15 research outputs found

    Quadratic Spline Quasi-interpolants on Powell-Sabin Partitions

    No full text
    2004-16International audienceIn this paper we address the problem of constructing quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-interpolants of optimal approximation order are proposed and numerical tests are presented

    Recent Results on Near-Best Spline Quasi-Interpolants

    Full text link
    Roughly speaking, a near-best (abbr. NB) quasi-interpolant (abbr. QI) is an approximation operator of the form Qaf=αAΛα(f)BαQ_af=\sum_{\alpha\in A} \Lambda_\alpha (f) B_\alpha where the BαB_\alpha's are B-splines and the Λα(f)\Lambda_\alpha (f)'s are linear discrete or integral forms acting on the given function ff. These forms depend on a finite number of coefficients which are the components of vectors aαa_\alpha for αA\alpha\in A. The index aa refers to this sequence of vectors. In order that Qap=pQ_a p=p for all polynomials pp belonging to some subspace included in the space of splines generated by the BαB_\alpha's, each vector aαa_\alpha must lie in an affine subspace VαV_\alpha, i.e. satisfy some linear constraints. However there remain some degrees of freedom which are used to minimize aα1\Vert a_\alpha \Vert_1 for each αA\alpha\in A. It is easy to prove that max{aα1;αA}\max \{\Vert a_\alpha \Vert_1 ; \alpha\in A\} is an upper bound of Qa\Vert Q_a \Vert_{\infty}: thus, instead of minimizing the infinite norm of QaQ_a, which is a difficult problem, we minimize an upper bound of this norm, which is much easier to do. Moreover, the latter problem has always at least one solution, which is associated with a NB QI. In the first part of the paper, we give a survey on NB univariate or bivariate spline QIs defined on uniform or non-uniform partitions and already studied by the author and coworkers. In the second part, we give some new results, mainly on univariate and bivariate integral QIs on {\sl non-uniform} partitions: in that case, NB QIs are more difficult to characterize and the optimal properties strongly depend on the geometry of the partition. Therefore we have restricted our study to QIs having interesting shape properties and/or infinite norms uniformly bounded independently of the partition

    Quasi-Interpolation in a Space of C 2 Sextic Splines over Powell–Sabin Triangulations

    Get PDF
    In this work, we study quasi-interpolation in a space of sextic splines defined over Powell– Sabin triangulations. These spline functions are of class C 2 on the whole domain but fourth-order regularity is required at vertices and C 3 regularity is imposed across the edges of the refined triangulation and also at the interior point chosen to define the refinement. An algorithm is proposed to define the Powell–Sabin triangles with a small area and diameter needed to construct a normalized basis. Quasi-interpolation operators which reproduce sextic polynomials are constructed after deriving Marsden’s identity from a more explicit version of the control polynomials introduced some years ago in the literature. Finally, some tests show the good performance of these operators.Erasmus+ International Dimension programme, European CommissionPAIDI programme, Junta de Andalucía, Spai

    Quasi-interpolation by C1 quartic splines on type-1 triangulations

    Get PDF
    This work was initiated during the visiting on 2017, March of the first and third authors to the Department of Mathematics of the University of Torino, and partially realized during the visiting of the fourth author to the Department of Applied Mathematics of the University of Granada on 2017, November. They thank the financial support of both institutions and the Gruppo Nazionale per il Calcolo Scientifico (GNCS) - INdAM.In this paper we construct two new families of C1 quartic quasi-interpolating splines on type-1 triangulations approximating regularly distributed data. The splines are directly determined by setting their Bernstein–Bézier coefficients to appropriate combinations of the given data values instead of defining the approximating splines as linear combinations of compactly supported bivariate spanning functions and do not use prescribed derivatives at any point of the domain. The quasi-interpolation operators provided by the proposed schemes interpolate the data values at the vertices of the triangulation, reproduce cubic polynomials and yield approximation order four for smooth functions. We also propose some numerical tests that confirm the theoretical results

    Non-uniform UE-spline quasi-interpolants and their application to the numerical solution of integral equations

    Get PDF
    A construction of Marsden’s identity for UE-splines is developed and a complete proof is given. With the help of this identity, a new non-uniform quasi-interpolant that repro-duces the spaces of polynomial, trigonometric and hyperbolic functions are defined. Effi-cient quadrature rules based on integrating these quasi-interpolation schemes are derived and analyzed. Then, a quadrature formula associated with non-uniform quasi-interpolation along with Nyström’s method is used to numericallysolve Hammerstein and Fredholm integral equations. Numerical results that illustrate the effectiveness of these rules are pre-sented.Universidad de Granada / CBU

    On multivariate polynomials in Bernstein–Bézier form and tensor algebra

    Get PDF
    AbstractThe Bernstein–Bézier representation of polynomials is a very useful tool in computer aided geometric design. In this paper we make use of (multilinear) tensors to describe and manipulate multivariate polynomials in their Bernstein–Bézier form. As an application we consider Hermite interpolation with polynomials and splines
    corecore