417 research outputs found

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    Energy-aware QoE and backhaul traffic optimization in green edge adaptive mobile video streaming

    Get PDF
    Collaborative caching and processing at the network edges through mobile edge computing (MEC) helps to improve the quality of experience (QoE) of mobile clients and alleviate significant traffic on backhaul network. Due to the challenges posed by current grid powered MEC systems, the integration of time-varying renewable energy into the MEC known as green MEC (GMEC) is a viable emerging solution. In this paper, we investigate the enabling of GMEC on joint optimization of QoE of the mobile clients and backhaul traffic in particularly dynamic adaptive video streaming over HTTP (DASH) scenarios. Due to intractability, we design a greedy-based algorithm with self-tuning parameterization mechanism to solve the formulated problem. Simulation results reveal that GMEC-enabled DASH system indeed helps not only to decrease grid power consumption but also significantly reduce backhaul traffic and improve average video bitrate of the clients. We also find out a threshold on the capacity of energy storage of edge servers after which the average video bitrate and backhaul traffic reaches a stable point. Our results can be used as some guidelines for mobile network operators (MNOs) to judge the effectiveness of GMEC for adaptive video streaming in next generation of mobile networks

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    QoE-based mobility-aware collaborative video streaming on the edge of 5G

    Get PDF
    Today's Internet traffic is dominated by video streaming applications transmitted through wireless/cellular interfaces of mobile devices. Although ultrahigh-definition videos are now easily transmitted through mobile devices, video quality level that users perceive is generally lower than expected due to distance-based high latency between sources and end-users. Mobile edge computing (MEC) paradigm is expected to address this issue and provide users with higher perceived quality of experience (QoE) for latency-critical applications, deploying MEC servers at edges. However, due to capacity concerns on MEC servers, a more comprehensive approach is needed to meet users' expectations applying all possible operations over the resources such as caching, prefetching, and task offloading policies depending on the data repetition or memory/CPU utilization. To address these issues, this article proposes a novel collaborative QoE-based mobility-aware video streaming scheme deployed at MEC servers. Throughout the article, we demonstrate how the proposed scheme can be implemented so as to preserve the desired QoE level per user during entire video sessions. Performance of the proposed scheme has been investigated by extensive simulations. In comparison to existing schemes, the results illustrate that high efficiency is achieved through collaboration among MEC servers, utilizing explicit window size adaptation, collaborative prefetching, and handover among the edges

    Delivery of 360° videos in edge caching assisted wireless cellular networks

    Get PDF
    In recent years, 360° videos have become increasingly popular on commercial social platforms, and are a vital part of emerging Virtual Reality (VR) applications. However, the delivery of 360° videos requires significant bandwidth resources, which makes streaming of such data on mobile networks challenging. The bandwidth required for delivering 360° videos can be reduced by exploiting the fact that users are interested in viewing only a part of the video scene, the requested viewport. As different users may request different viewports, some parts of the 360° scenes may be more popular than others. 360° video delivery on mobile networks can be facilitated by caching popular content at edge servers, and delivering it from there to the users. However, existing edge caching schemes do not take full potential of the unequal popularity of different parts of a video, which renders them inefficient for caching 360° videos. Inspired by the above, in this thesis, we investigate how advanced 360° video coding tools, i.e., encoding into multiple quality layers and tiles, can be utilized to build more efficient wireless edge caching schemes for 360° videos. The above encoding allows the caching of only the parts of the 360° videos that are popular in high quality. To understand how edge caching schemes can benefit from 360° video coding, we compare the caching of 360° videos encoded into multiple quality layers and tiles with layer-agnostic and tile-agnostic schemes. To cope with the fact that the content popularity distribution may be unknown, we use machine learning techniques, for both Video on Demand (VoD), and live streaming scenarios. From our findings, it is clear that by taking into account the aforementioned 360° video characteristics leads to an increased performance in terms of the quality of the video delivered to the users, and the usage of the backhaul links
    • …
    corecore