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Abstract: In this work, we study quasi-interpolation in a space of sextic splines defined over Powell–
Sabin triangulations. These spline functions are of class C2 on the whole domain but fourth-order
regularity is required at vertices and C3 regularity is imposed across the edges of the refined triangula-
tion and also at the interior point chosen to define the refinement. An algorithm is proposed to define
the Powell–Sabin triangles with a small area and diameter needed to construct a normalized basis.
Quasi-interpolation operators which reproduce sextic polynomials are constructed after deriving
Marsden’s identity from a more explicit version of the control polynomials introduced some years
ago in the literature. Finally, some tests show the good performance of these operators.

Keywords: Powell–Sabin triangulation; sextic Powell–Sabin splines; Bernstein–Bézier form; Mars-
den’s identity

1. Introduction

Spline functions over triangulations have been, and are, the object of intense research
for their role in the Approximation Theory and for dealing with a wide variety of problems
of practical interest, among which the approximation of scattered data and the numerical
solution of partial differential equations occupy a prominent place.

It is well known that the requirement of a regularity Cm of a spline on a given triangu-
lation implies that the degree must be greater than or equal to 4m + 1 [1]. As in practice, it
is essential to use splines of the lowest degree for a given class, different finite elements
obtained by subdiving every triangle have been introduced and analyzed in the literature,
among them the Clough–Tocher (CT-) and Powell–Sabin (PS-) refinements (see [2] and [3],
respectively).

The PS-refinement was proposed in [3] for contour plotting. A first subdivision into
six triangles is achieved by selecting an inner point in every triangle and connecting it
with similar points in the adjacent triangles as well as with the three vertices. The inner
point of a boundary triangle is joined to a point over a boundary edge when no adjacent
triangle is available. From this PS6-split, a PS12-split is easily derived by joining in every
triangle the three points lying on the edges of the triangle that the previous construction
produces [4]. Furthermore, in this case, PS-splines of higher degree and smoothness have
been constructed [5].

Since their introduction, C1 quadratic splines on Powell–Sabin (PS-) triangulations
found several useful applications in interpolation and linear least squares fitting. Especially,
we mention the papers [6–9] treating numerical solution of PDEs, and the references [10]
concerned with interpolation and least squares subject to one- or two-sided restrictions.
The construction of quasi-interpolation operators with optimal orders is treated in [11–17].
Gaussian quadrature rules are also treated using C1 quadratic Powell–Sabin (PS-) splines [18].
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The application of splines in various fields requires efficient algorithms for construct-
ing locally supported bases for the spline spaces. The B-spline representation of bivariate
C1 quadratic splines achieved by Dierckx [19] was essential in the development of spline
spaces on PS partitions and applications. The method proposed by P. Dierckx is completely
geometrical, it is reduced to finding a set of PS2 triangles that must contain a number of
specified points. Linear and quadratic programming problems are the standard methods
proposed by many authors in the literature [19,20]. The main idea of both methods is to
minimize the area of a triangle without imposing any condition concerning the diameter
of the sought triangles. Moreover, the quadratic problem only provides local maxima. In
order to avoid these limitations, we present an algorithm that aims to produce PS6 triangles
with a smaller area and diameter, and compare it with the one proposed in [21].

The study of spline function spaces on Powell–Sabin partitions obtained by a refine-
ment into six sub-triangles, has attracted a great interest in the scientific community since
its introduction. The cubic case was considered in [20,22]. Spaces of quintic splines were
analyzed in [23] and more recently in [24], among others. In [25] and [26], normalized
bases for PS-splines of degree 3r− 1 are defined and super-splines of arbitrary degree are
given, respectively.

Quasi-interpolation over Powell–Sabin triangulations for specific spaces have been
also studied in depth [11–17,24], as well as for a family of spaces [27]. The construction
of such operators is based on establishing a Marsden’s identity. It is a powerful tool that
allows to write the monomials in terms of the corresponding B-spline-like functions (B-
splines for short). In this view, we establish a general Marsden’s identity in the subspace
of sextic splines from an easy approach based on a version of the control polynomials
different from the one used in [25].

In this paper, we revise a subspace of C2 sextic PS6 splines obtained by imposing
additional smoothness requirements at the interior points of the triangulation chosen to
construct the sub-triangulation and also across some edges of the refined triangulation.
This subspace of splines was studied in [26], where it is shown that every spline is uniquely
determined by its values at the vertices of the initial triangulation and the interior points
and those of its partial derivatives up to the fourth order at the vertices.

The paper is organized as follows: In Section 2, we recall some general concepts
of polynomials on triangles and recall the notion of control polynomials. In Section 3,
we recall some results concerning the space of sextic PS6 splines as well as the Hermite
interpolation problems needed to obtain the B-splines forming a normalized basis, and
provide explicit expressions for the Bernstein–Bézier coefficients of the B-splines in order
to provide a fully worked out construction. Furthermore, the Marsden’s identity is stated.
In Section 4, an algorithm for determining the set of PS triangles needed to define the
B-splines is proposed, which aims to obtain PS splines with a small area and diameter.
In Section 5, control polynomials are used to define quasi-interpolation operators having
an optimal approximation order. Furthermore, some tests are carried out to illustrate the
performance of such operators. A section of conclusions is also included.

2. Bernstein–Bézier, Polar Forms and Control Polynomials

Firstly, we introduce some notation, results relative to polynomials defined on triangles
and the notion of polar forms.

Consider a non-degenerated triangle T := 〈V1, V2, V3〉with vertices Vi := (xi, yi), i =
1, 2, 3. It is well-known that every point V := (x, y) ∈ R2 can be uniquely expressed as

V =
3

∑
i=1

τi Vi, τ1 + τ2 + τ3 = 1,
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where the barycentric coordinates τ := (τ1, τ2, τ3) with respect to T are the unique solution
of the system x1 x2 x3

y1 y2 y3
1 1 1

τ1
τ2
τ3

 =

x
y
1

.

Hereafter, we denote by Pd the linear space of bivariate polynomials of degree less
than or equal to d. Any bivariate polynomial p ∈ Pd has a unique representation in
barycentric coordinates

p(V) = b(τ) := ∑
|β|=d

bβ B
d
β, T(τ),

where β := (β1, β2, β3) ∈ N3 are multi-indices of length |β| := |β1|+ |β2|+ |β3| and

Bd
β, T(τ) :=

d!
β!

τβ =
d!

β1! β2! β3!
τ

β1
1 τ

β2
2 τ

β3
3

are the Bernstein–Bézier polynomials of degree d with respect to T. The coefficients bβ

are called the Bézier ordinates of the polynomial p with respect to the triangle T, and
b(τ) is stated to be the Bernstein–Bézier form of p. It may be represented by associating
each coefficient bβ with the domain points ξβ determined by the barycentric coordinates(

β1
d , β2

d , β3
d

)
with respect to triangle T (see Figure 1). The points

(
ξβ, bβ

)
∈ R3 are the

control points of the so called B-net for the surface of equation z = p(x, y). This surface
is tangent at the vertices of T to the linear piecewise function defined by the B-net. The
graph of the surface is contained in the convex hull of the control points and p can be easily
bounded from them.

Figure 1. Domain points for d = 6.

The conversion of the Bézier form to a different triangle T̃ can be neatly expressed
in terms of the polar form [28,29]. Recall that the polar form B[pd] of a polynomial
pd ∈ Pd is completely characterized by three properties: it is symmetric, multi-affine
and diagonal, i.e.,

• B[pd](A1, . . . , Ad) = B[pd]
(

Aπ(1), . . . , Aπ(d)

)
for any permutation π of integers

1, . . . , d.
•

B[pd](A1, a B + b C, . . . , Ad) = a B[pd](A1, B, . . . , Ad)

+ b B[pd](A1, C, . . . , Ad)

if a + b = 1.
• B[pd](A, . . . , A) = pd(A).

For further use, let us recall the following restricted version of Lemma 4.1 given in [11].

Lemma 1. Let d1 and d2 be two positive integers, with d2 ≤ d1. Then, for any polynomial p ∈ Pd1
and any points V1, . . . , Vd1−d2 in R2, the function

q(X) := B[p]
(

V1, . . . , Vd1−d2 , Xd2
)

(1)
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is a polynomial of degree ≤ d2. Moreover, for any points W1, . . . , Wd2 in R2 it holds

B[q](W1, . . . , Wd2) = B[p]
(
V1, . . . , Vd1−d2 , W1, . . . , Wd2

)
.

The behavior of the controlled spline function at any vertex can be detected from the
behavior of control polynomials at the same vertex [20]. Now, by using the relationship
between polynomials and their blossoms, we obtained a result that will allow to define
the control polynomial that was the main tool for establishing Marsden’s identity which is
the key for building quasi-interpolation schemes based on a C2 sextic PS-spline space. The

notation ∂a,b f (A) was used for the partial derivative ∂a+b f
∂xa∂yb (A) with a + b ≥ 0.

The following result, that defines the control polynomial of degree d2 at the vertex V1
of a polynomial p of degree d1, is an alternative way to establish Marsden’s identity.

Proposition 1. Let d1 and d2 be two positive integers, with d2 ≤ d1. Let p ∈ Pd1 and V1 ∈ R2.
For a given real number 0 < θ < 1, we define the polynomial q of degree d2 by

q(X) := B[p]
(

Vd1−d2
1 , (θX + (1− θ)V1)

d2
)

. (2)

Then, for all 0 ≤ a + b ≤ d2, we have

∂a,b p(V1) =
1

θa+b

(
d1

a + b

)
(

d2
a + b

) ∂a,b q(V1).

Proof. By induction on d2 and from the fact that the blossoming is multi-affine, the poly-
nomial function q can also be written as

q(X) =
d2

∑
i=0

(
d2

i

)
θi (1− θ)d2−i B[p]

(
Vd1−i

1 , Xi
)

.

From Lemma 1, q is a polynomial of degree ≤ d2. Define the polynomial qi of degree i as

qi(X) := B[p]
(

Vd1−i
1 , Xi

)
,

and let δ1 := (1, 0) and δ2 := (0, 1).
Since qi ∈ Pi, we considered only the case when a + b ≤ i, obtaining that

∂a,b qi(V1) = Dδa
1 δb

2
qi(V1) =

i!
(i− a− b)!

B[qi]
(

Vi−a−b
1 , δa

1, δb
2

)
=

i!
(i− a− b)!

B[p]
(

Vd1−a−b
1 , δa

1, δb
2

)
.

Then,

∂a,b q(V1) =
d2

∑
i=a+b

d2!
(d2 − i)!(i− a− b)!

θi(1− θ)d2−i B[p]
(

Vd1−a−b
1 , δa

1, δb
2

)
=

d2−a−b

∑
j=0

d2!
(d2 − a− b)!j!

θ j+a+b (1− θ)d2−a−b−j B[p]
(

Vd1−a−b
1 , δa

1, δb
2

)
= θa+b d2!

(d2 − a− b)!
B[p]

(
Vd1−a−b

1 , δa
1, δb

2

)
,

and the claim follows.
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A general result is proved in Theorem 1 in [27], where more detailed information
is given.

Hereafter, Dr(V1) denotes the disk of radius r around the vertex V1 of a triangle T =
〈V1, V2, V3〉. It is the subset of domain points ξβ defined as

Dr(V1) :=
{

ξβ, β1 ≥ d− r
}

.

In the following section, we present a completely worked out construction of a nor-
malized basis of the subspace of splines over a Powell–Sabin partition introduced in [26].

3. Explicit Construction of a B-Spline Basis for a Space of Powell–Sabin Super Splines

Let Ω be a polygonal domain in R2, and let ∆ := {Ti}nt
i=1 be a regular triangulation of

Ω. We denoted by Vi := (xi, yi)
T , i = 1, . . . , nv, the vertices of the given triangulation. Let

∆PS be a PS-refinement of ∆, which divides each macro triangle Tj into six micro-triangles
(see Figure 2).

Figure 2. Powell–Sabin refinement of the given triangulation.

This partition was defined algorithmically as follows:

1. Choose an interior point Zj in each triangle Tj. If two triangles Ti and Tj have a
common edge, then the line joining Zi and Zj should intersect the common edge at
some point Rij.

2. Join each point Zj to the vertices of Tj.
3. For each edge of the triangle Tj:

(a) which is common to a triangle Ti , join Zj to Rij;
(b) which belongs to the boundary ∂Ω, join Zj to an arbitrary point on that edge.

The space of sextic piecewise polynomials on ∆PS with global C2 continuity was
defined as:

S2
6(Ω, ∆PS) :=

{
s ∈ C2(Ω) : s|t ∈ P6 for all micro-triangle t ∈ ∆PS

}
.

This kind of spline space can be considered as the Hermitian finite element [30]. Then,
we considered a particular subspace of S2

6(Ω, ∆PS) introduced in [26]. Let V := {Vi}nv
i=1,

Z := {Zi}nt
i=1 and E∗ be, respectively, the subsets of vertices in ∆, split points in ∆PS, and

edges in ∆PS that connect a split point Zi to a point Rij. As given in [26], the space of PS
splines is defined as

S2,4,3
6 (Ω, ∆PS) :=

{
s ∈ S2

6(Ω, ∆PS) : s ∈ C4(V), s ∈ C3(Z ∪ E∗)
}

.

Each C2(Ω) function s is of class C4 at any vertex in V and of class C3 at any split point in
Z and across any edge in E∗. In [26], by using minimal determining sets, it was proved
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that for given values f a,b
i , i = 1, . . . , nv, and gk, k = 1, . . . , nt, there exists a unique spline

s ∈ S2,4,3
6 (Ω, ∆PS) such that

∂a,b s(Vi) = f a,b
i , 0 ≤ a + b ≤ 4, and s(Zk) = gk. (3)

Therefore, the dimension of the space S2,4,3
6 (Ω, ∆PS) was equal to 15nv + nt.

A procedure for the construction of a normalized basis for the space S2,4,3
6 (Ω, ∆PS)

was then based on the solution of the above Hermite interpolation problem for appropriate
values f a,b

i and gk (see [26]). Non-negative and locally supported basis functions Bv
i,j and

Bt
k with respect to vertices and triangles, respectively, that form a partition of unity were

defined, and any s ∈ S2,4,3
6 (Ω, ∆PS) could be represented as

s(x, y) :=
nv

∑
i=1

15

∑
j=1

cv
i,j Bv

i,j(x, y) +
nt

∑
k=1

ct
k B

t
k(x, y). (4)

In what follows, we gave a fully elaborate construction of such a normalized basis [25,26].
For every vertex Vi, let Mi := ∪T∈∆,Vi∈ T T be the molecule of vertex Vi, i.e., the union of all
triangles in ∆ containing Vi. For all vertices V`, ` ∈ Λi (e.g., Λi is the set of indices for the
vertices that form an edge in ∆ with Vi), lying on the boundary of Mi, let

Si,` :=
1
3

Vi +
2
3

V`.

The points Vi and Si,`, ` ∈ Λi, were stated to be PS6 points associated with the vertex Vi.
Let ti := (Qi,1, Qi,2, Qi,3) be a triangle containing the PS6 points of Vi. It will be called the
PS6 triangle. Denote by B4

ti ,mnl , m + n + l = 4, the Bernstein polynomials of degree four
with respect to ti, and define, for all 0 ≤ a + b ≤ 4, the values

αa,b
i,1 := Ca,b ∂a,bB

4
ti ,400(Vi), αa,b

i,2 := Ca,b ∂a,b B
4
ti ,310(Vi), αa,b

i,3 := Ca,b∂a,b B
4
ti ,220(Vi),

αa,b
i,4 := Ca,b ∂a,bB

4
ti ,130(Vi), αa,b

i,5 := Ca,b ∂a,b B
4
ti ,040(Vi), αa,b

i,6 := Ca,b∂a,b B
4
ti ,031(Vi),

αa,b
i,7 := Ca,b ∂a,bB

4
ti ,022(Vi), αa,b

i,8 := Ca,b ∂a,b B
4
ti ,013(Vi), αa,b

i,9 := Ca,b∂a,b B
4
ti ,004(Vi), (5)

αa,b
i,10 := Ca,b ∂a,bB

4
ti ,103(Vi), αa,b

i,11 := Ca,b ∂a,b B
4
ti ,202(Vi), αa,b

i,12 := Ca,b∂a,b B
4
ti ,301(Vi),

αa,b
i,13 := Ca,b ∂a,b B

4
ti ,211(Vi), αa,b

i,14 := Ca,b∂a,b B
4
ti ,121(Vi), αa,b

i,15 := Ca,b∂a,b B
4
ti ,112(Vi),

with Ca,b := 30
(6−a−b)(5−a−b)

( 2
3
)a+b

.

They are used to define the B-splines Bv
i,j and Bt

k as follows.

3.1. Vertex B-Spline

Every B-spline Bv
i,j, 1 ≤ j ≤ 15, relative to the vertex Vi was defined as the unique

solution of a particular Hermite interpolation with conditions given by (3). Firstly, all
f a,b
` were equal to zero except for ` = i, and f a,b

i = αa,b
i,j . Moreover, if Vi was a vertex of

a triangle Tk := 〈V1, V2, V3〉, then gk was equal to a value βk
i,j to be precise later and the

remaining values of g were all equal to zero. The spline defined in this way was zero
outside the molecule Mi of vertex Vi. Next, we computed the BB-coefficients of Bv

i,j relative
to the triangles determining their support. For the sake of simplicity, we only computed the
BB-coefficients of the B-spline Bv

1,j relative to the vertex V1 of triangle Tk. The corresponding
Bézier ordinates are schematically represented in Figure 3.
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c1 c2 c5 c10 c17 c26 c27

c3

c7

c13

c21

c6 c11 c18

c12 c19

c20

c62 c63

c54

c45c44

c53

c33

c30c29

c32

c68

c28

c31

c34

c46

c55

c64

c65

c66

c50c59

c35 c38c41

c36

c37

c25

c16

c39c42c51

c9

c60
c40

c24

c15

c43

c23

c52

c67

c22

c61

c4

c8

c14

V1 V2

V3

R12

R23R31

Figure 3. Representation of the Bézier ordinates of a B-spline relative to a vertex. The BB-coefficients
that are known to be zero are indicated by open ◦.

From the definition of Bv
1,j, many BB-coefficients were equal to zero. Figure 4 shows the

refinement of Tk and we assumed that the points indicated in the figure had the following
barycentric coordinates:

V1 = (1, 0, 0), V2 = (0, 1, 0), V3 = (0, 0, 1), Z = (z1, z2, z3),

R12 = (λ12, λ21, 0), R23 = (0, λ23, λ32), R31 = (λ13, 0, λ31).

Because of the C4 smoothness of the spline at V1, the ordinates c1, c2, . . . , c25 were uniquely
determined by the values αa,b

1,j , 0 ≤ a + b ≤ 4. The ordinates c26, . . . , c34 were obtained by

the C3 smoothness across the edge 〈R12, Z〉.

Z

V2V1

V3

R23R31

R12

Figure 4. A Powell–Sabin split of the triangle T = 〈V1, V2, V3〉.
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Let us define three univariate cubic polynomial functions p0
3, p1

3 and p2
3 on the segments〈

V1+R12
2

V2+R12
2

〉
,
〈

3V1+2R12+Z
6

3V2+2R12+Z
6

〉
and

〈
3V1+R12+2Z

6
3V2+R12+2Z

6

〉
, respectively. Be-

fore subdivision, their BB-coefficients were

b0
30 = c10, b0

21 = ĉ17, b0
12 = 0, b0

03 = 0,

b1
30 = c11, b1

21 = ĉ18, b1
12 = 0, b1

03 = 0,

b2
30 = c12, b2

21 = ĉ19, b2
12 = 0, b2

03 = 0,

respectively, where

ĉ17 =
c17 − λ12c10

λ21
, ĉ18 =

c18 − λ12c11

λ21
, ĉ19 =

c19 − λ12c12

λ21
.

Therefore, we obtained

c26 = λ12(c17 + λ21 ĉ17), c27 = λ2
12(c17 + 2λ21 ĉ17), c28 = λ2

12 ĉ17,

c29 = λ12(c18 + λ21 ĉ18), c30 = λ2
12(c18 + 2λ21 ĉ18), c31 = λ2

12 ĉ18,

c32 = λ12(c19 + λ21 ĉ19), c33 = λ2
12(c19 + 2λ21 ĉ19), c34 = λ2

12 ĉ19.

The values c35, . . . , c43 were determined using a similar method. They were given by
the following expressions:

c37 = λ13(c25 + λ31 ĉ25), c36 = λ2
13(c25 + 2λ31 ĉ25), c35 = λ2

13 ĉ25,

c40 = λ13(c24 + λ31 ĉ24), c39 = λ2
13(c24 + 2λ31 ĉ24), c38 = λ2

13 ĉ24,

c43 = λ13(c23 + λ31 ĉ23), c42 = λ2
13(c23 + 2λ31 ĉ23), c41 = λ2

13 ĉ23,

with
ĉ25 =

c25 − λ13c16

λ31
, ĉ24 =

c24 − λ13c15

λ31
, ĉ23 =

c23 − λ13c14

λ31
.

The remaining Bézier ordinates had to be chosen in such a way that the B-spline was
C3 continuous at split point Z. Therefore, let us first define the points

wi :=
Vi + Z

2
, i = 1, 2, 3, (6)

and let p3 ∈ P3 be the polynomial of degree 3 defined over the triangle T = 〈w1, w2, w3〉
with ordinates

b300 = c13, b210 = ĉ20, b201 = ĉ22, b120 = b030 = b021 = b012 = b003 = b102 = b111 = 0,

where
ĉ20 =

c20 − λ12c13

λ21
, ĉ22 =

c22 − λ13c13

λ31
. (7)
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We obtained

c44 = λ2
12c13 + 2λ12λ21 ĉ20, c45 = 12λ3c13 + 3λ2

12λ21 ĉ20, c46 = λ2
12 ĉ20,

c47 = 0, c48 = 0, c49 = 0, c50 = λ2
13 ĉ22, c51 = λ3

13c13 + 3λ2
13λ31 ĉ22,

c52 = λ2
13c13 + 2λ13λ31 ĉ22, c53 = z1λ12c13 + (z2λ12 + z1λ21)ĉ20 + z3λ12 ĉ22,

c54 = z1λ2
12c13 + (z2λ2

12 + z1λ12λ21)ĉ20 + z3λ2
12 ĉ22, c55 = λ12z1 ĉ20, c56 = 0,

c57 = 0, c58 = 0, c59 = λ13z1 ĉ22, c60 = z1λ2
13c13 + z2λ2

13 ĉ20 + (z3λ2
13 + 2z1λ13λ31)ĉ22,

c61 = z1λ13c13 + z2λ13 ĉ20 + (z3λ13 + z1λ31)ĉ22, c62 = z2
1c13 + 2z1z2 ĉ20 + 2z1z3 ĉ22,

c63 = z2
1λ12c13 + (2z1z2λ12 + z2

1λ21)ĉ20 + 2z1z3λ12 ĉ22, c64 = z2
1 ĉ20 + 2z1z3 ĉ22,

c65 = z2
1λ23 ĉ20 + z2

1λ32 ĉ22, c66 = z2
1 ĉ22,

c67 = z2
1λ13c13 + 2z1z2λ13 ĉ20 + (2z1z3λ13 + z2

1λ31)ĉ22, c68 = z3
1c13 + 3z2

1z2 ĉ20 + 3z2
1z3 ĉ22.

The choice βk
1,j = c68 provided the values needed to completely define the B-spline Bv

1,j.

Figure 5 shows typical plots of the fifteen C2 sextic B-splines associated with a vertex
of the triangulation.

Figure 5. B-splines relative to a vertex.

3.2. Triangle B-Spline

For the sake of simplicity, we denoted by bl the B-ordinates with respect to a triangle
(see Figure 6). The B-spline Bt

k with respect to triangle Tk was defined as the spline
satisfying conditions (3) with all f a,b

i equal to zero, gk = βk and the remaining values of g
equal to zero. It vanished outside Tk. In order to specify the value of βk, we looked at the
Bernstein–Bézier representation of the B-spline Bt

k. We consider, again, the macro-triangle
Tk = 〈V1, V2, V3〉, as above.

Let us define again a polynomial p3 ∈ P3 of degree 3 defined on the triangle T =
〈w1, w2, w3〉, where wi were defined in (6), and having the following B-ordinates:

b300 = b210 = b201 = b120 = b030 = b021 = b012 = b003 = b102 = 0, b111 = 1.
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b10 b11

b2b1

b16

b3

b12

b13
b5

b4

b14
b6

b7

b8 b15

b9

V1 V2

V3

R12

R23R31

Figure 6. Schematic representation of the Bézier ordinates of a B-spline with respect to a triangle.
The B-coefficients that are known to be zero are indicated by open ◦.

Furthermore, as in the above subsection, we obtained

b1 = λ21z3, b2 = 2λ12λ21z3, b3 = λ12z3, b4 = λ32z1, b5 = 2λ23λ32z1, b6 = λ23z1,

b7 = λ13z2, b8 = 2λ13λ31z2, b9 = λ31z2, b10 = 2z2z3, b11 = 2z3(λ12z2 + λ21z1), (8)

b12 = 2z1z3, b13 = 2z1(λ23z3 + λ32z2), b14 = 2z2z1, b15 = 2z2(λ31z1 + λ13z3),

b16 = 6z1z2z3.

From the construction, it was clear that all the Bézier ordinates were non-negative.
Then, the B-spline Bt

k was non-negative. We could choose βk = 6z1z2z3.
For each vertex Vi and each triangle Tk, we defined points Qi,β :=

(
Xi,β, Yi,β

)
with

β := (β1, β2, β3), |β| := β1 + β2 + β3 = 4 and Qt
k :=

(
Xt

k, Yt
k
)

in such a way that the
reproduction of the monomials x and y held, i.e.,

nv

∑
i=1

∑
|β|=4

Xi,β Bv
i,β(x, y) +

nt

∑
k=1

Xt
k B

t
k(x, y) = x, (9)

nv

∑
i=1

∑
|β|=4

Yi,β Bv
i,β(x, y) +

nt

∑
k=1

Yt
k B

t
k(x, y) = y. (10)

Proposition 2. Let Qi,(4,0,0), Qi,(0,4,0) and Qi,(0,0,4) be the three vertices of a triangle ti. If the
remaining points are defined by

Qi,β :=
1
4
(β1Qi,(4,0,0) + β2Qi,(0,4,0) + β3Qi,(0,0,4))
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and
Qt

k =
V1 + V2 + V3

6
+

Zk
2

,

then (9) and (10) hold.

Proof. For all (x, y) ∈ ti, we had

x = ∑
|β|=4

B[x]
(

Qβ1
i,(4,0,0), Qβ2

i,(0,4,0), Qβ3
i,(0,0,4)

)
B4

ti ,β(x, y). (11)

Using (5) and (11), we obtained (9). Now, to prove (10), we needed to show that

3

∑
i=1

∑
|β|=4

Xi,β Bv
i,β(x, y) + Xt

k B
t
k(x, y) = z1x1 + z2x2 + z3x3. (12)

Recall that, in the construction of B-splines in the above section, the value of a PS6
spline at a split point Z was computed through a particular cubic polynomial evaluated
at the split point. We considered again the macro-triangle Tk = 〈V1, V2, V3〉. The two
cubic polynomials corresponding to the two PS6 splines in the equations (9) and (10) were
denoted by px,3(τ) and py,3(τ). They were defined on the triangle with the vertices given
in (6). The Bézier ordinates of px,3 were given by the following expressions:

bx
300 =

1
2

x1 +
1
2
(z1x1 + z2x2 + z3x3), bx

210 =
2
3

bx
300 +

1
3

bx
030, bx

201 =
2
3

bx
300 +

1
3

bx
003,

bx
030 =

1
2

x2 +
1
2
(z1x1 + z2x2 + z3x3), bx

120 =
1
3

bx
300 +

2
3

bx
030, bx

021 =
2
3

bx
030 +

1
3

bx
003,

bx
003 =

1
2

x3 +
1
2
(z1x1 + z2x2 + z3x3), bx

102 =
1
3

bx
300 +

2
3

bx
003, bx

012 =
1
3

bx
030 +

2
3

bx
003.

By the definition of Qt
k, it held

b111 = Xt
k =

1
3
(bx

300 + bx
030 + bx

003).

Therefore, it was clear that px,3(τ) = τ1bx
300 + τ2bx

030 + τ3bx
003, and (12) followed.

Hence, (9) was proved. Equality (10) could be proved in a similar way.

Figure 7 shows the plot of the C2 sextic B-spline associated with a triangle of the
triangulation ∆PS.

Figure 7. B-spline relative to a triangle.
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4. Nearly Optimal PS6 Triangles

The construction of a normalized PS6 basis of S2,4,3
6 (Ω, ∆PS) was reduced to finding a

set of PS6 triangles that had to contain a number of specified points. The set of PS6 triangles
was not uniquely defined for a given refinement [31]. One possibility for their construction
was to calculate triangles of minimal area, the so-called optimal PS triangles introduced by
P. Dierckx [19]. Computationally, this problem led to a quadratic programming problem.
From a practical point of view, other choices may have been more appropriate. An alterna-
tive (and easier to implement) solution is given in [31], where the sides of the PS triangle
are obtained by connecting neighboring PS-points in a suitable way. This technique was
adopted and improved in [21]. A particular choice of the PS6 triangles could also simplify
the treatment of boundary conditions. For quasi-interpolation (see [17]), the corners of
each PS6 triangle were preferred to be chosen on edges of the triangulation.

We recalled the standard method proposed in the literature [19,20,25] to construct PS6
triangles and, then, we introduced a novel procedure.

4.1. Quadratic Programming Problem

Consider points Qi,j = (Xi,j, Yi,j), j = 1, 2, 3, yielding a PS6 triangle relative to the

vertex Vi = (xi, yi) and triplets
(

Γi,j, Γx
i,j, Γy

i,j

)
, j = 1, 2, 3, satisfying the following equality:Γi,1 Γi,2 Γi,3

Γx
i,1 Γx

i,2 Γx
i,3

Γy
i,1 Γy

i,2 Γy
i,3


Xi,1 Yi,1 1

Xi,2 Yi,2 1
Xi,3 Yi,3 1

 =

xi yi 1
1 0 0
0 1 0

. (13)

The area of the PS6 triangle being

∣∣∣∣∣∣
Xi,1 Yi,1 1
Xi,2 Yi,2 1
Xi,3 Yi,3 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
Γi,1 Γi,2 Γi,3
Γx

i,1 Γx
i,2 Γx

i,3
Γy

i,1 Γy
i,2 Γy

i,3

∣∣∣∣∣∣∣
−1

=
1

Γx
i,1Γy

i,2 − Γy
i,1Γx

i,2
,

then, maximizing the objective function Γx
i,1Γy

i,2− Γy
i,1Γx

i,2 is one approach to obtain a triangle
of smallest area. Additional constraints are needed to obtain a PS6 triangle containing all
PS6 points with respect to Vi.

The classical construction due to Dierckx was then summarized in the next result.

Proposition 3. The construction of an optimal PS6 triangle ti with respect to vertex Vi is equiv-
alent to the following quadratic programming problem: find a set of triplets

(
Γi,1, Γx

i,1, Γy
i,1

)
,(

Γi,2, Γx
i,2, Γy

i,2

)
and

(
1− Γi,1 − Γi,2, −Γx

i,1 − Γx
i,2, −Γy

i,1 − Γy
i,2

)
maximizing the objective func-

tion Γx
i,1Γy

i,2 − Γy
i,1Γx

i,2 subject to the constraints

Γi,1 + Γi,2 + Γi,3 = 1

Γx
i,1 + Γx

i,2 + Γx
i,3 = 0

Γy
i,1 + Γy

i,2 + Γy
i,3 = 0

and

Γi,j ≥ 0,

Li`,j = Γi,1 +
2
3

(
Γx

i,j(x` − xi) + Γy
i,j(y` − yi)

)
≥ 0,

with j = 1, 2, 3 and for all vertices V` = (x`, y`) lying on the boundary of the molecule Mi of Vi,
where (Γi,1, Γi,2, Γi,3) and (Li`,1, Li`,2, Li`,3) are the barycentric coordinates with respect to PS6
triangle ti of the PS6 points Vi and Si`, respectively.
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The objective function of the optimization problem can be written as max 1
2 xT A x, where

xT :=
(

Γi,1, Γi,2, Γx
i,1, Γx

i,2, Γy
i,1, Γy

i,2

)
and A =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 −1 0 0 0

.

The eigenvalues of the matrix A were −1, −1, 1, 1, 0 and 0, so that A was indefinite.
As pointed out in [19], “since the Hessian matrix of the objective function is not negative (semi-)
definite, appropriate software can only find a local maximum”. Therefore, we could not guarantee
that the quadratic optimization problem has a unique solution, which led to a scenario of
local solutions.

The technique for determining PS6 triangles is not unique. One option for their
construction is to calculate a triangle with a minimal area. Although the quadratic program
of P. Dierckx [19] produces excellent results, it can also produce PS6 triangle with quite
large diameters. Therefore, in order to overcome the limitation of the above optimization
problem, namely, the appearance of pre-degenerated triangles, i.e., triangles with a minimal
area and long diameters which impact negatively the quality of the approximation, we
proposed an algorithm yielding a PS6 triangle with a diameter as small as possible.

4.2. Algorithm for Determining a Triangle Containing a Set of Points

Given triangle T, let {Ωi}6
i=0 be the interiors of the seven regions obtained by extend-

ing the edges of T indefinitely (see Figure 8). Then, for each fixed 0 ≤ i ≤ 6, the barycentric
coordinates of all the points in Ωi have constant signs. In particular, a point lies in the
interior of T if and only if its barycentric coordinates are positive.

The algorithm proposed here to define a triangle containing the points Ai, 1 ≤ i ≤ n,
started from an initial triangle and built step by step triangles so that triangle Tj :=〈

Aj
1, Aj

2, Aj
3

〉
, j ≥ 2, obtained at the jth step of the algorithm contained the points A1,. . . ,

Aj−1. Denote by Ωj
k, k = 0, 1, 2, 3, and Ωj

k,k+1, k = 1, 2, 3, the seven regions obtained by
dividing the plane through Tj (see Figure 8).

Aj
1

Aj
3

Aj
2Ωj

1
(−+−)

Ωj
0(+ ++)

Ωj
1,2

(−++)
Ωj

2
(−−+)

Ωj
2,3
(+−+)

Ωj
3

(+−−)

Ωj
3,1

(+ +−)

Figure 8. The seven regions determined by the triangle Tj, with associated signs.

More precisely, the procedure described in Algorithm 1 was carried out to determine
a triangle from the previous one.

Figure 13 shows the PS6 triangles produced by the algorithm when applied to the PS6
points close to those used in [21]. They had two or three edges in common with the convex
hull of the PS6 points.

Next, we gave a result needed to determine triangles having a nearly minimal area.
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Algorithm 1 DETERMINING THE TRIANGLE Tj+1 FROM Tj

Require: compute the barycentric coordinates of Aj with respect to Tj and select the region
where Aj is located.

if Aj ∈ Ωj
0 then

Aj is in Tj, perform Tj+1 ← Tj and move to the next point Aj+1

else if Aj ∈ Ωj
3,1 then

1. Let I and J be the intersections of the line passing through Aj and parallel to

that passing through
{

Aj
3, Aj

1

}
with the lines passing through

{
Aj

2, Aj
1

}
and{

Aj
2, Aj

3

}
, respectively, and let T1

j+1 be the triangle with vertices Aj
2, I and J.

2. Let L be the line passing through Aj and orthogonal to bisector of angle spanned

by the lines
〈

Aj
2, Aj

1

〉
and

〈
Aj

2, Aj
3

〉
. Let I and J be the intersections of L with the

lines defined by
{

Aj
2, Aj

1

}
and

{
Aj

2, Aj
3

}
, and define as T2

j+1 the triangle with

vertices Aj
2, I and J.

3. Define Tj+1 as the triangle of minimum area among T1
j+1 and T2

j+1.

The same process is used if Aj belongs to Ωj
1,2 or Ωj

2,3.

else if Aj ∈ Ωj
3 then

Tj+1 =
〈

Aj
1, Aj

2, Aj

〉
.

The same procedure is applied if Aj ∈ Ωj
1 or Aj ∈ Ωj

2
end if

Lemma 2. Let a, A1, A2, A3 and A4 be five points in R2. If a ∈ Tijk :=
〈

Ai, Aj, Ak
〉

for
i, j, k = 1, 2, 3, 4 and i 6= j 6= k, then, a is in the triangle obtained by applying the algorithm using
Tijk and Al , l 6= i 6= j 6= k.

Proof. For the sake of simplicity, consider only one of the four different triangles which
can be obtained from four points. Let T134 := 〈A1, A3, A4〉 be a triangle containing
a. By applying the algorithm proposed here to T134 and A2, we can distinguish the
following scenarios:

• If A2 ∈ T134, then, the resulting triangle will be T134 itself.
• If A2 /∈ T134, then the obtained triangle will contain T134.

In both cases the resulting triangle will contain T134, so will contain also a. The proof is
complete.

From Lemma 2, at step j in the algorithm, we used the four triangles obtained by a
permutation of the vertices of Tj and Aj, and we chose the triangle of the small diameter
among the four ones.

Figure 9 shows the PS6 triangles provided by the proposed algorithm for the consid-
ered triangulation. It can be noticed that the resulting triangles passed through at least
three PS6 points. They had near minimal areas and smaller diameters.

As stated before, the quadratic optimization problem proposed by P. Dierckx [19] can
produce PS6 triangles with quite large diameters, and the algorithm proposed here aimed
to avoid this problem even though the resulting triangles had no minimal areas. Figure 10
shows the results provided by the Dierckx’s method and the algorithm for minimizing the
diameter when a near degenerate vertex was considered.

Figure 11 shows the results obtained when the time of execution of both algorithms
was examined. The time required by Dierckx’ algorithm was more than 30 times longer
than that required by the proposed algorithm.
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Figure 9. A triangulation with the PS6 triangles obtained by the proposed algorithm.

(a) (b)

Figure 10. PS6 triangles associated with a near degenerate vertex obtained by quadratic programming
(a) and the proposed algorithm (b). The area of the triangle provided by the Dierckx’s method was
equal to 0.2344 cm2 and the diameter was equal to 12.7857 cm. The area and the diameter of the
second one were 0.25 cm2 and 7.9907 cm, respectively.

(a) (b)

Figure 11. Results produced by the proposed algorithm (a) and Dierckx’s algorithm (b).

Other algorithms for determing PS triangles have also been described in the literature.
As stated before, in [21], after Proposition 1, the authors outline an algorithm that produces
PS triangles sharing two or three edges with the convex hull of the PS points. Next, we
compare it with our Algorithm. To conduct that, we considered PS points such as those in
Figure 1 in [21]. They are represented in Figure 12.
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Figure 12. PS points close to those of the ones in [21].

Algorithm 1 provided the PS6 triangles shown in Figure 13. Each of them was
produced from a choice of an initial triangle. On the left side, we showed those obtained
after three steps starting from the small dark triangle. We saw that these PS triangles shared
two or three sides with the convex hull of the PS points. On the right side, we showed
two other PS triangles produced by the algorithm after four steps. They also shared two
or three sides with the convex hull. The results provided by the algorithm in [21] and
Algorithm 1 were similar, although the later one did not need to compute the convex hull
of the PS points.

Figure 13. Results produced by the proposed algorithm applied to a set of PS6 points close to the
points indicated in Figure 12.

5. Quasi-Interpolation Schemes with Optimal Approximation Order

In this section, we gave proof of the Marsden’s identity for the space S2,4,3
6 (Ω, ∆PS),

expressing any spline s in this space as a linear combination of the normalized sextic
Powell–Sabin B-splines defined above. The coefficients in that combination were given
in terms of the polar forms of s. Therefore, Proposition 1 facilitates the establishment of
Marsden’s identity in comparison with other existing methods (e.g., matrix inverse [20]).

Here, we used the same notation as in Section 3. Let Qi,j, j = 1, 2, 3, be the vertices
of a PS6 triangle ti with respect to Vi. Define

Q̃i,j := −1
2

Vi +
3
2

Qi,j, i = 1, . . . , nv, j = 1, 2, 3.

We had the following result.

Corollary 1. For any p ∈ P6 it holds

p =
nv

∑
i=1

∑
|β|=4

B[p]
(

V2
i , Q̃β1

i,1, Q̃β2
i,2, Q̃β3

i,3

)
Bv

i,β +
nt

∑
k=1

B[p]
(

Z3
k , Vk1, Vk2, Vk3

)
Bt

k, (14)

where Vk1, Vk2 and Vk3 are the vertices of the macro triangle containing Zk.
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Proof. Define

s =
nv

∑
i=1

∑
|β|=4

B[p]
(

V2
i , Q̃β1

i,1, Q̃β2
i,2, Q̃β3

i,3

)
Bv

i,β +
nt

∑
k=1

B[p]
(

Z3
k , Vk1, Vk2, Vk3

)
Bt

k.

We proved that

∂a,bs(Vi) = ∂a,b p(Vi), i = 1, . . . , nv, 0 ≤ a + b ≤ 4,

and
s(Zk) = p(Zk), k = 1, . . . , nt,

from which the equality s = p follows.
It was clear that

s(Vi) = ∑
|β|=4

B[p]
(

V2
i , Q̃β1

i,1, Q̃β2
i,2, Q̃β3

i,3

)
Bv

i,β(Vi).

Define
qvi(X) := ∑

|β|=4
B[p]

(
V2

i , Q̃β1
i,1, Q̃β2

i,2, Q̃β3
i,3

)
Bv

i,β(X).

From (5), for all 0 ≤ a + b ≤ 4 it held

∂a,bqvi(X)

=
30

(6− a− b)(5− a− b)

(
4
6

)a+b
∂a,b ∑

|β|=4
B[p]

(
V2

i , Q̃β1
i,1, Q̃β2

i,2, Q̃β3
i,3

)
B4

ti ,β(X)

=
6!

(6− a− b)!(a + b)!
(a + b)!(4− a− b)!

4!

(
4
6

)a+b
∂a,b ∑

|β|=4
B[p]

(
V2

i , Q̃β1
i,1, Q̃β2

i,2, Q̃β3
i,3

)
B4

ti ,β(X).

Then, we used the notion of control polynomial developed in Section 2. Let

q̃vi := B[p]

(
V2

i ,
(
−1
2

Vi +
3
2

X
)4
)

be the control polynomial of degree 4 of p at the vertex Vi. We could write q̃vi on the PS-triangle ti as

q̃vi(X) = ∑
|β|=4

B[q̃vi]
(

Qβ1
i,1, Qβ2

i,2, Qβ3
i,3

)
B4

ti ,β(X).

According to Lemma 1,

q̃vi(X) = ∑
|β|=4

B[p]
(

V2
i , Q̃β1

i,1, Q̃β2
i,2, Q̃β3

i,3

)
B4

ti ,β(X).

Using Proposition 1, we deduced that

∂a,b p(Vi) =
30

(6− a− b)(5− a− b)

(
4
6

)a+b
∂a,b q̃vi(Vi) = ∂a,bqvi(Vi) = ∂a,bs(Vi).

Then, it sufficed to prove that s(Zk) = p(Zk). Without the loss of generality, we proved the
equality only for one triangle in ∆. Let T = 〈V1, V2, V3〉 be a triangle in ∆ with split point Z1. Then,

s(Z1) = ∑
|β|=4

B[p]
(

V2
1 , Q̃β1

1,1, Q̃β2
1,2, Q̃β3

1,3

)
Bv

1,β(Z1) + ∑
|β|=4

B[p](V2
2 , Q̃β1

2,1, Q̃β2
2,2, Q̃β3

2,3)B
v
2,β(Z1)

+ ∑
|β|=4

B[p]
(

V2
3 , Q̃β1

3,1, Q̃β2
3,2, Q̃β3

3,3

)
Bv

3,β(Z1) + B[p]
(

Z3
1 , V1, V2, V3

)
Bt

k(Z1).
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From Section 3, we had

∑
|β|=4

B[p]
(

V2
1 , Q̃β1

1,1, Q̃β2
1,2, Q̃β3

1,3

)
Bv

1,β(Z1)

= c68

= z3
1c13 + 3z2

1z2 c̃20 + 3z2
1z3 c̃22

= z3
1B[p]

(
V3

1 , Z3
1

)
+ 3z2

1z2B[p]
(

V2
1 , V2, Z3

1

)
+ 3z2

1z3B[p]
(

V2
1 , V3, Z3

1

)
.

Similarly,

∑
|β|=4

B[p]
(

V2
2 , Q̃β1

2,1, Q̃β2
2,2, Q̃β3

2,3

)
Bv

2,β(Z1)

= z3
2B[p](V3

2 , Z3
1) + 3z2

2z1B[p](V2
2 , V1, Z3

1) + 3z2
2z3B[p](V2

2 , V3, Z3
1),

∑
|β|=4

B[p]
(

V2
3 , Q̃β1

3,1, Q̃β2
3,2, Q̃β3

3,3

)
Bv

3,β(Z1)

= z3
3B[p]

(
V3

3 , Z3
1

)
+ 3z2

3z1B[p]
(

V2
3 , V1, Z3

1

)
+ 3z2

3z2B[p]
(

V2
3 , V2, Z3

1

)
,

and
B[p]

(
Z3

1 , V1, V2, V3

)
Bt

k(Z1) = 6z1z2z3B[p]
(

Z3
1 , V1, V2, V3

)
.

By taking into account the multi-affine property of the polar form, the claim followed.

Then, we stated the following result, whose proof followed the idea used in [12] in
dealing with quadratic Powell–Sabin splines.

Theorem 1. For any spline s ∈ S2,4,3
6 (Ω, ∆PS), it holds

s =
nv

∑
i=1

∑
|β|=4

B[si]
(

V2
i , Q̃β1

i,1, Q̃β2
i,2, Q̃β3

i,3

)
Bv

i,β +
nt

∑
k=1

B[s̃k]
(

Z3
k , Vk1, Vk2, Vk3

)
Bt

k,

where si := s|ti
stands for the restriction of s to the triangle ti in ∆PS and s̃k is the restriction of s to

a triangle tk = 〈Vk1, Vk2, Vk3〉 containing Zk .

Proof. Consider a spline s in S2,4,3
6 (Ω, ∆PS). Let ti be a triangle in ∆PS having Vi as a vertex.

Let si be the restriction of s to ti, i.e., the sextic polynomial such that

∂a,bs(Vi) = ∂a,bsi(Vi), s(Zk) = s̃k(Zk), 0 ≤ a + b ≤ 4.

Let pi be the restriction of s on ti. From Corollary 1, it was clear that for all (x, y) ∈ Ω
and r = 1, . . . , nv it held

pr =
nv

∑
i=1

∑
|β|=4

B[pr]
(

V2
i , Q̃β1

i,1, Q̃β2
i,2, Q̃β3

i,3

)
Bv

i,β +
nt

∑
k=1

B[pr]
(

Z3
k , Vk1, Vk2, Vk3

)
Bt

k.

Then,
pr(Vr) = ∑

|β|=4
B[pr]

(
V2

r , Q̃β1
r,1, Q̃β2

r,2, Q̃β3
r,3

)
Bv

r,β(Vr).

Therefore,
pr(Vr) = ∑

|β|=4
B[sr]

(
V2

r , Q̃β1
r,1, Q̃β2

r,2, Q̃β3
r,3

)
Bv

r,β(Vr).

Define,

q(x, y) :=
nv

∑
i=1

∑
|β|=4

B[si]
(

V2
i , Q̃β1

i,1, Q̃β2
i,2, Q̃β3

i,3

)
Bv

i,β(x, y) +
nt

∑
k=1

B[sk]
(

Z3
k , Vk1, Vk2, Vk3

)
Bt

k(x, y).
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It held
q(Vr) = ∑

|β|=4
B[sr]

(
V2

r , Q̃β1
r,1, Q̃β2

r,2, Q̃β3
r,3

)
Bv

r,β(Vr).

Then, for all r = 1, . . . , nv, we obtained

q(Vr) = pr(Vr) = sr(Vr) = s(Vr).

Similarly, we obtained

∂a,bq(Vr) = ∂a,b pr(Vr) = ∂a,bsr(Vr) = ∂a,bs(Vr), 1 ≤ a + b ≤ 4,

and
q(Zk) = pk(Zk) = s̃k(Zk) = s(Zk).

Since every element in S2,4,3
6 (Ω, ∆PS) was uniquely determined by its values and derivative

values up to order four at the vertices of ∆, then the claim followed and the proof was completed.

Marsden’s identity is a useful tool for constructing quasi-interpolants to enough regu-
lar functions (see [12] and references therein for details). We used it to define differential
quasi-interpolants in S2,4,3

6 (Ω, ∆PS). Only an outline of the construction was given here.

Lef f ∈ C6(Ω) and Lj
i :=

(
Lj

i,x, Lj
i,y

)
, i = 1, . . . , nv, j = 1, . . . , 15, be some fixed points

lying in the union of all triangles in ∆ having Vi as vertex. Let us suppose that they formed
an unisolvent scheme in P6

(
R2), and let pj

i be the Taylor polynomial of f of degree six at

Lj
i , i.e.,

pj
i(x, y) = ∑

0≤k+`≤6

1
k!`!

∂k,` f
(

Lj
i

) (
x− Lj

i,x

)k (
y− Lj

i,y

)l
. (15)

Let pk be the Taylor polynomial of degree 6 at point Lk in the support of Bt
k.

Define

Q f (x, y) :=
nv

∑
i=1

∑
|β|=4

B
[

pj
i

](
V2

i , Q̃β1
i,1, Q̃β2

i,2, Q̃β3
i,3

)
Bv

i,β(x, y) +
nt

∑
k=1

B[pk]
(

Z3
k , Vk1, Vk2, Vk3

)
Bt

k(x, y). (16)

LetQ f be the quasi-interpolant defined by (16) and (15). Then, the quasi-interpolation
operator Q : C6(Ω)→ S2,4,3

6 (Ω, ∆PS) defined such that Q( f ) := Q f was exact on P6, i.e.,
Q(p) = p for all p ∈ P6.

Moreover, if each Lj
i belonged to a triangle τ

j
i in ∆PS with Vi as a vertex, thenQ(s) = s

for any spline s ∈ S2,4,3
6 (Ω, ∆PS). Which meant that the quasi-interpolation operator Q

was the projector.

Numerical Tests

The aim of this subsection is to test the approximation power of the proposed quasi-
interpolation operator. To this end, we tested its performance using the well-known Franke
and Nielson’s functions [32,33], given respectively by

f1(x, y) = 0.75e−
1
4 ((9x−2)2+(9y−2)2) + 0.75e(−

1
49 (9x+1)2− 1

10 (9y+1))

+ 0.5e−
1
4 ((9x−7)2+(9y−3)2) + 0.2e−(9x−4)2−(9y−7)2

and
f2(x, y) =

y
2

cos4
(

4
(

x2 + y− 1
))

,

whose plots appear in Figure 14.
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(a) (b)

Figure 14. Plots of the tests functions: Franke (a) and Nielson (b).

Let us consider the domain Ω = (0, 1)× (0, 1). The test was carried out for a sequence
of a uniform mesh ∆n associated with the vertices (ih, jh), i, j = 0, . . . , n , where h := 1

n .
For each triangulation, we had to compute the B-splines Bv

i,j and Bt
k with respect to vertices

and split points, respectively, and the corresponding points PS6-triangles according to the
minimal area procedured described in this work.

The quasi-interpolation error was estimated as

max
`,k=1,..., 50

| f (x`, yk)−Q f (x`, yk)|,

where xi and yj were equally spaced points in (0, 1). The numerical convergence order
(NCO) was given by the rate

NCO := log2

(
E(2n)
E(n)

)
,

where E(m) stands for the estimated error associated with ∆m.
The estimated errors and NCOs for the functions f1 and f2 are shown in Table 1.

They confirmed the theoretical results. Figure 15 shows two of the meshes used to define
quasi-interpolants for the test functions f1 and f2. Figure 16 shows the plots of the splines
Q f1 and Q f2 for the two above meshes.

Table 1. Estimated errors for Franke and Nielson’s functions and NCOs with n = 2m, 1 ≤ m ≤ 3.

Franke’s Function Nielson’s Function

n nv Estimated Error NCO Estimated Error NCO

2 9 1.07× 10−1 – 1.50× 10−2 –
4 25 8.47× 10−4 6.98 1.71× 10−4 7.08
8 81 7.05× 10−6 6.81 1.09× 10−6 7.20

Figure 15. Meshes for n = 2m, 1 ≤ m ≤ 2.
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(a)

(b)

Figure 16. Quasi-interpolants for Franke’s function (a) and Nielson’s function (b).

6. Conclusions

In this paper, a fully carried out construction of a normalized basis of the space
S2,4,3

6 (Ω, ∆PS) introduced in [26] was given and an algorithm was proposed and compared
with two others in the literature. Furthermore, an efficient manner to establish Marsden’s
identity was detailed from which quasi-interpolation operators with optimal approximation
order were defined. Some tests showed the good performance of these operators.
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