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Abstract—Collaborative caching and processing at the network
edges through mobile edge computing (MEC) helps to improve
the quality of experience (QoE) of mobile clients and alleviate
significant traffic on backhaul network. Due to the challenges
posed by current grid powered MEC systems, the integration of
time-varying renewable energy into the MEC known as green
MEC (GMEC) is a viable emerging solution. In this paper,
we investigate the enabling of GMEC on joint optimization of
QoE of the mobile clients and backhaul traffic in particularly
dynamic adaptive video streaming over HTTP (DASH) scenarios.
Due to intractability, we design a greedy-based algorithm with
self-tuning parameterization mechanism to solve the formulated
problem. Simulation results reveal that GMEC-enabled DASH
system indeed helps not only to decrease grid power consumption
but also significantly reduce backhaul traffic and improve average
video bitrate of the clients. We also find out a threshold on
the capacity of energy storage of edge servers after which the
average video bitrate and backhaul traffic reaches a stable point.
Our results can be used as some guidelines for mobile network
operators (MNOs) to judge the effectiveness of GMEC for
adaptive video streaming in next generation of mobile networks.

Index Terms—Green mobile edge computing (GMEC), DASH,
Quality of experience (QoE), Fairness, Greedy-based algorithm.

I. INTRODUCTION

Due to the prominent role of mobile video streaming over
the Internet which according to [1] will account for more than
about 63% of Internet traffic by 2021, significant research
attentions has been paid to devising solutions for improving
the quality of experience (QoE) of the clients. Noticeable
characteristic of the research efforts is envisioning dynamic
adaptive video streaming over HTTP (DASH) solutions which
provide means that allow the media players to adopt to the
varying network conditions by dynamically choosing the most
sustainable video bitrate [2], [3], [4]. Network-assisted DASH
solutions along with the evolutions in mobile edge computing
(MEC) paradigm [5], software defined networking (SDN)
and network function virtualization (NFV) have significantly
contributed to the improvement of QoE of the end users.
Content caching and retrieval at the edges of the network
has been shown to reduce significantly the traffic burden on
the backhaul of the network [6]. Joint optimization solutions
have been also suggested in which the edge caching is jointly
utilized with the processing capability of the edge servers
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resulting in noticeable reduction in video delivery latency [7].
The trade-off between QoE of mobile clients and created traffic
on backhaul network in collaborative edge caching adaptive
mobile video streaming has been addressed in [8].

Despite significant research works on edge computing and
caching, the energy efficiency aspect of MEC has been paid
less attention. Powering the MEC facilities using renewable
energy, known as green MEC (GMEC), has attracted research
attentions from both academia and industry due to its very low
operational costs for mobile network operators (MNOs) [9],
[10]. The existing studies on renewable energy-powered MEC
systems in the literature mainly focus on designing solutions to
improve the quality of service (QoS) parameters such as com-
putational latency. Although the potential of energy harvesting
intuitively results in reducing the grid energy consumption,
the controlled integration of renewable energy into the grid
power for handling the processing tasks in particularly DASH
video streaming at the edges is a challenging task. In other
words, designing MEC system by integrating the renewable
energy with the objective of jointly optimizing the trade-off
between the QoE of mobile video streaming clients and created
backhaul traffic has been overlooked. Our main contributions
in this work are summarized as follows:

• We design the GMEC-enabled system which aims to
quantify the impact of integrating renewable energy into
the MEC in particularly dynamic adaptive video stream-
ing over HTTP (DASH) scenarios.

• We formulate the joint optimization of QoE of the mobile
cients and the backhaul traffic in GMEC-enabled DASH
system as an integer non-linear programming (INLP)
problem and design a suboptimal algorithm using self-
tuning parametrization mechanism to solve it.

• A proactive edge caching heuristic is also designed which
utilizes the statistical information about clients retention
with respect to different videos. Results of our perfor-
mance evaluations which show the superiority of GMEC-
enabled system can indeed act as guidelines for system
designers to judge the effectiveness of GMEC for DASH
video streaming in next generation of mobile networks.

The remainder of the paper is organized as follows: Related
work is discussed in Section II and the proposed system ar-
chitecture is detailed in Section III. The optimization problem
is formulated in Section IV and the proposed algorithm is
presented in Section V. Simulation results are discussed in
Section VI and finally, Section VII concludes the paper.
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II. RELATED WORK

Due to the users mobility and time-varying wireless channel
conditions, dynamic adaptive video streaming over HTTP
(DASH) is the prominent standard used in nowadays video
streaming systems [2]. DASH-based video streaming solutions
provide the mechanisms which allow the streaming media
to adapt dynamically to the most sustainable video bitrate
based on its instantaneous throughput. Kua et al. provide a
survey on rate-based adaptation techniques in DASH video
streaming [11]. Client-based solutions may fail under the sce-
narios when multiple video streaming clients simultaneously
compete over the shared wireless resources. Network assisted
adaptation solutions have been proposed which facilitate the
cooperation among the network elements toward optimal/fair
bitrate allocation among the competing clients [12].

Toward satisfying the requirements of 5G networks, mobile
edge computing (MEC) concept has been proposed by the
European telecommunications standard institute (ETSI) which
enables moving the contents to the edges of the network
nearby the end users [5]. Authors in [13] proposed the edge
computing assisted system for DASH video streaming with
the objective of jointly maximizing the QoE of the clients, fair
bitrate allocation and balancing the utilized resources among
multiple base stations. Along with MEC, the video content
caching and retrieval at the network edge within the radio
access network (RAN) has been shown to be a promising
solution to alleviate significantly the traffic burden on the
backhaul network [6], [14], [15], [16]. However, the bitrate
adaptation and edge caching solutions in these works do
not take into account the optimization of QoE jointly with
the traffic on the backhaul network. Similarly, Tran et al.
utilize the processing capability of edge servers jointly with
the edge caching which leads to further improvement in the
performance of video streaming system [7], [17]. However, the
focus of these works is on designing optimization solutions for
reducing the video delivery latency without taking into account
the parameters which impact the QoE of the clients.

From the energy consumption point of view, the mobile
network infrastructures contribute to about 2% of total CO2

emissions worldwide which will grow as the number of base
stations increases [18]. Despite of significant grid energy
saving using MEC, the processing and content caching at
the mobile edges still causes noticeable energy consumption
especially in areas with dense deployment [19]. The integra-
tion of ambient renewable energy into the MEC has attracted
the attentions from both academia and industry [9], [10],
[20], [21]. In renewable energy-powered systems, the design
objective should be improving the system performance subject
to the available harvested energy since the renewable energy
comes with very low cost. However, the time-varying charac-
teristics of environmental energy sources during different time
intervals makes the scheduling mechanisms more complicated
for renewable energy-powered MEC systems [19].

Xu et al. have investigated the problem of determining the
optimal workloads of the edge servers and their processing
speeds taking into account both the network condition and
the energy side information (ESI) [10]. Mao et al. addressed
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Fig. 1: Green mobile edge computing (GMEC) enabled DASH.

the problem of optimal task offloading from the users to
the edge servers considering the energy harvesting mobile
devices using both the channel-state information (CSI) and
ESI [9]. However, these two works consider only either one
edge server or one mobile device which can not be extended to
large scale system in which the spatial diversity in the energy
harvesting at different regions should be taken into account.
Discussions on optimal battery storage size and efficient use
of harvested energy in green cellular networks are detailed in
respectively [20] and [21]. The existing works mainly focus
on the computing performance of renewable energy-powered
MEC system.

Different from the existing works, our objective in this paper
is to investigate the impact of integrating renewable energy
on the joint optimization of QoE of the mobile clients and
the backhaul traffic for particularly DASH video streaming in
MEC environments. To this end, we propose the joint QoE and
backhaul traffic optimization in GMEC-enabled collaborative
caching and processing considering the time-varying energy
harvesting constraints. We then design an efficient energy-
aware bitrate scheduling algorithm to solve the formulated
optimization problem. The results of our performance evalu-
ations reveal that GMEC-enabled DASH system indeed helps
not only to decrease the grid power consumption of the edge
servers but also significantly reduce the traffic on the backhaul
network and further improve the average QoE of the clients.
We further find out a threshold on the energy storage capacity
of the servers such that the average achievable video bitrate
and the backhaul traffic becomes stable after the threshold.

III. GMEC-ENABLED DASH
In this section, we first describe the architecture of the

proposed system and then the notations.

A. System Overview

Fig. 1 represents the framework of the proposed green
mobile edge computing (GMEC) enabled system for DASH
video streaming. At the network edges, the mobile servers
are associated with base stations (eNodeBs) from where
the downlink resource blocks are allocated to the connected
mobile clients according to proportional fairness (PF) policy.
The majority of Internet traffic is from the video streaming
services and it is also anticipated to be dominant in next
generation of mobile networks according to the Cisco forecast
[1]. Motivated by this fact, we do not consider the traffic
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from other background mobile applications in our system
model. Mobile edge servers cache locally the most frequently
requested chunks/bitrates of the videos. Edge servers have also
the processing capability such that the requested chunks with
lower bitrates can be transrated from the same chunks but
with higher bitrates which are available in local caches. In a
hierarchical caching structure, the allocated chunk/bitrate to
the client is directly downloaded from origin server in the
cloud if there is no possibility of retrieval or processing at the
local or neighborhood edge servers. Downloading the video
chunks from the origin server causes outbound traffic on the
core network which we refer to it as backhaul traffic.

In our system, the scheduling of DASH clients is performed
within consecutive rounds, where each round consists of mul-
tiple discrete time slots with equal duration. We focus on only
one round scheduling in this work. Within a scheduling round
and in a collaborative manner, the distributed coordinators
receive the clients radio access link level information from
the base stations and the clients data (arrival/departure, buffer
status) from their application software. Our system requires
the explicit support from the clients application software
such that the distributed coordinators can obtain the required
information of the mobile clients. This communication design
can be implemented through message-passing mechanism in
order to obtain the network-assisted bitrate adaptation solution.
After receiving the information, the coordinators perform two
operations: first, the clients to edge servers mapping for
which it is assumed that at each time slot, the client is
assigned to nearest base station from where it receives the
highest instantaneous signal-to-noise ratio (SNR) i.e., the ratio
between the power of received signal from the base station to
the power of background noise. Second, they solve the joint
QoE and backhaul traffic optimization problem to determine
the optimal and fair bitrate for each client. The optimization
results are then explicitly communicated to the clients.

In addition to the limited amount of grid energy in each
scheduling round, the edge servers can further utilize the
renewable energy from the environment such as solar radia-
tions in order to reduce grid energy consumption and improve
processing efficiency [10]. As shown in Fig. 1, the edge
servers are equipped with the energy storage which keep the
harvested energy during different time periods of the day.
Energy storages in our system are kind of lithium batteries
which can be charged frequently even from the non-empty
state. Corresponding to the volume of processed data, the
edge servers consume an amount of energy. Each time the
processing operation takes place at edge, the server consumes
the storage energy first, if its available amount suffices for that
processing, otherwise, the energy from the grid is consumed.
The client’s request can not be processed at the edge if none
of the grid or the storage have sufficient power.

In large scale system deployment, the management of pow-
ering the edge servers from the renewable energy is performed
by the local aggregators within different localities which in
turn helps to reduce significantly the computing costs for
the MNO. Furthermore, the installation of low-cost storages
which is normally performed once per multiple years [22]
brings significant grid energy saving throughout the year.

Although there are associated maintenance costs with the
energy storages which are relatively low during long term
system operation [22], the noticeable improvement in the
processing efficiency of the edge servers by integrating the
renewable energy subsequently boosts the QoE of the mobile
video streaming subscribers and therefore brings significant
revenue for the MNOs.

B. System Notation

We consider one round scheduling of S number of DASH
mobile clients which consists of |T | discrete time slot each
with fixed duration of ∆t seconds. Multiple videos with
different popularities are divided into the consecutive chunks
each with fixed size of C seconds which are available in
|R| different resolutions initially stored at the origin server.
K mobile edge servers are deployed in the system such that
1 ≤ k ≤ K refers to the server index throughout the paper.
Also, the available downlink resource blocks at the base station
associated with any edge server k, where 1 ≤ k ≤ K, at
time slot t is denoted by W (t)

k . The available resource blocks
at each time slot in any base station indicates the allocated
bandwidth in the frequency domain based on the achievable
throughput of the client and its assigned bitrate according
to LTE 3GPP specifications [23], [25], [24]. For the sake of
low complexity in the performance evaluation and following
relevant research works [13], [26], the resource allocation to
the clients at the base station is performed at every one-second
time slot in our system model. However, our system is easily
adoptable to smaller time scaling such as subframe without any
modification to the model and the proposed solution. Arrival
and departure time slots of client 1 ≤ s ≤ S i.e., the time slot
when client s starts its video streaming session and the time
slot that client either departs from the session or abandons its
streaming, are represented by respectively As and Ds.

Binary variable a
(t)
sk indicates the mapping of client s to

edge server k at time slot t. The receivable downlink SNR and
the theoretical throughput of client s from the associated base
station (edge server) k at time slot t are denoted by respec-
tively SNR

(t)
sk and Thr

(t)
sk . Also, the achievable throughput

of the client which is computed based on its theoretical
throughput and the number of active clients connected to the
same base station at time slot t, is also represented by ˆThr

(t)

sk .
Furthermore, the integer decision variable r

(t)
sk indicates the

video bitrate allocated to client s at edge server k by the
coordinator in time slot t. Binary decision variables x

(t)
skc

and x
(t)
ske are also defined which indicate that the requested

chunk of client s assigned to server k at time slot t is
downloaded from respectively the origin and the edge server.
Binary decision variable y

(t)
sk is defined such that y(t)

sk = 1
indicates that the allocated chunk/bitrate to client s at time
slot t is transrated at edge server k. Variable tr(t)

sk represents
the bitrate (the same chunk available at edge server k) from
which the bitrate of client s is transrated at time slot t and
the constant factor φ represents the processing weight at each
edge server. We have summarized the list of major system
parameters including edge cache size and related parameters
on energy harvesting/consumption at the edge in Table I.
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TABLE I: Description of major system notations.

Notation Description

K, S, R Number of edge servers, number of DASH clients and the
discrete set of available bitrates

|T |, ∆t, C Total number of scheduling time slots, the duration of each
slot and the constant size of each video chunk in seconds

W
(t)
k Available downlink resource blocks at base station k in time

slot t

QM Cache size at each edge server

M
(t)
k Set of available chunks/bitrates in the cache of edge server

k at time slot t

As, Ds Arrival and departure times of client s

Lmaxs ,
L(t)
s

Maximum buffer capacity of client s and its buffer level at
time slot t

BTs The backhaul data traffic caused by the video streaming of
client s

b
(t)
k Energy level of storage edge server k at the beginning of

time slot t

c
(t)
k , ep Consumed energy from the storage of edge server k at time

slot t and, the amount of consumed energy for processing
per bit.

c
(t)
k , ep Consumed energy from the storage of edge server k at time

slot t and, the amount of consumed energy for processing
per bit

h
(t)
k ,
hmax

Harvested energy by edge server k at the beginning of active
time slot t and, the maximum feasible amount of energy
harvesting at each active time slot

Be Fixed energy storage capacity of each edge server

µ, σ2 Mean time slot and the energy harvesting variance of the
Gaussian-shaped function

ρ, ω, γ Adjustable weighting parameters for average bitrate, bitrate
switching and fairness, respectively

a
(t)
sk , y(t)sk Binary indicator of allocating client s to server k at time slot

t and, the binary decision variable indicating the processing
of chunk/bitrate of client s at edge sever k in time slot t

x
(t)
ske, x(t)

skc Binary decision variables indicating the chunk download
from respectively the edge and the origin server by client
s allocated to edge server k at time slot t

r
(t)
sk , tr

(t)
sk ∈

R
Discrete video bitrate (integer decision variable) of client s
at edge server k and, the transrated bitrate for client s at
edge server k in time slot t

C. Edge Server Energy Model

Edge servers harvest the renewable energy during different
time intervals from the solar panels which are installed in the
deployment site. We consider the time-varying solar energy
harvesting during one day time duration by approximating the
amount of periodical harvested solar energy pattern presented
in [27] using the Gaussian-shape function. In other words, the
harvested energy by edge server k at the beginning of time
slot t is given using the following function:

h
(t)
k ∼ hmax(

1√
2πσ2

e−( t−µσ )2) (1)

where hmax is the maximum feasible harvested energy at each
time slot and µ and σ2 are respectively the mean time slot and
the variance of energy harvesting.

The amount of consumed energy by the edge server k at
given time slot 1 ≤ t ≤ |T | depends on the volume of
processed data at server k for all the active clients:

c
(t)
k =

∑
s∈S

∑
1≤k′≤K

a
(t)
sk′ · y

(t)
sk · (tr

(t)
sk − r

(t)
sk′) · φ · ep (2)

where index k′ in the inner summation indicates a local or
neighborhood edge server to which there are some connected

clients at time slot t whose their requested chunk/bitrate is
transrated at edge server k. Following linear energy evolution
model of lithium battery [9], the available energy of storage
of edge server k at the beginning of time slot t is given by:

b
(t)
k = min{b(t−1)

k − c(t−1)
k + h

(t)
k , Be}, ∀1 ≤ t ≤ |T | (3)

Obviously, the overall consumed energy by the server for
processing the clients’ requested bitrates at each time slot t
should be less than its available energy at that time slot.

c
(t)
k ≤ b

(t)
k , ∀1 ≤ t ≤ |T | (4)

D. Quality of Experience and Fairness

As pointed out in several research studies, playback stalling
caused by buffer underrun is the most critical influencing
factor of QoE in video streaming. Therefore, we design the
bitrate selection in such a way that stalling is completely
avoided whenever possible, i.e., it is a constraint of the opti-
mization problem. Other major factors in adaptive streaming
are the perceived average video bitrate and the frequency and
magnitude of bitrate switching.

1) Average Bitrate: As long as the video chunks are
downloaded with higher bitrates, the client perceives the higher
watching quality. Knowing the arrival and departure time slots,
the average video bitrate perceived by client i i.e. the average
of the bitrates allocated to the client by the coordinators during
its streaming session is given by:

AQs =
1

|Ds −As|

Ds∑
t=As

K∑
k=1

a
(t)
sk · r

(t)
sk (5)

2) Bitrate Switching: The frequency of switching refers to
the number of times that the bitrates of the consecutive chunks
change and the switching magnitude is the amount of change
in the bitrates of the consecutive chunks. The accumulated
switching magnitude during the video streaming session of
client i is given by:

Es =

d(Ds−As)/Ce∑
p=1

K∑
k=1

(a
((p−1)C+1)
sk · r(p−1)C+1

sk

− a(p−2)C+1
sk · r(p−2)C+1

sk ) (6)

3) Fairness: Our system design takes explicit measures
to ensure fairness when allocating the bitrates to the set of
competing clients at each time slot. More precisely, the bitrates
are allocated such that for every active client at each time slot,
the difference between its allocated bitrate with the average
bitrate of other simultaneous clients is minimized. We define
Fs as the fairness value associated with the whole video
streaming session of client s:

Fs =

Ds∑
t=As

K∑
k=1

a
(t)
sk · |r

(t)
sk − r̄

(t)| (7)

where r̄(t) is the average bitrate of other simultaneous clients
at time slot t.
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E. Backhaul Data Traffic

With the decision variables defined in the system model, the
overall backhaul data traffic during the whole video streaming
duration of client s is given by the following relations:

BTs =

Ds∑
t=As

K∑
k=1

a
(t)
sk · x

(t)
skc ·∆t · r

(t)
sk (8)

IV. JOINT OPTIMIZATION PROBLEM

With the aforementioned system and energy models, the
problem of jointly maximizing the QoE of individual client i
and minimizing the backhaul data traffic is formulated as the
following integer non-linear programming (INLP) optimiza-
tion model:

Maximize
x,y,r,tr

α(ρAQs − ωEs − γFs)∆t− (1− α)BTs (9)

Subject to:∑
s∈S

a
(t)
sk · d

r
(t)
sk

Thr
(t)
sk

e ≤W (t)
k , ∀1 ≤ k ≤ K, 1 ≤ t ≤ |T |

(10)

0 < L(t)
s ≤ Lmaxs , ∀As ≤ t ≤ Ds (11)

a
(t)
sk =


a

(t−1)
sk , t mod C 6= 1

1, t mod C = 1 ∧ k = arg max{SNR(t)
sk }

0, Otherwise
(12)

x
(t)
ske + x

(t)
skc = 1, ∀s ∈ S, As ≤ t ≤ Ds, 1 ≤ k ≤ K

(13)∑
1≤k≤K

y
(t)
sk ≤ 1, ∀As ≤ t ≤ Ds (14)

x
(t)
skc, x

(t)
ske, y

(t)
sk ∈ {0, 1}, ∀1 ≤ k ≤ K, As ≤ t ≤ Ds

(15)

r
(t)
sk , tr

(t)
sk ∈ R, ∀1 ≤ k ≤ K,As ≤ t ≤ Ds (16)

In addition, the energy harvesting, consumption and the evo-
lution models of the edge servers at each time slot as given in
relations (1)-(4) are also included to the set of constraints in the
above INLP problem. The only decision variables here are the
binary variables x(t)

ske, x
(t)
skc, y

(t)
sk and the integer variables r(t)

sk ,
tr

(t)
sk . Variables L(t)

s , b(t)k and c(t)k are the dependent variables
whose values depend on the values of the decision variables
and, the remaining variables are independent and their values
are known in advance.

Constraint (10) ensures that at each base station, the overall
downlink resource blocks allocated to the associated clients at
each time slot does not exceed the total available resource
blocks at that time slot. It is noted that the ratio between
the client’s bitrate and its theoretical throughput at each time
slot indicates the mapping resource blocks in the frequency
domain at the base station at that time slot [23]. Constraint (11)
ensures that no stalling happens in the client’s buffer during its
whole video streaming session and (12) determines the clients
to server mapping. Constraint (13) ensures that the client
downloads its chunk from only one location at each time slot

and (14) states that at each time slot, the transrating operation
can be performed in only one edge server. Constraints (15)-
(16) determine the range of decision variables.

V. PROPOSED ONLINE ALGORITHM

The existence of the integer decision variables in the
optimization problem (9)-(16) makes it computationally
intractable to solve using the exhaustive search methods.
Further, the information about the clients is not known
in advance which makes deployment of offline solutions
practically unfeasible. To cope with these challenges, we
design a heuristic-based online algorithm for the problem
which takes advantage of in-network collaboration between
the system entities. Our algorithm also utilizes a self-tuning
mechanism which reduces the need for the parameterization
of the optimization problem, thereby making it easy for the
practical deployment. Pseudo-code of the proposed algorithm
named energy-aware cache-based greedy bitrate allocation
(ECGBA) is illustrated in Algorithm 1.

Algorithm 1: Energy-aware Cache-based Greedy Bitrate
Allocation (ECGBA) Algorithm (Run by the Coordinators)

1: Input: |T |,K,R : Number of scheduling time slots, number
of edge servers, set of available bitrates at origin server.

2: Output: Binary allocation x
(t)
skc, x(t)ske, y(t)sk and integer

bitrate allocation r
(t)
sk , tr(t)sk for each client s, edge server

1 ≤ k ≤ K and time slot 1 ≤ t ≤ |T |, Utility,
BackhaulTraffic

3: for each time slot 1 ≤ t ≤ |T | do
4: for each edge server 1 ≤ k ≤ K do
5: b

(t)
k = b

(t)
k + h

(t)
k ;

6: for each client s such that As ≤ t ≤ Ds do
7: maxUtility = −∞;
8: if t = As then
9: Initialize BufferStatus and BTs = 0;

10: Allocate client s to server k according to (12)
11: if (t−As) mod C 6= 1 then
12: Allocate client s to the same server and with same

bitrate as with time slot t− 1; Update L(t)
s , BTs;

13: if BufferStatus = False and L(t)
s = Lmax

s then
14: BufferStatus = True;
15: if (t−As) mod C = 1 then
16: Call Subroutine Self-tuned Bitrate Selection;
17: if t = Ds then
18: Utility = Utility +maxUtility;
19: BackhaulTraffic = BackhaulTraffic+BTs;
20: Return Utility, BackhaulTraffic;

A. Energy-aware Cache-based Greedy Bitrate Allocation
(ECGBA) Algorithm

At each time slot, the storage energy level of edge servers
is first updated considering the amount of harvested renewable
energy at that time slot (lines 4,5). For each active client at
the current time slot, the algorithm then initializes its buffer
status and the created backhaul traffic if the client starts its
streaming session at the current time slot (lines 8,9). Then,
the algorithm maps the client to the appropriate server using
relation (12) such that the client is allocated to the same server,
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with the same bitrate if it is downloading the middle of the
chunk at the current time slot (lines 10-12). Otherwise, if the
client is about to download the new chunk, the algorithm first
assigns the client to the nearest edge server from where the
client achieves the highest downlink SNR from the associated
base station. The subroutine self-tuned bitrate selection is then
called which allocates the most suitable bitrate at which the
client downloads the new chunk of video (lines 15,16). Finally,
if the client either leaves or finishes its streaming session at
the current time slot, its utility (objective value (9)) and the
corresponding backhaul traffic are added to the overall system
outputs (lines 17-19).

B. Self-tuned Bitrate Selection

As part of the algorithm, the self-tuned bitrate selection
procedure is executed if the client is about to download a
new chunk and hence, the selection of most suitable bitrate
for the new chunk should be decided. The pseudo-code of the
procedure has been illustrated in Subroutine 1.

At first, the highest available bitrate is allocated to the
client if it is downloading the first chunk of the video and
its buffer level and the created traffic on the backhaul network
are accordingly updated (lines 1-3). The estimated throughput
and the switching threshold δSw, which is used to control
the switching level of the allocated bitrates to the consecutive
chunks of the client, are then computed (line 4). Threshold
δSw is computed knowing that the highest switching between
the consecutive chunks of video happens when the bitrates
are allocated merely based on the buffer level [13]. A fairness
threshold δFa is also used to control the fairness value in
allocating the bitrates to the client with respect to other
simultaneous clients at the same time slot. Threshold δFa is
given as input to the algorithm at the deployment phase.

In a greedy manner, the utility objective value (9) is
computed for all available bitrates (in decreasing order of
magnitude) which are lower than the achievable throughput
of the client (lines 5,6). Also, these bitrates should satisfy the
resource allocation constraint at the base station (line 6) and
both switching/fairness thresholds (line 7). The most suitable
bitrate which has the maximum utility value is then chosen as
the allocated bitrate to the current chunk of the client (lines
11-14). Note that the evaluation of function (9) for each bitrate
is based on the availability of its corresponding video chunk
in the local or neighborhood caches (line 8) or the possibility
of transrating the bitrate at one edge server which holds the
same chunk with higher bitrate and also has sufficient energy
(storage or grid) to handle the transrating (lines 9,10).

If there is no such aforementioned bitrate available, the
objective function is evaluated for those set of suitable bitrates
which satisfy only the switching threshold compromising
the fairness threshold (lines 15-19). Similarly, the candidate
bitrate which maximizes the objective function (9) is chosen
as the bitrate for the current chunk of the client. And, if none
of the available bitrates satisfy even the switching threshold,
the maximum suitable bitrate with highest achievable
objective value is chosen as the bitrate for the current chunk
of the client (lines 20-23). After the bitrate allocation to the

current chunk, the weighting parameters of QoE term in (9)
are dynamically computed (line 24).

Subroutine 1: Self-tuned Bitrate Selection

1: if t−As ≤ C then
2: Allocate the highest available bitrate;
3: Update BufferStatus, L(t)

s , BTs

4: Compute estThr and threshold δSw;
5: for each bitrate r ∈ R in decreasing order do
6: if r ≤ max(estThr, ˆThr

(t)

sk , L
(t)
s ) and allocation

of r satisfy (10) then
7: if |r − r(t−1)

sk | ≤ δSw and
1− |r − r̄|/(Rmax −Rmin) >= δFa then

8: if (d t−As
C
e, r) ∈M (t)

p , 1 ≤ p ≤ K then Data = 0

9: else if ∃ (k′, tr > r) 3 (d t−As
C

, tr) ∈M (t)

k′

and (b
(t)

k′ , grid energy budget k
′)−

(tr − r)φ · ep ≥ 0 then Data = 0;
10: else Data = r;
11: Compute weighting parameters ρ, ω and γ;
12: QE = (ρr − ω|r − r(t−1)

sk | − γ|r − r̄|) ·∆t;
13: if αQE − (1− α)Data > maxUtility then
14: maxUtility = αQoE−(1−α)Data; r

(t)
sk = r;

15: if r(t)sk = 0 then
16: for each bitrate r ∈ R in decreasing order do
17: if r ≤ max(estThr, ˆThr

(t)

sk , L
(t)
s ) and allocation

of r satisfy (10) then
18: if |r − r(t−1)

sk | ≤ δSw then
19: Perform same operations as in lines 8-16;
20: if r(t)sk = 0 then
21: for each bitrate r ∈ R in decreasing order do
22: if r ≤ max(estThr, ˆThr

(t)

sk , L
(t)
s ) and allocation

of r satisfy (10) then
23: Perform same operations as in lines 8-16;
24: Update weighting parameters ρ, ω, γ at time slot t;
25: Update the binary decision variables x(t)skc, x(t)ske, y(t)sk using

the conditions in lines 7,8;
26: Compute AQs, Es, Fs, BTs and objective value of client

s up to time slot t according to respectively (5), (6), (7), (8)
and (9); Update L(t)

s ;
27: if L(t)

s = Lmax
s and BufferStatus = False then

28: BufferStatus = True;
29: if y(t)sk = 1 (1 ≤ k ≤ K) then
30: consumedEnergy = (tr − r(t)sk ) · φ · ep;
31: if b(t)k − consumedEnergy ≥ 0 then
32: b

(t)
k = b

(t)
k − consumedEnergy;

33: else
34: (grid energy k) =

(grid energy k)− consumedEnergy;
35: Return Us, BTs, x(t)skc, x(t)ske, y(t)sk ;

The weighting of the average bitrate (ρ), bitrate switching
(ω) and fairness (γ) at each time slot are computed based
on how far the selected bitrate is from the optimal bitrate
at that time slot. The procedure then proceeds with updating
the values of decision variables (line 25) based on which
location (the edge or the origin server) the allocated bitrate to
the client has been either retrieved or processed. The created
backhaul traffic and the objective value of the client along
with the buffer status and buffer level are also accordingly
updated (lines 26-28). Finally, if the allocated bitrate to the
client has been processed at the edge, the corresponding energy
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consumption of the grid or the energy level at the storage are
accordingly updated (lines 29-34).

C. Retention-based Cache Replacement (RBC) Heuristic

After allocating the bitrates to all active streaming clients
at each time slot, the edge servers in our system run inde-
pendently a proactive cache replacement heuristic in order to
update the cache contents if some of the chunks have been
transferred from the origin server. We utilize a heuristic named
retention-based cache replacement (RBC) which uses two
sources of statistical information to make intelligent decisions
about the eviction among multiple chunks for caching at each
local edge server.

For each chunk/bitrate requested by a client, the heuristic
first computes a caching value using two sources of statistical
information: 1) How likely it is that the chunk/bitrate will
be requested by the other clients in the future time slots
and 2) how frequently the bitrate of that chunk has been
requested by the clients (allocated to the same edge server)
in the previous time slots. The information about the retention
of the clients with respect to different video requests are used
to approximately compute the first probability. We note that
the origin server normally keeps the information about the
clients’ retention with respect to different videos which can be
communicated with the edge servers. For instance, YouTube
content delivery networks (CDNs) record some information
about the clients’ retention pattern when they watch some
popular set of videos [28]. The second probability term which
is in fact an estimation that the clients will request the bitrate
in question according to their network conditions is computed
based on their requested bitrates during the past time slots.
The previous requested bitrates are readily available from the
video streaming history of the clients. After computing the
caching values for all chunks/bitrates at the current time slot,
RBC heuristic then sorts the chunks in decreasing order of
their caching values and inserts them into the cache until the
cache is filled.

D. Computational Complexity

At each time slot, updating the storage energy of the edge
servers take O(K) in the worst case, where K is the number of
edge servers. For each active client, the client to serve mapping
task using relation (12) also takes O(K) time. The most time-
consuming part of the algorithm is then executing the self-
tuned bitrate selection procedure which our analysis shows the
worst case time complexity of O(K+C·S+|R|2+|R|·K+|T |)
for this procedure. With overall S clients during |T | time slots,
the following worst-case time complexity is therefore obtained
for ECGBA algorithm:

TECGBA ∈ O(|T | · S ·K · (T(Subroutine1))) =

O(|T | · S ·K · (K + C · S + |R|2 + |R| ·K + |T |)) (17)

For the cache replacement heuristic RBC, we need to
analyze the worst case time complexity at only one edge server
since the servers run the heuristic independently. In the worst
case, there is at least one new chunk downloaded from the

origin server at each time slot and therefore, the edge server
runs the heuristic for |T | times in the worst case. At each
time slot, our analysis including, the computation of caching
likelihood for each requested chunk, sorting the chunks and
inserting them into the cache, shows that the heuristic takes
O((Q/Crmin + S) · (S · |T |+ log(Q/Crmin + S))) time. Q
is the fixed cache size and rmin is the minimum available
bitrate in set R. Therefore, with |T | number of time slots, the
following worst-case time complexity is obtained for RBC.

TRBC ∈ O(|T | · ((Q/Crmin + S) · (S · |T |
+ log(Q/Crmin + S)))) (18)

VI. SIMULATION RESULTS

In this section, we evaluate the performance of GMEC-
enabled DASH system model through simulations using the ra-
dio access link level of mobile clients and emulated/measured
solar energy harvesting patterns. Our main objectives are
particularly to compare the following five strategies.
• MEC-enabled Collaborative Edge Caching and Pro-

cessing (CCP-MEC): Edge servers collaborate in
caching and processing to serve the clients request and
rely on the grid energy without the possibility of energy
harvesting. The proposed RBC heuristic is also utilized
for periodically updating the cache contents at the edge
servers.

• GMEC-enabled Collaborative Edge Caching and Pro-
cessing (CCP-GMEC): Servers handle the clients re-
quest through collaborative caching and processing. They
utilize the RBC heuristic and rely on both grid and
periodically harvested renewable energy.

• GMEC-enabled Non-collaborative Edge Caching and
Processing (CP-GMEC): Edge servers serve the clients
request from their own local caches independently and
use the RBC heuristic for cache replacement. There is no
collaboration with the neighborhoods and the servers rely
on both grid and renewable energy for chunk transrating.

• GMEC-enabled Collaborative Edge Caching and Pro-
cessing using LRU Heuristic (CCP LRU-GMEC): The
adopted solution proposed in [7] in which the edge
servers collaborate in caching and processing and have
the potential of renewable energy harvesting. The com-
mon least recently used (LRU) heuristic is also used for
edges cache replacement.

A. Simulation Setup

We consider a mobile edge computing scenario with 10
deployed edge servers (10 associated eNodeBs) and 100
mobile clients (UEs). The scheduling of the mobile clients
is performed in one round which consists of |T | = 300 time
slots where each time slot has the fixed duration of ∆t = 1
second. The set of edge servers form one single cluster which
means every edge server is in the neighborhood of the other
servers. Under the urban macrocell wireless channel model
specification [3GPP TR 36.814 V.9.0.0 2010] [24], the mobile
clients (UEs) keep the constant speed of 4mps and their
downlink SNR traces during 300 time slots are obtained from
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TABLE II: Simulation parameters and their values.

Simulation Parameter Corresponding Value
Number of UEs 100
Number of eNodeBs 10
UE antenna gain 0 dBi
eNodeB antenna gain 18 dBi
UE speed 4 mps
Max Tx power per UE 26 dBm
Channel bandwidth 5 MHz
Shadowing Disabled
Number of downlink RBs 28
Scheduler Proportional Fairness
Channel model Urban Macrocell
Simulation time 300s
Time slot duration 1s
Video chunk size 5s
Fairness threshold (δF ) 0.5
Edge server cache size 3Gb
Processing weighting (φ) 1
Allocated grid energy
to each edge server Unif[1.5KJ,2KJ]
Energy Storage Capacity 1KJ
Max. Harvested Energy 65J
Energy Cons. per Bit (ep) 10−3J

the third party simulator SimuLTE [29]. The instantaneous
effective throughputs of the clients are then obtained using
the Shannon upper bound approximation.

Four videos with different popularities are divided into
consecutive chunks, each with fixed duration C = 5s and are
initially available at the origin server in ten different bitrates
R = {15, 17, 22, 26, 30, 35, 38, 43, 45, 50Mbps}. Thanks to
the availability of high bandwidth in upcoming 5G/B5G, these
ranges of bitrates will be prevalent in next generation of
mobile networks and have been considered in the related
research studies [13], [30]. In order to generalize the results
and consider varying network loads, different uniform intervals
are considered for the time slot that the clients start the video
streaming session (arrival). We further use the polynomial
function p(t) = at2 + bt + c to model different retention
behaviors of the clients with respect to multiple video requests
where, p(t) denotes the probability that the client will remain
active in its video streaming session at time slot t. Different
retention curves are generated by varying the curvature of
polynomial p(t) and determining the corresponding coeffi-
cients a, b and c.

Video buffer of the clients has also the fixed capacity of
Lmax = 250Mb. The size of the cache at each edge server
is fixed at Qk = 3Gb,∀1 ≤ k ≤ K and the capacity
of Be = 1KJoule is considered for the energy storage
of edge servers. We adopt from [27] the Gaussian-shape
solar energy harvesting profile with mean time slot chosen
from the uniform interval µ ∼ Unif [11am, 2pm] and the
harvesting variance of σ2 = 5Joule. According to [27], this
energy harvesting profile corresponds to the maximum feasible
harvesting (hmax) between approximately 60 to 80 Joule at
each time slot. We also assume that the available grid energy
to each edge servers in one round of scheduling (300 seconds)
is chosen from the uniform distribution Unif [1.5KJ, 2KJ ].
Energy consumption of ep = 10−3J is also considered for
the processing of 1bit data at the edge server. The list of
parameters setting for our simulations have been illustrated
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Fig. 2: The pattern of harvested energy using 103cm2 solar
panel during (a) one day (b) time interval [10am,10:05am].
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Fig. 3: Comparison between CCP-MEC and CCP-GMEC in
terms of (a) the average grid/storage energy consumption per
edge server at each time slot and (b) grid energy saving.

in Table. II. We also note that at each part, the average of the
results taken over 20 runs of the simulation with confidence
interval of 95% are presented.

B. Solar Energy Harvesting Pattern

We have first plotted in Fig. 2a the pattern of average
harvested solar energy per edge server during one day time
duration from 5am until 11pm (excluding the mid-night
intervals) using 103cm2 solar panel. As it is seen, the peak har-
vested energy occurs during the noon-afternoon time periods
with the maximum of approximately hmax ≈ 65Joule har-
vested energy. Since our system schedules the video streaming
clients on one second time slot basis, we have considered
the performance evaluation within 300 time slots of video
streaming during the time interval [10am, 10 : 05am]. Fig.
2b, illustrates the pattern of harvested solar energy during this
time interval which is utilized in our simulations.

C. Grid vs. Storage Energy Consumption

In Fig. 3a, we have compared two edge-enabled DASH
solutions CCP-MEC and CCP-GMEC in terms of average
grid and storage energy consumption per edge server during
the video streaming interval (5min) considering the uniform
arrival interval Unif [0, 10s] and the linear retention curve. As
it is observed, the integration of renewable harvested energy
into the MEC indeed reduces on average about 50% the
grid energy consumption per edge server. Fig. 3b shows that
integrating the renewable energy also helps to save the grid
energy about 90% for each edge server during the whole
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Fig. 4: Comparison between collaborative caching and pro-
cessing with MEC and GMEC in terms of average video
bitrate and backhaul traffic per client time slot for different
(a) arrival intervals and (b) retention curves.

video streaming session (scheduling round) compared to MEC
without energy harvesting.

It is worthy pointing out that although the pattern of grid
energy consumption in MEC and storage energy consumption
in GMEC-enabled DASH are somewhat similar during the
time interval 10am-10:05am, the proposed GMEC-enabled
DASH system model helps to save the grid energy for the
time intervals when the intermittent renewable energy does
not suffice for the edge processing. This in turn helps to
significantly improve the processing efficiency of the servers
during those time intervals and therefore improve the QoE of
the mobile clients.

D. QoE and Backhaul Traffic Comparison

Next, we have compared two collaborative mobile edge
caching and processing solutions in terms of average video
bitrate and backhaul traffic per client time slot.

1) Video Bitrate: First, we set the coefficient of data traffic
term in optimization problem to 1 (α = 0) in order to evaluate
the best possible improvement in average video bitrate using
GMEC-enabled collaborative edge caching and processing
(CCP-GMEC). Note that α = 0 is the case that clients tend to
fetch the chunks always from the local cache to minimize the
backhaul traffic. Therefore, improving the processing capabil-
ity of edge servers can indeed help to increase the average
video bitrate of the clients. For different arrival intervals and
retention curves, the comparison results have been illustrated
in the top subplots in Fig. 4a and 4b. As the results show,
using the storage renewable energy, the average video bitrate
per client time slot increases. The reason is that with the help
of storage energy, the processing capability of the edge servers
increases which in turn yields downloading the chunks with
higher bitrate from the local cache. As observed from the
results, the average bitrate improvements of about 7% (for
different arrival intervals) and 10% (different retention curves)
are obtained using GMEC solution compared to MEC.

2) Backhaul Data Traffic: We have also compared two
edge-enabled DASH solutions in term of average backhaul
traffic per client time slot. For this simulation, we set the
coefficient of QoE term in the optimization problem to α = 1
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Fig. 5: Comparison between MEC and GMEC-enabled DASH
in term of average resource utilization for (a) arrival interval
Unif [0, 10s] and (b) different arrival intervals.

in order to evaluate the best possible performance of CCP-
GMEC in term of backhaul traffic reduction. Note that α = 1
is the case that the clients tend to download the chunks always
with highest possible bitrate regardless of the created backhaul
traffic. Therefore, improving the processing capabilities of
edge servers indeed helps to reduce the backhaul traffic. The
results have been shown in the bottom subplots in Fig. 4a and
4b. As confirmed by the results, using the renewable energy
can indeed help to reduce the volume of data traffic on the
backhaul network. This is due to the fact that powering the
servers with renewable energy when the energy of the internal
battery suddenly drops, helps to improve the processing ca-
pability of the servers. This in turn causes the mobile clients
to fetch some of their chunks/bitrates from the edges of the
network rather than downloading from the origin server. As
observed from the results, the average reductions of about 45%
(for different arrival intervals) and 50% (for different retention
curves) are achieved using GMEC solution.

It is noteworthy to mention that the improvements in QoE
of the clients and noticeable backhaul traffic reduction by
integrating the renewable energy into the MEC will result in
increased mobile video streaming subscribers. This brings an
overall revenue for MNO which will be significantly larger
than the installation and maintenance costs of energy storages
during long term system operation as it has been shown to be
just about 2000$ for every 5 years [22].

We have also shown the average resource utilization per
base station (between zero and one) for both MEC and GMEC-
enabled DASH solutions in Fig. 5a and Fig. 5b when α = 0
in the joint optimization problem. With the clients arrival
interval Unif [0, 10s], Fig. 5a illustrates the average resource
utilization per base station within the time interval 10am-
10:05am during the video streaming session. As wee see from
the figure, the resource utilization is higher during the earlier
times when the clients start their video streaming session and
reduces over the time when the clients finish their streaming
session. Furthermore, the results in Fig. 5b show that the
change in resource utilization by varying the arrival intervals
is not monotonic. Although the GMEC solution causes on
average about 7% more resource utilization due to higher
bitrates allocated to the clients, the wireless resources have
not been however fully saturated.
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Fig. 6: Comparison between collaborative and non-
collaborative edge caching and processing in terms of (a)
average video bitrate/backhaul traffic (b) average grid/storage
energy consumption.

E. Comparison to Non-collaborative GMEC

Next, we have been interested to compare our solution with
MEC integrated with renewable energy harvesting but without
considering the collaboration among the edge servers i.e. the
edge servers handle the clients independently from their own
local caches. Since both approaches utilize the potential of
energy harvesting, we set the weighing parameter α = 0.5
in order to have a fair comparison. The comparison results in
terms of average video bitrate and backhaul traffic for different
arrival intervals of the clients have been shown in Fig. 6a.

As the results show, the collaborative caching and process-
ing among the edge servers yields the average improvement of
about 17% in video bitrate of the clients while the reduction
of on average about 66% in the backhaul traffic. The reason
is that with collaborative caching, the clients’ request can be
retrieved or processed from the neighborhood edge servers
hence reducing the number of access to the origin server
through the backhaul network. However, the non-collaborative
caching saves on average about 94% and 85% the energy of
respectively the grid and the storage of edge servers compared
to collaborative GMEC as confirmed by the results in Fig. 6b.
The reason is that in non-collaborative caching approach, the
edge servers consume the energy of grid and storage for the
processing of only the requests from the local clients while
the collaborative solution consumes the energy for also the
requests from the neighborhood clients.

F. Comparison to other Collaborative and Network-assisted
Adaptation Solutions

We have also compared our solution with another col-
laborative edge caching and processing approach in MEC
environments which is adopted from [7]. The bitrate adaptation
part of the solution in this work is client-based and the
common least recently used (LRU) heuristic is used to update
periodically the cache contents at the edge servers. To have a
fair comparison, we adopt this solution to use our network-
assisted bitrate adaptation and further, the edge servers have
the potential of renewable energy harvesting. The results of
comparing our solution with the other collaborative approach
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Fig. 7: Comparison between our algorithm and another
GMEC-enabled collaborative solution in terms of (a) average
bitrate and (b) average backhaul traffic per client time slot (c)
comparison to another network-assisted solution [31].

in terms of average video bitrate and the backhaul data traffic
for different arrival intervals of the clients have been shown
in Fig. 7a and 7b.

As we observe from the results, our algorithm improves
the other solution marginally (about 1%) in term of average
video bitrate while achieving significant improvement of about
40% in term of the average backhaul traffic per client time
slot. The reason is that our solution gets advantage of some
retention-based statics when updating the cache contents at
the edge servers which in turn increases the cache hit rate
and hence improving the performance. Although for few cases
the other collaborative solution slightly improves the average
bitrate compared to our algorithm, it however causes higher
traffic on the backhaul network for those cases.

We have further compared our bitrate selection algorithm
with another network-assisted solution which is adopted from
[31]. The approach in this work solves a simple QoE utility
objective function subject to the limited bandwidth on the
bottleneck link which is shared among the set of competing
clients. With the same number of clients and without energy
harvesting, the comparison results in term of average video
bitrate of the clients has been shown in Fig. 7c. As it is
observed from the result, using our bitrate selection algorithm
which uses the self-tuned parameterization technique results
in the improvement of about 60% in term of average video
bitrate per client time slot compared to the other solution.

G. Impact of Energy Harvesting Magnitude

In the next part of simulation, we have been interested to
investigate the impact of increasing the magnitude of energy
harvesting on the system performance. For the purpose of
this simulation, we have increased hmax, maximum feasible
harvested energy at each time slot, from 30 Joule to 100
Joule while keeping the same storage capacity at Be =
1000Joule. Corresponding to each hmax, the average video
bitrate (α = 0) and backhaul data traffic (α = 1) per client
time slot have been illustrated in Fig. 8a. As the results show,
higher available renewable energy for harvesting contributes
to further improvement in the average bitrate of the clients
as well as further reduction in the traffic on the backhaul
network. The reason is that the available energy at the edge
servers is actually the limiting constraint to achieve higher
video bitrates and therefore, the possibility of harvesting more
energy alleviates this constraint.
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Fig. 8: Impact of increasing the (a) magnitude of energy
harvesting and (b) the capacity of energy storage.

As we see from the results, the achievable bitrate of the
clients and the corresponding backhaul traffic reach a stable
level after a threshold on the energy harvesting magnitude. The
reason is that although more energy harvesting helps to further
improve the average video bitrate of the clients, however, the
limited cache size at the edges and the weighting α = 0 in
the joint optimization problem limit the maximum achievable
bitrate. Similarly, the weighting factor α = 1 limits the
minimum backhaul traffic that can be achieved. As observed
from Fig. 8a, the optimal energy harvesting magnitude of
hmax = 90Joule was obtained for this simulation.

H. Impact of Energy Storage Capacity

We have also investigated the impact of increasing the
capacity of the energy storage on the system performance in
terms of average video bitrate and backhaul traffic. For this
simulation, we have increased the size of storage from Be = 0
to Be = 1000Joule while keeping the same magnitude of
energy harvesting at hmax = 65Joule. Corresponding to each
storage size, the average bitrate and backhaul traffic per client
time slot have been plotted in Fig. 8b. As expected, the average
bitrate and backhaul traffic both improve when with fixed
energy harvesting magnitude, the size of the energy storage
increases. However, no further improvement can be achieved
after a threshold point. The reason is that although there
are enough space for storing the harvested energy with large
energy storage size, however, the system performance is upper
bounded by the amount of harvested energy. As observed from
the result in Fig. 8b, the threshold point of Be = 800Joule is
noticed in our simulation.

I. Performance Evaluation using Measured Solar Radiation

We have also evaluated the performance of GMEC-enabled
DASH system model using the real measured solar energy har-
vesting pattern which has been extracted from the experimental
results reported in [32]. In this work, the peak solar power
generated during the month of January in Hamburg city of Ger-
many is reported approximately 85mWh/cm2. This energy
harvesting corresponds to about 103×85mWh = 85Wh using
103cm2 solar panel. The pattern of harvested energy during
5min time duration within the interval [12pm, 12 : 05pm]
with ±1W radiation deviation has been shown in Fig. 9a.
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Fig. 9: (a) Measured energy harvesting between [12pm− 12 :
05pm] (adopted from [32]) and the comparison results in terms
of (b) average video bitrate (c) average backhaul traffic.

Using the downlink SNR of the mobile clients and the mea-
sured energy harvesting pattern given in Fig. 9a, the results of
comparing GMEC-enabled DASH with MEC without energy
harvesting have been illustrated in Fig. 9b and Fig. 9c. As
the results show, the proposed GMEC-enabled DASH system
achieves on average about 8% and 57% improvements in terms
of respectively average video bitrate and average backhaul
traffic per client time slot. These results confirm the superiority
of GMEC-enabled DASH system using real energy harvesting
measurement.

VII. CONCLUSION AND FUTURE WORK

This paper investigates the impact of integrating the re-
newable energy into the edge computing known as green
mobile edge computing (GMEC) on the joint optimization
of QoE of the mobile clients and the backhaul traffic in
particularly dynamic adaptive video streaming over HTTP
(DASH) scenarios. Due to the NP-hardness of the formu-
lated joint optimization problem, we design a low-complexity
greedy-based algorithm using a self-tuning parametrization
technique to solve the problem. Results of our performance
evaluations using downlink SNR of mobile clients and with
both simulated and measured energy harvesting patterns reveal
that the integration of renewable energy into the MEC indeed
helps to decrease the grid power consumption of the edge
servers, reduce significantly the backhaul data traffic and
improve the average video bitrate of the clients.

In this work, we assumed that edge servers handle the pro-
cessing requests of the connected or the neighborhood clients
by relying on their available grid and renewable energy. It
is expected that considering the cooperation among neighbor-
hood edge servers in energy sharing known as geographically
load balancing (GLB) concept brings further improvements in
system performance. Furthermore, the utilization of caching
at mobile devices and D2D communication among the neigh-
borhood clients can result in further reducing the grid energy
consumption of edge servers as well as further alleviating
the traffic burden on backhaul network. We consider these
directions as our future research works.
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