level of EFCP facilitating the design process

of RPS. In addition, we would like to define a property language for specifying

key correctness properties of RPS at the level of EFCP. Based on this RPS logic,

another potential work is to translate properties of this new logic to equivalent

properties of Petri nets.

In Chapter 4 diagnosability under the weak fairness assumption is consid-

ered, which intuitively states that no transition from a given set can stay enabled

forever. We have identified a major flaw in the previous definition of WF-diag-

nosability in the literature, and proposed a corrected notion. Based on weak

diagnosis, a first definition of diagnosability under weak fairness was proposed in

[1]. However, that definition is incompatible with the notion of diagnosis in [44]

and contains a major flaw. It is often the case that due to the presence of some

independent concurrent action in a system, it is not possible this system to be

diagnosed in a finite time. Furthermore, we provide two alternative characterisa-

tions of executions that witness violations of WF-diagnosability together with a

proof of their equivalence.

In addition, we characterise executions that witness violations of WF diag-

nosability. We further investigate the special case where fault transitions are

not WF, that is, a fault is a possible outcome in the system but not one that

is required to happen. Under this assumption, the notion of a witness can be
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significantly simplified. Moreover, under a simplifying assumption that the fault

transitions are non-WF, an efficient technique for verifying WF-diagnosability

based on a reduction to LTL-X model checking, which is based on PN unfold-

ings [58], has been presented. The proposed approach works for a bounded LPN

N. We perform various operations on N to obtain another bounded LPN V, the

verifier, which we check against a fixed LTL-X formula. The construction of our

verifier is based on the proposed in [58].

An important advantage of this method is that the LTL-X formula is fixed

— in particular, the WF assumption does not have to be expressed as a part of

it (which would make the formula length proportional to the size of the specifi-

cation), but rather the ability of existing model checkers to handle weak fairness

directly is exploited. Furthermore, the construction has been generalised to arbi-

trary bounded LPNs.

To evaluate the proposed technique, two families of scalable benchmarks were

developed, where the weak fairness is essential for diagnosability. The proposed

WF-diagnosability verification method has been tested on these benchmarks, and

the experimental results demonstrate its feasibility in practice. For the verifica-

tion, the Maria (modular reachability analyser) tool [60] was used. Since Maria

supports modular verification, it was possible to exploit the modular structure

of the verifier to significantly speed up the verification. It should be noted that

finding interesting benchmarks was a challenging task: Despite a lot of theo-

retical work done in the area of diagnosability, rather few practical experiments

have been conducted. Moreover, we wanted benchmarks where weak fairness is

essential, i.e. removing some transitions from the WF set would make the sys-

tem undiagnosable. In Section 4.6, the CommBox and CommBoxTech are

presented, together with their verifier. The former one models a system compris-

ing commutator boxes and an inspector, and the latter is an elaborated version

of the former, where the inspector reports the faults to a technician, who then

fixes them. For future work we intend to develop a theory of diagnosability of

systems with strong fairness. Moreover, we would like to apply and evaluate the

WF-diagnosability in systems that comply with the Bell-Lapadula security policy

(i.e., federated clouds [99]).
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