

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

Redundancy Reduction in

Interpolation Calculation for HEVC

Fractional Motion Estimation

HEVC의 소수 단위 움직임 추정을 위한 보간 필터

중복 연산 감소 방법

2016년 8월

Graduate School of Engineering

Seoul National University

 Electrical and Computer Engineering Major

Nguyen Ngoc Luong

Redundancy Reduction in

Interpolation Calculation for HEVC

Fractional Motion Estimation

지도교수 이혁재

이논문을 공학석사 학위논문으로 제출함

2016 년 08 월

Graduate School of Engineering

Seoul National University
Electrical and Computer Engineering Major

Nguyen Ngoc Luong

Nguyen Ngoc Luong 의공학석사 학위논문을

인준함

2016 년 08 월

Chair Soo-Ik Chae (Seal)

Vice Chair Huyk-Jae Lee (Seal)

Examiner Kiyoung Choi (Seal)

i

Abstract

High-Efficiency Video Coding (HEVC) [1] is the latest video coding standard

established by Joint Collaborative Team on Video Coding (JCT-VC) aiming

to achieve twice encoding efficiency with comparatively high video quality

compared to its predecessor, the H.264 standard. Motion Estimation (ME)

which consists of integer motion estimation (IME) and fractional motion

estimation (FME) is the bottleneck of HEVC computation. In the execution

of the HM reference software, ME alone accounts for about 50 % of the

execution time in which IME contributes to about 20 % and FME does around

30% [2].The FME’s enormous computational complexity can be explained

by two following reasons:

 A large number of FME refinements processed: In HEVC, a frame is

divided into CTU, whose size is usually 64x64 pixels. One 64x64

CTU consists of 85 CUs including one 64x64 CU at depth 0, four

32x32 CUs at depth 1, 16 16x16 CUs at depth 2, and 64 8x8 CUs at

depth 3. Each CU can be partitioned into PUs according to a set of 8

allowable partition types. An HEVC encoder processes FME

refinement for all possible PUs with usually 4 reference frames before

deciding the best configuration for a CTU. As a result, typically in

HEVC’s reference software, HM, for one CTU, it has to process 2,372

FME refinements, which consumes a lot of computational resources.

 A complicated and redundant interpolation process: Conventionally,

FME refinement, which consists of interpolation and sum of absolute

transformed difference (SATD), is processed for every PU in 4

reference frames. As a result, for a 64x64 CTU, in order to process

fractional pixel refinement, FME needs to interpolate 6,232,900

fractional pixels. In addition, In HEVC, fractional pixels which

consist half fractional pixels and quarter fractional pixels, are

interpolated by 8-tap filters and 7-tap filters instead of 6-tap filters and

bilinear filters as previous standards. As a result, interpolation process

in FME imposes an extreme computational burden on HEVC

encoders.

This work proposes two algorithms which tackle each one of the two above

reasons. The first algorithm, Advanced Decision of PU Partitions and CU

ii

Depths for FME, estimates the cost of IMEs and selects the PU partition types

at the CU level and the CU depths at the coding tree unit (CTU) level for FME.

Experimental results show that the algorithm effectively reduces the

complexity by 67.47% with a BD-BR degrade of 1.08%. The second

algorithm, A Reduction of the Interpolation Redundancy for FME, reduces up

to 86.46% interpolation computation without any encoding performance

decrease. The combination of the two algorithms forms a coherent solution to

reduce the complexity of FME. Considering interpolation is a half of the

complexity of an FME refinement, then the complexity of FME could be

reduced more than 85% with a BD-BR increase of 1.66%

Keyword: High-Efficiency Video Coding; Motion estimation; Fractional

motion estimation; Interpolation; Complexity Reduction

Student Number: 2014-25271

iii

List of Figures

Fig. 1: Full HD Video Frames ... 1

Fig. 2: Chronology of Video Coding Standards .. 4

Fig. 3: Coding Efficiency Comparison for Video Coding Standards 4

Fig. 4: HEVC compression ratio comparison ... 8

Fig. 5: Example of CTU partitioning and processing order when size of CTU is equal

to 64 × 64 and minimum CU size is equal to 8 × 8. (a) CTU partitioning. (b)

Corresponding coding tree structure. .. 11

Fig. 6: Rate-distortion curves of several combinations of the size of CTU and

maximum coding tree depth for Traffic sequences (2560 × 1600). The size of CTU

is represented by character “s” and maximum coding tree depth is represented by

character “h.” Each curve shows the result when s64h4, s16h2, and s64h2 are used,

respectively ... 13

Fig. 7: Example of CTU size and various CU sizes for various resolutions. 14

Fig. 8: Illustration of PU splitting types in HEVC. ... 16

Fig. 9: Examples of transform tree and block partitioning. (a) Transform tree. (b) TU

splitting for square-shaped PU. (c) TU splitting for rectangular or asymmetric shaped

PU. ... 17

Fig. 10: (a): Fractional positions in Luma motion compensation with 1/4 pel accuracy.

(b): Quarter-pel interpolation in H.264/AVC. ... 23

Fig. 11: Half-pixel horizontal and vertical interpolation ... 26

Fig. 12: Quarter pixel horizontal and vertical interpolation 26

Fig. 13: Two-iteration FME .. 29

Fig. 14: Single-iteration FME ... 30

Fig. 15: PU partition modes in IME cost increasing order 37

Fig. 16: The flow-chart of the advanced PU partition decision algorithm 37

Fig. 17: (a) Predicted PUs with overlapped regions which are slashed. (b) The dot-

line union of predicted PUs ... 40

Fig. 18: (a) Defining the union of rectangles by key points. (b) Defining a rectangle

 ... 41

Fig. 19: Flow-chart of the range-based algorithm ... 42

Fig. 20: PU partition decision algorithm for each reference frame alone 44

Fig. 21: Comparison of Advance PU partition decision algorithm and fixed number

of PU partition algorithm .. 46

Fig. 22: (a) Dividing 593 PUs of a CTU into five groups. (b) Finding the union of

the five rectangles representing the five groups .. 52

Fig. 23: an example of 16xN interpolator ... 57

Fig. 24: Quarter pixels Bilinear Estimation... 58

file:///C:/Users/pavel/Desktop/master%20thesis/master_graduation%20thesis_NguyenNgocLuong.docx%23_Toc453850088
file:///C:/Users/pavel/Desktop/master%20thesis/master_graduation%20thesis_NguyenNgocLuong.docx%23_Toc453850089
file:///C:/Users/pavel/Desktop/master%20thesis/master_graduation%20thesis_NguyenNgocLuong.docx%23_Toc453850092
file:///C:/Users/pavel/Desktop/master%20thesis/master_graduation%20thesis_NguyenNgocLuong.docx%23_Toc453850092
file:///C:/Users/pavel/Desktop/master%20thesis/master_graduation%20thesis_NguyenNgocLuong.docx%23_Toc453850092
file:///C:/Users/pavel/Desktop/master%20thesis/master_graduation%20thesis_NguyenNgocLuong.docx%23_Toc453850111

iv

List of Tables

Table 1: Simplified Form of Coding Tree Syntax Table ... 14

Table 2: Simplified Form of Transform Tree Syntax Table.................................... 18

Table 3: Reference frames' probability of being chosen as a final reference frame by

the best mode ... 35

Table 4: Probability of correlation of best CU depth after IME and final best CU

depth .. 39

Table 5: Experiment results of PU algorithms with number of PU partition selected

to do ... 45

Table 6: Experiment results of Advanced PU Partition Decision with different

combinations of different PU partition selected for each reference frame 46

Table 7: Results of advanced CU depth decision .. 47

Table 8: Results of Advanced PU Partition and CU Depth Decision 47

Table 9: Comparison of the proposed algorithm and other algorithms 48

Table 10: Interpolation Reduction Percentage for Each Level 49

Table 11: Complexity and Interpolation reduction of the algorithm for each level 50

Table 12: Internal Memory Requirement for Range-based algorithm 51

Table 13: SRAM requirement and rectangle size ... 52

Table 14: Percentage of Out-range CTUs for each of SRAM restricted size 52

Table 15: Interpolation Calculation Reduction of the Algorithm with 80*80 memory

size restriction ... 54

Table 16: Interpolation Calculation Reduction of the Algorithm with 96*96 memory

size restriction ... 54

Table 17: Interpolation Calculation Reduction of the Algorithm with 112*112

memory size restriction ... 55

Table 18: Interpolation Calculation Reduction of the Algorithm with 128*128

memory size restriction ... 55

Table 19: Interpolation Calculation Reduction of the Algorithm with 192*192

memory size restriction ... 56

Table 20: Interpolation Calculation Reduction of the Algorithm with different

memory size restriction ... 56

Table 21: Throughput of each interpolator size .. 57

Table 22: Rectangle size, SRAM size requirement, and percentage of Out-range

CTU with Quarter Pixel Bilinear Estimation .. 58

Table 23: Comparison of the range-based algorithm and other algorithms 59

v

Table of Contents
Abstract .. i

List of Figures ... iii

List of Tables .. iv

Chapter 1. Introduction ... 1

1. Introduction to Video Coding ... 1

1.1. Definition of Video Coding ... 1

1.2. The Need of Video Coding ... 1

1.3. Basics of Video Coding. .. 2

1.4. Video Coding Standard ... 2

2. Introduction to HEVC ... 6

2.1. HEVC Background and Development .. 6

2.2. Block Partitioning Structure in HEVC. ... 9

a. Coding Tree Unit ... 10

b. Coding Unit ... 11

c. Prediction Unit .. 15

d. Transform Unit .. 17

Chapter 2. Fractional Motion Estimation in HEVC and Related Works on

Complexity Reduction... 21

1. Motion Estimation ... 21

2. Fractional Motion Estimation .. 22

2.1 Interpolation .. 22

a. Issues in Interpolation Process of H.264/AVC 23

b. Interpolation Filter Design of HEVC .. 24

2.2 Sum of Absolute Transformed Difference Calculation 27

2.3 Fractional Motion Estimation Procedure... 28

a. Two-iteration FME .. 28

b. Single-iteration FME ... 29

Chapter 3. Complexity Reduction for FME .. 31

1. Problem Statement and Previous Studies .. 31

vi

1.1. Problem Statement .. 31

1.2. Previous Studies .. 32

2. Proposed Algorithms ... 34

2.1. Advanced Decision of PU Partitions and CU Depths for Fractional

Motion Estimation in HEVC ... 34

a. Reference Frame Selection Analysis ... 34

b. Advanced PU Partition Decision ... 35

c. Advanced CU Depth Decision .. 38

d. Combination of Advanced PU Partition and Cu depth Decision 39

2.2. Range-based interpolation algorithm .. 40

a. Motional Similarity among Neighboring PUs ... 40

b. Range-based Interpolation Algorithm ... 40

Chapter 5. Experiment Results .. 43

1. Advanced Decision of PU Partitions and CU Depths for Fractional Motion

Estimation in HEVC Algorithms .. 43

1.1. Advanced Decision of PU Partitions ... 43

a. Results of fixed number of PU partition for all reference frames 44

b. Results of Advanced PU Partition Decision Algorithm 45

1.2. Advanced Decision of CU Partitions .. 47

1.3. Combination of Advanced PU Partition and CU Depth Decision 47

1.4. Comparison with Other Similar Works ... 48

2. Range-based Algorithm ... 49

2.1. Software Implementation .. 49

2.2. Hardware Implementation of the Algorithm 50

a. Trade-off between efficiency and complexity of the algorithm 50

b. Internal Memory Requirement .. 51

c. Memory Restriction ... 51

d. Divide and Conquer Algorithm for Memory Restriction. 53

e. Interpolator’s size decision .. 56

f. Internal Memory Reduction with Quarter Pixel’s Bilinear Estimation ... 58

g. Comparison with other similar works ... 59

vii

Chapter 6. Conclusion ... 61

Acknowledgment .. 64

Bibliography .. 66

Abstract in Korean .. 68

1

Chapter 1. Introduction

1. Introduction to Video Coding

1.1. Definition of Video Coding
- Historically, video was stored as an analog signal on magnetic tape.

Around the time when the compact disc entered the market as a digital

format replacement for analog audio, it became feasible to also store

and convey video in digital form. Because of a large amount of storage

and bandwidth needed to record and convey raw video, a method was

needed to reduce the amount of data used to represent the raw video.

Since then, engineers and mathematicians have developed a number

of solutions for achieving this goal that involves compressing the

digital video data. Video compression is reducing the amount of data

used to represent the raw video. The process of reducing the size of a

video file is referred to as video coding or video compression. Video

compression or video coding is the process of compressing (encoding)

and decompressing (decoding) video.

1.2. The Need of Video Coding
- Virtually any digital video we encounter is distributed in a compressed

format. It is because raw video data would require bandwidth and

storage space far in excess of that available. For example, a raw full

HD color video data (without video compression) containing 30

frames per second would require a bandwidth of:

(1920*1080*8)*3*30 = 1.5 Gb/s

- A bandwidth of 1.5 Gb/s is way too high for current communication

channels and a 100 Gigabytes hard disk can store only13 minutes of a

raw Full HD video.

FULL HD

Video
frame

1920 pixels

1080

Pixels

Fig. 1: Full HD Video Frames

2

- As mentioned above, uncompressed video signals generate a huge

quantity of data and video use has become more and more ubiquitous.

There is also a constant hunger for higher quality video—e.g., in the

form of higher resolutions, higher frame rates, and higher fidelity—as

well as a hunger for greater access to video content. Moreover, the

creation of video content has moved from the being the exclusive

domain of professional studios toward individual authorship, real-

time video chat, remote home surveillance, and even “always on”

wearable cameras. As a result, video traffic is the biggest load of

communication networks and data storage worldwide—a situation

that is unlikely to fundamentally change; although anything that can

help ease the burden is an important development. As a result, video

compression is extremely necessary to save bandwidth and storage

memory for videos.

1.3. Basics of Video Coding.
- Most video coding algorithms and codecs combine spatial image

compression and temporal motion compensation. Video compression

is a practical implementation of source coding in information theory.

In practice, most video codecs also use audio compression techniques

in parallel to compress the separate, but combined data streams as one

package.

- The majority of video compression algorithms use lossy compression.

As in all lossy compression, there is a trade-off between video

qualities, the cost of processing the compression and decompression,

and system requirements. Highly compressed video may present

visible or distracting artifacts.

- Some video compression schemes typically operate on square-shaped

groups of neighboring pixels, often called macroblocks. These pixel

groups or blocks of pixels are compared from one frame to the next,

and the video compression codec sends only the differences within

those blocks. In areas of video with more motion, the compression

must encode more data to keep up with the larger number of pixels

that are changing. Commonly during explosions, flames, flocks of

animals, and in some panning shots, the high-frequency detail leads

to quality decreases or to increases in the variable bit-rate.

1.4. Video Coding Standard

3

- Standards define a common language that different parties can use so

that they can communicate with one another. Standards are thus, a

prerequisite to effective communication. Video coding standards

define the bitstream syntax, the language that the encoder and the

decoder use to communicate. Besides defining the bitstream syntax,

video coding standards are also required to be efficient, in that they

should support good compression algorithms as well as allow the

efficient implementation of the encoder and decoder.

- Multimedia communication is greatly dependent on good standards.

The presence of standards allows for a larger volume of

information exchange, thereby benefiting the equipment

manufacturers and service providers. It also benefits customers,

as now they have a greater freedom to choose between

manufacturers. All in all, standards are a prerequisite to multimedia

communication.

- Since the early 1990s, the development of video coding standards has

been driven by two parallel application spaces: real-time video

communication and distribution or broadcast of video content. The

corresponding specifications have been published by two main

standardization bodies, the International Telecommunications Union

(ITU) and the International Standardization Organization/

International Electrotechnical Commission (ISO/IEC). Here, a brief

overview of the evolution of video coding standards is provided with

a focus on the main corresponding application scenarios and the

corresponding main technical achievements. For the sake of

simplicity both, ITU recommendations and ISO/IEC standards are

referred to as standards in this section. The differences between the

two are detailed below. An overview of the timeline of the major

standards in the two standardization bodies is shown in Fig. 2. For all

standards listed in this timeline, several corrigenda and extensions

have been published over the time. Here, the publication dates of the

key versions of the standards have been included. It can be seen that

while having started on separate tracks, the two standardization

organizations have engaged in increasingly close collaboration,

specifically for achieving the latest milestones AVC and HEVC:

 ITU-T standards proposed by ITU-T Video Coding Experts

Group (VCEG) include the likes of H.261, H.262, H.263, and

H.26L.

4

 ISO/IEC standards proposed by ISO/IEC Moving Picture

Experts Group (MPEG) include the likes of MPEG1, MPEG2,

and MPEG4.

 The two groups VCEG and MPEG then joined together to

form The Joint Video Team (JVT) which proposed H.264 and

HEVC (H.265), the next generations of video coding standard.

- The following presents the chronology of Video Coding Standards:

Fig. 3: Coding Efficiency Comparison for Video Coding Standards

H.260

(1984)

H.261

(1990)

H.263

(1995)

MPEG-1

(1993)

MPEG-2

(1995)

MPEG-4

(1998)

H.264

(2003)

H.265

(2013)

IS
O

/I
EC

IS

O
/I

EC

Fig. 2: Chronology of Video Coding Standards

5

- An example of coding efficiency comparison for Video Coding

Standards is illustrated in Fig. 3. H.264 or MPEG-4 Part 10,

Advanced Video Coding (MPEG-4 AVC) is a video compression

format that is currently one of the most commonly used formats for

the recording, compression, and distribution of video content.

6

2. Introduction to HEVC

2.1. HEVC Background and Development
- The HEVC project was formally launched in January 2010 when a

joint Call for Proposals (CfP) was issued by the ITU-T Video Coding

Experts Group (VCEG) and the ISO/IEC Moving Picture Experts

Group (MPEG). Before launching the formal CfP, both organizations

had conducted investigative work to determine that it was feasible to

create a new standard that would substantially advance the state of the

art in compression capability—relative to the prior major standard

known as H.264/MPEG-4 Advanced Video Coding (AVC- the first

version of which was completed in May 2003). One notable aspect of

the investigative work toward HEVC was the “key technology area”

(KTA) studies in VCEG that began around the end of 2004 and

included the development of publicly-available KTA software

codebase for testing various promising algorithm proposals. In MPEG,

several workshops were held, and a Call for Evidence (CFE) was

issued in 2009. When the two groups both reached the conclusion that

substantial progress was possible and that working together on the

topic was feasible, a formal partnership was established and the joint

CfP was issued. The VCEG KTA software and the algorithmic

techniques found therein were used as the basis of many of the

proposals submitted in response to both the MPEG CfE and the joint

CfP.

- The major video coding standard directly preceding the HEVC project

was H.264/MPEG-4 AVC, which was initially developed in the

period between 1999 and 2003, and then was extended in several

important ways from 2003–2009. H.264/MPEG-4 AVC has been an

enabling technology for digital video in almost every area that was not

previously covered by H.262/MPEG-2 Video and has substantially

displaced the older standard within its existing application domains.

It is widely used for many applications, including broadcast of high

definition (HD) TV signals over satellite, cable, and terrestrial

transmission systems, video content acquisition and editing systems,

camcorders, security applications, Internet and mobile network video,

Blu-ray Discs, and real-time conversational applications such as video

chat, video conferencing, and telepresence systems.

7

- However, an increasing diversity of services, the growing popularity

of HD video, and the emergence of beyond HD formats (e.g., 4k×2k

or 8k×4k resolution) are creating even stronger needs for coding

efficiency superior to H.264/MPEG-4 AVC’s capabilities. The need

is even stronger when higher resolution is accompanied by stereo or

Multiview capture and display. Moreover, the traffic caused by video

applications targeting mobile devices and tablet PCs, as well as the

transmission needs for video-on-demand services, are imposing

severe challenges on today’s networks. An increased desire for higher

quality and resolutions is also arising in mobile applications. Interest

in developing a new standard has been driven not only by the simple

desire to improve compression as much as possible—e.g., to ease the

burden of video on storage systems and global communication

networks, but also to help enable the deployment of new services,

including capabilities that have not previously been practical—such

as ultra-high-definition television (UHDTV) and video with higher

dynamic range, wider color gamut, and greater representation

precision than what is typically found today.

- To formalize the partnership arrangement, a new joint organization

was created, called the Joint Collaborative Team on Video Coding

(JCT-VC). The JCT-VC met four times per year after its creation, and

each meeting had hundreds of attending participants and involved the

consideration of hundreds of contribution documents (all of which

were made publicly available on the web as they were submitted for

consideration).

- The project had an unprecedented scale, with a peak participation

reaching about 300 people and more than 1,000 documents at a single

meeting. Meeting notes were publicly released on a daily basis during

meetings, and the work continued between meetings, with active

discussions by email on a reflector with a distribution list with

thousands of members, and with formal coordination between

meetings in the form of work by “ad hoc groups” to address particular

topics and “core experiments” to test various proposals. Essentially

the entire community of relevant companies, universities, and other

research institutions was attending and actively participating as the

standard was developed.

- HEVC has been designed to address essentially all existing

applications of H.264/MPEG-4 AVC and to particularly focus on two

8

key issues: increased video resolution and increased use of parallel

processing architectures. The syntax of HEVC is generic and should

also be generally suited for other applications that are not specifically

mentioned above.

Fig. 4: HEVC compression ratio comparison

- As has been the case for all past ITU-T and ISO/IEC video coding

standards, in HEVC only the bitstream structure and syntax is

standardized, as well as constraints on the bitstream and its mapping

for the generation of decoded pictures. The mapping is given by

defining the semantic meaning of syntax elements and a decoding

process such that every decoder conforming to the standard will

produce the same output when given a bitstream that conforms to the

constraints of the standard. This limitation of the scope of the standard

permits maximal freedom to optimize implementations in a manner

appropriate to specific applications (balancing compression quality,

implementation cost, time to market, and other considerations).

However, it provides no guarantees of end-to-end reproduction

quality, as it allows even crude encoding techniques to be considered

conforming.

- To assist the industry community in learning how to use the standard,

the standardization effort not only includes the development of a text

9

specification document but also reference software source code as an

example of how HEVC video can be encoded and decoded. The draft

reference software has been used as a research tool for the internal

work of the committee during the design of the standard, and can also

be used as a general research tool and as the basis of products. A

standard test data suite is also being developed for testing

conformance to the standard.

2.2. Block Partitioning Structure in HEVC.
- The HEVC standard has adopted a highly flexible and efficient block

partitioning structure by introducing four different block concepts:

Coding Tree Unit (CTU), Coding Unit (CU), Prediction Unit (PU),

and Transform Unit (TU), which are defined to have clearly separated

roles. The terms Coding Tree Block (CTB), Coding Block (CB),

Prediction Block (PB), and Transform Block (TB) are also defined to

specify the 2-D sample array of one color component associated with

the CTU, CU, PU, and TU, respectively. Thus, a CTU consists of one

luma CTB, two chroma CTBs, and associated syntax elements. A

similar relationship is valid for CU, PU, and TU. Although the use of

a quadtree structure in video compression is not a new concept, the

coding tree approach in HEVC can bring additional coding efficiency

benefits by incorporating PU and TU quadtree concepts for video

compression. Leaf nodes of a tree can be merged or combined in a

general quadtree structured video coding scheme. After the final

quadtree is formed, motion information is transmitted to the leaf nodes

of the tree. L-shaped or rectangular-shaped motion partition is

possible through merging and combination of nodes. However, in

order to make such shapes, the merge process should be followed

using smaller blocks after further splitting occurs. In the HEVC block

partitioning structure, such cases are taken care of by the PU. Instead

of splitting one depth more for merging and combination, predefined

partition modes such as PART−2N×2N, PART−2N×N, and

PART−N×2N are tested and the optimal partition mode is selected at

the leaf nodes of the tree. It is worthwhile mentioning that PUs still

can share motion information through merging mode in HEVC.

Although a general quadtree structure without PU concept was

investigated by removing the symmetric rectangular partition modes

10

(PART−2N×N and PART−N×2N) from the syntax and replaced by

corresponding merge flags, both coding efficiency and complexity

was proved inferior to the current design.

- Another difference is the transform tree. Even though variable block

size transforms were used for quadtree structure motion compensation,

their usage was rather restricted. For example, transform size was

strictly combined with motion compensation block size. Even though

multiple transform size could be utilized, it was usual to use same size

transform in a motion compensated block. In HEVC, the motion

compensated residual can be transformed with a quadtree structure,

and the actual transform is performed at leaf nodes. Since the

transform tree is rooted from the leaf nodes of coding tree, this creates

a nested quadtree. This kind of nested quadtree exists since the

transform tree is started from the CU regardless of partition modes,

i.e., PU shapes. This is a way to construct a nested quadtree even

though we have PU concepts that differ from a general quadtree

structure.

- Another noticeable aspect is the full utilization of depth information

for entropy coding. For example, entropy coding of HEVC is highly

reliant on the depth information of quadtree. For syntax elements such

as inter−pred−idc, split−transform−flag, cbf−luma, cbf−cb and cbf−cr,

depth dependent context derivation is heavily used for coding

efficiency. It has been demonstrated that this can break the

dependency with neighboring blocks with less line buffer requirement

in hardware implementations because information of above CTU does

not need to be stored. In the following sections, the block partitioning

structures in the HEVC standard are presented in conjunction with a

detailed explanation of those unit definitions.

a. Coding Tree Unit
- A slice contains an integer multiple of CTU, which is an analogous

term to the macroblock in H.264/AVC. Inside a slice, a raster scan

method is used for processing the CTU.

- In main profile, the minimum and the maximum sizes of CTU are

specified by the syntax elements in the sequence parameter set (SPS)

among the sizes of 8×8, 16×16, 32×32, and 64×64. Due to this

flexibility of the CTU, HEVC provides a way to adapt according to

various application needs such as encoder/decoder pipeline delay

11

constraints or on-chip memory requirements in a hardware design. In

addition, the support of large sizes up to 64×64 allows the coding

structure to match the characteristics of the high definition video

content better than previous standards; this was one of the main

sources of the coding efficiency improvements seen with HEVC.

(a) (b)

b. Coding Unit
- The CTU is further partitioned into multiple CU to adapt to various

local characteristics. A quadtree denoted as the coding tree is used to

partition the CTU into multiple CUs.

 Recursive Partitioning from CTU: Let CTU size be 2N×2N

where N is one of the values of 32, 16, or 8. The CTU can be

a single CU or can be split into four smaller units of equal sizes

of N×N, which are nodes of the coding tree. If the units are

leaf nodes of coding tree, the units become CUs. Otherwise, it

can be split again into four smaller units when the split size is

equal or larger than the minimum CU size specified in the SPS.

This representation results in a recursive structure specified by

a coding tree. Fig. 5 illustrates an example of CTU partitioning

and the processing order of CUs when the size of CTU is equal

to 64 × 64 and the minimum CU size is equal to 8 × 8. Each

square block in Fig. 5(a) represents CU. In this example, a

CTU is split into 16 CUs which have different sizes and

positions.

Fig. 5: Example of CTU partitioning and processing order when size of CTU is

equal to 64 × 64 and minimum CU size is equal to 8 × 8. (a) CTU partitioning. (b)

Corresponding coding tree structure.

1

1 1 0 0

0 0 0 0 0 0 1 1

64x6

4

32x3

2

16x1

6

8x8

12

Fig. 5(b) shows corresponding coding tree structure

representing the structure of the CTU partitioning in Fig. 5(a).

Numbers on the tree represent whether the CU is further split.

In Fig. 5(a), CUs are processed by following the dotted line.

This processing order of CUs can be interpreted as a depth first

traversing in the coding tree structure. If CTU size of 16 × 16

and the minimum CU size of 8 × 8 are used, the resultant

structure is roughly similar to that of H.264/AVC. HEVC

utilizes CU as a unit to specify which prediction scheme is

used for intra and inter predictions. Since the minimum CU

size can be 8 × 8, the minimum granularity for switching

different prediction schemes is 8 × 8, which is smaller than the

macroblock size of H.264/AVC.

 Benefits of Flexible CU Partitioning Structure: This kind of

flexible and recursive representation provides several major

benefits. The first benefit comes from the support of CU sizes

greater than the conventional 16×16 size. When the region is

homogeneous, a large CU can represent the region by using a

smaller number of symbols than is the case using several small

blocks.

Fig. 6 shows rate-distortion curves of several combinations of

the size of CTU and maximum coding tree depth for Traffic

2560×1600@30 Hz sequence. The results are obtained using

HM-6.0 Main profile using low delay constraint of the

common test condition of HEVC. The size of CTU is

represented by character “s” and maximum coding tree depth

is represented by character “h” in the figure. Each curve shows

the result when s64h4, s16h2, and s64h2 are used, respectively.

There is a big gap of coding efficiency about 13.7% in

Bjøntegaard delta bitrate between s64h4 and s16h2. This result

illustrates that adding large size CU is an effective means to

increase coding efficiency for higher resolution content.

Coding efficiency difference between s64h4 and s64h2 is

about 19.5% and it is also noticeable that coding efficiency

difference between s64h2 and s16h2 is similar at low bit rate,

but s16h2 shows better coding efficiency at high bit rate

because smaller size blocks cannot be utilized for s64h2,

where minimum CU size is 32 × 32. These results can be

13

interpreted as showing that large size CU is important to

increase coding efficiency in general but still small size CU

should be used together to cover regions which large CU

cannot be applied to successfully.

Furthermore, supporting arbitrary sizes of CTU enables

the codec to be readily optimized for various content,

applications, and devices. Compared to the use of fixed

size macroblock, support of various sizes of CTU is one

of the strong points of HEVC in terms of coding

efficiency and adaptability for contents and applications.

This ability is especially useful for low-resolution video

services, which are still commonly used in the market. By

choosing an appropriate size of CTU and maximum

hierarchical depth, the hierarchical block partitioning

structure can be optimized to the target application.

Fig. 6: Rate-distortion curves of several combinations of the size of CTU

and maximum coding tree depth for Traffic sequences (2560 × 1600). The

size of CTU is represented by character “s” and maximum coding tree

depth is represented by character “h.” Each curve shows the result when

s64h4, s16h2, and s64h2 are used, respectively

14

Fig. 7: Example of CTU size and various CU sizes for various

resolutions.

Table 1: Simplified Form of Coding Tree Syntax Table

coding−tree(x0, y0, log2CbSize, cbDepth) {

split−coding−unit−flag[x0][y0]

 if(split−coding−unit−flag[x0][y0]) {

coding−tree(x0, y0, log2CbSize−1, cbDepth+1)

coding−tree(x1, y0, log2CbSize−1, cbDepth+1)

coding−tree(x0, y1, log2CbSize−1, cbDepth+1)

coding−tree(x1, y1, log2CbSize−1, cbDepth+1)

 } else {

 coding−unit(x0, y0, log2CbSize)

 }

 }

Fig. 7 shows examples of various CTU sizes and CU sizes

suitable for different resolutions and types of content. For

example, for an application using 1080p content that is known

to include only simple global motion activities, a CTU size of

15

64 and depth of 2 may be an appropriate choice. For more

general 1080p content, which may also include complex

motion activities of small regions, a CTU size of 64 and a

maximum depth of 4 would be preferable.

Finally, by eliminating the distinction between macroblock

and sub macroblock and using only CU, the multilevel

hierarchical quadtree structure can be specified in a very

simple and elegant way. Together with the size-independent

syntax representation, syntax items of one general size may be

specified for the remaining coding tools.

Table 1 shows the recursive part of the coding tree syntax in

simplified form. As shown in the table, the splitting process of

coding tree can be specified recursively and all other syntax

elements can be represented in the same way regardless of the

size of CU. This kind of recursive representation is very useful

in terms of reducing parsing complexity and improving clarity

when the quadtree depth is large.

c. Prediction Unit
- One or more PUs are specified for each CU, which is a leaf node of

coding tree. Coupled with the CU, the PU works as a basic

representative block for sharing the prediction information. Inside one

PU, the same prediction process is applied and the relevant

information is transmitted to the decoder on a PU basis. A CU can be

split into one, two or four PUs according to the PU splitting type.

HEVC defines two splitting shapes for the intra-coded CU and eight

splitting shapes for inter-coded CU. Unlike the CU, the PU may only

be split once.

 PU Splitting Type: Similar to prior standards, each CU in

HEVC can be classified into three categories: skipped CU,

inter-coded CU, and intra-coded CU. An inter-coded CU uses

motion compensation scheme for the prediction of the current

block while an intra-coded CU uses neighboring reconstructed

samples for the prediction. A skipped CU is a special form of

inter-coded CU where both the motion vector difference and

the residual energy are equal to zero. For each category, PU

splitting type is specified differently as shown in Fig. 8 when

the CU size is equal to 2N×2N. As shown in the figure, only

16

PART−2N×2N PU splitting type is allowed for the skipped

CU.

Fig. 8: Illustration of PU splitting types in HEVC.

For the intra-coded CU, two possible PU splitting types of

PART−2N×2N and PART−N×N are supported. Finally, total

eight PU splitting types are defined as two square shapes

(PART−2N×2N, PART−N×N), two rectangular shapes

(PART−2N×N and PART−N×2N), and four asymmetric

shapes (PART−2N×nU, PART−2N×nD, PART−nL×2N, and

PART−nR×2N) for inter-coded CU. Although more

sophisticated partitioning was considered, but current PU

splitting types were chosen as a good tradeoff between

encoding complexity and coding efficiency.

Note that all information related to the prediction scheme is

specified on a PU basis. For instance, the most probable mode

index and intra prediction mode for intra coded CU or merge

flag, merge index, inter prediction flag, motion vector

prediction index, reference index, and motion vector

difference for inter-coded CU are unique per PU. For most

cases, PU partitioning of chroma block shares the same

splitting of luma component; however, when the CU size is

17

equal to 8×8 and PART−N×N is used for the PU splitting type,

PART−2N×2N is used for the chroma block to prevent the

block size from being less than 4 × 4.

 Constraints According to CU Size: In PART−N×N, CU is split

into four equal sizes PUs, which is conceptually similar to the

case of four equal-size CUs when the CU size is not equal to

the minimum CU size. Thus, HEVC disallows the use of

PART−N×N except when the CU size is equal to the minimum

CU size. It was observed that this design choice can reduce the

encoding complexity significantly while the coding efficiency

loss is marginal.

To reduce the worst-case complexity, HEVC further restricts

the use of PART−N×N and asymmetric shapes. In the case of

inter-coded CU, the use of PART−N×N is disabled when the

CU size is equal to 8 × 8. Moreover, asymmetric shapes for

inter-coded CU are only allowed when the CU size is not equal

to the minimum CU size.

Fig. 9: Examples of transform tree and block partitioning. (a)

Transform tree. (b) TU splitting for square-shaped PU. (c) TU

splitting for rectangular or asymmetric shaped PU.

d. Transform Unit

18

- Similar with the PU, one or more TUs are specified for the CU. HEVC

allows a residual block to be split into multiple units recursively to

form another quadtree which is analogous to the coding tree for the

CU. The TU is a basic representative block having residual or

transform coefficients for applying the integer transform and

quantization. For each TU, one integer transform having the same size

to the TU is applied to obtain residual coefficients. These coefficients

are transmitted to the decoder after quantization on a TU basis.

 Residual Quadtree: After obtaining the residual block by

prediction process based on PU splitting type, it is split into

multiple TUs according to a quadtree structure. For each TU,

an integer transform is applied. The tree is called transform

tree or residual quadtree (RQT) since the residual block is

partitioned by a quadtree structure and a transform is applied

to each leaf node of the quadtree.

Table 2: Simplified Form of Transform Tree Syntax Table

Similar to the coding tree, which is represented by a series of

split−coding−unit−flag, RQT is also structured by successive

signaling of the syntax element split−transform−flag in a

recursive manner. RQT can be classified into two cases having

square shapes and nonsquare shapes, and they are denoted as

square residual quadtree (SRQT) and nonsquare residual

transform−tree(trafoDepth, blkIdx) {

 no−residual−data−flag

 if(!no−residuual−data−flag) {

 split−transform−flag[x0][y0][trafoDepth]

 if(split−transform−flag[x0][y0][trafoDepth]) {

 transform −tree(trafoDepth+1, 0)

 transform −tree(trafoDepth+1, 1)

 transform −tree(trafoDepth+1, 2)

 transform −tree(trafoDepth+1, 3)

 } else {

 transform −unit(trafoDepth)

 }

 }

 }

19

quadtree (NSRQT), respectively. The NSRQT was adopted

temporarily, but excluded in the final draft text specification.

Table 2 shows a syntax table for the recursive structure of RQT

 Nonsquare Partitioning: SRQT is constructed when PU

splitting type is square shape while NSRQT is utilized for

rectangular and asymmetric shapes. For NSRQT, transform

shape is horizontal when the choice of the partition mode is a

horizontal type such as PART−2N×N, PART−2N×nU, and

PART−2N×nD. The same rule is applied to the vertical type

case such as PART−N×2N, PART−nL×2N, and

PART−nR×2N. Although the syntax of SRQT and NSRQT is

the same, as depicted in Table III, the shapes of TUs at each

transform tree depth are defined differently for SRQT and

NSRQT. Fig. 9 illustrates an example of transform tree and

corresponding TU splitting. Fig. 9(a) represents transform tree.

Fig. 9(b) shows TU splitting when the PU shape is square. Fig.

9(c) shows TU splitting when the PU shape is rectangular or

asymmetric. Although they share the same transform tree, the

actual TU splitting is different depending on the PU splitting

type.

 Transform across Boundary: In HEVC, both the PU size and

the TU size can reach the same size of the corresponding CU.

This leads to the fact that the size of TU may be larger than

that of the PU in the same CU, i.e., residuals from different

PUs in the same CU can be transformed together. For example,

when the TU size is equal to the CU size, the transform is

applied to the residual block covering the whole CU regardless

of the PU splitting type. Note that this case exists only for

inter-coded CU since the prediction is always coupled with the

TU splitting for intra coded CU.

 Maximum Depth of Transform Tree: The maximum depth of

transform tree is closely related to the encoding complexity.

To provide the flexibility on this feature, HEVC specifies two

syntax elements in the SPS which control the maximum depth

of transform tree for intra coded CU and inter coded CU,

respectively. The case when the maximum depth of transform

tree is equal to 1 is denoted as implicit TU splitting since there

20

is no need to transmit any information on whether the TU is

split. In this case, the transform size is automatically adjusted

to be fit inside the PU rather than allowing transform across

the boundary. The coding efficiency loss of implicit TU

partitioning is about from 0.7% to 1% compared to the cases

RQT depth is equal to 2.

21

Chapter 2. Fractional Motion

Estimation in HEVC and Related

Works on Complexity Reduction

1. Motion Estimation
- One of the most important coding tools used in the HEVC is the inter-

frames prediction, where is located the Motion Estimation

(ME) process. The ME explores the temporal redundancy

from the previously encoded frames, called reference frames, to

encode the current one. With this method, it is possible to reduce the

amount of data necessary to represent each frame since it is possible

to transmit and store only the difference between the reference

frame and the current frame, and a motion vector.

- In ME, the picture to be coded is first divided into blocks, and for each

block, an encoder searches reference pictures to find the best matching

block. The best matching block is called the prediction of the

corresponding block and the difference between the original and the

prediction signal is coded by various means, such as transform coding,

and transmitted to a decoder. The relative position of the prediction

with respect to the original block is called a motion vector and it is

transmitted to the decoder along with the residual signal. The true

displacements of moving objects between pictures are continuous and

do not follow the sampling grid of the digitized video sequence. Hence,

by utilizing fractional accuracy for motion vectors instead of integer

accuracy, the residual error is decreased and coding efficiency of

video coders is increased. If a motion vector has a fractional value, the

reference block needs to be interpolated accordingly. The

interpolation filter used in video coding standards are carefully

designed taking into account many factors, such as coding efficiency,

implementation complexity, and visual quality.

- In HEVC, the ME process is divided into two steps: integer motion

Estimation (IME) and Fractional Motion Estimation (FME). FME is

a refinement process with fractional pixel accuracy level of IME.

22

2. Fractional Motion Estimation
- FME by increasing the precision of motion vectors enhances the

compression performances of a video encoder but introduces an extra

computation cost. FME process is divided into two steps:

Interpolation and Sum of Absolute Transformed Difference

calculation.

2.1 Interpolation
- As in H.264/AVC, HEVC standard supports motion vectors with

quarter-pel accuracy. Compared to H.264/AVC, H.265/HEVC

includes various modifications to the interpolation filter design.

During the development of the H.265/HEVC standard, several

techniques were considered, including switched interpolation filter

with offset (SIFO), maximum order of interpolation with minimal

support (MOMS), one-dimensional directional interpolation filter

(DIF), and DCT-based interpolation filter (DCT-IF). The latest design

of the H.265/HEVC interpolation filter is based on the simplified form

of the DCT-IF with the addition of the high-accuracy motion

compensation processing. These modifications yield an average 4.0%

bitrate reduction over the H.264/AVC interpolation filter for luma and

11.3% bitrate reduction for chroma components. The coding

efficiency gains become very significant for some sequences and can

reach a measured maximum of 21.7%.

- H.264/AVC supports motion vectors with quarter-pel accuracy for the

luma component and one-eighth pel accuracy for chroma components

for video in the 4:2:0 color format. Although some video sequences

may benefit from higher motion vector accuracy, it was found that

quarter-pel accuracy provides the best trade-off between prediction

accuracy and signaling overhead. Fig. 10 (a) denotes the fractional pel

positions for the luma interpolation process of H.264/AVC. To

minimize the number of filtering operations, H.264/AVC uses various

combinations of separable one-dimensional filters according to the

fractional sample position. For example, if one of the motion vector

components is fractional but another is an integer, then interpolation

is applied along only one direction (vertical or horizontal). If both

motion vector components are fractional, a horizontal (vertical)

interpolation filtering is done followed by vertical (horizontal)

filtering while the intermediate results are stored in a buffer. The

23

samples at half-pel positions and are derived by applying a 6-tap filter

as shown in (1) and (2). The samples at half-pel positions are

computed similarly but from the non-rounded intermediate half-pel

samples rather than the integer-pel samples as shown in (3) and (4).

(a) (b)

Fig. 10: (a): Fractional positions in Luma motion compensation with 1/4 pel

accuracy. (b): Quarter-pel interpolation in H.264/AVC.

- The samples at quarter-pel positions are calculated by averaging the

two nearest samples located at integer-pel and half-pel. positions. This

is illustrated in Fig. 10 (b), where each quarter-pel position is

connected to two samples at half-pel or integer-pel positions

indicating the corresponding samples used in the averaging process as

shown in (5), and (6).

a. Issues in Interpolation Process of H.264/AVC
- There are several issues with the interpolation process of H.264 as

following:

 Number of filter coefficients: a six-tap filter is used for half-

pel positions of luma samples and a bi-linear filter for eighth-

pel positions of chroma samples may not be sufficient for video

sequences acquired with modern recording devices, which

typically contain more high-frequency information than older

video sequences. In addition, since the optimality of the

interpolation filter is related to all other parts of the video

compression system, the interpolation filter should be re-

designed according to other parts of the H.265/HEVC standard.

24

 Cascaded process for quarter-pel positions: samples at

quarter-pel positions are generated by averaging two

neighboring samples. This cascaded process introduces an

intermediate rounding step. This may introduce undesirable

latency and accuracy losses.

 Inconsistent averaging across quarter-pel positions:

samples at quarter-pel positions are derived differently

according to their fractional positions.

 Loss of accuracy from cascaded rounding operations: the

interpolation filter defined in H.264/AVC has a large number

of intermediate rounding operations. The number of rounding

operations can go up to 7 when specific quarter-pel positions

are used with bi-directional prediction. Every rounding

operation introduces an undesirable rounding error that

accumulates over frames. The number of rounding operations

should thus be minimized.

b. Interpolation Filter Design of HEVC
- To overcome the above issues, H.265/HEVC introduces several new

features including redesigned interpolation filters for luma and

chroma as well as a high-accuracy motion compensation process for

uni- and bi-directional prediction which is mostly free from rounding

errors. The key differences between H.264/AVC and H.265/HEVC

interpolation can be summarized as:

 Re-designed luma and chroma interpolation filter: to

improve the filter response in the high-frequency range, luma

and chroma interpolation filters are re-designed. The luma

interpolation process uses a symmetric 8-tap filter for half-pel

positions and an asymmetric 7-tap filter for quarter-pel

positions to minimize the additional complexity of the motion

compensation process. For chroma samples, a 4-tap filter is

introduced.

 Non-cascaded process for quarter-pel positions: rather than

averaging two neighboring samples, H.265/HEVC directly

derives quarter-pel samples by applying two one-dimensional

filters similar to the half-pel center position in H.264/AVC.

Since it is consistent with all quarter-pel positions, the

25

inconsistency issues for different quarter-pel positions in

H.264/AVC no longer exist in H/265/HEVC.

 High-accuracy motion compensation operation: in

H.265/HEVC, intermediate values used in interpolation are

kept at a higher accuracy. In addition, the rounding of two

prediction blocks used in bi-directional prediction is delayed

and merged with the rounding in the bi-directional averaging

process. It should be noted that the H.265/HEVC interpolation

process guarantees that no 16-bit overflow occurs at any

intermediate stage by controlling the accuracy according to the

source bit depth.

- For fractional positions a, b and c, horizontal 1D filter is used. For

fractional positions d, h and n, vertical 1D filter is used.For remaining

positions, first horizontal 1D filter is applied for extended block and

then vertical 1D filter is used. Half-pixel vertical and horizontal

interpolation are illustrated as in Fig. 11, and quarter pixel vertical and

horizontal interpolation are illustrated as in Fig. 12.

- The interpolation filter is applied in motion compensation for

fractional position values generation. Current motion vector accuracy

for luma components in HEVC is still quarter-pel, so 15 fractional-pel

pixels will be interpolated as showed in Fig. 10 (a). In the HEVC,

three types of 8-tap filters are adopted as shown in equation (7), (8),

and (9). According to the fractional position to be predicted, one of

the three filters is applied for.

b0,0 = (A−2,0 − 5A−1,0 + 20A0,0 + 20A1,0 − 5A2,0 + A3,0 + 16) ≫ 5 (1)

h0,0 = (A0,−2 − 5A0,−1 + 20A0,0 + 20A0,1 − 5A0,2 + A0,3 + 16) ≫ 5 (2)

hn
′ = An,−2 − 5An,−1 + 20An,0 + 20An,1 − 5An,2 + An,3 (3)

j0,0 = h−2
′ − 5h−1

′ + 20h0
′ + 20h1

′ − 5h2
′ + h3

′ + 512) ≫ 10 (4)

a0,0 = (A0,0 + b0,0 + 1) ≫ 1 (5)

f0,0 = (b0,0 + j0,0 + 1) ≫ 1 (6)

a0,0 = (−A−3,0 + 4A−2,0 − 10A−1,0 + 58A0,0 + 17A1,0 − 5A2,0 + A3,0 +

 + 32) ≫ 6 (7)

b0,0 = (−A−3,0 + 4A−2,0 − 11A−1,0 + 40A0,0 + 40A1,0 − 11A2,0 +

 +4A3,0 − A4,0 + 64) ≫ 7 (8)

26

c0,0 = (A−2,0 − 5A−1,0 + 17A0,0 + 58A1,0 − 10A2,0 + 4A3,0 − A4,0 +

 +32) ≫ 6 (9)

HFIR HFIR HFIR HFIR HFIR

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

HFIR

VFIR VFIR

Integer pixel Horizontal half-pel filter

8-bit input vertical half-pel
filter, including an array of 8

8-bit registers

16-bit input vertical half-pel
filter, including an array of 8

16-bit registers

Fig. 11: Half-pixel horizontal and vertical interpolation

QF1QF2QF1QF1 QF2

V
Q
F1

V
Q
F1

V
Q
F1

V
Q
F1

V
Q
F1

V
Q
F1

V
Q
F1

V
Q
F1

QF2QF2 QF1

V
Q
F1

V
Q
F1

V
Q
F1

V
Q
F1

V
Q
F2

V
Q
F2

V
Q
F2

V
Q
F2

V
Q
F2

V
Q
F2

V
Q
F2

V
Q
F2

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
FI
R

V
Q
F2

V
Q
F2

V
Q
F2

V
Q
F2

QF1

QF2

V
Q
F1

V
Q
F2

V
Q
F1

V
FI
R

Integer pixel

Half-pixel

Horizontal filter 1/4

Horizontal filter 3/4

Vertical Filter ¼, used

to generate (1,1) and

(1,3) quarter pixels

Vertical Filter ¼, used

to generate (1,2)

quarter pixels

Vertical Filter 3/4,

used to generate (3,1)

and (3,3) quarter

pixels

Vertical Filter 3/4,

used to generate (3,2)

quarter pixels

V
Q
F2

Vertical half-pel

filter, used to generate

(2,1) and (2,3) quarter

pixels

Fig. 12: Quarter pixel horizontal and vertical interpolation

27

2.2 Sum of Absolute Transformed Difference

Calculation
- The latest video coding standard HEVC coder utilizes several

advanced coding techniques to attain significantly higher compression

ratio than the previous video coding standards. Among these, the rate-

distortion optimization (RDO), which is the procedure conducted to

select the best coding mode from all possible modes in both intra and

inter-prediction, is considered to be one of the most important factors

contributing to the success of HEVC in terms of compression ratio

and visual quality. Nevertheless, this technique increases

computational complexity remarkably. To lower the computation

burden, the HEVC reference software provides a simplified way to

estimate the rate-distortion cost with the prediction error and a simple

bit cost estimate for a prediction mode, instead of obtaining the exact

value by going through the whole encoding/decoding processes. It is

illustrated as (10):

𝐽𝑚𝑜𝑡𝑖𝑜𝑛 = 𝐷𝑚𝑜𝑡𝑖𝑜𝑛 + ƛ𝑚𝑜𝑡𝑖𝑜𝑛𝑅𝑚𝑜𝑡𝑖𝑜𝑛 (10)

where ƛ𝑚𝑜𝑡𝑖𝑜𝑛 is the Lagrangian multiplier, 𝐷𝑚𝑜𝑡𝑖𝑜𝑛 is an error

measure between the candidate macroblock taken from the

reference frame(s) and the current macroblock and 𝑅𝑚𝑜𝑡𝑖𝑜𝑛 stands

for the number of bits required to encode the difference between

the motion vector(s) and its prediction from the neighboring

macroblocks (differential coding). A similar function to the equation

(10) is used to decide the optimal block size for motion estimation.

- Two distortion metrics are suggested to measure the prediction error;

one being the sum of absolute differences (SAD), and the other sum

of absolute Hadamard-transformed differences (SATD). In particular,

for any given block of pixels, the SAD between the current

macroblock and the reference candidate macroblock is computed

using the following equation (11):

𝑆𝐴𝐷 = ∑ |𝐶𝑖𝑗 − 𝑅𝑖𝑗|𝑖𝑗 (11)

where 𝐶𝑖𝑗 is a pixel of the current macroblock and 𝑅𝑖𝑗 is a pixel of the

reference candidate macroblock.

- The Lagrangian cost can also be minimized in the frequency

domain, in a very similar manner to the pixel domain. As

mentioned above, SATD can be used in equation (10) instead of SAD.

Central to the calculation of SATD is the 4x4 Hadamard transform

28

which is an approximation to the 4x4 DCT transform. The

transform matrix used is shown in equation (12) below (not

normalized):

 𝐻 = (12)

Since H is a symmetric matrix, it is equal to its own transpose. By

using this matrix, the (SATD) is computed using equation (13) below:

𝑆𝐴𝑇𝐷 = (∑ |𝐻 ∗ (𝐶𝑖𝑗 − 𝑅𝑖𝑗|𝐻𝑇
𝑖𝑗)/2 (13)

where 𝐶𝑖𝑗 is a pixel of the current macroblock and 𝑅𝑖𝑗 is a pixel of the

reference candidate macroblock.

- The sum of absolute transformed differences (SATD) is a widely used

block matching criteria used in fractional motion estimation for video

compression. Especially, it is used for fractional motion estimation in

HEVC

2.3 Fractional Motion Estimation Procedure
- In HEVC, the algorithm of fractional pixel interpolation for motion

compensation (MC) is defined in the coding standard. However, how

to produce the fractional MV, or FME procedure, including the

interpolation scheme on the reference frame and the FME searching

algorithm, can be decided by the designer. Therefore, there are several

FME procedures have been introduced, which can be roughly

classified into two groups:

 Two-iteration FME

 Single-iteration FME

a. Two-iteration FME
- After the integer pixel motion search finds the best match, the

values at half-pixel positions around the best match are

interpolated by applying a one-dimensional 8-tap FIR filter

horizontally and vertically. Then the SATD value of each half-pixel

is calculated and compare to find the best match half-pixel. Then the

values of the quarter-pixel positions are generated around the best

match half-pixel by applying a one-dimensional 7-tap FIR filter

horizontally and vertically. Fig. 13 illustrates an example of

1 1 1 1

1 1 -1 -1

1 -1 -1 1

1 -1 1 -1

29

interpolated fractional pixel positions of the two-iteration FME, where

half-pixels are generated around the best integer pixel position and

quarter pixels are generated around the best half pixel.

Fig. 13: Two-iteration FME

b. Single-iteration FME

- One of the drawbacks of two-iteration FME is that quarter-pixel

interpolation and search can be processed only after half-pixel search

is finished. This results in huge timing constraint for real-time

application. Therefore, a number of designs have adopted the single-

iteration FME scheme. In the single-iteration FME scheme, half pixels

and quarter pixels are generated around the best matching integer

pixel position at the same time. And then SATD of all fractional pixels

or a certain number of fractional pixels around the best integer pixel

are calculated. After getting all necessary SATD values, SATD

comparison is processed to find the best matching pixel. Fig. 14

illustrates an example of interpolated fractional pixel positions of a

single-iteration FME, where half-pixels and quarter pixels are

generated around the best integer pixel.

30

Fig. 14: Single-iteration FME

31

Chapter 3. Complexity Reduction

for FME

1. Problem Statement and Previous Studies

1.1. Problem Statement
- HEVC employs the hierarchical quad-tree structure based on the

coding tree unit (CTU), using the coding unit (CU), a prediction unit

(PU), and transform unit (TU) as the basic processing unit of coding,

prediction, and transform, respectively. This new structure can be

adaptively adjusted between the large homogeneous region and highly

textured region, which accounts for HEVC’s high encoding efficiency

compared to H.264. However, it comes with the price of about 40%

encoding complexity increase [2].

- Inter mode prediction with motion estimation is the bottleneck of

HEVC because of the abounding amount of computation, in which

Motion Estimation (ME) which consists of integer motion estimation

(IME) and fractional motion estimation (FME) is its main core. In HM,

HEVC’s reference software, motion estimation (ME) alone occupies

up to 51.32 % of execution time, in which IME takes 18.17 % and

FME takes around 32.16% [3]. This huge timing constraint imposed

by FME is the result of complicated and time-consuming interpolation

processes and that the two-step FMEs for half- and quarter-pixel

precisions should be performed sequentially.

- There are a number of fast algorithms for IME have been introduced,

which helped the complexity of IME reduced significantly. It results

in the fact that FME remains to be more complicated and time-

consuming than IME. The FME’s enormous computational

complexity can be explained by two following reasons:

 A large number of FME refinements processed: In HEVC, a

frame is divided into CTU, whose size is usually 64x64 pixels.

One 64x64 CTU consists of 85 CUs including one 64x64 CU

at depth 0, four 32x32 CUs at depth 1, 16 16x16 CUs at depth

2, and 64 8x8 CUs at depth 3. Each CU can be partitioned into

PUs according to a set of 8 allowable partition types. An

HEVC encoder processes FME refinement for all possible PUs

with usually 4 reference frames before deciding the best

32

configuration for a CTU. As a result, typically in HEVC’s

reference software, HM, for one CTU, it has to process 2,372

FME refinements, which consumes a lot of computational

resources.

 A complicated and redundant interpolation process:

Conventionally, FME refinement, which consists of

interpolation and sum of absolute transformed difference

(SATD), is processed for every PU in 4 reference frames. As

a result, for a 64x64 CTU, in order to process fractional pixel

refinement, FME needs to interpolate 6,232,900 fractional

pixels. In addition, In HEVC, fractional pixels which consist

half fractional pixels and quarter fractional pixels, are

interpolated by 8-tap filters and 7-tap filters instead of 6-tap

filters and bilinear filters as previous standards. As a result,

interpolation process in FME imposes an extreme

computational burden on HEVC encoders.

- For the above reasons, FME is the computational bottleneck of real-

time HEVC encoder. Therefore, reducing the computational

complexity of FME is a very critical task in order to assure real-time

operation. However, there are not many efficient algorithms which

help to reduce the complexity of FME in HEVC has been introduced

so far. That is why an efficient algorithm which effectively reduce the

complexity of FME without significantly degrading the encoding

performance could be extremely valuable for HEVC encoders.

1.2. Previous Studies
- There are a number of fast algorithms targeting FME have been

introduced to overcome the above problems. These algorithms can be

roughly classified into two categories: FME procedure modification

and advanced PU partitions decision. The first category, [4]-[6] tried

to reduce timing constraint and computational complexity of FME by

improving interpolation process, reducing searching point or

exploiting single iterative refinement method. However, this kind of

algorithms do not exploit the relationship of IME and FME and have

to pay the trade-off of coding performance decrease to obtain

complexity reduction. Moreover, none of the so far proposed

algorithms attempt to reduce the redundant interpolation caused by the

33

similarity in motion among neighboring PUs. Therefore, this paper

proposes an efficient range-based algorithm that reduces a large

amount of redundant interpolation calculation by avoiding repeatedly

interpolating overlapped regions caused by the motional similarity

among neighboring PUs. In the second category, instead of doing

FME for all PU partitions, based on IME result to filter unnecessary

skippable partitions. This is based on the fact that FME is the

refinement process of IME result, therefore according to IME result,

there are redundant partitions can be skipped doing FME refinement

without significantly affecting the encoding efficiency. Several

research [7], [8] were successfully proposed to H.264 but the direct

application of these algorithms to HEVC results in significantly

encoding efficiency degrade due to the difference of encoding

structure between HEVC and H.264 [3]. The algorithm in [7] is

modified and applied to HEVC [3], however for simplicity, it does not

take into account asymmetric partition which is one of the key factors

accounting for coding efficiency improvement in HEVC compared to

H. 264. In addition, it also does not take into account the variation of

temporal correlation among frames and treats all the reference frames

equally which can cause extra computational complexity. Therefore,

this paper proposes an efficient algorithm that takes into account all

asymmetric partitions as well as exploits the variation of temporal

correlation between the current frame and different reference frames

to predetermine PU partition type for FME to reduce the complexity

without significantly degrading encoding performance. In addition,

the proposed algorithm also takes advantages of IME result of CUs at

CTU level to predetermine CU depth for FME in order to further

reduce complexity.

34

2. Proposed Algorithms
- As discussed in the previous section, FME in HEVC is very

complicated because of the two following reasons:

 A large number of FME refinements processed

 A complicated and redundant interpolation process

- Therefore, in order to reduce FME’s complexity, it is necessary to

tackle one of or both the reasons. In this work, two following efficient

algorithms which tackle each one of the two reasons of FME’s

complexity are proposed:

 Advanced decision of PU partitions and CU depths for

Fractional Motion Estimation in HEVC

 A Reduction of the Interpolation Redundancy for Fractional

Motion Estimation in HEVC

- The first algorithm tackles the first reason to reduce FME’s

complexity b reducing the number of FME refinements while the

second algorithm aims to solve the second reason to reduce FME’s

complexity by reducing interpolation redundancy in FME. The two

algorithms are discussed more in detail in the following sections.

2.1. Advanced Decision of PU Partitions and CU

Depths for Fractional Motion Estimation in

HEVC

a. Reference Frame Selection Analysis
- As mentioned in the problem the statement section, to the best of the

author’s knowledge, all previous works in this category do not take

into account the variation in the temporal correlation of current frame

and different reference frames. All reference frames are treated

equally in the manner of choosing some PUs or CU depths having

smallest IME costs, which are the RD costs after IME, and process

FME for these modes for all reference frames. This causes possible

encoding performance decrease and unnecessary complexity increase

because usually reference frames with higher temporal correlation

with current frame have a higher probability to be chosen as a final

reference frame by the best mode after doing motion estimation. Table

I shows reference frames’ probability of being chosen as a final

reference frame by the best mode. In which, the first column

represents the sequence simulated and the second, third and fourth

35

column show the probability to be chosen as the final reference frame

of reference frame 0, 1, 2, and 3 respectively.

Table 3: Reference frames' probability of being chosen as a final reference frame

by the best mode

- As shown in Table 3, almost 80% of the best modes choose reference

frame 0 which is the temporally nearest frame to current frame as a

final reference frame, and if referent frame 0, reference frame 1, and

reference frame 2 are taken into account, roughly 97% of the best

modes choose one of these three reference frames as a final reference

frame. Based on this observation, this paper proposes an efficient

algorithm that exploits temporal correlation of current frame and

reference frames in order to further reduce complexity without

significantly degrading encoding efficiency.

b. Advanced PU Partition Decision
 The Idea

- In HEVC, in order to find the best specification for a CTU, motion

estimation will be processed for all PUs in 4 reference frames

according to 8 PU partition types of a CU, and recursively processed

for all CUs in a CTU. Then the results will be compared to determine

the best reference frame for every PU, the optimal PU partition type

for every CU, and optimal CU splitting in a CTU. This means that for

a CU, before FME, if it can predetermine the PU partition types which

are less likely to be chosen as the optimal PU partition type, and

discard them from doing FME refinement, we can significantly reduce

the number of FME refinement. The proposed algorithm based on two

following observations

 Ref.

Frame 0

Ref.

Frame 1

Ref.

Frame 2

Ref.

Frame 3

C1 Keiba 65.38% 23.34% 7.67% 3.60%

C2 BQMail 87.17% 8.11% 2.66% 2.06%

C3 BasketballDrill 79.88% 12.82% 3.85% 3.45%

C4 Flowercase 87.26% 7.83% 2.79% 2.13%

C5 PartyScene 79.15% 11.04% 5.23% 4.57%

C6 RaceHorses 77.65% 14.35% 5.31% 2.67%

Average 79.73% 12.47% 4.66% 3.14%

36

 Since FME is just a refinement of IME. PU partition types

having smallest cost after IME are more likely to have the

smallest cost after FME as well

 Temporally closer reference frames’ probabilities to be chosen

as the best reference frame is higher than the distant ones.

- Previous studies just considered the first observation to predetermine

PU partition types for CUs and ignore the second observation. The

proposed algorithm exploits both of them to effectively reduce

computational complexity with insignificant performance degrade.

The proposed algorithm is processed as follow. For a given CU, the

PU partition types for FME is selected by comparing the IME costs of

the corresponding PU partitions. To this end, the IME costs of all

partition types are calculated, and then the PU partition types are

sorted according to the IME cost in each reference frame. In order to

exploit the first observation, it discards a certain number of PU

partition types having largest IME costs from doing FME. In order to

exploit the second observation, it adaptively chooses a smaller number

of discarded PU partition types for temporally closer reference frames,

and a larger number discarded PU partition types for distant ones. By

this, it can get maximum complexity reduction without significantly

degrading the encoding performance.

 The algorithm

- In a CU, for each reference frame, instead of processing FME for all

partition types, the algorithm independently choose a certain number

of PU partitions having smallest IME cost considering in that

reference frame only to do FME. The number of modes selected to do

FME is also different and independent for different reference frames.

The optimal number of PU partition for FME process for each frame

are determined by experiment results presented in section IV. Fig. 15

illustrates the proposed algorithm to predetermine reduced PU

partition modes for FME. The algorithm can be divided into two main

tasks: IME cost comparison and skippable PU partition modes filter.

- In the first task, IME cost comparison, first, get IME costs of all 7

partition types (3 if it is 8x8 CU) for each reference frame, for partition

type 2NxN, Nx2N, 2NxnU, 2NxnD, nLx2N, nRx2N, the IME cost is

the sum of two partition’s IME cost. Then for each reference frame,

sort all the partition types in increasing order of IME cost.

37

Fig. 15: PU partition modes in IME cost increasing order

Start

- Get IME cost of all partition modes of CU for each reference frame

- Sort these IME costs in increasing order for each reference frame

PartMode = 2Nx2N Partition mode

PartMode <= NUMof PartModeofCU

Stop

No

Yes

RefIndex <= NumofRef

RefIndex = Reference frame 0 index

PartMode =

PartMode + 1

No

PartMode is one of N[RefIndex] smallest cost

 Partition modes of CU with Reference frame RefIndex

Do FME

Yes

RefIndex =

RefIndex + 1

Yes

No

No

IME cost

comparison

task

PU

partition

types

filtering

task

Fig. 16: The flow-chart of the advanced PU partition decision algorithm

38

- In the second task, skippable PU partition types filtering, based on the

sorted list of all PU partition types of each reference frame, determine

which PU partition types are selected to do FME and which ones are

filtered from doing FME independently for each reference frame. In

order to exploit the fact that the more temporally distant frames are

less likely to be chosen as final reference frame by best mode, the

proposed algorithm adaptively adjusts the number of PU partition

types selected to do FME different for each frame. For simplicity,

N{RefIndex} presents the number of PU partition types selected to do

FME for reference frame RefIndex, where RefIndex is reference index

whose value is 0, 1, 2 and 3. In this task, for each PU partition type,

for each reference frame RefIndex, check whether the PU partition

types is one of the N{RefIndex} smallest cost PU partition types of

reference frame RefIndex or not. If yes, do FME for this PU partition

type, otherwise filter it from doing FME.

c. Advanced CU Depth Decision
 The idea

- In HEVC, one CTU consists of 85 CUs including one 64x64 CU at

depth 0, four 32x32 CUs at depth 1, 16 16x16 CUs at depth 2, and 64

8x8 CUs at depth 3. Instead of doing FME for every CU depth, based

on IME result.

- Because FME is a refinement process of IME, best CU depths after

IME and final best CU depths are highly correlated.

- Table 4 shows the probability of the correlation of best IME depth

which is the best CU depth decided based on IME cost and final best

CU depth. In which, the first row represents final best CU depth and

the first column represents best CU depth after IME. The remaining

rows and columns represent the probability of that best IME depth is

d1 and the final best CU depth is d2, in which d1 and d2 get the value

of 0, 1, 2 and 3. The result shows that more than 50% of best IME

depths are also final best CU depths. And if best IME depth and 2

depths surrounding it are taken into account, roughly more than 91%

of final best CU depths belong to this group of three depths. In which,

in case best IME depth is depth 0 or depth 3, two surrounding depths

are CU depths which are one depth and two depths far away from best

IME depth. And if best IME depth is depth 1 or depth 2, two

surrounding depths are CU depths which is one depth larger and one

39

depth smaller than best IME depth. Based on this observation, an

efficient algorithm predetermining CU depth for FME is proposed.

Table 4: Probability of correlation of best CU depth after IME and final best CU

depth

 The algorithm

- To reduce FME complexity, the CU depth for FME can be selected

by comparing the IME costs. This is possible because FME is a

refinement process of IME so that the best CU depths after IME and

the final best CU depths are highly correlated. To this end, the IME

costs of all CUs in a CTU are compared. Then, the best IME CU

depths are determined. From the selected depth, the CU depth(s) for

FME are finally chosen in four different options: the best IME depth

only (best_only), the best IME depth plus one more depth along one

direction (best_plus_one), the best IME depth plus one more depth

along two directions (best_plus_minus), and best IME depth plus two

additional depths (best_plus_two). In the case of depth 1 chosen from

IME, FME is performed only for depth 1 in best_only option, depths

1 and 2 in best_plus one option, depths 0, 1, and 2 in both

best_plus_minus and best_plus_two option. The remaining depths are

kept with the IME cost and used for CU depth decision in a later stage.

d. Combination of Advanced PU Partition and Cu depth

Decision

- This combined algorithm predetermines both skippable CU depths

and PU partition type for FME in order to get maximum complexity

reduction with an acceptable BD-BR increase. First, it filters

skippable CUs among 85 CUs in a CTU using the process of advanced

CU depth decision algorithm. Then, for CUs which are determined to

do FME, it discards unnecessary PU partitions from doing FME by

using the process of skippable PU partition decision

 Final best CU depth
Best IME depth

Depth 0 Depth 1 Depth 2 Depth 3

Depth 0 73.20% 18.46% 5.70% 2.64%

Depth 1 8.19% 65.87% 20.23% 5.71%

Depth 2 1.21% 13.52% 50.67% 34.60%

Depth 3 0.02% 1.00% 9.04% 89.94%

40

2.2. Range-based interpolation algorithm
a. Motional Similarity among Neighboring PUs
- Conventionally, each PU is processed FME separately. This means

that for a CTU, interpolated sub-pixels are generated separately for

each PU. However, since spatially-neighboring PUs in one CTU

usually have similar motion, as a result, after IME, predicted blocks

of PUs have overlapped regions as illustrated in the Fig. 17 (a) below.

As mentioned previously, in conventional FME algorithms, because

each PU is processed FME separately, sub-pixels in overlapped

regions are repeatedly calculated for different PUs which causes a

great amount of redundant computation. Based on this observation, a

new FME algorithm called range-based algorithm is proposed to

reduce redundant interpolation computation caused by repeatedly

interpolating pixels in overlapped regions.

(a) (b)

Fig. 17: (a) Predicted PUs with overlapped regions which are slashed. (b) The dot-

line union of predicted PUs

b. Range-based Interpolation Algorithm
- The idea of the range-base algorithm is instead of processing each PU

separately, finding the union region of PUs as illustrated in Fig. 17 (b)

and then do interpolation for the whole united region. In order to find

the union region of PUs, the algorithm partition the whole union into

non-overlapped rectangles which are defined by key points as

illustrated in Fig. 18 (a), where a rectangle (rec) contains information

on the right and left x-coordinates (rec.left, rec.right) and top and

bottom y-coordinates (rec.ytop, rec.ybottom) and can be defined by

41

two vertices X0, Y0 and X1, Y1 as illustrated in Fig. 18 (b). The

algorithm process is illustrated in Fig. 19, in which Ny is the number

of y-coordinates obtain by ytop and ybottom of all rectangles, and Nrec

is the number of all rectangles.

(a) (b)

Fig. 18: (a) Defining the union of rectangles by key points. (b) Defining a

rectangle

- In HEVC, to do FME for one CTU in one reference frame, 593 PUs

need to be processed. If the range-based algorithm is applied for this

level, which means Nrec = 593, the highest interpolation calculation

reduction can be obtained while the complexity of the algorithm itself

is also the highest. In order to limit the complexity of the algorithm,

PUs are grouped into spatial groups and each group is represented by

only one rectangle which is the smallest rectangle containing all PUs

in that group. Then the range-based algorithm is applied for

representing rectangles only. There are three levels for the algorithm.

In level 1, the simplest, by considering 593 PUs in one group and

representing it by one rectangle, then Nrec is 1. In level 2, 593 PUs are

divided into five groups including four groups of 32x32 block and a

one group of depth-0 PUs, where a group of 32x32 block includes all

PUs from depth 1 to depth 3, which are spatially inside that 32x32

block, and the group of depth-0 PUs includes all PU of the depth 0

CU. Representing the five groups by five rectangles, and then the

algorithm is applied for that 5 rectangles, which means Nrec=5.

42

Similarly, in level 3, dividing into 16x16 block level, there are 33

groups with 33 representing rectangles.

Sort all y-coordinates in increasing order

Sort all rectangles in increasing order of xleft

i = 0 : Starting from Y[0]

o_idx = 0

i < Ny -1

j = 0 : Starting from rec[j]

1st_rec = 0

j < Nrec -1

rec[j].ytop <= Y[i] < rec[j].ybottom

1st_rec = 0

1st_rec = 1; temp.xleft = rec[j].xleft

temp.xright = rec[j].xright; j =j+1

rec[j].xleft <= temp.xright + 4

temp.xright = rec[j].xright

j =j+1

out[o_idx].y1 = Y[i];

out[o_idx].y2 = Y [i+1]

out[o_idx].x1 = temp.xleft;

out[o_idx].x2 = temp.xright

temp.xleft = rec[j].xleft;

temp.xright = rec[j].xright

j = j + 1; o_idx = o_idx + 1 ;

j =j+1

out[o_idx].y1 = Y[i]; out[o_idx].y2 = Y [i+1]

out[o_idx].x1 = temp.xleft; out[o_idx].x2 = temp.xright

i = i+1 ; o_idx = o_idx + 1

o_idx = 0
out[o_idx-1].x1 = temp.xleft &

out[o_idx-1].x2 = temp.xright

out[o_idx-1].y2 = Y [i+1]

i = i+1 ;

End

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

Yes

No

No

Yes

Fig. 19: Flow-chart of the range-based algorithm

43

Chapter 5. Experiment Results
- The proposed algorithms were integrated into the reference software,

HM-13.0. Six of class C test sequences are encoded in Low-delay P

with quantization parameters (QP) 22, 27, 32, 37. And all hardware

implementations were implemented standard 130nm CMOS

technology

1. Advanced Decision of PU Partitions and CU

Depths for Fractional Motion Estimation in

HEVC Algorithms
- The number of FME calculation for a 4x4 block is defined as

complexity unit. Then the complexity of doing FME of a block can be

calculated:

 𝐶𝑏𝑙𝑜𝑐𝑘 = (𝑏𝑙𝑜𝑐𝑘ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑏𝑙𝑜𝑐𝑘_𝑤𝑖𝑑𝑡ℎ)/16 (13)

The total complexity is accumulated by all complexity of blocks

selected to do FME.

1.1. Advanced Decision of PU Partitions
- In this algorithm, the number of PU partitions for FME is adaptive and

not the same for all reference frame. It uses a higher number of PU

partition for temporally close reference frames, which are more

important and correlated with the current frame. In order to find

optimal numbers of PU partition types selected for each reference

frame, it is necessary to analyze how selecting a certain number of PU

partition affects each reference frame. In order to do that, the advanced

PU decision algorithm is run for each reference frame only, for

example for reference frame 0 only, to get the statistical results of how

BD-BR changes according to the number of PU partition selected for

FME in each reference frame.

- The results are illustrated in Fig. 20, in which horizontal and vertical

axes are complexity reduction and BD-BR increase respectively. Six

markers illustrate 1, 2, 3, 4, 5, 6 and 7 partition types selected to do

FME respectively. The results show that while complexity reduction

is almost similar to all frames, BD-BR increase is most vulnerable to

the PU partition type predetermination of reference frame 0, then

reference frame 1. Reference frame 2 and 3 have less effect on BD-

44

BR increase compared to the other two. For each reference frame, the

numbers which give the best tradeoff between complexity reduction

and BD-BR increase are chosen as optimal numbers. In Fig. 2, the

result shows that 4 and 5 are optimal numbers of PU partition types

predetermined for FME of reference frame 0; 3 and 4 are optimal

numbers of reference frame 1; 2 and 3 are optimal numbers of

reference frame 2 and reference frame 3. Based on this result, the

algorithm is simulated for different combinations of a number of PU

partition types selected for each frame.

Fig. 20: PU partition decision algorithm for each reference frame alone

a. Results of fixed number of PU partition for all

reference frames
- First, we run the experiments of algorithms with the number of PU

partition selected to process FME in a CU is fixed the same for all

reference frames. The experiment results are presented in Table 5

below, where No. of PU partition type selected to do FME refers to

the number of PU partition type selected to do FME. The other two

columns are BD-BR increase and complexity reduction.

4 PU

3 PU

2 PU

1 PU

6 PU
5 PU

1 PU

2 PU

7 PU

1 PU

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

1.00%

B
D

B
R

 i
n
cr

ea
se

Complexity reduction

Reference frame 0

Reference frame 1

Reference frame 2

Reference frame 3

45

Table 5: Experiment results of PU algorithms with number of PU partition selected to do

FME the same for all reference frames

No. of PU partition type
selected to do FME

BDBR
increase

Complexity reduce

1 2.278% 83.286%

2 1.270% 66.572%

3 1.230% 49.858%

4 0.446% 37.394%

5 0.283% 24.929%

6 0.169% 12.465%

7 0.000% 0.000%

- This results will be used to compare with the advanced PU partition

decision algorithm, in which the number of PU partition selected is

different and adaptive for each reference frame.

b. Results of Advanced PU Partition Decision Algorithm
- The results is illustrated in Table 6 in which the first column

represents the combination of all reference frame whose b-c-d-e PU

selection means the algorithm predetermines b, c, d, and e number of

PU partition types predetermined for FME for reference frame 0,

reference frame 1, reference frame 2, and reference frame 3

respectively.

- Fig. 21 shows complexity reduction and BD-BR tradeoff of the

proposed algorithm with an adaptive combination of the number of

PU partitions and it with the number of PU partitions fixed the same

for all reference frames. As illustrated in Fig. 3, the result shows that

adaptive combination of the number of PU partitions predetermined

for FME for each reference frame gives better performance compared

with the number of PU partitions fixed the same for all reference

frames. One of the best tradeoffs is the 5-3-2-2 PU selection

combination which reduces 51.80% FME complexity with 0.60% BD-

BR increase

46

Table 6: Experiment results of Advanced PU Partition Decision with different

combinations of different PU partition selected for each reference frame

Combination of all
reference frames

BD-BR
increase

Complexity reduction

7-6-6-5 PU selection -0.01% 12.37%

6-6-6-4 PU selection 0.14% 18.60%

5-4-3-3 PU selection 0.41% 40.40%

5-3-2-2 PU selection 0.60% 51.80%

4-3-2-2 PU selection 0.73% 54.97%

3-2-1-1 PU selection 1.24% 70.60%

Fig. 21: Comparison of Advance PU partition decision algorithm and fixed number of PU

partition algorithm

47

1.2. Advanced Decision of CU Partitions
- At CTU level, the proposed algorithm determines which CUs among

85 CUs are selected for FME. Table 7 shows the BD-BR increase and

complexity reduction of the algorithm. The first column represents the

CU depth selection option whereas the second and third columns

represent BD-BR increase and complexity reduction, respectively. As

shown in the table, the best trade-off is the best_plus_minus option, in

which complexity reduction is 27.95% and BD-BR increase is 0.27%.

Table 7: Results of advanced CU depth decision

Option BD-BR
increase

Complexity
reduction

best_only 2.94% 70.34%
best_plus_one 0.66% 45.56%
best_plus_minus_one 0.27% 27.95%

best_plus_two 0.13% 17.19%

1.3. Combination of Advanced PU Partition and

CU Depth Decision

Table 8: Results of Advanced PU Partition and CU Depth Decision

Combination of PU partition type and
CU depth predetermination

BD-BR
increase

Complexity
reduction

best_plus_minus and 5-3-2-2 PU 1.08% 67.47%
best_plus_minus and 4-3-2-2 PU 1.14% 69.94%

best_plus_minus and 3-2-1-1 PU 1.66% 80.64%
best_plus_two and 5-3-2-2 PU 0.95% 62.72%

best_plus_two and 4-3-2-2 PU 1.06% 65.69%
best_plus_two and 3-2-1-1 PU 1.53% 78.06%

- The two proposed algorithms: Advanced PU Partition Decision and

Advanced CU Depth Decision are combined into one algorithm called

Advance PU Partition and CU Depth Decision Algorithm with the

options which give reasonable BD-BR and complexity tradeoff.

Therefore, the combination of CU depth selection with

best_plus_minus and best_plus_2 options and PU partition type with

5-3-2-2 PU, 4-3-2-2 PU, and 3-2-1-1 PU selections are evaluated. The

48

results are presented in Table 8, in which the first column represents

the CU depth and PU partition type combination option, the second

and third columns are BD-BR increase and complexity reduction

respectively. The combination of best_plus_minus and 5-3-2-2 PU

selection gives the most reasonable trade-off of 67.47% complexity

reduction with 1.08% BD-BR increase.

1.4. Comparison with Other Similar Works
- There are some similar researches have been proposed previously [5],

[9]. In [5], the algorithm uses PU Size-Dependent FME, in which it

adopts interpolation free FME for depth 0/1 and full search for depth

2 and skips FME for depth 3. Interpolation free FME is an algorithm

to do FME refinement without interpolation based on IME results and

mathematical model. In [9], the authors proposes an algorithm that

reduces the complexity by restricting the Prediction Units (PUs) -

among a total of 24 sizes - to the 4 square-shaped size. Those two are

the most recent works that reduce FME’s complexity by reducing the

number of FME refinements.

- Table 9 shows the comparison of Advanced PU Partition and CU

Depth Decision with that two algorithms. It is very clear that the

proposed algorithm performs much better than the other two

algorithm

Table 9: Comparison of the proposed algorithm and other algorithms

Algorithm BD-BR increase Complexity
reduction

Advanced PU partition and
CU Depth Decision

1.66% 80.64%

[5] 2.7% 62.4%

[9] 4% 74%

49

2. Range-based Algorithm
- The algorithm is implemented in both HM software and hardware in

a standard 130nm CMOS technology. The algorithm is implemented

for three level:

 Level 1: Only one rectangle as a union representing for all 593

PUs in a CTU

 Level 2: 593 PUs are divided into five groups including four

groups of 32x32 block and a one group of depth-0 PUs,

representing the five groups by five rectangles. Applying the

algorithm for five rectangles to find the union to reduce

redundancy caused by overlapping

 Level 3: 593 PUs are divided into 16x16 blocks, which means

that there are 33 groups with 33 representing rectangles.

Applying the algorithm for five rectangles to find the union to

reduce redundancy caused by overlapping

2.1. Software Implementation

Table 10: Interpolation Reduction Percentage for Each Level

 Interpolation Reduction Percentage

Level 1 Level 2 Level 3

Seq. C1 68.98% 71.78% 74.87%

Seq. C2 74.94% 77.17% 91.27%

Seq. C3 80.25% 81.97% 89.65%

Seq. C4 85.06% 86.31% 95.70%

Seq. C5 89.40% 90.24% 91.73%

Seq. C6 88.79% 89.67% 82.70%

Average 84.92% 86.46% 87.65%

- The algorithm is integrated into HEVC reference software HM and

run for each level. The results are illustrated in Table 10 below, in

which, Seq. C1 -> Seq. C6 refer to the video test sequence in class C,

from sequence 1 to sequence 6. Level 1, Level 2, Level 3 and

Interpolation Reduction Percentage show the percentage of

interpolation calculation reduction when applying the algorithm for

each level. It is demonstrated very clear that Sequence C1 gives the

50

lowest interpolation reduction percentage in all three level while

sequence C4 and C4 give the highest interpolation reduction

percentage. This is because Sequence C1 contains a lot of fast motion,

while Sequence C4 and C4 does not. And from Level 1 to Level 3, the

interpolation calculation reduction increases, however, the complexity

added by the algorithm also increases from level 1 to level 3. To see

the trade-off between interpolation calculation reduction and

complexity added by the algorithm, it is necessary to implement the

algorithm in hardware.

2.2. Hardware Implementation of the Algorithm
a. Trade-off between efficiency and complexity of the

algorithm
- After implementing in hardware, the results of both interpolation

calculation reduction and complexity added by the algorithm for each

level are out. Table 11 illustrates the results for each level. Apparently,

the results show that from level 1 to level 3, the interpolation

calculation reduction significantly compared to level 1, which

requires the highest number of interpolation calculation. However, it

comes with the price that the complexity representing by gate count

added by the algorithm is also increased from level 1 to level 3. Based

on the tradeoff between the complexity of the algorithm and number

of interpolation calculation it requires, it is clear that level two seems

to be the best one to apply this algorithm. Level 3 requires the lowest

number of interpolation which is apparently is the best for FME, but

it cannot compensate the complexity added by the algorithm which is

too large compared with level 2 and level 1.

Table 11: Complexity and Interpolation reduction of the algorithm for each level

Level Number

of Cycles

Gate

count

Number of

Interpolated

Pixels/CTU

Interpolation

Reduction

compared to

level 1

1 13 25,175 259,304 0%

2 23 38,677 232,962 10.16%

3 79 331,472 212,382 18.10%

51

b. Internal Memory Requirement
- To apply the algorithm, huge internal memory requirements is another

problem of this algorithm. Table 12 illustrates internal memory

requirement for different cases in each level. It is apparent that the

internal memory requirement is too large for all level. From the trade-

off between complexity and interpolation reduction and also

considering the memory requirement, it is safe to say that level 1 is

the best choice for range-based interpolation.

Table 12: Internal Memory Requirement for Range-based algorithm

 Level 1 Level 2 Level 3

Bad cases 609.44 KB 554.37 KB 504.66 KB

Good cases 76.24 KB 74.20 KB 69.44 KB

Average 253.23 KB 231.93 KB 213.21 KB

- However, the memory requirements are too large, it is critical to limit

the internal memory requirement and adapt the algorithm with the

restriction

c. Memory Restriction

- As discussed above, it is the best to apply the algorithm for level 2,

which means that 593 PUs are divided into five groups including four

groups of 32x32 block and a one group of depth-0 PUs as illustrated

in Fig. 22 (a), where a group of 32x32 block includes all PUs from

depth 1 to depth 3, which are spatially inside that 32x32 block, and

the group of depth-0 PUs includes all PU of the depth 0 CU.

Representing the five groups by five rectangles, and then the

algorithm is applied for that 5 rectangles, which means Nrec=5 as

illustrated in Fig. 22 (b). Then, the interpolators do interpolation at

once inside that united region only.

- After interpolating the whole rectangle region, the interpolated pixels

need to be stored in internal memory. As the result, when the rectangle

size is large, the number of interpolated pixels need to be stored is

large, the internal buffer memory is large. Therefore, it is necessary to

restrict the size of the internal buffer size or the size of the rectangles.

52

(a) (b)

Fig. 22: (a) Dividing 593 PUs of a CTU into five groups. (b) Finding the union of

the five rectangles representing the five groups

Table 13: SRAM requirement and rectangle size

Rectangle

size

80*80 96*96 112*112 128*128 160*160 192*192

SRAM

Requirement

(KB)

100.63 144.75 196.88 257.00 401.25 577.50

Table 14: Percentage of Out-range CTUs for each of SRAM restricted size

Rectangle

size

80*80 96*96 112*112 128*128 160*160 192*192

Percentage

of Out-

range

CTUs

46.79% 39.52% 31.88% 25.96% 16.36% 9.26%

- The internal buffer size should be restricted to 100.63 KB, which

means that the rectangle size is restricted to be smaller than 80*80.

Then CTUs whose the rectangle boundary is smaller than or equal to

80*80, can be processed without any problem, but CTUs whose

rectangle boundary is larger than 80*80, can be processed by the

53

algorithm. These CTUs are called Out-range CTUs. Table 14

illustrates the percentage of Out-range CTUs per total CTUs for each

of internal memory’s size restriction. It is clear that the smaller the

internal memory size is restricted to, the bigger the percentage of Out-

range CTUs is

d. Divide and Conquer Algorithm for Memory Restriction.

- As mention above, to process Out-range CTUs, it is unavoidable to

adjust the algorithm. There are 593 PUs at CTU level, enclosing all of

them in one rectangle makes the rectangle size too big and therefore

CTUs Out-range CTU. To avoid it, for Out-range CTU, 593 PUs are

divided into five groups including four groups of 32x32 block and a

one group of depth-0 PUs, where a group of 32x32 block includes all

PUs from depth 1 to depth 3, which are spatially inside that 32x32

block, and the group of depth-0 PUs includes all PU of the depth 0

CU. Each one of the five groups is processed individually the same

process as at CTU level. This means that for each group, all of the PUs

in that group are enclosed by a rectangle. if the size of the rectangle

boundary is small, it is processed by the range-base algorithm

normally, if the size of the rectangle boundary is still big, it is further

divided into smaller groups and recursively process them the same.

- Run the algorithm with different memory size restriction, the

experimental results are illustrated in Table 15, Table 16, Table 17,

Table 18, and Table 19 for 80*80, 96*96, 112*112, 128*128, and

192*192 memory size restriction, respectively

- As illustrated in Table 20, where Number of interpolated pixels/CTU

is the average number of fractional pixels interpolated for a CTU,

using range-based algorithm with divide and conquer for a certain

memory size restriction, where Number of interpolated pixels/CTU

(Original algorithm in HM) refers to the average number of fraction

pixels interpolated for a CTU, using the conventional method as in

HM reference software. Interpolation calculation reduction

illustrates the percentage of interpolation calculation reduction of

range-based algorithm compared with the original algorithm in HM.

As predicted, the larger the memory size is, the bigger the

percentage of interpolation calculation reduction is.

54

Table 15: Interpolation Calculation Reduction of the Algorithm with 80*80 memory size

restriction

 Number of

interpolated

pixels/CTU

Number of

interpolated

pixels/CTU

(Original

algorithm in

HM)

Interpolation

calculation

reduction

Seq. C1 631,118 1,720,025 63.31%

Seq. C2 555,293 1,720,025 67.72%

Seq. C3 482,281 1,720,025 71.96%

Seq. C4 410,164 1,720,025 76.15%

Seq. C5 338,598 1,720,025 80.31%

Seq. C6 354,789 1,720,025 79.37%

Average 398,139 1,720,025 76.85%

Table 16: Interpolation Calculation Reduction of the Algorithm with 96*96 memory size

restriction

 Number of

interpolated

pixels/CTU

Number of

interpolated

pixels/CTU

(Original

algorithm in

HM)

Interpolation

calculation

reduction

Seq. C1 568,295 1,720,025 66.96%

Seq. C2 495,153 1,720,025 71.21%

Seq. C3 425,558 1,720,025 75.26%

Seq. C4 357,059 1,720,025 79.24%

Seq. C5 289,441 1,720,025 83.17%

Seq. C6 304,833 1,720,025 82.28%

Average 350,012 1,720,025 79.65%

55

Table 17: Interpolation Calculation Reduction of the Algorithm with 112*112 memory size

restriction

 Number of

interpolated

pixels/CTU

Number of

interpolated

pixels/CTU

(Original

algorithm in

HM)

Interpolation

calculation

reduction

Seq. C1 535,181 1,720,025 68.89%

Seq. C2 463,631 1,720,025 73.05%

Seq. C3 395,002 1,720,025 77.04%

Seq. C4 326,994 1,720,025 80.99%

Seq. C5 259,927 1,720,025 84.89%

Seq. C6 273,735 1,720,025 84.09%

Average 322,347 1,720,025 81.26%

Table 18: Interpolation Calculation Reduction of the Algorithm with 128*128 memory size

restriction

 Number of

interpolated

pixels/CTU

Number of

interpolated

pixels/CTU

(Original

algorithm in

HM)

Interpolation

calculation

reduction

Seq. C1 518,291 1,720,025 69.87%

Seq. C2 446,842 1,720,025 74.02%

Seq. C3 377,545 1,720,025 78.05%

Seq. C4 308,785 1,720,025 82.05%

Seq. C5 240,405 1,720,025 86.02%

Seq. C6 253,106 1,720,025 85.28%

Average 305,183 1,720,025 82.26%

56

Table 19: Interpolation Calculation Reduction of the Algorithm with 192*192 memory size

restriction

 Number of

interpolated

pixels/CTU

Number of

interpolated

pixels/CTU

(Original

algorithm in

HM)

Interpolation

calculation

reduction

Seq. C1 448,162 1,720,025 73.94%

Seq. C2 376,783 1,720,025 78.09%

Seq. C3 309,357 1,720,025 82.01%

Seq. C4 245,047 1,720,025 85.75%

Seq. C5 183,981 1,720,025 89.30%

Seq. C6 194,719 1,720,025 88.68%

Average 247,753 1,720,025 85.60%

Table 20: Interpolation Calculation Reduction of the Algorithm with different memory size

restriction

 Number of

interpolated

pixels/CTU

Number of

interpolated

pixels/CTU

(Original

algorithm in

HM)

Interpolation

calculation

reduction

80*80 398,139 1,720,025 76.85%

96*96 350,012 1,720,025 79.65%

112*112 322,347 1,720,025 81.26%

128*128 305,183 1,720,025 82.26%

192*192 247,753 1,720,025 85.60%

e. Interpolator’s size decision
- There are several interpolator sizes to consider for FME’s interpolator

design. The most used ones are 4xN, 8xN, and 16xN interpolators,

where 4, 8 and 16 are horizontal bandwidths of each interpolator

respectively. To decide which interpolator is the most reasonable one

to use, it is critical to consider the target throughput and the throughput

each interpolator can offer.

57

- The target throughput is 3,200 cycle per CTU. Based on the

throughput in the best case, worst case and in average each

interpolator size offers as illustrated in Table 21. In order to meet the

throughput requirement, the 16xN size interpolator, which is

illustrated in Fig. 23 is the best to use.

16xN

24x(N+8)

4 pixel interp 4 pixel interp 4 pixel interp 4 pixel interp

24 pixles

Fig. 23: an example of 16xN interpolator

Table 21: Throughput of each interpolator size

- As illustrated in Fig. 23, a 16xN interpolator can be comprised of four

4xN interpolator work in parallel. After range-based algorithm, the

union information is sent to interpolators, based on that information,

 4xN 8xN 16xN

Throughput-worst case 8,795

cycle/CTU

4,539

cycle/CTU

2,307

cycle/CTU

Throughput-best case 1,108

cycle/CTU

572

cycle/CTU

291

cycle/CTU

Throughput-average 3,640

cycle/CTU

1,879

cycle/CTU

955 cycle

/CTU

58

the 16xN interpolators start to interpolate from the top to the bottom

of the region, and then save the interpolated pixels to SRAM.

f. Internal Memory Reduction with Quarter Pixel’s

Bilinear Estimation

Table 22: Rectangle size, SRAM size requirement, and percentage of Out-range CTU

with Quarter Pixel Bilinear Estimation

Rectangle

size

80*80 96*96 112*11

2

128*12

8

160*16

0

192*19

2

Percentag

e of Out-

range

CTUs

46.79

%

39.52

%

31.88% 25.96% 16.36% 9.26%

SRAM

(KB)

25.31 36.38 49.44 64.50 100.63 144.75

A-1,-1 A0,-1 a0,-1 b0,-1 c0,-1 A1,-1

A-1,0 A0,0 A1,0

A-1,1 A0,1 A1,1a0,1 b0,1 c0,1

a0,0 b0,0 c0,0

d0,0

h0,0

n0,0

e0,0

i0,0

p0,0

f0,0

j0,0

q0,0

g0,0

k0,0

r0,0

d-1,0

h-1,0

n-1,0

d1,0

h1,0

n1,0

A2,-1

A2,0

A2,1

d2,0

h2,0

n2,0

A-1,2 A0,2 A1,2a0,2 b0,2 c0,2 A2,2

H
1
 H

2
 H

3

H
4

H
5
 H

6
 H

7

H
8
 I

0

I
1
 I

2
 I

3

I
4

I
5
 I

6
 I

7

I
8

Q
2

Fig. 24: Quarter pixels Bilinear Estimation

59

- The memory restriction is applied with the restriction of rectangle

boundary size is smaller than 80*80. However, it is still large. To

further reduce the memory size, the quarter pixel’s bilinear estimation.

- In HEVC, quarter pixels are generated by 7-tap filters, which is one

of the reasons why the interpolation process is very complicated. If

quarter pixels are generated by bilinear filters as in H.264, then

interpolation of quarter-pixels can be exempted because the

Hadamard transform coefficients can be calculated from Hadamard

transform coefficients of half pixels and integer pixel as the following

equation:

where O represents original block’s pixels, Q2, I0, and H1 represent

quarter pixels, integer pixels and half pixels as illustrated in Fig. 24.

- With Quarter Pixel’s Bilinear Estimation, the internal memory can be

reduced significantly as illustrated in Table 22. The trade-off for it is

the BD-BR increase of BDBR increase: 0.55%

- If the 80*80 rectangle size restriction still holds, the n with Quarter

Pixel’s Bilinear Estimation, the internal buffer size is just 25.31 KB.

g. Comparison with other similar works

Table 23: Comparison of the range-based algorithm and other algorithms

Algorithm BD-BR increase Complexity
reduction

Range-based algorithm 0 % 86.46% %

[5] 1.1% 34.87%

[16] 2.07% 75%

- There are some similar researches have been proposed previously [5],

[16]. In [5] adopts interpolation free FME for depth 0 and depth 1.

Interpolation free FME is an algorithm to do FME refinement without

interpolation based on IME results and mathematical model. In [16],

the authors utilize Quarter Pixel’s Bilinear Estimation scheme to

𝐻𝑇(𝑂 − 𝑄2) = 𝐻𝑇 (𝑂 −
𝐼0 + 𝐻1 + 1

2
)

60

avoid interpolate quarter pixels and use 5T12S search pattern to

reduce the number of search candidates from 25 to 12.

- Table 23 shows the comparison of the range-based algorithm with that

two algorithms. It is very clear that the proposed algorithm performs

much better than the other two algorithm

61

Chapter 6. Conclusion

- This work proposed two efficient algorithms to tackle two main

causes of FME’s enormous computational complexity. As stated

previously, FME is the computational bottleneck of real-time HEVC

encoders due to two reasons: a large number of FME refinements

processed and a complicated and redundant interpolation process.

Normally, previous works attempt to solve one of the two reasons to

reduce the complexity of FME in HEVC. However, this work

proposes algorithms to solve both of the two reason in order to form a

combined method which gives a high complexity reduction with

minimal encoding performance decrease.

- The first proposed algorithm, called the Advanced PU Partition and

CU Depth Decision algorithm, attempts to reduce the number of FME

refinements for PUs in a CTU. In previous works, several attempts

have been successfully proposed for H.264 but direct application of

these algorithms to HEVC results in a significant degradation of the

encoding efficiency due to the difference of coding structures between

HEVC and H.264 [3]. For HEVC, an efficient advanced PU partitions

decision for FME is proposed in [3]. However, it does not take into

account asymmetric partition which is one of the key tools improving

the coding efficiency in HEVC compared to H. 264. In addition, it

also does not take into account the variation of temporal correlation

among frames and treats all the reference frames equally which can

cause extra computational complexity. Therefore, this work proposes

Advanced PU Partition and CU Depth Decision algorithm that takes

into account all asymmetric partitions as well as exploits the variation

of temporal correlation between the current frame and multiple

reference frames to efficiently predetermine PU partition types and

CU depths for FME. The algorithm is divided into two parts:

Advanced PU Partition Decision, and Advanced CU Depth Decision.

In the first part, for a given CU, the PU partition type for FME is

selected by comparing the IME costs of the corresponding PU

partitions. To this end, the IME costs of all 7 partition types (3 if it is

8x8 CU) are compared for every reference frame. Note that each CU

consists of two PUs for partition type 2NxN, Nx2N, 2NxnU, 2NxnD,

nLx2N, nRx2N. The IME costs of the two PUs constituting a CU are

62

summed and then compared with each other. Then, the PU partition

types are sorted according to the IME cost in each reference frame and

the PU types with the smallest Nref_idx IME costs are selected for

FME. The number Nref_idx is predefined for each reference frame. In

general, a closer reference frame is more important than a distant

reference frame. Therefore, a larger number is assigned as Nref_idx

for a closer reference frame than a distant frame. All discarded

partitions are kept with IME costs and used for best mode decision in

a later stage. In the second part, IME costs of all CUs in a CTU are

compared. Then, the best IME CU depths are determined. From the

selected depth, the CU depth(s) for FME are finally chosen in four

different options: the best IME depth only (best_only), the best IME

depth plus one more depth along one direction (best_plus_one), the

best IME depth plus one more depth along two directions

(best_plus_minus_one), and best IME depth plus two additional

depths (best_plus_two). In the case of depth 1 chosen from IME, FME

is performed only for depth 1 in best_only option, depths 1 and 2 in

best_plus one option, depths 0, 1, and 2 in both best_plus_minus and

best_plus_two option. The remaining depths are kept with the IME

cost and used for CU depth decision in a later stage. The Advanced

PU Partition and CU Depth Decision, consisting of the two parts,

reduce dramatically the complexity of FME without significantly

degrading the encoding performance. The experimental results show

that the algorithm reduces up to 67.47% with a BD-BR increase 1.08%.

The second algorithm, the Range-based algorithm, attempts to reduce

redundancy in interpolation process of FME. In previous works, none

of the so far proposed algorithms attempt to reduce the redundant

interpolation caused by the similarity in motion among neighboring

PUs. Therefore, this work proposes the Range-based algorithm that

reduces a large amount of redundant interpolation calculation by

avoiding repeatedly interpolating overlapped regions caused by the

motional similarity among neighboring PUs. The algorithm divides

593 PUs of a CTU into five spatial groups and each group is

represented by only one rectangle which is the smallest rectangle

containing all PUs in that group. The union region of the five

representing rectangles is calculated, and then interpolation is

processed inside that union region from the top to the bottom. By this

manner, repeated interpolation calculations in overlapped regions

63

among PUs are reduced significantly. Experimental results show that

the algorithm reduces up to 86.46% interpolation computation without

any encoding performance decrease. And the Range-based algorithm

for dividing PUs into spatial groups and finding the union of 5

representing rectangles only requires 25k gates in a standard 130nm

CMOS technology at an operating frequency of 647MHz.

- The combination of the two algorithms creates a coherent solution to

reduce the complexity of FME. Considering interpolation is a half of

the complexity of an FME refinement, then the complexity of FME

could be reduced more than 90% with a BD-BR increase of 1.66%

66

Bibliography
[1] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand,

“Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE

Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649 – 1668, Dec.

2012.

[2] Jarno Vanne, Marko Viitanen, and Timo D. Hämäläinen, “Efficient Mode

Decision Schemes for HEVC Inter Prediction,” IEEE Trans. Circuits Syst.

Video Technol., vol. 24, no. 9, pp. 1579 – 1593, Sep. 2014.

[3] Shiau-Yu Jou and Tian-Sheuan Chang, “Fast Prediction Unit Selection for

HEVC Fractional pel Motion Estimation Design,” 2013 IEEE Workshop on

Signal Processing Systems, pp. 247 – 250, Oct. 2013.

[4] Chun-Yu Lung and Chung-An Shen, “A High-Throughput interpolator for

Fractional Motion Estimation in High Efficient Video Coding (HEVC)

systems,” Circuits and Systems (APCCAS), 2014 IEEE Asia Pacific

Conference, pp. 268 – 271, Nov. 2014.

[5] Shiaw-Yu Jou, Shan-Jung Chang, and Tian-Sheuan Chang, “Fast Motion

Estimation Algorithm and Design for Real Time QFHD High Efficiency

Video Coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 9, pp.

1533 – 1544, Jan. 2015.

[6] Yu-Jen Wang, Chao-Chung Cheng, and Tian-Sheuan Chang, “A Fast

Algorithm and Its VLSI Architecture for Fractional Motion Estimation for

H.264/MPEG-4 AVC Video Coding,” IEEE Trans. Circuits Syst. Video

Technol., vol.17, no.5, pp.578-583, May 2007.

[7] C.-C. Yang, K.-J. Tan, Y.-C. Yang and J.-I. Guo, “Low complexity

fractional motion estimation with adaptive mode selection for H.264/AVC,”

in Proceeding of IEEE International Conference on Multimedia and Expo.,

pp.673-678, July 2010.

[8] C.-C. Lin, Y.-K. Lin, and T.-S. Chang, “A fast algorithm and

itsarchitecture for motion estimation in MPEG-4 AVC/H.264,” in

proceedings of Asia Pacific Conference on Circuits and Systems, pp.1250-

1253, Dec. 2006.

[9] Henrique Maich, Vladimir Afonso, Bruno Zatt, Luciano Agostini,

Marcelo Porto, “ HEVC Fractional Motion Estimation complexity reduction

67

for real-time applications,” Circuits and Systems (LASCAS), 2014 IEEE 5th

Latin American Symposium, 25-28 Feb. 2014.

[10] Nguyen Ngoc Luong, Tae Sung Kim, Hyuk-Jae Lee, and Soo-Ik Chae,

"Advanced Decision of PU Partitions and CU Depths for Fractional Motion

Estimation in HEVC," International Conference on Electronics, Information

and Communication, Jan. 2016.

[11] Grzegorz Pastuszak, Maciej Trochimiuk, “Algorithm and architecture

design of the motion estimation for the H.265/HEVC 4K-UHD encoder,” J

Real-Time Image Proc, DOI 10.1007/s11554-015-0516-4.

[12] J.-F. Chang and J.-J. Leou, “A quadratic prediction based fractional-pixel

motion estimation algorithm for H.264,” inProc. 7th IEEE Int. Symp.

Multimedia, Dec. 2005.

[13] Il-Koo Kim, Junghye Min, Tammy Lee, Woo-Jin Han, and JeongHoon

Park,” Block Partitioning Structure in the HEVC Standard,” IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012.

[14] Kemal Ugur, Alexander Alshin, Elena Alshina, Frank Bossen, Woo-Jin

Han, Jeong-Hoon Park, and Jani Lainema, “Motion Compensated Prediction

and Interpolation Filter Design in H.265/HEVC,” IEEE JOURNAL OF

SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 6,

DECEMBER 2013.

[15] Chae Eun Rhee, Kyujoong Lee, Tae Sung Kim and Hyuk-Jae Lee, ”A

Survey of Fast Mode Decision Algorithms for Inter-Prediction and Their

Applications to High Efficiency Video Coding,” IEEE Transactions on

Consumer Electronics(SCI, IF 0.941), Volume : 58, Issue : 4, Pages : 1375-

1383, November, 2012.

[16] Gang He, Dajiang Zhou, Yunsong Li, Zhixiang Chen, Tianruo Zhang,

and Satoshi Goto, “High-Throughput Power-Efficient VLSI Architecture of

Fractional Motion Estimation for Ultra-HD HEVC Video Encoding,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Volume:23 ,

Issue: 12, Pages: 3138 – 3142, March 2015.

68

Abstract in Korean
High-Efficiency Video Coding (HEVC) [1]은 최신의 영상 coding 표준으로

Joint Collaborative Team on Video Coding (JCT-VC)에 의해 만들어졌으며,

전신인 H.264 표준 대비 2 배의 부호화 효율과 상대적으로 높은 영상

품질을 달성하는 것을 목표로 한다. Motion Estimation (ME)은 integer

motion estimation (IME)과 fractional motion estimation (FME)로

이루어지는데, HEVC 연산의 병목으로 작용한다. HM 참조 소프트웨어

수행 시에 ME 단독으로 수행 시간의 50 % 가량을 차지하며, IME 가 대략

20 %, FME 가 30 % 가량을 구성한다[2]. FME 의 막대한 연산 복잡도는

다음의 두 가지 이유로 설명될 수 있다:

 많은 FME refinement 실행: HEVC 에서는 크기가 대개 64x64

픽셀인 CTU 단위로 프레임이 분할된다. 하나의 64x64 CTU 는

depth 0의 64x64 CU 하나, depth 1의 32x32 CU 4개, depth 2의

16x16 CU 16개, depth 3의 8x8 CU 64개를 포함하여 총 85개의

CU 로 구성된다. 각 CU 는 8 가지의 허용되는 partition type 에

따라 PU 로 쪼개진다. HEVC 부호화기는 대개 4 장의 참조

프레임을 사용하여, 모든 가능한 PU 에 대해 FME refinement 를

수행해본 후, CTU 의 최적 configuration 을 결정한다. 결국 HEVC

참조 소프트웨어 HM 은 일반적으로 하나의 CTU를 위해, 매우

많은 연산 자원을 소모하는 FME refinement 를 2,372번 수행해야

한다.

 복잡하고 중복이 많은 보간 과정: FME refinement 는 보간과 sum

of absolute transformed difference (SATD) 로 구성되어 있는데,

일반적으로 4 장의 참조 프레임의 해당되는 모든 PU 에 대해

69

수행된다. 결국 64x64 CTU 하나의 fractional pixel refinement를

처리하기 위해서, FME 는 6,232,900 개의 fractional 픽셀을

처리해야 한다. 게다가 HEVC 에서는 fractional 픽셀이 half

fractional 픽셀과 quarter fractional 픽셀로 구성되어 있는데, 각

fractional 픽셀에 대해 6-tap 필터와 bilinear 필터를 사용하는 이전

표준들과 달리 8-tap 필터와 7-tap 필터로 보간이 수행된다.

따라서 FME 의 보간 과정은 HEVC 부호화기에 극심한 연산

부담이 된다.

본 논문에서는 위의 두 가지 항목 각각을 해결할 수 있는 두 개의

알고리즘을 제안한다. 첫 번째 알고리즘인 Advanced Decision of PU

Partitions and CU Depths for FME 는 IME의 cost를 추정한 후, FME를

위하여 CU level의 PU partition type과 coding tree unit (CTU) level의 CU

depth 를 선택한다. 이 알고리즘은 1.08 % 의 BD-BR 저하로 복잡도를

67.47 % 감소시킬 수 있어 효과적임을 실험 결과로 확인하였다. 두 번째

알고리즘인 A Reduction of the Interpolation Redundancy for FME 는

아무런 부호화 성능 저하 없이 보간 연산을 최대 86.46 % 감소시킨다. 두

가지 알고리즘의 조합은 FME 의 복잡도를 줄이기 위한 완전한

해결책이라고 할 수 있다. 보간이 FME refinement 복잡도의 절반을

차지하는 것을 고려할 때, BD-BR 1.66 % 증가로 FME의 복잡도를 85%

이상 감소시킬 수 있다.

주요어 : High-Efficiency Video Coding; Motion estimation; Fractional

motion estimation; Interpolation; Complexity Reduction

학 번 : 2014-25271

	Chapter 1. Introduction
	1. Introduction to Video Coding
	1.1. Definition of Video Coding
	1.2. The Need of Video Coding
	1.3. Basics of Video Coding
	1.4. Video Coding Standard

	2. Introduction to HEVC
	2.1. HEVC Background and Development
	2.2. Block Partitioning Structure in HEVC

	Chapter 2. Fractional Motion Estimation in HEVC and Related Works on Complexity Reduction
	1. Motion Estimation
	2. Fractional Motion Estimation
	2.1. Interpolation
	2.2. Sum of Absolute Transformed Difference Calculation
	2.3. Fractional Motion Estimation Procedure

	Chapter 3. Complexity Reduction for FME
	1. Problem Statement and Previous Studies
	1.1. Problem Statement
	1.2. Previous Studies

	2. Proposed Algorithms
	2.1. Advanced Decision of PU Partitions and CU Depths for Fractional Motion Estimation in HEVC
	2.2. Range-based interpolation algorithm

	Chapter 4. Experiment Results
	1. Advanced Decision of PU Partitions and CU Depths for Fractional Motion Estimation in HEVC Algorithms
	1.1. Advanced Decision of PU Partitions
	1.2. Advanced Decision of CU Partitions
	1.3. Combination of Advanced PU Partition and CU Depth Decision
	1.4. Comparison with Other Similar Works

	2. Range-based Algorithm
	2.1. Software Implementation
	2.2. Hardware Implementation of the Algorithm

	Chapter 5. Conclusion
	Bibliography
	Abstract in Korean

<startpage>11
Chapter 1. Introduction 1
 1. Introduction to Video Coding 1
 1.1. Definition of Video Coding 1
 1.2. The Need of Video Coding 1
 1.3. Basics of Video Coding 2
 1.4. Video Coding Standard 2
 2. Introduction to HEVC 6
 2.1. HEVC Background and Development 6
 2.2. Block Partitioning Structure in HEVC 9
Chapter 2. Fractional Motion Estimation in HEVC and Related Works on Complexity Reduction 21
 1. Motion Estimation 21
 2. Fractional Motion Estimation 22
 2.1. Interpolation 22
 2.2. Sum of Absolute Transformed Difference Calculation 27
 2.3. Fractional Motion Estimation Procedure 28
Chapter 3. Complexity Reduction for FME 31
 1. Problem Statement and Previous Studies 31
 1.1. Problem Statement 31
 1.2. Previous Studies 32
 2. Proposed Algorithms 34
 2.1. Advanced Decision of PU Partitions and CU Depths for Fractional Motion Estimation in HEVC 34
 2.2. Range-based interpolation algorithm 40
Chapter 4. Experiment Results 43
 1. Advanced Decision of PU Partitions and CU Depths for Fractional Motion Estimation in HEVC Algorithms 43
 1.1. Advanced Decision of PU Partitions 43
 1.2. Advanced Decision of CU Partitions 47
 1.3. Combination of Advanced PU Partition and CU Depth Decision 47
 1.4. Comparison with Other Similar Works 48
 2. Range-based Algorithm 49
 2.1. Software Implementation 49
 2.2. Hardware Implementation of the Algorithm 50
Chapter 5. Conclusion 61
Bibliography 64
Abstract in Korean 66
</body>

