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Abstract 
 

High-Efficiency Video Coding (HEVC) [1] is the latest video coding standard 

established by Joint Collaborative Team on Video Coding (JCT-VC) aiming 

to achieve twice encoding efficiency with comparatively high video quality 

compared to its predecessor, the H.264 standard. Motion Estimation (ME) 

which consists of integer motion estimation (IME) and fractional motion 

estimation (FME) is the bottleneck of HEVC computation. In the execution 

of the HM reference software, ME alone accounts for about 50 % of the 

execution time in which IME contributes to about 20 % and FME does around 

30% [2].The FME’s enormous computational complexity can be explained 

by two following reasons: 

 A large number of FME refinements processed: In HEVC, a frame is 

divided into CTU, whose size is usually 64x64 pixels. One 64x64 

CTU consists of 85 CUs including one 64x64 CU at depth 0, four 

32x32 CUs at depth 1, 16 16x16 CUs at depth 2, and 64 8x8 CUs at 

depth 3. Each CU can be partitioned into PUs according to a set of 8 

allowable partition types. An HEVC encoder processes FME 

refinement for all possible PUs with usually 4 reference frames before 

deciding the best configuration for a CTU. As a result, typically in 

HEVC’s reference software, HM, for one CTU, it has to process 2,372 

FME refinements, which consumes a lot of computational resources. 

 A complicated and redundant interpolation process: Conventionally, 

FME refinement, which consists of interpolation and sum of absolute 

transformed difference (SATD), is processed for every PU in 4 

reference frames. As a result, for a 64x64 CTU, in order to process 

fractional pixel refinement, FME needs to interpolate 6,232,900 

fractional pixels.  In addition, In HEVC, fractional pixels which 

consist half fractional pixels and quarter fractional pixels, are 

interpolated by 8-tap filters and 7-tap filters instead of 6-tap filters and 

bilinear filters as previous standards. As a result, interpolation process 

in FME imposes an extreme computational burden on HEVC 

encoders. 

This work proposes two algorithms which tackle each one of the two above 

reasons. The first algorithm, Advanced Decision of PU Partitions and CU 
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Depths for FME, estimates the cost of IMEs and selects the PU partition types 

at the CU level and the CU depths at the coding tree unit (CTU) level for FME. 

Experimental results show that the algorithm effectively reduces the 

complexity by 67.47% with a BD-BR degrade of 1.08%. The second 

algorithm, A Reduction of the Interpolation Redundancy for FME, reduces up 

to 86.46% interpolation computation without any encoding performance 

decrease. The combination of the two algorithms forms a coherent solution to 

reduce the complexity of FME. Considering interpolation is a half of the 

complexity of an FME refinement, then the complexity of FME could be 

reduced more than 85% with a BD-BR increase of 1.66% 

Keyword: High-Efficiency Video Coding; Motion estimation; Fractional 

motion estimation; Interpolation; Complexity Reduction 

Student Number: 2014-25271 
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Chapter 1. Introduction 

1. Introduction to Video Coding 

1.1. Definition of Video Coding 
- Historically, video was stored as an analog signal on magnetic tape. 

Around the time when the compact disc entered the market as a digital 

format replacement for analog audio, it became feasible to also store 

and convey video in digital form. Because of a large amount of storage 

and bandwidth needed to record and convey raw video, a method was 

needed to reduce the amount of data used to represent the raw video. 

Since then, engineers and mathematicians have developed a number 

of solutions for achieving this goal that involves compressing the 

digital video data. Video compression is reducing the amount of data 

used to represent the raw video. The process of reducing the size of a 

video file is referred to as video coding or video compression. Video 

compression or video coding is the process of compressing (encoding) 

and decompressing (decoding) video. 

1.2. The Need of Video Coding 
- Virtually any digital video we encounter is distributed in a compressed 

format. It is because raw video data would require bandwidth and 

storage space far in excess of that available. For example, a raw full 

HD color video data (without video compression) containing 30 

frames per second would require a bandwidth of: 

(1920*1080*8)*3*30 = 1.5 Gb/s  

- A bandwidth of 1.5 Gb/s is way too high for current communication 

channels and a 100 Gigabytes hard disk can store only13 minutes of a 

raw Full HD video. 
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Fig. 1: Full HD Video Frames 
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- As mentioned above, uncompressed video signals generate a huge 

quantity of data and video use has become more and more ubiquitous. 

There is also a constant hunger for higher quality video—e.g., in the 

form of higher resolutions, higher frame rates, and higher fidelity—as 

well as a hunger for greater access to video content. Moreover, the 

creation of video content has moved from the being the exclusive 

domain of professional studios toward individual authorship, real-

time video chat, remote home surveillance, and even “always on” 

wearable cameras. As a result, video traffic is the biggest load of 

communication networks and data storage worldwide—a situation 

that is unlikely to fundamentally change; although anything that can 

help ease the burden is an important development. As a result, video 

compression is extremely necessary to save bandwidth and storage 

memory for videos. 

1.3. Basics of Video Coding. 
- Most video coding algorithms and codecs combine spatial image 

compression and temporal motion compensation. Video compression 

is a practical implementation of source coding in information theory. 

In practice, most video codecs also use audio compression techniques 

in parallel to compress the separate, but combined data streams as one 

package. 

- The majority of video compression algorithms use lossy compression. 

As in all lossy compression, there is a trade-off between video 

qualities, the cost of processing the compression and decompression, 

and system requirements. Highly compressed video may present 

visible or distracting artifacts. 

- Some video compression schemes typically operate on square-shaped 

groups of neighboring pixels, often called macroblocks. These pixel 

groups or blocks of pixels are compared from one frame to the next, 

and the video compression codec sends only the differences within 

those blocks. In areas of video with more motion, the compression 

must encode more data to keep up with the larger number of pixels 

that are changing. Commonly during explosions, flames, flocks of 

animals, and in some panning shots, the high-frequency detail leads 

to quality decreases or to increases in the variable bit-rate. 

1.4. Video Coding Standard 
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- Standards define a common language that different parties can use so 

that they can communicate with one another. Standards are thus, a 

prerequisite to effective communication. Video coding standards 

define the bitstream syntax, the language that the encoder and the 

decoder use to communicate. Besides defining the bitstream syntax, 

video coding standards are also required to be efficient, in that they 

should support good compression algorithms as well as allow the 

efficient implementation of the encoder and decoder. 

- Multimedia communication is greatly dependent on good standards.  

The  presence  of  standards  allows  for  a  larger  volume  of  

information  exchange,  thereby  benefiting  the  equipment  

manufacturers  and  service  providers.  It  also  benefits  customers,  

as  now  they  have  a  greater  freedom  to  choose  between  

manufacturers.  All in all, standards are a prerequisite to multimedia 

communication. 

- Since the early 1990s, the development of video coding standards has 

been driven by two parallel application spaces: real-time video 

communication and distribution or broadcast of video content. The 

corresponding specifications have been published by two main 

standardization bodies, the International Telecommunications Union 

(ITU) and the International Standardization Organization/ 

International Electrotechnical Commission (ISO/IEC). Here, a brief 

overview of the evolution of video coding standards is provided with 

a focus on the main corresponding application scenarios and the 

corresponding main technical achievements. For the sake of 

simplicity both, ITU recommendations and ISO/IEC standards are 

referred to as standards in this section. The differences between the 

two are detailed below. An overview of the timeline of the major 

standards in the two standardization bodies is shown in Fig. 2. For all 

standards listed in this timeline, several corrigenda and extensions 

have been published over the time. Here, the publication dates of the 

key versions of the standards have been included. It can be seen that 

while having started on separate tracks, the two standardization 

organizations have engaged in increasingly close collaboration, 

specifically for achieving the latest milestones AVC and HEVC: 

 ITU-T standards proposed by ITU-T Video Coding Experts 

Group (VCEG) include the likes of H.261, H.262, H.263, and 

H.26L. 
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 ISO/IEC standards proposed by ISO/IEC Moving Picture 

Experts Group (MPEG) include the likes of MPEG1, MPEG2, 

and MPEG4. 

 The two groups VCEG and MPEG then joined together to 

form The Joint Video Team (JVT) which proposed H.264 and 

HEVC (H.265), the next generations of video coding standard. 

- The following presents the chronology of Video Coding Standards: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Coding Efficiency Comparison for Video Coding Standards 
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Fig. 2: Chronology of Video Coding Standards 
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- An example of coding efficiency comparison for Video Coding 

Standards is illustrated in Fig. 3. H.264 or MPEG-4 Part 10, 

Advanced Video Coding (MPEG-4 AVC) is a video compression 

format that is currently one of the most commonly used formats for 

the recording, compression, and distribution of video content. 
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2. Introduction to HEVC 

2.1. HEVC Background and Development 
- The HEVC project was formally launched in January 2010 when a 

joint Call for Proposals (CfP) was issued by the ITU-T Video Coding 

Experts Group (VCEG) and the ISO/IEC Moving Picture Experts 

Group (MPEG). Before launching the formal CfP, both organizations 

had conducted investigative work to determine that it was feasible to 

create a new standard that would substantially advance the state of the 

art in compression capability—relative to the prior major standard 

known as H.264/MPEG-4 Advanced Video Coding (AVC- the first 

version of which was completed in May 2003). One notable aspect of 

the investigative work toward HEVC was the “key technology area” 

(KTA) studies in VCEG that began around the end of 2004 and 

included the development of publicly-available KTA software 

codebase for testing various promising algorithm proposals. In MPEG, 

several workshops were held, and a Call for Evidence (CFE) was 

issued in 2009. When the two groups both reached the conclusion that 

substantial progress was possible and that working together on the 

topic was feasible, a formal partnership was established and the joint 

CfP was issued. The VCEG KTA software and the algorithmic 

techniques found therein were used as the basis of many of the 

proposals submitted in response to both the MPEG CfE and the joint 

CfP.  

- The major video coding standard directly preceding the HEVC project 

was H.264/MPEG-4 AVC, which was initially developed in the 

period between 1999 and 2003, and then was extended in several 

important ways from 2003–2009. H.264/MPEG-4 AVC has been an 

enabling technology for digital video in almost every area that was not 

previously covered by H.262/MPEG-2 Video and has substantially 

displaced the older standard within its existing application domains. 

It is widely used for many applications, including broadcast of high 

definition (HD) TV signals over satellite, cable, and terrestrial 

transmission systems, video content acquisition and editing systems, 

camcorders, security applications, Internet and mobile network video, 

Blu-ray Discs, and real-time conversational applications such as video 

chat, video conferencing, and telepresence systems. 
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- However, an increasing diversity of services, the growing popularity 

of HD video, and the emergence of beyond HD formats (e.g., 4k×2k 

or 8k×4k resolution) are creating even stronger needs for coding 

efficiency superior to H.264/MPEG-4 AVC’s capabilities. The need 

is even stronger when higher resolution is accompanied by stereo or 

Multiview capture and display. Moreover, the traffic caused by video 

applications targeting mobile devices and tablet PCs, as well as the 

transmission needs for video-on-demand services, are imposing 

severe challenges on today’s networks. An increased desire for higher 

quality and resolutions is also arising in mobile applications. Interest 

in developing a new standard has been driven not only by the simple 

desire to improve compression as much as possible—e.g., to ease the 

burden of video on storage systems and global communication 

networks, but also to help enable the deployment of new services, 

including capabilities that have not previously been practical—such 

as ultra-high-definition television (UHDTV) and video with higher 

dynamic range, wider color gamut, and greater representation 

precision than what is typically found today.  

- To formalize the partnership arrangement, a new joint organization 

was created, called the Joint Collaborative Team on Video Coding 

(JCT-VC). The JCT-VC met four times per year after its creation, and 

each meeting had hundreds of attending participants and involved the 

consideration of hundreds of contribution documents (all of which 

were made publicly available on the web as they were submitted for 

consideration). 

- The project had an unprecedented scale, with a peak participation 

reaching about 300 people and more than 1,000 documents at a single 

meeting. Meeting notes were publicly released on a daily basis during 

meetings, and the work continued between meetings, with active 

discussions by email on a reflector with a distribution list with 

thousands of members, and with formal coordination between 

meetings in the form of work by “ad hoc groups” to address particular 

topics and “core experiments” to test various proposals. Essentially 

the entire community of relevant companies, universities, and other 

research institutions was attending and actively participating as the 

standard was developed. 

- HEVC has been designed to address essentially all existing 

applications of H.264/MPEG-4 AVC and to particularly focus on two 
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key issues: increased video resolution and increased use of parallel 

processing architectures. The syntax of HEVC is generic and should 

also be generally suited for other applications that are not specifically 

mentioned above.  

 

 

Fig. 4: HEVC compression ratio comparison 

- As has been the case for all past ITU-T and ISO/IEC video coding 

standards, in HEVC only the bitstream structure and syntax is 

standardized, as well as constraints on the bitstream and its mapping 

for the generation of decoded pictures. The mapping is given by 

defining the semantic meaning of syntax elements and a decoding 

process such that every decoder conforming to the standard will 

produce the same output when given a bitstream that conforms to the 

constraints of the standard. This limitation of the scope of the standard 

permits maximal freedom to optimize implementations in a manner 

appropriate to specific applications (balancing compression quality, 

implementation cost, time to market, and other considerations). 

However, it provides no guarantees of end-to-end reproduction 

quality, as it allows even crude encoding techniques to be considered 

conforming. 

- To assist the industry community in learning how to use the standard, 

the standardization effort not only includes the development of a text 
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specification document but also reference software source code as an 

example of how HEVC video can be encoded and decoded. The draft 

reference software has been used as a research tool for the internal 

work of the committee during the design of the standard, and can also 

be used as a general research tool and as the basis of products. A 

standard test data suite is also being developed for testing 

conformance to the standard.  

 

2.2. Block Partitioning Structure in HEVC. 
- The HEVC standard has adopted a highly flexible and efficient block 

partitioning structure by introducing four different block concepts: 

Coding Tree Unit (CTU), Coding Unit (CU), Prediction Unit (PU), 

and Transform Unit (TU), which are defined to have clearly separated 

roles. The terms Coding Tree Block (CTB), Coding Block (CB), 

Prediction Block (PB), and Transform Block (TB) are also defined to 

specify the 2-D sample array of one color component associated with 

the CTU, CU, PU, and TU, respectively. Thus, a CTU consists of one 

luma CTB, two chroma CTBs, and associated syntax elements. A 

similar relationship is valid for CU, PU, and TU. Although the use of 

a quadtree structure in video compression is not a new concept, the 

coding tree approach in HEVC can bring additional coding efficiency 

benefits by incorporating PU and TU quadtree concepts for video 

compression. Leaf nodes of a tree can be merged or combined in a 

general quadtree structured video coding scheme. After the final 

quadtree is formed, motion information is transmitted to the leaf nodes 

of the tree. L-shaped or rectangular-shaped motion partition is 

possible through merging and combination of nodes. However, in 

order to make such shapes, the merge process should be followed 

using smaller blocks after further splitting occurs. In the HEVC block 

partitioning structure, such cases are taken care of by the PU. Instead 

of splitting one depth more for merging and combination, predefined 

partition modes such as PART−2N×2N, PART−2N×N, and 

PART−N×2N are tested and the optimal partition mode is selected at 

the leaf nodes of the tree. It is worthwhile mentioning that PUs still 

can share motion information through merging mode in HEVC. 

Although a general quadtree structure without PU concept was 

investigated by removing the symmetric rectangular partition modes 
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(PART−2N×N and PART−N×2N) from the syntax and replaced by 

corresponding merge flags, both coding efficiency and complexity 

was proved inferior to the current design.  

- Another difference is the transform tree. Even though variable block 

size transforms were used for quadtree structure motion compensation, 

their usage was rather restricted. For example, transform size was 

strictly combined with motion compensation block size. Even though 

multiple transform size could be utilized, it was usual to use same size 

transform in a motion compensated block. In HEVC, the motion 

compensated residual can be transformed with a quadtree structure, 

and the actual transform is performed at leaf nodes. Since the 

transform tree is rooted from the leaf nodes of coding tree, this creates 

a nested quadtree. This kind of nested quadtree exists since the 

transform tree is started from the CU regardless of partition modes, 

i.e., PU shapes. This is a way to construct a nested quadtree even 

though we have PU concepts that differ from a general quadtree 

structure.  

- Another noticeable aspect is the full utilization of depth information 

for entropy coding. For example, entropy coding of HEVC is highly 

reliant on the depth information of quadtree. For syntax elements such 

as inter−pred−idc, split−transform−flag, cbf−luma, cbf−cb and cbf−cr, 

depth dependent context derivation is heavily used for coding 

efficiency. It has been demonstrated that this can break the 

dependency with neighboring blocks with less line buffer requirement 

in hardware implementations because information of above CTU does 

not need to be stored. In the following sections, the block partitioning 

structures in the HEVC standard are presented in conjunction with a 

detailed explanation of those unit definitions. 

a. Coding Tree Unit 
- A slice contains an integer multiple of CTU, which is an analogous 

term to the macroblock in H.264/AVC. Inside a slice, a raster scan 

method is used for processing the CTU.  

- In main profile, the minimum and the maximum sizes of CTU are 

specified by the syntax elements in the sequence parameter set (SPS) 

among the sizes of 8×8, 16×16, 32×32, and 64×64. Due to this 

flexibility of the CTU, HEVC provides a way to adapt according to 

various application needs such as encoder/decoder pipeline delay 
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constraints or on-chip memory requirements in a hardware design. In 

addition, the support of large sizes up to 64×64 allows the coding 

structure to match the characteristics of the high definition video 

content better than previous standards; this was one of the main 

sources of the coding efficiency improvements seen with HEVC. 

 

 

 

 

 

 

 

 

 

(a)                                                                    (b) 

 

 

b. Coding Unit 
- The CTU is further partitioned into multiple CU to adapt to various 

local characteristics. A quadtree denoted as the coding tree is used to 

partition the CTU into multiple CUs.  

 Recursive Partitioning from CTU: Let CTU size be 2N×2N 

where N is one of the values of 32, 16, or 8. The CTU can be 

a single CU or can be split into four smaller units of equal sizes 

of N×N, which are nodes of the coding tree. If the units are 

leaf nodes of coding tree, the units become CUs. Otherwise, it 

can be split again into four smaller units when the split size is 

equal or larger than the minimum CU size specified in the SPS. 

This representation results in a recursive structure specified by 

a coding tree. Fig. 5 illustrates an example of CTU partitioning 

and the processing order of CUs when the size of CTU is equal 

to 64 × 64 and the minimum CU size is equal to 8 × 8. Each 

square block in Fig. 5(a) represents CU. In this example, a 

CTU is split into 16 CUs which have different sizes and 

positions.  

Fig. 5: Example of CTU partitioning and processing order when size of CTU is 

equal to 64 × 64 and minimum CU size is equal to 8 × 8. (a) CTU partitioning. (b) 

Corresponding coding tree structure. 
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Fig. 5(b) shows corresponding coding tree structure 

representing the structure of the CTU partitioning in Fig. 5(a). 

Numbers on the tree represent whether the CU is further split. 

In Fig. 5(a), CUs are processed by following the dotted line. 

This processing order of CUs can be interpreted as a depth first 

traversing in the coding tree structure. If CTU size of 16 × 16 

and the minimum CU size of 8 × 8 are used, the resultant 

structure is roughly similar to that of H.264/AVC. HEVC 

utilizes CU as a unit to specify which prediction scheme is 

used for intra and inter predictions. Since the minimum CU 

size can be 8 × 8, the minimum granularity for switching 

different prediction schemes is 8 × 8, which is smaller than the 

macroblock size of H.264/AVC. 

 Benefits of Flexible CU Partitioning Structure: This kind of 

flexible and recursive representation provides several major 

benefits. The first benefit comes from the support of CU sizes 

greater than the conventional 16×16 size. When the region is 

homogeneous, a large CU can represent the region by using a 

smaller number of symbols than is the case using several small 

blocks. 

Fig. 6 shows rate-distortion curves of several combinations of 

the size of CTU and maximum coding tree depth for Traffic 

2560×1600@30 Hz sequence. The results are obtained using 

HM-6.0 Main profile using low delay constraint of the 

common test condition of HEVC. The size of CTU is 

represented by character “s” and maximum coding tree depth 

is represented by character “h” in the figure. Each curve shows 

the result when s64h4, s16h2, and s64h2 are used, respectively. 

There is a big gap of coding efficiency about 13.7% in 

Bjøntegaard delta bitrate between s64h4 and s16h2. This result 

illustrates that adding large size CU is an effective means to 

increase coding efficiency for higher resolution content. 

Coding efficiency difference between s64h4 and s64h2 is 

about 19.5% and it is also noticeable that coding efficiency 

difference between s64h2 and s16h2 is similar at low bit rate, 

but s16h2 shows better coding efficiency at high bit rate 

because smaller size blocks cannot be utilized for s64h2, 

where minimum CU size is 32 × 32. These results can be 
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interpreted as showing that large size CU is important to 

increase coding efficiency in general but still small size CU 

should be used together to cover regions which large CU 

cannot be applied to successfully. 

Furthermore, supporting arbitrary sizes of CTU enables 

the codec to be readily optimized for various content, 

applications, and devices. Compared to the use of fixed 

size macroblock, support of various sizes of CTU is one 

of the strong points of HEVC in terms of coding 

efficiency and adaptability for contents and applications. 

This ability is especially useful for low-resolution video 

services, which are still commonly used in the market. By 

choosing an appropriate size of CTU and maximum 

hierarchical depth, the hierarchical block partitioning 

structure can be optimized to the target application. 

 

 

Fig. 6: Rate-distortion curves of several combinations of the size of CTU 

and maximum coding tree depth for Traffic sequences (2560 × 1600). The 

size of CTU is represented by character “s” and maximum coding tree 

depth is represented by character “h.” Each curve shows the result when 

s64h4, s16h2, and s64h2 are used, respectively 
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Fig. 7: Example of CTU size and various CU sizes for various 

resolutions. 

Table 1: Simplified Form of Coding Tree Syntax Table 

coding−tree( x0, y0, log2CbSize, cbDepth ) { 

split−coding−unit−flag[ x0 ][ y0 ] 

              if(split−coding−unit−flag[ x0 ][ y0 ] )  { 

coding−tree(x0, y0, log2CbSize−1, cbDepth+1) 

coding−tree(x1, y0, log2CbSize−1, cbDepth+1) 

coding−tree(x0, y1, log2CbSize−1, cbDepth+1) 

coding−tree(x1, y1, log2CbSize−1, cbDepth+1) 

           } else { 

              coding−unit( x0, y0, log2CbSize ) 

           } 

  } 

 

Fig. 7 shows examples of various CTU sizes and CU sizes 

suitable for different resolutions and types of content. For 

example, for an application using 1080p content that is known 

to include only simple global motion activities, a CTU size of 
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64 and depth of 2 may be an appropriate choice. For more 

general 1080p content, which may also include complex 

motion activities of small regions, a CTU size of 64 and a 

maximum depth of 4 would be preferable.  

Finally, by eliminating the distinction between macroblock 

and sub macroblock and using only CU, the multilevel 

hierarchical quadtree structure can be specified in a very 

simple and elegant way. Together with the size-independent 

syntax representation, syntax items of one general size may be 

specified for the remaining coding tools.  

Table 1 shows the recursive part of the coding tree syntax in 

simplified form. As shown in the table, the splitting process of 

coding tree can be specified recursively and all other syntax 

elements can be represented in the same way regardless of the 

size of CU. This kind of recursive representation is very useful 

in terms of reducing parsing complexity and improving clarity 

when the quadtree depth is large. 

c. Prediction Unit 
- One or more PUs are specified for each CU, which is a leaf node of 

coding tree. Coupled with the CU, the PU works as a basic 

representative block for sharing the prediction information. Inside one 

PU, the same prediction process is applied and the relevant 

information is transmitted to the decoder on a PU basis. A CU can be 

split into one, two or four PUs according to the PU splitting type. 

HEVC defines two splitting shapes for the intra-coded CU and eight 

splitting shapes for inter-coded CU. Unlike the CU, the PU may only 

be split once. 

 PU Splitting Type: Similar to prior standards, each CU in 

HEVC can be classified into three categories: skipped CU, 

inter-coded CU, and intra-coded CU. An inter-coded CU uses 

motion compensation scheme for the prediction of the current 

block while an intra-coded CU uses neighboring reconstructed 

samples for the prediction. A skipped CU is a special form of 

inter-coded CU where both the motion vector difference and 

the residual energy are equal to zero. For each category, PU 

splitting type is specified differently as shown in Fig. 8 when 

the CU size is equal to 2N×2N. As shown in the figure, only 
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PART−2N×2N PU splitting type is allowed for the skipped 

CU. 

 

 

Fig. 8: Illustration of PU splitting types in HEVC. 

For the intra-coded CU, two possible PU splitting types of 

PART−2N×2N and PART−N×N are supported. Finally, total 

eight PU splitting types are defined as two square shapes 

(PART−2N×2N, PART−N×N), two rectangular shapes 

(PART−2N×N and PART−N×2N), and four asymmetric 

shapes (PART−2N×nU, PART−2N×nD, PART−nL×2N, and 

PART−nR×2N) for inter-coded CU. Although more 

sophisticated partitioning was considered, but current PU 

splitting types were chosen as a good tradeoff between 

encoding complexity and coding efficiency.  

Note that all information related to the prediction scheme is 

specified on a PU basis. For instance, the most probable mode 

index and intra prediction mode for intra coded CU or merge 

flag, merge index, inter prediction flag, motion vector 

prediction index, reference index, and motion vector 

difference for inter-coded CU are unique per PU. For most 

cases, PU partitioning of chroma block shares the same 

splitting of luma component; however, when the CU size is 
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equal to 8×8 and PART−N×N is used for the PU splitting type, 

PART−2N×2N is used for the chroma block to prevent the 

block size from being less than 4 × 4. 

 Constraints According to CU Size: In PART−N×N, CU is split 

into four equal sizes PUs, which is conceptually similar to the 

case of four equal-size CUs when the CU size is not equal to 

the minimum CU size. Thus, HEVC disallows the use of 

PART−N×N except when the CU size is equal to the minimum 

CU size. It was observed that this design choice can reduce the 

encoding complexity significantly while the coding efficiency 

loss is marginal.  

To reduce the worst-case complexity, HEVC further restricts 

the use of PART−N×N and asymmetric shapes. In the case of 

inter-coded CU, the use of PART−N×N is disabled when the 

CU size is equal to 8 × 8. Moreover, asymmetric shapes for 

inter-coded CU are only allowed when the CU size is not equal 

to the minimum CU size. 

 

Fig. 9: Examples of transform tree and block partitioning. (a) 

Transform tree. (b) TU splitting for square-shaped PU. (c) TU 

splitting for rectangular or asymmetric shaped PU. 

d. Transform Unit 
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- Similar with the PU, one or more TUs are specified for the CU. HEVC 

allows a residual block to be split into multiple units recursively to 

form another quadtree which is analogous to the coding tree for the 

CU. The TU is a basic representative block having residual or 

transform coefficients for applying the integer transform and 

quantization. For each TU, one integer transform having the same size 

to the TU is applied to obtain residual coefficients. These coefficients 

are transmitted to the decoder after quantization on a TU basis. 

 Residual Quadtree: After obtaining the residual block by 

prediction process based on PU splitting type, it is split into 

multiple TUs according to a quadtree structure. For each TU, 

an integer transform is applied. The tree is called transform 

tree or residual quadtree (RQT) since the residual block is 

partitioned by a quadtree structure and a transform is applied 

to each leaf node of the quadtree.  

 
Table 2: Simplified Form of Transform Tree Syntax Table 

 

Similar to the coding tree, which is represented by a series of 

split−coding−unit−flag, RQT is also structured by successive 

signaling of the syntax element split−transform−flag in a 

recursive manner. RQT can be classified into two cases having 

square shapes and nonsquare shapes, and they are denoted as 

square residual quadtree (SRQT) and nonsquare residual 

transform−tree( trafoDepth, blkIdx ) { 

      no−residual−data−flag 

      if( !no−residuual−data−flag ) { 

             split−transform−flag[ x0 ][ y0 ][ trafoDepth ] 

             if( split−transform−flag[ x0 ][ y0 ][ trafoDepth ] ) { 

                    transform −tree( trafoDepth+1, 0 ) 

                    transform −tree( trafoDepth+1, 1 ) 

                    transform −tree( trafoDepth+1, 2) 

                    transform −tree( trafoDepth+1, 3) 

              } else { 

                 transform −unit( trafoDepth ) 

              } 

        } 

   } 
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quadtree (NSRQT), respectively. The NSRQT was adopted 

temporarily, but excluded in the final draft text specification. 

Table 2 shows a syntax table for the recursive structure of RQT 

 Nonsquare Partitioning: SRQT is constructed when PU 

splitting type is square shape while NSRQT is utilized for 

rectangular and asymmetric shapes. For NSRQT, transform 

shape is horizontal when the choice of the partition mode is a 

horizontal type such as PART−2N×N, PART−2N×nU, and 

PART−2N×nD. The same rule is applied to the vertical type 

case such as PART−N×2N, PART−nL×2N, and 

PART−nR×2N. Although the syntax of SRQT and NSRQT is 

the same, as depicted in Table III, the shapes of TUs at each 

transform tree depth are defined differently for SRQT and 

NSRQT. Fig. 9 illustrates an example of transform tree and 

corresponding TU splitting. Fig. 9(a) represents transform tree. 

Fig. 9(b) shows TU splitting when the PU shape is square. Fig. 

9(c) shows TU splitting when the PU shape is rectangular or 

asymmetric. Although they share the same transform tree, the 

actual TU splitting is different depending on the PU splitting 

type. 

 Transform across Boundary: In HEVC, both the PU size and 

the TU size can reach the same size of the corresponding CU. 

This leads to the fact that the size of TU may be larger than 

that of the PU in the same CU, i.e., residuals from different 

PUs in the same CU can be transformed together. For example, 

when the TU size is equal to the CU size, the transform is 

applied to the residual block covering the whole CU regardless 

of the PU splitting type. Note that this case exists only for 

inter-coded CU since the prediction is always coupled with the 

TU splitting for intra coded CU. 

 Maximum Depth of Transform Tree: The maximum depth of 

transform tree is closely related to the encoding complexity. 

To provide the flexibility on this feature, HEVC specifies two 

syntax elements in the SPS which control the maximum depth 

of transform tree for intra coded CU and inter coded CU, 

respectively. The case when the maximum depth of transform 

tree is equal to 1 is denoted as implicit TU splitting since there 
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is no need to transmit any information on whether the TU is 

split. In this case, the transform size is automatically adjusted 

to be fit inside the PU rather than allowing transform across 

the boundary. The coding efficiency loss of implicit TU 

partitioning is about from 0.7% to 1% compared to the cases 

RQT depth is equal to 2. 
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Chapter 2. Fractional Motion 

Estimation in HEVC and Related 

Works on Complexity Reduction 

1. Motion Estimation 
- One of the most important coding tools used in the HEVC is the   inter-

frames   prediction,   where   is   located   the   Motion Estimation   

(ME)   process.   The   ME   explores   the   temporal redundancy   

from   the   previously   encoded   frames,   called reference frames, to 

encode the current one. With this method, it is possible to reduce the 

amount of data necessary to represent each  frame  since  it  is  possible  

to  transmit  and  store  only  the  difference  between  the  reference  

frame  and  the  current  frame,  and a motion vector. 

- In ME, the picture to be coded is first divided into blocks, and for each 

block, an encoder searches reference pictures to find the best matching 

block. The best matching block is called the prediction of the 

corresponding block and the difference between the original and the 

prediction signal is coded by various means, such as transform coding, 

and transmitted to a decoder. The relative position of the prediction 

with respect to the original block is called a motion vector and it is 

transmitted to the decoder along with the residual signal. The true 

displacements of moving objects between pictures are continuous and 

do not follow the sampling grid of the digitized video sequence. Hence, 

by utilizing fractional accuracy for motion vectors instead of integer 

accuracy, the residual error is decreased and coding efficiency of 

video coders is increased. If a motion vector has a fractional value, the 

reference block needs to be interpolated accordingly. The 

interpolation filter used in video coding standards are carefully 

designed taking into account many factors, such as coding efficiency, 

implementation complexity, and visual quality. 

- In HEVC, the ME process is divided into two steps: integer motion 

Estimation (IME) and Fractional Motion Estimation (FME). FME is 

a refinement process with fractional pixel accuracy level of IME. 
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2. Fractional Motion Estimation 
- FME by increasing the precision of motion vectors enhances the 

compression performances of a video encoder but introduces an extra 

computation cost. FME process is divided into two steps: 

Interpolation and Sum of Absolute Transformed Difference 

calculation. 

2.1 Interpolation 
- As in H.264/AVC, HEVC standard supports motion vectors with 

quarter-pel accuracy. Compared to H.264/AVC, H.265/HEVC 

includes various modifications to the interpolation filter design. 

During the development of the H.265/HEVC standard, several 

techniques were considered, including switched interpolation filter 

with offset (SIFO), maximum order of interpolation with minimal 

support (MOMS), one-dimensional directional interpolation filter 

(DIF), and DCT-based interpolation filter (DCT-IF). The latest design 

of the H.265/HEVC interpolation filter is based on the simplified form 

of the DCT-IF with the addition of the high-accuracy motion 

compensation processing. These modifications yield an average 4.0% 

bitrate reduction over the H.264/AVC interpolation filter for luma and 

11.3% bitrate reduction for chroma components. The coding 

efficiency gains become very significant for some sequences and can 

reach a measured maximum of 21.7%. 

- H.264/AVC supports motion vectors with quarter-pel accuracy for the 

luma component and one-eighth pel accuracy for chroma components 

for video in the 4:2:0 color format. Although some video sequences 

may benefit from higher motion vector accuracy, it was found that 

quarter-pel accuracy provides the best trade-off between prediction 

accuracy and signaling overhead. Fig. 10 (a) denotes the fractional pel 

positions for the luma interpolation process of H.264/AVC. To 

minimize the number of filtering operations, H.264/AVC uses various 

combinations of separable one-dimensional filters according to the 

fractional sample position. For example, if one of the motion vector 

components is fractional but another is an integer, then interpolation 

is applied along only one direction (vertical or horizontal). If both 

motion vector components are fractional, a horizontal (vertical) 

interpolation filtering is done followed by vertical (horizontal) 

filtering while the intermediate results are stored in a buffer. The 
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samples at half-pel positions and are derived by applying a 6-tap filter 

as shown in (1) and (2). The samples at half-pel positions are 

computed similarly but from the non-rounded intermediate half-pel 

samples rather than the integer-pel samples as shown in (3) and (4). 

 

  
(a)                                                                            (b) 

Fig. 10: (a): Fractional positions in Luma motion compensation with 1/4 pel 

accuracy. (b): Quarter-pel interpolation in H.264/AVC. 

- The samples at quarter-pel positions are calculated by averaging the 

two nearest samples located at integer-pel and half-pel. positions. This 

is illustrated in Fig. 10 (b), where each quarter-pel position is 

connected to two samples at half-pel or integer-pel positions 

indicating the corresponding samples used in the averaging process as 

shown in (5), and (6). 

a. Issues in Interpolation Process of H.264/AVC 
-   There are several issues with the interpolation process of H.264 as 

following: 

 Number of filter coefficients: a six-tap filter is used for half-

pel positions of luma samples and a bi-linear filter for eighth-

pel positions of chroma samples may not be sufficient for video 

sequences acquired with modern recording devices, which 

typically contain more high-frequency information than older 

video sequences. In addition, since the optimality of the 

interpolation filter is related to all other parts of the video 

compression system, the interpolation filter should be re-

designed according to other parts of the H.265/HEVC standard. 
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 Cascaded process for quarter-pel positions: samples at 

quarter-pel positions are generated by averaging two 

neighboring samples. This cascaded process introduces an 

intermediate rounding step. This may introduce undesirable 

latency and accuracy losses. 

 Inconsistent averaging across quarter-pel positions: 

samples at quarter-pel positions are derived differently 

according to their fractional positions. 

 Loss of accuracy from cascaded rounding operations: the 

interpolation filter defined in H.264/AVC has a large number 

of intermediate rounding operations. The number of rounding 

operations can go up to 7 when specific quarter-pel positions 

are used with bi-directional prediction. Every rounding 

operation introduces an undesirable rounding error that 

accumulates over frames. The number of rounding operations 

should thus be minimized. 

 

b. Interpolation Filter Design of HEVC 
- To overcome the above issues, H.265/HEVC introduces several new 

features including redesigned interpolation filters for luma and 

chroma as well as a high-accuracy motion compensation process for 

uni- and bi-directional prediction which is mostly free from rounding 

errors. The key differences between H.264/AVC and H.265/HEVC 

interpolation can be summarized as: 

 Re-designed luma and chroma interpolation filter: to 

improve the filter response in the high-frequency range, luma 

and chroma interpolation filters are re-designed. The luma 

interpolation process uses a symmetric 8-tap filter for half-pel 

positions and an asymmetric 7-tap filter for quarter-pel 

positions to minimize the additional complexity of the motion 

compensation process. For chroma samples, a 4-tap filter is 

introduced. 

 Non-cascaded process for quarter-pel positions: rather than 

averaging two neighboring samples, H.265/HEVC directly 

derives quarter-pel samples by applying two one-dimensional 

filters similar to the half-pel center position in H.264/AVC. 

Since it is consistent with all quarter-pel positions, the 
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inconsistency issues for different quarter-pel positions in 

H.264/AVC no longer exist in H/265/HEVC. 

 High-accuracy motion compensation operation: in 

H.265/HEVC, intermediate values used in interpolation are 

kept at a higher accuracy. In addition, the rounding of two 

prediction blocks used in bi-directional prediction is delayed 

and merged with the rounding in the bi-directional averaging 

process. It should be noted that the H.265/HEVC interpolation 

process guarantees that no 16-bit overflow occurs at any 

intermediate stage by controlling the accuracy according to the 

source bit depth. 

- For fractional positions a, b and c, horizontal 1D filter is used. For 

fractional positions d, h and n, vertical 1D filter is used.For remaining 

positions, first horizontal 1D filter is applied for extended block and 

then vertical 1D filter is used. Half-pixel vertical and horizontal 

interpolation are illustrated as in Fig. 11, and quarter pixel vertical and 

horizontal interpolation are illustrated as in Fig. 12. 

- The interpolation filter is applied in motion compensation for 

fractional position values generation. Current motion vector accuracy 

for luma components in HEVC is still quarter-pel, so 15 fractional-pel 

pixels will be interpolated as showed in Fig. 10 (a). In the HEVC, 

three types of 8-tap filters are adopted as shown in equation (7), (8), 

and (9). According to the fractional position to be predicted, one of 

the three filters is applied for. 

 

b0,0 = (A−2,0 − 5A−1,0 + 20A0,0 + 20A1,0 − 5A2,0 + A3,0 + 16) ≫ 5 (1) 

h0,0 = (A0,−2 − 5A0,−1 + 20A0,0 + 20A0,1 − 5A0,2 + A0,3 + 16) ≫ 5 (2) 

hn
′  = An,−2 − 5An,−1 + 20An,0 + 20An,1 − 5An,2 + An,3                      (3) 

j0,0 = h−2
′ − 5h−1

′ + 20h0
′ + 20h1

′ − 5h2
′ + h3

′ + 512) ≫ 10               (4) 

a0,0 = (A0,0 + b0,0 + 1) ≫ 1                                                                   (5) 

f0,0 = (b0,0 + j0,0 + 1) ≫ 1                                                                     (6) 

a0,0 = (−A−3,0 + 4A−2,0 − 10A−1,0 + 58A0,0 + 17A1,0 − 5A2,0 + A3,0 +

                 + 32) ≫ 6                                                                                              (7) 

b0,0 = (−A−3,0 + 4A−2,0 − 11A−1,0 + 40A0,0 + 40A1,0 − 11A2,0 +

                 +4A3,0 − A4,0 + 64) ≫ 7                                                                  (8) 
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c0,0 = (A−2,0 − 5A−1,0 + 17A0,0 + 58A1,0 − 10A2,0 + 4A3,0 − A4,0 +

                +32) ≫ 6                                                                                             (9) 

 

HFIR HFIR HFIR HFIR HFIR

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

HFIR

VFIR VFIR

Integer pixel Horizontal half-pel filter

8-bit input vertical  half-pel 
filter, including an array of 8 

8-bit registers

16-bit input vertical  half-pel 
filter, including an array of 8 

16-bit registers  
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Fig. 12: Quarter pixel horizontal and vertical interpolation 
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2.2 Sum of Absolute Transformed Difference 

Calculation 
- The latest video coding standard HEVC coder utilizes several 

advanced coding techniques to attain significantly higher compression 

ratio than the previous video coding standards. Among these, the rate-

distortion optimization (RDO), which is the procedure conducted to 

select the best coding mode from all possible modes in both intra and 

inter-prediction, is considered to be one of the most important factors 

contributing to the success of HEVC in terms of compression ratio 

and visual quality. Nevertheless, this technique increases 

computational complexity remarkably. To lower the computation 

burden, the HEVC reference software provides a simplified way to 

estimate the rate-distortion cost with the prediction error and a simple 

bit cost estimate for a prediction mode, instead of obtaining the exact 

value by going through the whole encoding/decoding processes. It is 

illustrated as (10): 

𝐽𝑚𝑜𝑡𝑖𝑜𝑛 = 𝐷𝑚𝑜𝑡𝑖𝑜𝑛 + ƛ𝑚𝑜𝑡𝑖𝑜𝑛𝑅𝑚𝑜𝑡𝑖𝑜𝑛                                 (10) 

where ƛ𝑚𝑜𝑡𝑖𝑜𝑛  is  the  Lagrangian  multiplier, 𝐷𝑚𝑜𝑡𝑖𝑜𝑛  is  an error 

measure between the  candidate  macroblock  taken  from the   

reference   frame(s)   and   the current   macroblock and 𝑅𝑚𝑜𝑡𝑖𝑜𝑛 stands  

for  the  number  of  bits  required  to  encode  the difference  between  

the  motion  vector(s)  and  its  prediction from  the neighboring  

macroblocks  (differential  coding).  A similar function to the equation 

(10) is used to decide the optimal block size for motion estimation. 

-   Two distortion metrics are suggested to measure the prediction error; 

one being the sum of absolute differences (SAD), and the other sum 

of absolute Hadamard-transformed differences (SATD). In  particular, 

for any given block of pixels, the SAD between the current 

macroblock and the reference candidate macroblock is   computed 

using the following equation (11): 

𝑆𝐴𝐷 =  ∑ |𝐶𝑖𝑗 − 𝑅𝑖𝑗|𝑖𝑗                        (11)  

where 𝐶𝑖𝑗 is a pixel of the current macroblock and 𝑅𝑖𝑗 is a pixel of the 

reference candidate macroblock. 

-   The  Lagrangian cost can also be  minimized in the  frequency 

domain,  in  a  very  similar  manner  to  the  pixel  domain.  As 

mentioned above, SATD can be used in equation (10) instead of SAD. 

Central  to the  calculation  of  SATD  is  the  4x4 Hadamard  transform  
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which  is  an  approximation  to  the 4x4 DCT  transform.  The  

transform  matrix  used  is  shown  in equation (12) below (not 

normalized): 

 

                            𝐻 =                   (12) 

 

 

 

 

Since H is a symmetric matrix, it is equal to its own transpose.  By 

using this matrix, the (SATD) is computed using equation (13) below: 

𝑆𝐴𝑇𝐷 =  (∑ |𝐻 ∗ (𝐶𝑖𝑗 − 𝑅𝑖𝑗|𝐻𝑇
𝑖𝑗 )/2                                      (13) 

where 𝐶𝑖𝑗 is a pixel of the current macroblock and 𝑅𝑖𝑗 is a pixel of the 

reference candidate macroblock. 

-  The sum of absolute transformed differences (SATD) is a widely used 

block matching criteria used in fractional motion estimation for video 

compression. Especially, it is used for fractional motion estimation in 

HEVC 

2.3 Fractional Motion Estimation Procedure 
- In HEVC, the algorithm of fractional pixel interpolation for motion 

compensation (MC) is defined in the coding standard.  However, how 

to produce the fractional MV, or FME procedure, including the 

interpolation scheme on the reference frame and the FME searching 

algorithm, can be decided by the designer. Therefore, there are several 

FME procedures have been introduced, which can be roughly 

classified into two groups: 

 Two-iteration FME 

 Single-iteration FME 

a. Two-iteration FME 
- After  the integer pixel motion search  finds  the  best  match, the  

values  at  half-pixel  positions  around  the  best  match  are 

interpolated  by  applying  a  one-dimensional  8-tap  FIR  filter 

horizontally  and  vertically. Then the SATD value of each half-pixel 

is calculated and compare to find the best match half-pixel. Then  the  

values  of  the  quarter-pixel  positions  are  generated around the best 

match half-pixel  by  applying  a  one-dimensional  7-tap  FIR  filter 

horizontally  and  vertically.  Fig. 13  illustrates an example of 

1 1 1 1 

1 1 -1 -1 

1 -1 -1 1 

1 -1 1 -1 
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interpolated fractional pixel positions of the two-iteration FME, where 

half-pixels are generated around the best integer pixel position and 

quarter pixels are generated around the best half pixel. 

 

 

Fig. 13: Two-iteration FME 

b. Single-iteration FME 

- One of the drawbacks of two-iteration FME is that quarter-pixel 

interpolation and search can be processed only after half-pixel search 

is finished. This results in huge timing constraint for real-time 

application. Therefore, a number of designs have adopted the single-

iteration FME scheme. In the single-iteration FME scheme, half pixels 

and quarter pixels are generated around the best matching integer 

pixel position at the same time. And then SATD of all fractional pixels 

or a certain number of fractional pixels around the best integer pixel 

are calculated. After getting all necessary SATD values, SATD 

comparison is processed to find the best matching pixel. Fig. 14 

illustrates an example of interpolated fractional pixel positions of a 

single-iteration FME, where half-pixels and quarter pixels are 

generated around the best integer pixel. 
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Fig. 14: Single-iteration FME 
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Chapter 3. Complexity Reduction 

for FME 

1. Problem Statement and Previous Studies 

1.1. Problem Statement 
- HEVC employs the hierarchical quad-tree structure based on the 

coding tree unit (CTU), using the coding unit (CU), a prediction unit 

(PU), and transform unit (TU) as the basic processing unit of coding, 

prediction, and transform, respectively. This new structure can be 

adaptively adjusted between the large homogeneous region and highly 

textured region, which accounts for HEVC’s high encoding efficiency 

compared to H.264. However, it comes with the price of about 40% 

encoding complexity increase [2].  

- Inter mode prediction with motion estimation is the bottleneck of 

HEVC because of the abounding amount of computation, in which 

Motion Estimation (ME) which consists of integer motion estimation 

(IME) and fractional motion estimation (FME) is its main core. In HM, 

HEVC’s reference software, motion estimation (ME) alone occupies 

up to 51.32 % of execution time, in which IME takes 18.17 % and 

FME takes around 32.16% [3]. This huge timing constraint imposed 

by FME is the result of complicated and time-consuming interpolation 

processes and that the two-step FMEs for half- and quarter-pixel 

precisions should be performed sequentially.  

- There are a number of fast algorithms for IME have been introduced, 

which helped the complexity of IME reduced significantly. It results 

in the fact that FME remains to be more complicated and time-

consuming than IME. The FME’s enormous computational 

complexity can be explained by two following reasons: 

 A large number of FME refinements processed: In HEVC, a 

frame is divided into CTU, whose size is usually 64x64 pixels. 

One 64x64 CTU consists of 85 CUs including one 64x64 CU 

at depth 0, four 32x32 CUs at depth 1, 16 16x16 CUs at depth 

2, and 64 8x8 CUs at depth 3. Each CU can be partitioned into 

PUs according to a set of 8 allowable partition types. An 

HEVC encoder processes FME refinement for all possible PUs 

with usually 4 reference frames before deciding the best 
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configuration for a CTU. As a result, typically in HEVC’s 

reference software, HM, for one CTU, it has to process 2,372 

FME refinements, which consumes a lot of computational 

resources. 

 A complicated and redundant interpolation process: 

Conventionally, FME refinement, which consists of 

interpolation and sum of absolute transformed difference 

(SATD), is processed for every PU in 4 reference frames. As 

a result, for a 64x64 CTU, in order to process fractional pixel 

refinement, FME needs to interpolate 6,232,900 fractional 

pixels.  In addition, In HEVC, fractional pixels which consist 

half fractional pixels and quarter fractional pixels, are 

interpolated by 8-tap filters and 7-tap filters instead of 6-tap 

filters and bilinear filters as previous standards. As a result, 

interpolation process in FME imposes an extreme 

computational burden on HEVC encoders. 

- For the above reasons, FME is the computational bottleneck of real-

time HEVC encoder. Therefore, reducing the computational 

complexity of FME is a very critical task in order to assure real-time 

operation. However, there are not many efficient algorithms which 

help to reduce the complexity of FME in HEVC has been introduced 

so far. That is why an efficient algorithm which effectively reduce the 

complexity of FME without significantly degrading the encoding 

performance could be extremely valuable for HEVC encoders. 

 

1.2. Previous Studies 
-   There are a number of fast algorithms targeting FME have been 

introduced to overcome the above problems. These algorithms can be 

roughly classified into two categories: FME procedure modification 

and advanced PU partitions decision. The first category, [4]-[6] tried 

to reduce timing constraint and computational complexity of FME by 

improving interpolation process, reducing searching point or 

exploiting single iterative refinement method. However, this kind of 

algorithms do not exploit the relationship of IME and FME and have 

to pay the trade-off of coding performance decrease to obtain 

complexity reduction. Moreover, none of the so far proposed 

algorithms attempt to reduce the redundant interpolation caused by the 
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similarity in motion among neighboring PUs. Therefore, this paper 

proposes an efficient range-based algorithm that reduces a large 

amount of redundant interpolation calculation by avoiding repeatedly 

interpolating overlapped regions caused by the motional similarity 

among neighboring PUs. In the second category, instead of doing 

FME for all PU partitions, based on IME result to filter unnecessary 

skippable partitions. This is based on the fact that FME is the 

refinement process of IME result, therefore according to IME result, 

there are redundant partitions can be skipped doing FME refinement 

without significantly affecting the encoding efficiency. Several 

research [7], [8] were successfully proposed to H.264 but the direct 

application of these algorithms to HEVC results in significantly 

encoding efficiency degrade due to the difference of encoding 

structure between HEVC and H.264 [3]. The algorithm in [7] is 

modified and applied to HEVC [3], however for simplicity, it does not 

take into account asymmetric partition which is one of the key factors 

accounting for coding efficiency improvement in HEVC compared to 

H. 264. In addition, it also does not take into account the variation of 

temporal correlation among frames and treats all the reference frames 

equally which can cause extra computational complexity. Therefore, 

this paper proposes an efficient algorithm that takes into account all 

asymmetric partitions as well as exploits the variation of temporal 

correlation between the current frame and different reference frames 

to predetermine PU partition type for FME to reduce the complexity 

without significantly degrading encoding performance. In addition, 

the proposed algorithm also takes advantages of IME result of CUs at 

CTU level to predetermine CU depth for FME in order to further 

reduce complexity. 
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2. Proposed Algorithms 
- As discussed in the previous section, FME in HEVC is very 

complicated because of the two following reasons: 

 A large number of FME refinements processed 

  A complicated and redundant interpolation process 

- Therefore, in order to reduce FME’s complexity, it is necessary to 

tackle one of or both the reasons. In this work, two following efficient 

algorithms which tackle each one of the two reasons of FME’s 

complexity are proposed:  

 Advanced decision of PU partitions and CU depths for 

Fractional Motion Estimation in HEVC 

  A Reduction of the Interpolation Redundancy for Fractional 

Motion Estimation in HEVC 

- The first algorithm tackles the first reason to reduce FME’s 

complexity b reducing the number of FME refinements while the 

second algorithm aims to solve the second reason to reduce FME’s 

complexity by reducing interpolation redundancy in FME. The two 

algorithms are discussed more in detail in the following sections. 

2.1. Advanced Decision of PU Partitions and CU 

Depths for Fractional Motion Estimation in 

HEVC 

a. Reference Frame Selection Analysis 
- As mentioned in the problem the statement section, to the best of the 

author’s knowledge, all previous works in this category do not take 

into account the variation in the temporal correlation of current frame 

and different reference frames. All reference frames are treated 

equally in the manner of choosing some PUs or CU depths having 

smallest IME costs, which are the RD costs after IME, and process 

FME for these modes for all reference frames. This causes possible 

encoding performance decrease and unnecessary complexity increase 

because usually reference frames with higher temporal correlation 

with current frame have a higher probability to be chosen as a final 

reference frame by the best mode after doing motion estimation. Table 

I shows reference frames’ probability of being chosen as a final 

reference frame by the best mode. In which, the first column 

represents the sequence simulated and the second, third and fourth 
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column show the probability to be chosen as the final reference frame 

of reference frame 0, 1, 2, and 3 respectively. 

Table 3: Reference frames' probability of being chosen as a final reference frame 

by the best mode 

 

- As shown in Table 3, almost 80% of the best modes choose reference 

frame 0 which is the temporally nearest frame to current frame as a 

final reference frame, and if referent frame 0, reference frame 1, and 

reference frame 2 are taken into account, roughly 97% of the best 

modes choose one of these three reference frames as a final reference 

frame. Based on this observation, this paper proposes an efficient 

algorithm that exploits temporal correlation of current frame and 

reference frames in order to further reduce complexity without 

significantly degrading encoding efficiency. 

b. Advanced PU Partition Decision 
 The Idea 

- In HEVC, in order to find the best specification for a CTU, motion 

estimation will be processed for all PUs in 4 reference frames 

according to 8 PU partition types of a CU, and recursively processed 

for all CUs in a CTU. Then the results will be compared to determine 

the best reference frame for every PU, the optimal PU partition type 

for every CU, and optimal CU splitting in a CTU. This means that for 

a CU, before FME, if it can predetermine the PU partition types which 

are less likely to be chosen as the optimal PU partition type, and 

discard them from doing FME refinement, we can significantly reduce 

the number of FME refinement. The proposed algorithm based on two 

following observations 

 Ref. 

Frame 0 

Ref. 

Frame 1 

Ref. 

Frame 2 

Ref. 

Frame 3 

C1 Keiba 65.38% 23.34% 7.67% 3.60% 

C2 BQMail 87.17% 8.11% 2.66% 2.06% 

C3 BasketballDrill 79.88% 12.82% 3.85% 3.45% 

C4 Flowercase 87.26% 7.83% 2.79% 2.13% 

C5 PartyScene 79.15% 11.04% 5.23% 4.57% 

C6 RaceHorses 77.65% 14.35% 5.31% 2.67% 

Average 79.73% 12.47% 4.66% 3.14% 
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 Since FME is just a refinement of IME. PU partition types 

having smallest cost after IME are more likely to have the 

smallest cost after FME as well 

 Temporally closer reference frames’ probabilities to be chosen 

as the best reference frame is higher than the distant ones. 

- Previous studies just considered the first observation to predetermine 

PU partition types for CUs and ignore the second observation. The 

proposed algorithm exploits both of them to effectively reduce 

computational complexity with insignificant performance degrade. 

The proposed algorithm is processed as follow. For a given CU, the 

PU partition types for FME is selected by comparing the IME costs of 

the corresponding PU partitions. To this end, the IME costs of all 

partition types are calculated, and then the PU partition types are 

sorted according to the IME cost in each reference frame. In order to 

exploit the first observation, it discards a certain number of PU 

partition types having largest IME costs from doing FME. In order to 

exploit the second observation, it adaptively chooses a smaller number 

of discarded PU partition types for temporally closer reference frames, 

and a larger number discarded PU partition types for distant ones. By 

this, it can get maximum complexity reduction without significantly 

degrading the encoding performance. 

 The algorithm 

- In a CU, for each reference frame, instead of processing FME for all 

partition types, the algorithm independently choose a certain number 

of PU partitions having smallest IME cost considering in that 

reference frame only to do FME. The number of modes selected to do 

FME is also different and independent for different reference frames. 

The optimal number of PU partition for FME process for each frame 

are determined by experiment results presented in section IV. Fig. 15 

illustrates the proposed algorithm to predetermine reduced PU 

partition modes for FME. The algorithm can be divided into two main 

tasks: IME cost comparison and skippable PU partition modes filter. 

- In the first task, IME cost comparison, first, get IME costs of all 7 

partition types (3 if it is 8x8 CU) for each reference frame, for partition 

type 2NxN, Nx2N, 2NxnU, 2NxnD, nLx2N, nRx2N, the IME cost is 

the sum of two partition’s IME cost. Then for each reference frame, 

sort all the partition types in increasing order of IME cost.  
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Fig. 15: PU partition modes in IME cost increasing order 

Start

- Get IME cost of all partition modes of CU for each reference frame

- Sort these IME costs in increasing order for each reference frame

PartMode = 2Nx2N Partition mode

PartMode <= NUMof PartModeofCU

Stop

No

Yes

RefIndex <= NumofRef

RefIndex = Reference frame 0 index

PartMode = 

PartMode + 1

No

PartMode is one of N[RefIndex] smallest cost

 Partition modes of CU with Reference frame RefIndex 

Do FME 

Yes

RefIndex = 

RefIndex + 1

Yes

No

No

IME cost

comparison

task

PU 

partition

types 

filtering

task

 

Fig. 16: The flow-chart of the advanced PU partition decision algorithm 
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- In the second task, skippable PU partition types filtering, based on the 

sorted list of all PU partition types of each reference frame, determine 

which PU partition types are selected to do FME and which ones are 

filtered from doing FME independently for each reference frame. In 

order to exploit the fact that the more temporally distant frames are 

less likely to be chosen as final reference frame by best mode, the 

proposed algorithm adaptively adjusts the number of PU partition 

types selected to do FME different for each frame. For simplicity, 

N{RefIndex} presents the number of PU partition types selected to do 

FME for reference frame RefIndex, where RefIndex is reference index 

whose value is 0, 1, 2 and 3. In this task, for each PU partition type, 

for each reference frame RefIndex, check whether the PU partition 

types is one of the N{RefIndex} smallest cost PU partition types of 

reference frame RefIndex or not. If yes, do FME for this PU partition 

type, otherwise filter it from doing FME. 

c. Advanced CU Depth Decision 
 The idea 

-  In HEVC, one CTU consists of 85 CUs including one 64x64 CU at 

depth 0, four 32x32 CUs at depth 1, 16 16x16 CUs at depth 2, and 64 

8x8 CUs at depth 3. Instead of doing FME for every CU depth, based 

on IME result. 

- Because FME is a refinement process of IME, best CU depths after 

IME and final best CU depths are highly correlated.  

- Table 4 shows the probability of the correlation of best IME depth 

which is the best CU depth decided based on IME cost and final best 

CU depth. In which, the first row represents final best CU depth and 

the first column represents best CU depth after IME. The remaining 

rows and columns represent the probability of that best IME depth is 

d1 and the final best CU depth is d2, in which d1 and d2 get the value 

of 0, 1, 2 and 3. The result shows that more than 50% of best IME 

depths are also final best CU depths. And if best IME depth and 2 

depths surrounding it are taken into account, roughly more than 91% 

of final best CU depths belong to this group of three depths. In which, 

in case best IME depth is depth 0 or depth 3, two surrounding depths 

are CU depths which are one depth and two depths far away from best 

IME depth. And if best IME depth is depth 1 or depth 2, two 

surrounding depths are CU depths which is one depth larger and one 
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depth smaller than best IME depth. Based on this observation, an 

efficient algorithm predetermining CU depth for FME is proposed. 

Table 4: Probability of correlation of best CU depth after IME and final best CU 

depth 

 

 The algorithm 

-  To reduce FME complexity, the CU depth for FME can be selected 

by comparing the IME costs. This is possible because FME is a 

refinement process of IME so that the best CU depths after IME and 

the final best CU depths are highly correlated. To this end, the IME 

costs of all CUs in a CTU are compared. Then, the best IME CU 

depths are determined. From the selected depth, the CU depth(s) for 

FME are finally chosen in four different options:  the best IME depth 

only (best_only), the best IME depth plus one more depth along one 

direction (best_plus_one), the best IME depth plus one more depth 

along two directions (best_plus_minus), and best IME depth plus two 

additional depths (best_plus_two). In the case of depth 1 chosen from 

IME, FME is performed only for depth 1 in best_only option, depths 

1 and 2 in best_plus one option, depths 0, 1, and 2 in both 

best_plus_minus and best_plus_two option. The remaining depths are 

kept with the IME cost and used for CU depth decision in a later stage. 

d. Combination of Advanced PU Partition and Cu depth 

Decision 

- This combined algorithm predetermines both skippable CU depths 

and PU partition type for FME in order to get maximum complexity 

reduction with an acceptable BD-BR increase. First, it filters 

skippable CUs among 85 CUs in a CTU using the process of advanced 

CU depth decision algorithm. Then, for CUs which are determined to 

do FME, it discards unnecessary PU partitions from doing FME by 

using the process of skippable PU partition decision 

 

                 Final best CU depth   
Best IME depth 

Depth 0 Depth 1 Depth 2 Depth 3 

Depth 0 73.20% 18.46% 5.70% 2.64% 

Depth 1 8.19% 65.87% 20.23% 5.71% 

Depth 2 1.21% 13.52% 50.67% 34.60% 

Depth 3 0.02% 1.00% 9.04% 89.94% 
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2.2. Range-based interpolation algorithm 
a. Motional Similarity among Neighboring PUs 
- Conventionally, each PU is processed FME separately. This means 

that for a CTU, interpolated sub-pixels are generated separately for 

each PU. However, since spatially-neighboring PUs in one CTU 

usually have similar motion, as a result, after IME, predicted blocks 

of PUs have overlapped regions as illustrated in the Fig. 17 (a) below. 

As mentioned previously, in conventional FME algorithms, because 

each PU is processed FME separately, sub-pixels in overlapped 

regions are repeatedly calculated for different PUs which causes a 

great amount of redundant computation. Based on this observation, a 

new FME algorithm called range-based algorithm is proposed to 

reduce redundant interpolation computation caused by repeatedly 

interpolating pixels in overlapped regions. 

                       
(a)                                                                    (b)       

Fig. 17: (a) Predicted PUs with overlapped regions which are slashed. (b) The dot-

line union of predicted PUs 

b.   Range-based Interpolation Algorithm 
- The idea of the range-base algorithm is instead of processing each PU 

separately, finding the union region of PUs as illustrated in Fig. 17 (b) 

and then do interpolation for the whole united region. In order to find 

the union region of PUs, the algorithm partition the whole union into 

non-overlapped rectangles which are defined by key points as 

illustrated in Fig. 18 (a), where a rectangle (rec) contains information 

on the right and left x-coordinates (rec.left, rec.right) and top and 

bottom y-coordinates (rec.ytop, rec.ybottom) and can be defined by 
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two vertices X0, Y0 and X1, Y1 as illustrated in Fig. 18 (b). The 

algorithm process is illustrated in Fig. 19, in which Ny is the number 

of y-coordinates obtain by ytop and ybottom of all rectangles, and Nrec 

is the number of all rectangles. 

 

          
(a)                                                            (b) 

Fig. 18: (a) Defining the union of rectangles by key points. (b)  Defining a 

rectangle 

-   In HEVC, to do FME for one CTU in one reference frame, 593 PUs 

need to be processed. If the range-based algorithm is applied for this 

level, which means        Nrec = 593, the highest interpolation calculation 

reduction can be obtained while the complexity of the algorithm itself 

is also the highest. In order to limit the complexity of the algorithm, 

PUs are grouped into spatial groups and each group is represented by 

only one rectangle which is the smallest rectangle containing all PUs 

in that group. Then the range-based algorithm is applied for 

representing rectangles only. There are three levels for the algorithm. 

In level 1, the simplest, by considering 593 PUs in one group and 

representing it by one rectangle, then Nrec is 1. In level 2, 593 PUs are 

divided into five groups including four groups of 32x32 block and a 

one group of depth-0 PUs, where a group of 32x32 block includes all 

PUs from depth 1 to depth 3, which are spatially inside that 32x32 

block, and the group of depth-0 PUs includes all PU of the depth 0 

CU. Representing the five groups by five rectangles, and then the 

algorithm is applied for that 5 rectangles, which means Nrec=5. 
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Similarly, in level 3, dividing into 16x16 block level, there are 33 

groups with 33 representing rectangles. 

Sort all y-coordinates in increasing order 

Sort all rectangles in increasing order of xleft

i = 0 : Starting from Y[0]

o_idx = 0

i < Ny -1

j = 0 : Starting from rec[j]

1st_rec = 0

j < Nrec -1

rec[j].ytop <= Y[i] < rec[j].ybottom

1st_rec = 0

1st_rec = 1; temp.xleft = rec[j].xleft

temp.xright = rec[j].xright; j =j+1

rec[j].xleft <= temp.xright + 4

temp.xright = rec[j].xright

j =j+1

out[o_idx].y1 = Y[i]; 

out[o_idx].y2 = Y [i+1]

out[o_idx].x1 = temp.xleft; 

out[o_idx].x2 = temp.xright

temp.xleft = rec[j].xleft; 

temp.xright = rec[j].xright

j = j + 1; o_idx = o_idx + 1 ;

j =j+1

out[o_idx].y1 = Y[i]; out[o_idx].y2 = Y [i+1]

out[o_idx].x1 = temp.xleft; out[o_idx].x2 = temp.xright

i = i+1 ; o_idx = o_idx + 1

o_idx = 0
out[o_idx-1].x1 = temp.xleft &

out[o_idx-1].x2 =  temp.xright

out[o_idx-1].y2 = Y [i+1]

i = i+1 ;

End
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No

Yes

No
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No

Yes

No

Yes
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No

No

Yes

 

Fig. 19: Flow-chart of the range-based algorithm 
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Chapter 5. Experiment Results 
- The proposed algorithms were integrated into the reference software, 

HM-13.0. Six of class C test sequences are encoded in Low-delay P 

with quantization parameters (QP) 22, 27, 32, 37. And all hardware 

implementations were implemented standard 130nm CMOS 

technology 

 

1. Advanced Decision of PU Partitions and CU 

Depths for Fractional Motion Estimation in 

HEVC Algorithms 
- The number of FME calculation for a 4x4 block is defined as 

complexity unit. Then the complexity of doing FME of a block can be 

calculated:  

                         𝐶𝑏𝑙𝑜𝑐𝑘 = (𝑏𝑙𝑜𝑐𝑘ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑏𝑙𝑜𝑐𝑘_𝑤𝑖𝑑𝑡ℎ)/16            (13) 

The total complexity is accumulated by all complexity of blocks 

selected to do FME. 

1.1. Advanced Decision of PU Partitions 
- In this algorithm, the number of PU partitions for FME is adaptive and 

not the same for all reference frame. It uses a higher number of PU 

partition for temporally close reference frames, which are more 

important and correlated with the current frame. In order to find 

optimal numbers of PU partition types selected for each reference 

frame, it is necessary to analyze how selecting a certain number of PU 

partition affects each reference frame. In order to do that, the advanced 

PU decision algorithm is run for each reference frame only, for 

example for reference frame 0 only, to get the statistical results of how 

BD-BR changes according to the number of PU partition selected for 

FME in each reference frame.  

- The results are illustrated in Fig. 20, in which horizontal and vertical 

axes are complexity reduction and BD-BR increase respectively. Six 

markers illustrate 1, 2, 3, 4, 5, 6 and 7 partition types selected to do 

FME respectively. The results show that while complexity reduction 

is almost similar to all frames, BD-BR increase is most vulnerable to 

the PU partition type predetermination of reference frame 0, then 

reference frame 1. Reference frame 2 and 3 have less effect on BD-
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BR increase compared to the other two. For each reference frame, the 

numbers which give the best tradeoff between complexity reduction 

and BD-BR increase are chosen as optimal numbers. In Fig. 2, the 

result shows that 4 and 5 are optimal numbers of PU partition types 

predetermined for FME of reference frame 0; 3 and 4 are optimal 

numbers of reference frame 1; 2 and 3 are optimal numbers of 

reference frame 2 and reference frame 3. Based on this result, the 

algorithm is simulated for different combinations of a number of PU 

partition types selected for each frame. 

 

 

Fig. 20: PU partition decision algorithm for each reference frame alone 

a. Results of fixed number of PU partition for all 

reference frames 
- First, we run the experiments of algorithms with the number of PU 

partition selected to process FME in a CU is fixed the same for all 

reference frames. The experiment results are presented in Table 5 

below, where No. of PU partition type selected to do FME refers to 

the number of PU partition type selected to do FME. The other two 

columns are BD-BR increase and complexity reduction. 
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Table 5: Experiment results of PU algorithms with number of PU partition selected to do 

FME the same for all reference frames 

No. of PU partition type 
selected to do FME 

BDBR 
increase 

Complexity reduce 

1 2.278% 83.286% 

2 1.270% 66.572% 

3 1.230% 49.858% 

4 0.446% 37.394% 

5 0.283% 24.929% 

6 0.169% 12.465% 

7 0.000% 0.000% 

 

- This results will be used to compare with the advanced PU partition 

decision algorithm, in which the number of PU partition selected is 

different and adaptive for each reference frame. 

b. Results of Advanced PU Partition Decision Algorithm 
- The results is illustrated in Table 6 in which the first column 

represents the combination of all reference frame whose b-c-d-e PU 

selection means the algorithm predetermines b, c, d, and e number of 

PU partition types predetermined for FME for reference frame 0, 

reference frame 1, reference frame 2, and reference frame 3 

respectively.   

- Fig. 21 shows complexity reduction and BD-BR tradeoff of the 

proposed algorithm with an adaptive combination of the number of 

PU partitions and it with the number of PU partitions fixed the same 

for all reference frames. As illustrated in Fig. 3, the result shows that 

adaptive combination of the number of PU partitions predetermined 

for FME for each reference frame gives better performance compared 

with the number of PU partitions fixed the same for all reference 

frames. One of the best tradeoffs is the 5-3-2-2 PU selection 

combination which reduces 51.80% FME complexity with 0.60% BD-

BR increase 
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Table 6: Experiment results of Advanced PU Partition Decision with different 

combinations of different PU partition selected for each reference frame 

Combination of all 
reference frames 

BD-BR 
increase 

Complexity reduction 

7-6-6-5 PU selection -0.01% 12.37% 

6-6-6-4 PU selection 0.14% 18.60% 

5-4-3-3 PU selection 0.41% 40.40% 

5-3-2-2 PU selection 0.60% 51.80% 

4-3-2-2 PU selection 0.73% 54.97% 

3-2-1-1 PU selection 1.24% 70.60% 

 

 

Fig. 21: Comparison of Advance PU partition decision algorithm and fixed number of PU 

partition algorithm 
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1.2. Advanced Decision of CU Partitions 
- At CTU level, the proposed algorithm determines which CUs among 

85 CUs are selected for FME. Table 7 shows the BD-BR increase and 

complexity reduction of the algorithm. The first column represents the 

CU depth selection option whereas the second and third columns 

represent BD-BR increase and complexity reduction, respectively. As 

shown in the table, the best trade-off is the best_plus_minus option, in 

which complexity reduction is 27.95% and BD-BR increase is 0.27%. 

Table 7: Results of advanced CU depth decision 

Option BD-BR 
increase 

Complexity 
reduction 

best_only 2.94% 70.34% 
best_plus_one 0.66% 45.56% 
best_plus_minus_one 0.27% 27.95% 

best_plus_two 0.13% 17.19% 

 

1.3. Combination of Advanced PU Partition and 

CU Depth Decision 

Table 8: Results of Advanced PU Partition and CU Depth Decision 

Combination of PU partition type and 
CU depth predetermination 

BD-BR 
increase 

Complexity 
reduction 

best_plus_minus and 5-3-2-2 PU 1.08% 67.47% 
best_plus_minus and 4-3-2-2 PU 1.14% 69.94% 

best_plus_minus  and 3-2-1-1 PU 1.66% 80.64% 
best_plus_two  and 5-3-2-2 PU 0.95% 62.72% 

best_plus_two  and 4-3-2-2 PU 1.06% 65.69% 
best_plus_two   and 3-2-1-1 PU 1.53% 78.06% 

 

- The two proposed algorithms: Advanced PU Partition Decision and 

Advanced CU Depth Decision are combined into one algorithm called 

Advance PU Partition and CU Depth Decision Algorithm with the 

options which give reasonable BD-BR and complexity tradeoff. 

Therefore, the combination of CU depth selection with 

best_plus_minus and best_plus_2 options and PU partition type with 

5-3-2-2 PU, 4-3-2-2 PU, and 3-2-1-1 PU selections are evaluated. The 
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results are presented in Table 8, in which the first column represents 

the CU depth and PU partition type combination option, the second 

and third columns are BD-BR increase and complexity reduction 

respectively. The combination of best_plus_minus and 5-3-2-2 PU 

selection gives the most reasonable trade-off of 67.47% complexity 

reduction with 1.08% BD-BR increase. 

1.4. Comparison with Other Similar Works 
- There are some similar researches have been proposed previously [5], 

[9]. In [5], the algorithm uses PU Size-Dependent FME, in which it 

adopts interpolation free FME for depth 0/1 and full search for depth 

2 and skips FME for depth 3. Interpolation free FME is an algorithm 

to do FME refinement without interpolation based on IME results and 

mathematical model. In [9], the authors proposes an algorithm that 

reduces the complexity by restricting the Prediction Units (PUs) - 

among a total of 24 sizes - to the 4 square-shaped size. Those two are 

the most recent works that reduce FME’s complexity by reducing the 

number of FME refinements. 

- Table 9 shows the comparison of Advanced PU Partition and CU 

Depth Decision with that two algorithms. It is very clear that the 

proposed algorithm performs much better than the other two 

algorithm 

Table 9: Comparison of the proposed algorithm and other algorithms 

Algorithm BD-BR increase Complexity 
reduction 

Advanced PU partition and 
CU Depth Decision 

1.66% 80.64% 

[5] 2.7% 62.4% 

[9] 4% 74% 

 

 

 

 

 



49 
 

2. Range-based Algorithm 
- The algorithm is implemented in both HM software and hardware in 

a standard 130nm CMOS technology. The algorithm is implemented 

for three level: 

 Level 1: Only one rectangle as a union representing for all 593 

PUs in a CTU 

 Level 2: 593 PUs are divided into five groups including four 

groups of 32x32 block and a one group of depth-0 PUs, 

representing the five groups by five rectangles. Applying the 

algorithm for five rectangles to find the union to reduce 

redundancy caused by overlapping 

 Level 3: 593 PUs are divided into 16x16 blocks, which means 

that there are 33 groups with 33 representing rectangles. 

Applying the algorithm for five rectangles to find the union to 

reduce redundancy caused by overlapping 

2.1. Software Implementation 

Table 10: Interpolation Reduction Percentage for Each Level 

 Interpolation Reduction Percentage 

Level 1 Level 2 Level 3 

Seq. C1 68.98% 71.78% 74.87% 

Seq. C2 74.94% 77.17% 91.27% 

Seq. C3 80.25% 81.97% 89.65% 

Seq. C4 85.06% 86.31% 95.70% 

Seq. C5 89.40% 90.24% 91.73% 

Seq. C6 88.79% 89.67% 82.70% 

Average 84.92% 86.46% 87.65% 

 

- The algorithm is integrated into HEVC reference software HM and 

run for each level. The results are illustrated in Table 10 below, in 

which, Seq. C1 -> Seq. C6 refer to the video test sequence in class C, 

from sequence 1 to sequence 6. Level 1, Level 2, Level 3 and 

Interpolation Reduction Percentage show the percentage of 

interpolation calculation reduction when applying the algorithm for 

each level. It is demonstrated very clear that Sequence C1 gives the 
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lowest interpolation reduction percentage in all three level while 

sequence C4 and C4 give the highest interpolation reduction 

percentage. This is because Sequence C1 contains a lot of fast motion, 

while Sequence C4 and C4 does not. And from Level 1 to Level 3, the 

interpolation calculation reduction increases, however, the complexity 

added by the algorithm also increases from level 1 to level 3. To see 

the trade-off between interpolation calculation reduction and 

complexity added by the algorithm, it is necessary to implement the 

algorithm in hardware. 

 

2.2. Hardware Implementation of the Algorithm 
a. Trade-off between efficiency and complexity of the 

algorithm 
- After implementing in hardware, the results of both interpolation 

calculation reduction and complexity added by the algorithm for each 

level are out. Table 11 illustrates the results for each level. Apparently, 

the results show that from level 1 to level 3, the interpolation 

calculation reduction significantly compared to level 1, which 

requires the highest number of interpolation calculation. However, it 

comes with the price that the complexity representing by gate count 

added by the algorithm is also increased from level 1 to level 3. Based 

on the tradeoff between the complexity of the algorithm and number 

of interpolation calculation it requires, it is clear that level two seems 

to be the best one to apply this algorithm. Level 3 requires the lowest 

number of interpolation which is apparently is the best for FME, but 

it cannot compensate the complexity added by the algorithm which is 

too large compared with level 2 and level 1.   

Table 11: Complexity and Interpolation reduction of the algorithm for each level 

Level Number 

of Cycles 

Gate 

count 

Number of 

Interpolated 

Pixels/CTU 

Interpolation 

Reduction 

compared to 

level 1 

1 13 25,175 259,304 0% 

2 23 38,677 232,962 10.16% 

3 79 331,472 212,382 18.10% 
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b. Internal Memory Requirement  
- To apply the algorithm, huge internal memory requirements is another 

problem of this algorithm. Table 12 illustrates internal memory 

requirement for different cases in each level. It is apparent that the 

internal memory requirement is too large for all level. From the trade-

off between complexity and interpolation reduction and also 

considering the memory requirement, it is safe to say that level 1 is 

the best choice for range-based interpolation. 

Table 12: Internal Memory Requirement for Range-based algorithm 

 Level 1 Level 2 Level 3 

Bad cases 609.44 KB 554.37 KB 504.66 KB 

Good cases 76.24 KB 74.20 KB 69.44 KB 

Average 253.23 KB 231.93 KB 213.21 KB 

 

- However, the memory requirements are too large, it is critical to limit 

the internal memory requirement and adapt the algorithm with the 

restriction 

 

c. Memory Restriction  

- As discussed above, it is the best to apply the algorithm for level 2, 

which means that 593 PUs are divided into five groups including four 

groups of 32x32 block and a one group of depth-0 PUs as illustrated 

in Fig. 22 (a), where a group of 32x32 block includes all PUs from 

depth 1 to depth 3, which are spatially inside that 32x32 block, and 

the group of depth-0 PUs includes all PU of the depth 0 CU. 

Representing the five groups by five rectangles, and then the 

algorithm is applied for that 5 rectangles, which means Nrec=5 as 

illustrated in Fig. 22 (b). Then, the interpolators do interpolation at 

once inside that united region only.     

- After interpolating the whole rectangle region, the interpolated pixels 

need to be stored in internal memory. As the result, when the rectangle 

size is large, the number of interpolated pixels need to be stored is 

large, the internal buffer memory is large. Therefore, it is necessary to 

restrict the size of the internal buffer size or the size of the rectangles.  
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(a)                                                                  (b) 

Fig. 22: (a) Dividing 593 PUs of a CTU into five groups. (b) Finding the union of 

the five rectangles representing the five groups 

Table 13: SRAM requirement and rectangle size 

Rectangle 

size 

80*80 96*96 112*112 128*128 160*160 192*192 

SRAM 

Requirement 

(KB) 

100.63 144.75 196.88 257.00 401.25 577.50 

 

Table 14: Percentage of Out-range CTUs for each of SRAM restricted size 

Rectangle 

size 

80*80 96*96 112*112 128*128 160*160 192*192 

Percentage 

of Out-

range 

CTUs 

46.79% 39.52% 31.88% 25.96% 16.36% 9.26% 

 

- The internal buffer size should be restricted to 100.63 KB, which 

means that the rectangle size is restricted to be smaller than 80*80. 

Then CTUs whose the rectangle boundary is smaller than or equal to 

80*80, can be processed without any problem, but CTUs whose 

rectangle boundary is larger than 80*80, can be processed by the 
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algorithm. These CTUs are called Out-range CTUs. Table 14 

illustrates the percentage of Out-range CTUs per total CTUs for each 

of internal memory’s size restriction. It is clear that the smaller the 

internal memory size is restricted to, the bigger the percentage of Out-

range CTUs is 

d. Divide and Conquer Algorithm for Memory Restriction. 

- As mention above, to process Out-range CTUs, it is unavoidable to 

adjust the algorithm. There are 593 PUs at CTU level, enclosing all of 

them in one rectangle makes the rectangle size too big and therefore 

CTUs Out-range CTU. To avoid it, for Out-range CTU, 593 PUs are 

divided into five groups including four groups of 32x32 block and a 

one group of depth-0 PUs, where a group of 32x32 block includes all 

PUs from depth 1 to depth 3, which are spatially inside that 32x32 

block, and the group of depth-0 PUs includes all PU of the depth 0 

CU. Each one of the five groups is processed individually the same 

process as at CTU level. This means that for each group, all of the PUs 

in that group are enclosed by a rectangle. if the size of the rectangle 

boundary is small, it is processed by the range-base algorithm 

normally, if the size of the rectangle boundary is still big, it is further 

divided into smaller groups and recursively process them the same. 

- Run the algorithm with different memory size restriction, the 

experimental results are illustrated in  Table 15, Table 16, Table 17, 

Table 18, and Table 19 for 80*80, 96*96, 112*112, 128*128, and 

192*192 memory size restriction, respectively 

- As illustrated in Table 20, where Number of interpolated pixels/CTU 

is the average number of fractional pixels interpolated for a CTU, 

using range-based algorithm with divide and conquer for a certain 

memory size restriction, where Number of interpolated pixels/CTU 

(Original algorithm in HM) refers to the average number of fraction 

pixels interpolated for a CTU, using the conventional method as in 

HM reference software. Interpolation calculation reduction 

illustrates the percentage of interpolation calculation reduction of 

range-based algorithm compared with the original algorithm in HM. 

As predicted, the larger the memory size is, the bigger the 

percentage of interpolation calculation reduction is. 
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Table 15: Interpolation Calculation Reduction of the Algorithm with 80*80 memory size 

restriction 

 Number of 

interpolated 

pixels/CTU 

Number of 

interpolated 

pixels/CTU 

(Original 

algorithm in 

HM) 

Interpolation 

calculation 

reduction 

Seq. C1 631,118 1,720,025 63.31% 

Seq. C2 555,293 1,720,025 67.72% 

Seq. C3 482,281 1,720,025 71.96% 

Seq. C4 410,164 1,720,025 76.15% 

Seq. C5 338,598 1,720,025 80.31% 

Seq. C6 354,789 1,720,025 79.37% 

Average 398,139 1,720,025 76.85% 

 

Table 16: Interpolation Calculation Reduction of the Algorithm with 96*96 memory size 

restriction 

 Number of 

interpolated 

pixels/CTU 

Number of 

interpolated 

pixels/CTU 

(Original 

algorithm in 

HM) 

Interpolation 

calculation 

reduction 

Seq. C1 568,295 1,720,025 66.96% 

Seq. C2 495,153 1,720,025 71.21% 

Seq. C3 425,558 1,720,025 75.26% 

Seq. C4 357,059 1,720,025 79.24% 

Seq. C5 289,441 1,720,025 83.17% 

Seq. C6 304,833 1,720,025 82.28% 

Average 350,012 1,720,025 79.65% 
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Table 17: Interpolation Calculation Reduction of the Algorithm with 112*112 memory size 

restriction 

 Number of 

interpolated 

pixels/CTU 

Number of 

interpolated 

pixels/CTU 

(Original 

algorithm in 

HM) 

Interpolation 

calculation 

reduction 

Seq. C1 535,181 1,720,025 68.89% 

Seq. C2 463,631 1,720,025 73.05% 

Seq. C3 395,002 1,720,025 77.04% 

Seq. C4 326,994 1,720,025 80.99% 

Seq. C5 259,927 1,720,025 84.89% 

Seq. C6 273,735 1,720,025 84.09% 

Average 322,347 1,720,025 81.26% 

 

 

Table 18: Interpolation Calculation Reduction of the Algorithm with 128*128 memory size 

restriction 

 Number of 

interpolated 

pixels/CTU 

Number of 

interpolated 

pixels/CTU 

(Original 

algorithm in 

HM) 

Interpolation 

calculation 

reduction 

Seq. C1 518,291 1,720,025 69.87% 

Seq. C2 446,842 1,720,025 74.02% 

Seq. C3 377,545 1,720,025 78.05% 

Seq. C4 308,785 1,720,025 82.05% 

Seq. C5 240,405 1,720,025 86.02% 

Seq. C6 253,106 1,720,025 85.28% 

Average 305,183 1,720,025 82.26% 
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Table 19: Interpolation Calculation Reduction of the Algorithm with 192*192 memory size 

restriction 

 Number of 

interpolated 

pixels/CTU 

Number of 

interpolated 

pixels/CTU 

(Original 

algorithm in 

HM) 

Interpolation 

calculation 

reduction 

Seq. C1 448,162 1,720,025 73.94% 

Seq. C2 376,783 1,720,025 78.09% 

Seq. C3 309,357 1,720,025 82.01% 

Seq. C4 245,047 1,720,025 85.75% 

Seq. C5 183,981 1,720,025 89.30% 

Seq. C6 194,719 1,720,025 88.68% 

Average 247,753 1,720,025 85.60% 

 

Table 20: Interpolation Calculation Reduction of the Algorithm with different memory size 

restriction 

 Number of 

interpolated 

pixels/CTU 

Number of 

interpolated 

pixels/CTU 

(Original 

algorithm in 

HM) 

Interpolation 

calculation 

reduction 

80*80 398,139 1,720,025 76.85% 

96*96 350,012 1,720,025 79.65% 

112*112 322,347 1,720,025 81.26% 

128*128 305,183 1,720,025 82.26% 

192*192 247,753 1,720,025 85.60% 

 

e. Interpolator’s size decision 
- There are several interpolator sizes to consider for FME’s interpolator 

design. The most used ones are 4xN, 8xN, and 16xN interpolators, 

where 4, 8 and 16 are horizontal bandwidths of each interpolator 

respectively. To decide which interpolator is the most reasonable one 

to use, it is critical to consider the target throughput and the throughput 

each interpolator can offer.     
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- The target throughput is 3,200 cycle per CTU. Based on the 

throughput in the best case, worst case and in average each 

interpolator size offers as illustrated in Table 21. In order to meet the 

throughput requirement, the 16xN size interpolator, which is 

illustrated in Fig. 23 is the best to use.            

16xN

24x(N+8)

4 pixel interp 4 pixel interp 4 pixel interp 4 pixel interp

24 pixles

 

Fig. 23: an example of 16xN interpolator 

Table 21: Throughput of each interpolator size 

 

- As illustrated in Fig. 23, a 16xN interpolator can be comprised of four 

4xN interpolator work in parallel.  After range-based algorithm, the 

union information is sent to interpolators, based on that information, 

 4xN 8xN 16xN 

Throughput-worst case 8,795 

cycle/CTU 

4,539 

cycle/CTU 

2,307 

cycle/CTU 

Throughput-best case 1,108 

cycle/CTU 

572 

cycle/CTU 

291 

cycle/CTU 

Throughput-average 3,640 

cycle/CTU 

1,879 

cycle/CTU 

955 cycle 

/CTU 
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the 16xN interpolators start to interpolate from the top to the bottom 

of the region, and then save the interpolated pixels to SRAM. 

f. Internal Memory Reduction with Quarter Pixel’s 

Bilinear Estimation 

Table 22: Rectangle size, SRAM size requirement, and percentage of Out-range CTU 

with Quarter Pixel Bilinear Estimation 

Rectangle 

size 

80*80 96*96 112*11

2 

128*12

8 

160*16

0 

192*19

2 

Percentag

e of Out-

range 

CTUs 

46.79

% 

39.52

% 

31.88% 25.96% 16.36% 9.26% 

SRAM 

(KB) 

25.31 36.38 49.44 64.50 100.63 144.75 
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Fig. 24: Quarter pixels Bilinear Estimation 
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- The memory restriction is applied with the restriction of rectangle 

boundary size is smaller than 80*80. However, it is still large. To 

further reduce the memory size, the quarter pixel’s bilinear estimation. 

- In HEVC, quarter pixels are generated by 7-tap filters, which is one 

of the reasons why the interpolation process is very complicated. If 

quarter pixels are generated by bilinear filters as in H.264, then 

interpolation of quarter-pixels can be exempted because the 

Hadamard transform coefficients can be calculated from Hadamard 

transform coefficients of half pixels and integer pixel as the following 

equation: 

 

 

where O represents original block’s pixels, Q2, I0, and H1 represent 

quarter pixels, integer pixels and half pixels as illustrated in Fig. 24. 

- With Quarter Pixel’s Bilinear Estimation, the internal memory can be 

reduced significantly as illustrated in Table 22. The trade-off for it is 

the BD-BR increase of BDBR increase: 0.55% 

 

- If the 80*80 rectangle size restriction still holds, the n with Quarter 

Pixel’s Bilinear Estimation, the internal buffer size is just 25.31 KB. 

 

g. Comparison with other similar works 

Table 23: Comparison of the range-based algorithm and other algorithms 

Algorithm BD-BR increase Complexity 
reduction 

Range-based algorithm 0 % 86.46% % 

[5] 1.1% 34.87% 

[16] 2.07% 75% 

 

- There are some similar researches have been proposed previously [5], 

[16]. In [5] adopts interpolation free FME for depth 0 and depth 1. 

Interpolation free FME is an algorithm to do FME refinement without 

interpolation based on IME results and mathematical model. In [16], 

the authors utilize Quarter Pixel’s Bilinear Estimation scheme to 

𝐻𝑇(𝑂 − 𝑄2) = 𝐻𝑇 (𝑂 −
𝐼0 + 𝐻1 + 1

2
)  
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avoid interpolate quarter pixels and use 5T12S search pattern to 

reduce the number of search candidates from 25 to 12. 

- Table 23 shows the comparison of the range-based algorithm with that 

two algorithms. It is very clear that the proposed algorithm performs 

much better than the other two algorithm 
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Chapter 6. Conclusion 
 

- This work proposed two efficient algorithms to tackle two main 

causes of FME’s enormous computational complexity. As stated 

previously, FME is the computational bottleneck of real-time HEVC 

encoders due to two reasons: a large number of FME refinements 

processed and a complicated and redundant interpolation process. 

Normally, previous works attempt to solve one of the two reasons to 

reduce the complexity of FME in HEVC. However, this work 

proposes algorithms to solve both of the two reason in order to form a 

combined method which gives a high complexity reduction with 

minimal encoding performance decrease.  

- The first proposed algorithm, called the Advanced PU Partition and 

CU Depth Decision algorithm, attempts to reduce the number of FME 

refinements for PUs in a CTU. In previous works, several attempts 

have been successfully proposed for H.264 but direct application of 

these algorithms to HEVC results in a significant degradation of the 

encoding efficiency due to the difference of coding structures between 

HEVC and H.264 [3]. For HEVC, an efficient advanced PU partitions 

decision for FME is proposed in [3]. However, it does not take into 

account asymmetric partition which is one of the key tools improving 

the coding efficiency in HEVC compared to H. 264. In addition, it 

also does not take into account the variation of temporal correlation 

among frames and treats all the reference frames equally which can 

cause extra computational complexity. Therefore, this work proposes 

Advanced PU Partition and CU Depth Decision algorithm that takes 

into account all asymmetric partitions as well as exploits the variation 

of temporal correlation between the current frame and multiple 

reference frames to efficiently predetermine PU partition types and 

CU depths for FME. The algorithm is divided into two parts: 

Advanced PU Partition Decision, and Advanced CU Depth Decision. 

In the first part, for a given CU, the PU partition type for FME is 

selected by comparing the IME costs of the corresponding PU 

partitions. To this end, the IME costs of all 7 partition types (3 if it is 

8x8 CU) are compared for every reference frame. Note that each CU 

consists of two PUs for partition type 2NxN, Nx2N, 2NxnU, 2NxnD, 

nLx2N, nRx2N. The IME costs of the two PUs constituting a CU are 
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summed and then compared with each other. Then, the PU partition 

types are sorted according to the IME cost in each reference frame and 

the PU types with the smallest Nref_idx IME costs are selected for 

FME. The number Nref_idx is predefined for each reference frame. In 

general, a closer reference frame is more important than a distant 

reference frame. Therefore, a larger number is assigned as Nref_idx 

for a closer reference frame than a distant frame. All discarded 

partitions are kept with IME costs and used for best mode decision in 

a later stage. In the second part, IME costs of all CUs in a CTU are 

compared. Then, the best IME CU depths are determined. From the 

selected depth, the CU depth(s) for FME are finally chosen in four 

different options:  the best IME depth only (best_only), the best IME 

depth plus one more depth along one direction (best_plus_one), the 

best IME depth plus one more depth along two directions 

(best_plus_minus_one), and best IME depth plus two additional 

depths (best_plus_two). In the case of depth 1 chosen from IME, FME 

is performed only for depth 1 in best_only option, depths 1 and 2 in 

best_plus one option, depths 0, 1, and 2 in both best_plus_minus and 

best_plus_two option. The remaining depths are kept with the IME 

cost and used for CU depth decision in a later stage. The Advanced 

PU Partition and CU Depth Decision, consisting of the two parts, 

reduce dramatically the complexity of FME without significantly 

degrading the encoding performance. The experimental results show 

that the algorithm reduces up to 67.47% with a BD-BR increase 1.08%. 

The second algorithm, the Range-based algorithm, attempts to reduce 

redundancy in interpolation process of FME. In previous works, none 

of the so far proposed algorithms attempt to reduce the redundant 

interpolation caused by the similarity in motion among neighboring 

PUs. Therefore, this work proposes the Range-based algorithm that 

reduces a large amount of redundant interpolation calculation by 

avoiding repeatedly interpolating overlapped regions caused by the 

motional similarity among neighboring PUs. The algorithm divides 

593 PUs of a CTU into five spatial groups and each group is 

represented by only one rectangle which is the smallest rectangle 

containing all PUs in that group. The union region of the five 

representing rectangles is calculated, and then interpolation is 

processed inside that union region from the top to the bottom. By this 

manner, repeated interpolation calculations in overlapped regions 
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among PUs are reduced significantly. Experimental results show that 

the algorithm reduces up to 86.46% interpolation computation without 

any encoding performance decrease. And the Range-based algorithm 

for dividing PUs into spatial groups and finding the union of 5 

representing rectangles only requires 25k gates in a standard 130nm 

CMOS technology at an operating frequency of 647MHz. 

- The combination of the two algorithms creates a coherent solution to 

reduce the complexity of FME. Considering interpolation is a half of 

the complexity of an FME refinement, then the complexity of FME 

could be reduced more than 90% with a BD-BR increase of 1.66% 
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Abstract in Korean 
High-Efficiency Video Coding (HEVC) [1]은 최신의 영상 coding 표준으로 

Joint Collaborative Team on Video Coding (JCT-VC)에 의해 만들어졌으며, 

전신인 H.264 표준 대비 2 배의 부호화 효율과 상대적으로 높은 영상 

품질을 달성하는 것을 목표로 한다. Motion Estimation (ME)은 integer 

motion estimation (IME)과 fractional motion estimation (FME)로 

이루어지는데, HEVC 연산의 병목으로 작용한다. HM 참조 소프트웨어 

수행 시에 ME 단독으로 수행 시간의 50 % 가량을 차지하며, IME 가 대략 

20 %, FME 가 30 % 가량을 구성한다[2]. FME 의 막대한 연산 복잡도는 

다음의 두 가지 이유로 설명될 수 있다: 

 많은 FME refinement 실행: HEVC 에서는 크기가 대개 64x64 

픽셀인 CTU 단위로 프레임이 분할된다. 하나의 64x64 CTU 는 

depth 0의 64x64 CU 하나, depth 1의 32x32 CU 4개, depth 2의 

16x16 CU 16개, depth 3의 8x8 CU 64개를 포함하여 총 85개의 

CU 로 구성된다. 각 CU 는 8 가지의 허용되는 partition type 에 

따라 PU 로 쪼개진다. HEVC 부호화기는 대개 4 장의 참조 

프레임을 사용하여, 모든 가능한 PU 에 대해 FME refinement 를 

수행해본 후, CTU 의 최적 configuration 을 결정한다. 결국 HEVC 

참조 소프트웨어 HM 은 일반적으로 하나의 CTU를 위해, 매우 

많은 연산 자원을 소모하는 FME refinement 를 2,372번 수행해야 

한다. 

 복잡하고 중복이 많은 보간 과정: FME refinement 는 보간과 sum 

of absolute transformed difference (SATD) 로 구성되어 있는데, 

일반적으로 4 장의 참조 프레임의 해당되는 모든 PU 에 대해 
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수행된다. 결국 64x64 CTU 하나의 fractional pixel refinement를 

처리하기 위해서, FME 는 6,232,900 개의 fractional 픽셀을 

처리해야 한다. 게다가 HEVC 에서는 fractional 픽셀이 half 

fractional 픽셀과 quarter fractional 픽셀로 구성되어 있는데, 각 

fractional 픽셀에 대해 6-tap 필터와 bilinear 필터를 사용하는 이전 

표준들과 달리 8-tap 필터와 7-tap 필터로 보간이 수행된다. 

따라서 FME 의 보간 과정은 HEVC 부호화기에 극심한 연산 

부담이 된다. 

본 논문에서는 위의 두 가지 항목 각각을 해결할 수 있는 두 개의 

알고리즘을 제안한다. 첫 번째 알고리즘인 Advanced Decision of PU 

Partitions and CU Depths for FME 는 IME의 cost를 추정한 후, FME를 

위하여 CU level의 PU partition type과 coding tree unit (CTU) level의 CU 

depth 를 선택한다. 이 알고리즘은 1.08 % 의 BD-BR 저하로 복잡도를 

67.47 % 감소시킬 수 있어 효과적임을 실험 결과로 확인하였다. 두 번째 

알고리즘인 A Reduction of the Interpolation Redundancy for FME 는 

아무런 부호화 성능 저하 없이 보간 연산을 최대 86.46 % 감소시킨다. 두 

가지 알고리즘의 조합은 FME 의 복잡도를 줄이기 위한 완전한 

해결책이라고 할 수 있다. 보간이 FME refinement 복잡도의 절반을 

차지하는 것을 고려할 때, BD-BR 1.66 % 증가로 FME의 복잡도를 85% 

이상 감소시킬 수 있다. 

주요어 : High-Efficiency Video Coding; Motion estimation; Fractional 

motion estimation; Interpolation; Complexity Reduction 

학   번 : 2014-25271 
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