9 research outputs found

    Error concealment-aware encoding for robust video transmission

    Get PDF
    In this paper an error concealment-aware encoding scheme is proposed to improve the quality of decoded video in broadcast environments prone to transmission errors and data loss. The proposed scheme is based on a scalable coding approach where the best error concealment (EC) methods to be used at the decoder are optimally determined at the encoder and signalled to the decoder through SEI messages. Such optimal EC modes are found by simulating transmission losses followed by a lagrangian optimisation of the signalling rate - EC distortion cost. A generalised saliency-weighted distortion is used and the residue between coded frames and their EC substitutes is encoded using a rate-controlled enhancement layer. When data loss occurs the decoder uses the signalling information is used at the decoder, in case of data loss, to improve the reconstruction quality. The simulation results show that the proposed method achieves consistent quality gains in comparison with other reference methods and previous works. Using only the EC mode signalling, i.e., without any residue transmitted in the enhancement layer, an average PSNR gain up to 2.95 dB is achieved, while using the full EC-aware scheme, i.e., including residue encoded in the enhancement layer, the proposed scheme outperforms other comparable methods, with PSNR gain up to 3.79 dB

    HEVC의 소수 단위 움직임 추정을 위한 보간 필터 중복 연산 감소 방법

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 이혁재.High-Efficiency Video Coding (HEVC) [1] is the latest video coding standard established by Joint Collaborative Team on Video Coding (JCT-VC) aiming to achieve twice encoding efficiency with comparatively high video quality compared to its predecessor, the H.264 standard. Motion Estimation (ME) which consists of integer motion estimation (IME) and fractional motion estimation (FME) is the bottleneck of HEVC computation. In the execution of the HM reference software, ME alone accounts for about 50 % of the execution time in which IME contributes to about 20 % and FME does around 30% [2].The FMEs enormous computational complexity can be explained by two following reasons: • A large number of FME refinements processed: In HEVC, a frame is divided into CTU, whose size is usually 64x64 pixels. One 64x64 CTU consists of 85 CUs including one 64x64 CU at depth 0, four 32x32 CUs at depth 1, 16 16x16 CUs at depth 2, and 64 8x8 CUs at depth 3. Each CU can be partitioned into PUs according to a set of 8 allowable partition types. An HEVC encoder processes FME refinement for all possible PUs with usually 4 reference frames before deciding the best configuration for a CTU. As a result, typically in HEVCs reference software, HM, for one CTU, it has to process 2,372 FME refinements, which consumes a lot of computational resources. • A complicated and redundant interpolation process: Conventionally, FME refinement, which consists of interpolation and sum of absolute transformed difference (SATD), is processed for every PU in 4 reference frames. As a result, for a 64x64 CTU, in order to process fractional pixel refinement, FME needs to interpolate 6,232,900 fractional pixels. In addition, In HEVC, fractional pixels which consist half fractional pixels and quarter fractional pixels, are interpolated by 8-tap filters and 7-tap filters instead of 6-tap filters and bilinear filters as previous standards. As a result, interpolation process in FME imposes an extreme computational burden on HEVC encoders. This work proposes two algorithms which tackle each one of the two above reasons. The first algorithm, Advanced Decision of PU Partitions and CU Depths for FME, estimates the cost of IMEs and selects the PU partition types at the CU level and the CU depths at the coding tree unit (CTU) level for FME. Experimental results show that the algorithm effectively reduces the complexity by 67.47% with a BD-BR degrade of 1.08%. The second algorithm, A Reduction of the Interpolation Redundancy for FME, reduces up to 86.46% interpolation computation without any encoding performance decrease. The combination of the two algorithms forms a coherent solution to reduce the complexity of FME. Considering interpolation is a half of the complexity of an FME refinement, then the complexity of FME could be reduced more than 85% with a BD-BR increase of 1.66%Chapter 1. Introduction 1 1. Introduction to Video Coding 1 1.1. Definition of Video Coding 1 1.2. The Need of Video Coding 1 1.3. Basics of Video Coding 2 1.4. Video Coding Standard 2 2. Introduction to HEVC 6 2.1. HEVC Background and Development 6 2.2. Block Partitioning Structure in HEVC 9 Chapter 2. Fractional Motion Estimation in HEVC and Related Works on Complexity Reduction 21 1. Motion Estimation 21 2. Fractional Motion Estimation 22 2.1. Interpolation 22 2.2. Sum of Absolute Transformed Difference Calculation 27 2.3. Fractional Motion Estimation Procedure 28 Chapter 3. Complexity Reduction for FME 31 1. Problem Statement and Previous Studies 31 1.1. Problem Statement 31 1.2. Previous Studies 32 2. Proposed Algorithms 34 2.1. Advanced Decision of PU Partitions and CU Depths for Fractional Motion Estimation in HEVC 34 2.2. Range-based interpolation algorithm 40 Chapter 4. Experiment Results 43 1. Advanced Decision of PU Partitions and CU Depths for Fractional Motion Estimation in HEVC Algorithms 43 1.1. Advanced Decision of PU Partitions 43 1.2. Advanced Decision of CU Partitions 47 1.3. Combination of Advanced PU Partition and CU Depth Decision 47 1.4. Comparison with Other Similar Works 48 2. Range-based Algorithm 49 2.1. Software Implementation 49 2.2. Hardware Implementation of the Algorithm 50 Chapter 5. Conclusion 61 Bibliography 64 Abstract in Korean 66Maste

    Parametrien etsintä HEVC:n tehokkaalle moodivalinnalle

    Get PDF
    High Efficiency Video Coding (HEVC) is the latest video coding standard. It halves the achieved bit rate compared with the previous standard, Advanced Video Coding (AVC). However, the bit rate decrease comes with 40% increase in encoding complexity. This is mainly due to larger number of block coding modes, including Symmetric motion partitions (SMPs), Asymmetric motion partitions (AMPs), and larger coding units of up to 64x64 pixels. These new features are mainly used for Inter prediction that accounts for 60-70% of the whole encoding time. For this reason, optimization of Inter prediction is the main topic in this Thesis. To tackle the Inter prediction complexity, a parametric exploration was chosen as the approach. The exploration was done by gradually shifting the focus from the most coarse optimization to the parameter fine tuning. The selected approach in this study required thousands of individual tests so an automated solution was needed. This led to the creation of a new software solution, TUT Task Manager. It is capable of automatically distributing the tasks of parametric exploration to any number of nodes available in the local network. In total, TUT Task Manager was used to run 4000 tests with a combined CPU time of 14 months. The results were used to create a set of recommended schemes for Inter mode selection. Overall, these new schemes are shown to provide 31-50% complexity saving against the default configuration of HM 11.0, with a minor bit rate increase of 0.2-1.3%. They also provide better RDC performance than the existing solutions. The tools and methods used in this work are so generic that they can be used to further optimize other parts of the video codec

    A two-stage approach for robust HEVC coding and streaming

    Get PDF
    The increased compression ratios achieved by the High Efficiency Video Coding (HEVC) standard lead to reduced robustness of coded streams, with increased susceptibility to network errors and consequent video quality degradation. This paper proposes a method based on a two-stage approach to improve the error robustness of HEVC streaming, by reducing temporal error propagation in case of frame loss. The prediction mismatch that occurs at the decoder after frame loss is reduced through the following two stages: (i) at the encoding stage, the reference pictures are dynamically selected based on constraining conditions and Lagrangian optimisation, which distributes the use of reference pictures, by reducing the number of prediction units (PUs) that depend on a single reference; (ii) at the streaming stage, a motion vector (MV) prioritisation algorithm, based on spatial dependencies, selects an optimal sub-set of MVs to be transmitted, redundantly, as side information to reduce mismatched MV predictions at the decoder. The simulation results show that the proposed method significantly reduces the effect of temporal error propagation. Compared to the reference HEVC, the proposed reference picture selection method is able to improve the video quality at low packet loss rates (e.g., 1%) using the same bitrate, achieving quality gains up to 2.3 dB for 10% of packet loss ratio. It is shown, for instance, that the redundant MVs are able to boost the performance achieving quality gains of 3 dB when compared to the reference HEVC, at the cost using 4% increase in total bitrate

    Novi algoritam za kompresiju seizmičkih podataka velike amplitudske rezolucije

    Get PDF
    Renewable sources cannot meet energy demand of a growing global market. Therefore, it is expected that oil & gas will remain a substantial sources of energy in a coming years. To find a new oil & gas deposits that would satisfy growing global energy demands, significant efforts are constantly involved in finding ways to increase efficiency of a seismic surveys. It is commonly considered that, in an initial phase of exploration and production of a new fields, high-resolution and high-quality images of the subsurface are of the great importance. As one part in the seismic data processing chain, efficient managing and delivering of a large data sets, that are vastly produced by the industry during seismic surveys, becomes extremely important in order to facilitate further seismic data processing and interpretation. In this respect, efficiency to a large extent relies on the efficiency of the compression scheme, which is often required to enable faster transfer and access to data, as well as efficient data storage. Motivated by the superior performance of High Efficiency Video Coding (HEVC), and driven by the rapid growth in data volume produced by seismic surveys, this work explores a 32 bits per pixel (b/p) extension of the HEVC codec for compression of seismic data. It is proposed to reassemble seismic slices in a format that corresponds to video signal and benefit from the coding gain achieved by HEVC inter mode, besides the possible advantages of the (still image) HEVC intra mode. To this end, this work modifies almost all components of the original HEVC codec to cater for high bit-depth coding of seismic data: Lagrange multiplier used in optimization of the coding parameters has been adapted to the new data statistics, core transform and quantization have been reimplemented to handle the increased bit-depth range, and modified adaptive binary arithmetic coder has been employed for efficient entropy coding. In addition, optimized block selection, reduced intra prediction modes, and flexible motion estimation are tested to adapt to the structure of seismic data. Even though the new codec after implementation of the proposed modifications goes beyond the standardized HEVC, it still maintains a generic HEVC structure, and it is developed under the general HEVC framework. There is no similar work in the field of the seismic data compression that uses the HEVC as a base codec setting. Thus, a specific codec design has been tailored which, when compared to the JPEG-XR and commercial wavelet-based codec, significantly improves the peak-signal-tonoise- ratio (PSNR) vs. compression ratio performance for 32 b/p seismic data. Depending on a proposed configurations, PSNR gain goes from 3.39 dB up to 9.48 dB. Also, relying on the specific characteristics of seismic data, an optimized encoder is proposed in this work. It reduces encoding time by 67.17% for All-I configuration on trace image dataset, and 67.39% for All-I, 97.96% for P2-configuration and 98.64% for B-configuration on 3D wavefield dataset, with negligible coding performance losses. As a side contribution of this work, HEVC is analyzed within all of its functional units, so that the presented work itself can serve as a specific overview of methods incorporated into the standard

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods

    The 1995 Science Information Management and Data Compression Workshop

    Get PDF
    This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on October 26-27, 1995, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival, and retrieval of large quantities of data in future Earth and space science missions. It consisted of fourteen presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The Workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center
    corecore