
Delivery of 360o videos in edge caching
assisted wireless cellular networks

Pantelis Maniotis

A thesis submitted for the degree of

Doctor of Philosophy

School of Computer Science and Electronic Engineering

University of Essex

October 2020

Copyright c© 2020 Pantelis Maniotis

All rights reserved. No part of this publication may be reproduced, distributed,
or transmitted in any form or by any means, including photocopying, recording,
or other electronic or mechanical methods, without the prior written permission
of the publisher, except in the case of brief quotations embodied in critical reviews
and certain other noncommercial uses permitted by copyright law.

Abstract

In recent years, 360o videos have become increasingly popular on commercial
social platforms, and are a vital part of emerging Virtual Reality (VR) appli-
cations. However, the delivery of 360o videos requires significant bandwidth
resources, which makes streaming of such data on mobile networks challenging.
The bandwidth required for delivering 360o videos can be reduced by exploiting
the fact that users are interested in viewing only a part of the video scene, the
requested viewport. As different users may request different viewports, some
parts of the 360o scenes may be more popular than others. 360o video delivery
on mobile networks can be facilitated by caching popular content at edge servers,
and delivering it from there to the users. However, existing edge caching schemes
do not take full potential of the unequal popularity of different parts of a video,
which renders them inefficient for caching 360o videos. Inspired by the above,
in this thesis, we investigate how advanced 360o video coding tools, i.e., encod-
ing into multiple quality layers and tiles, can be utilized to build more efficient
wireless edge caching schemes for 360o videos. The above encoding allows the
caching of only the parts of the 360o videos that are popular in high quality. To
understand how edge caching schemes can benefit from 360o video coding, we
compare the caching of 360o videos encoded into multiple quality layers and tiles
with layer-agnostic and tile-agnostic schemes. To cope with the fact that the
content popularity distribution may be unknown, we use machine learning tech-
niques, for both Video on Demand (VoD), and live streaming scenarios. From
our findings, it is clear that by taking into account the aforementioned 360o video
characteristics leads to an increased performance in terms of the quality of the
video delivered to the users, and the usage of the backhaul links.

Keywords: Tile encoding, Virtual Reality, 360o video, Edge caching, Collabo-
rative caching, Offline caching, Online caching, Live streaming

Acknowledgements

I would like to thank my supervisor, Nikolaos Thomos, for giving me the oppor-
tunity to work with him on a very interesting and challenging project. It has
been a great honor for me to do research under his supervision. We had an excel-
lent collaboration, which helped me develop my skills as a researcher. Without
his insights and guidance, I would not be able to finish my thesis on optimizing
caching techniques for the delivery of 360o videos in cellular networks.

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Algorithms x

List of Symbols xi

Acronyms xii

1 Introduction 1
1.1 Motivation . 1
1.2 Edge caching . 4
1.3 Challenges on caching 360o videos 6
1.4 Contributions . 7

1.4.1 Overview . 7
1.4.2 Tile-Based Joint Caching and Delivery of 360o Videos in

Heterogeneous Networks 9
1.4.3 Viewport-Aware Deep Reinforcement Learning Approach

for 360o Video Caching . 10
1.4.4 A Tile-based caching framework for 360o live video streaming 11

1.5 Thesis Outline . 13

2 Related Work 15
2.1 Introduction . 15
2.2 360o video related literature . 16

CONTENTS Page v

2.2.1 Tile encoding of 360o videos 16
2.2.2 Projection schemes . 17
2.2.3 Visual attention in 360o videos 18
2.2.4 Viewport Prediction . 19
2.2.5 360o live video streaming 20
2.2.6 Quality of Experience Metrics 20

2.3 Edge caching systems . 21
2.3.1 Overview . 21
2.3.2 Online edge caching . 23
2.3.3 Collaborative edge caching 24
2.3.4 Edge caching of layered videos 26

3 Tile-Based Joint Caching and Delivery of 360o Videos in Het-
erogeneous Networks 27
3.1 Introduction . 27
3.2 System Setup . 28

3.2.1 Network . 29
3.2.2 Video Library . 30
3.2.3 Motivating Example . 32

3.3 Problem formulation . 34
3.4 Distributed Algorithm . 39
3.5 Performance Evaluation . 45

3.5.1 Simulation Setup . 46
3.5.2 Parameter Analysis . 51
3.5.3 Convergence . 61

3.6 Conclusion . 63

4 Viewport-Aware Deep Reinforcement Learning Approach for
360o Video Caching 64
4.1 Introduction . 64
4.2 System Setup . 66
4.3 Users’ Requests Model and Cache Update

Schedule . 69
4.4 MDP Formulation . 71
4.5 DQN based cache optimization 78

CONTENTS Page vi

4.6 Performance Evaluation . 82
4.6.1 Simulation Setup . 83
4.6.2 Deep Neural Network Training 87
4.6.3 System Parameter Analysis 87
4.6.4 Overlap between Viewports 94

4.7 Conclusion . 96

5 A Tile-based caching framework for 360o live video streaming 97
5.1 Introduction . 97
5.2 System Setup . 98
5.3 System Model . 102
5.4 Performance Evaluation . 111

5.4.1 Simulation Setup . 111
5.4.2 LSTM Neural Network training 115
5.4.3 Parameter Analysis . 117

5.5 Conclusion . 125

6 Discussion and Future Work 126
6.1 Summary . 126
6.2 Main Contributions . 127
6.3 Future Work . 129

Appendix A: Video Coding 132

Appendix B: Artificial Neural Networks 136

List of Publications 142

Bibliography 143

List of Figures

1.1 VR and AR traffic per month per year. [1] 2
1.2 User wearing a Head Mounted Display (HMD) to view a 360o video. 3
1.3 Encoding of a 360o video scene into multiple quality layers and

tiles, and delivery of different parts of the scene at different qualities. 7
1.4 Users requesting different viewports that overlap. 8
1.5 Virtual viewport, shaped from the overlap between the user re-

quests for various viewports. 12

3.1 Mobile network architecture consisting of multiple SBSs and a
single MBS. Due to dense placement of SBSs, users can reside in
the coverage area of multiple SBSs. 30

3.2 Motivating example. 33
3.3 Illustration of viewports considered for the evaluation. Numbers

indicate tiles indices, while highlighted areas denote the viewports. 49
3.4 Distortion reduction with respect to the cache size for all schemes

under comparison. 52
3.5 Cache hit ratio with respect to the cache size for all schemes under

comparison. 54
3.6 Distortion reduction with respect to the radius of the SBSs for all

schemes under comparison. 55
3.7 Distortion reduction with respect to the SBS Delay for all schemes

under comparison. 57
3.8 Distortion reduction with respect to the Backhaul Delay for all

schemes under comparison. 58
3.9 Distortion reduction with respect to Zipf shape parameter for all

schemes under comparison. 59

LIST OF FIGURES Page viii

3.10 Distortion reduction with respect to the cache size for the pro-
posed scheme and JCNT considering three viewport popularity
distributions. 61

3.11 Convergence of the proposed algorithm. 62

4.1 Considered network architecture. Users located in the overlap of
the coverage areas of the SBSs are associated with the SBS with
the maximum SINR, as shown with black dashed lines. 67

4.2 User requests for a 360o video. 70
4.3 Markov Decision Process. 72
4.4 Considered set of viewports. The light blue area highlight the

area covered by the viewport. 86
4.5 MSE of the loss function with respect to the training epochs. . . . 88
4.6 Y-PSNR with respect to the cache size for all the schemes under

comparison. 89
4.7 Cache Hit Ratio with respect to the cache size for all the schemes

under comparison. 89
4.8 Y-PSNR with respect to the Zipf shape parameter of the 360o

videos for all schemes under comparison. 90
4.9 Y-PSNR with respect to the Zipf shape parameter of the viewports

for all schemes under comparison. 91
4.10 Cache hit ratio with respect to the cache size for the proposed

scheme considering different viewport popularity distributions. . . 92
4.11 Backhaul usage with respect to the Cache Size for all schemes

under comparison. 94
4.12 Total amount of requests for each one of the available viewports. . 95
4.13 Total amount of requests for each one of the in high quality en-

coded tiles. 95

5.1 Considered live streaming architecture. 100
5.2 Considered mobile-edge architecture. The connection of users that

reside in the coverage area of multiple SBSs is depicted with green
dashed-lines for their primary SBS, and with yellow dashed-lines
for their non-primary SBSs. 101

5.3 Flow of operations in a caching entity. 103

LIST OF FIGURES Page ix

5.4 Decomposition of user request wtu into k + 1 requests. 104
5.5 Popularity estimation of a 360o video, using LSTM network. . . . 116
5.6 Y-PSNR of the rendered viewports with respect to the cache size

for all the schemes under comparison. 117
5.7 Cache Hit Ratio with respect to the cache size for all the schemes

under comparison. 118
5.8 Y-PSNR of the rendered viewports with respect to the Zipf shape

parameter of the 360o videos for all schemes under comparison. . . 119
5.9 Cache Hit Ratio with respect to the Zipf shape parameter of the

360o videos for all schemes under comparison. 120
5.10 Y-PSNR of the rendered viewports with respect to the Zipf shape

parameter of the viewports for all schemes under comparison. . . 121
5.11 Cache Hit Ratio with respect to the Zipf shape parameter of the

viewports for all schemes under comparison. 121
5.12 Y-PSNR of the rendered viewports with respect to the cache size

for all schemes under comparison. 123
5.13 Cache Hit Ratio with respect to the cache size for all schemes

under comparison. 123
5.14 Backhaul usage with respect to the Cache Size for all schemes

under comparison. 124

A.1 Group of Pictures (GOP), comprised from I, B, and P frames . . 133
B.1 Basic computation unit of neural networks 137
B.2 Feedforward Neural Network . 138
B.3 Recurrent Neural Network . 139
B.4 Long Short-Term Memory (LSTM) cell 140

List of Algorithms

3.1 Problem decomposition . 41
3.2 Primal-Dual Algorithm . 45
4.1 DRL Framework . 82
5.1 Caching decisions using forecast popularities 110

List of Symbols

N Set of Small Base Stations

NB Set of SBSs and MBS

V Set of 360o videos

G Set of GOPs

L Set of quality layers

M Set of tiles

U Set of users

T Set of time slots

Cn Cache capacity of the SBS n

ovglm Size of the tile vglm

δvglm Distortion reduction from obtaining the tile vglm

tapp Playback delay

tdisp Time duration of a GOP

Acronyms

AR Augmented Reality

AVC Advanced Video Coding

CD Caching Decision

CDN Content Delivery Network

CE Caching Entity

CNN Convolutional Neural Network

CQ Cache Query

CR Content Retrieval

CS Cache Storage

D2D Device-to-device

DNN Deep Neural Network

DQN Deep Q-Network

DRL Deep Reinforcement Learning

FD Feature Database

FIFO First In First Out

FoV Field of View

FU Feature Updater

GOP Group of Pictures

HEVC High Efficiency Video Coding

HMD Head Mounted Display

ACRONYMS Page xiii

IC Independent Caching

ICNT Independent Caching-No Tiles

IE Information Exchange

ILP Integer Linear Programming

JCL Joint Caching-Multiple Layers

JCNT Joint Caching-No Tiles

LFU Least Frequently Used

LRU Least Recently Used

LSR Last Sample Replication

LSTM Long Short-Term Memory

MAB Multi-armed bandit

MBS Macrocell Base Station

MDP Markov Decision Process

MR Mixed Reality

NN Neural Network

PF Popularity Forecasting

QoE Quality of Experience

RFB Retrieval from Backhaul

RNN Recurrent Neural Network

RTMP Real-Time Messaging Protocol

SBS Small Base Station

SHVC Scalable High efficiency Video Coding

SVC Scalable Video Coding

URF Users Requests Forecasting

URP Users Request Processor

URQ Users Requests Queue

ACRONYMS Page xiv

VoD Video on Demand

VP Viewport Prediction

VR Virtual Reality

1
Introduction

1.1 Motivation

Nowadays, we are witnessing an enormous increase in the mobile data traffic

of 360o visual content originating from Virtual Reality (VR) and Augmented

Reality (AR) applications. VR/AR mobile data traffic is forecast to grow 12-

fold between the years 2017 to 2022 (See Fig. 1.1), resulting in 254 petabytes

per month in 2022 [1]. This growth is fuelled by the proliferation of devices that

can display VR content, e.g. smartphones, tablets, as well as services that offer

users immersive multimedia experience such as online gaming. Also, a plethora

of 360o videos are available for downloading on many social media platforms such

as YouTube and Facebook.

Chapter 1 Page 2

Figure 1.1: VR and AR traffic per month per year. [1]

Capturing of 360o video can be accomplished using specialized equipment,

e.g., omnidirectional camera, rig of multiple cameras, that provides overlapping

angles of a video scene. The separate recordings are combined together using a

method known as stitching [2]. Stitching of the various recordings is performed

either at the camera, or at a computer using specialized software. Afterwards,

the stitched 360o field of view of the scene is mapped to a rectangular 2D repre-

sentation. This is to allow current compression standards, e.g., H.264/AVC [3],

H.265/HEVC [4], AV1 [5], VP9 [6], designed for encoding standard videos to be

used for encoding 360o videos.

Users may watch 360o videos on various devices, e.g., smartphones, tablets,

and PCs. The interaction of the users with the 360o scenes is achieved by swiping

the screen (smartphones, tablets), using the keyboard (PCs), or mouse (PCs). A

more immersive experience can be provided with the use of specialized devices,

such as Head Mounted Displays (HMDs). Some typical HMDs are the Oculus

Rift [7], Samsung Gear [8], and HTC Vive [9]. In HMDs, each 360o scene is be

projected in the internal part of a spherical surface [10], while a user wearing an

HMD views only a Field of View (FoV) of the spherical scene, known as viewport.

Chapter 1 Page 3

Figure 1.2: User wearing a Head Mounted Display (HMD) to view a 360o video.

The projected viewport is controlled from the viewer’s head movements in the

x, y and z axes, as shown in Fig. 1.2. These axes are called pitch, yaw, and roll,

respectively [11].

As portable 360o video cameras are becoming more affordable to the public

[12], any attendant of an event (e.g., game, show, conference) is able to capture

that event using a 360o video camera. This changes the way we share our stories,

and let us share our experiences in a way that has a memorable effect for our

audiences. However, the delivery of 360o videos in mobile networks remains

still challenging. This is because compared to standard videos, 360o videos are

larger in size, as they capture a 360o FoV of a scene. The technical challenges

related to 360o video delivery can be better understood through the following

example. A viewport typically covers 120o of the overall scene and can have a

resolution of up to 4K (3840 × 2160) [13], which means that the resolution of

the whole 360o video scene can be as high as 12K (11520 × 6480). Assuming

that a 360o video requires a frame rate of 120 frames per second (fps) to prevent

users’ dizziness, the network infrastructure should respond to the users’ head

movements in less than 10 ms. Furthermore, the bit-rate needed to deliver the

Chapter 1 Page 4

360o video scene in high quality can exceed 100Mbps, and leads to significant

bandwidth waste as only a part of the 360o video is displayed, i.e., the requested

viewport. Although the transmission of only the desired viewport could save

significant bandwidth resources, state-of-the-art network streaming architectures

cannot respond instantly to the users’ head movements, due to the end-to-end

communication delay between the user and the server where the 360o video is

stored. From the discussion above, it is clear that the delivery of 360o videos

in cellular networks, given the strict delivery deadlines imposed by VR and AR

applications is challenging.

1.2 Edge caching

To facilitate the delivery of massive video content in cellular networks, mobile

network operators may exploit edge caching [14–16]. In edge caching systems,

Small Base Stations (SBSs), e.g., picocells and femtocells, are equipped with

caches, which can store a limited amount of popular content files. This is inspired

by the fact that only a small number of popular content items accounts for most

of the network traffic load [14]. As a result, when there are multiple content

requests for a cached content at an SBS, these can be served from the cache

directly instead of obtaining the content through the core network using pricey

backhaul links. This allows users to receive their requested content with lower

latency, and the use of the backhaul links is limited. Depending on whether

the content popularity distribution is known at the SBSs in advance, a caching

policy can be updated either offline or online. Furthermore, SBSs may design

their caching decisions independently or in a collaborative way.

In offline (proactive) caching, the content popularity distribution is consid-

Chapter 1 Page 5

ered for consecutive time periods, e.g., days, weeks, known and fixed [17]. The

main assumption behind the design of offline systems is that the content pop-

ularity distribution changes smoothly [14], hence it can be accurately approx-

imated by a fixed distribution. Commonly, the content popularity follows the

Zipf distribution [18], which is characterized by the number of content files, and

a skewness parameter. Specifically, the popularity of each content item is de-

termined according to its rank, i.e., first (most popular), second, etc., and the

skewness parameter which defines how concentrated is the distribution in a num-

ber of files. Offline caching is completed in two phases: a) the content placement

phase, and b) the content delivery phase. In the content placement phase, the

caches at the SBSs are populated with popular content during off-peak hours

(e.g., night-time). In the content delivery phase, the cached content is delivered

to the users when they request it.

The main drawback of offline caching systems is the requirement for the

knowledge of the content popularity distribution in advance, which may not be

always possible. This is because often in practice the content popularity may

change dynamically, e.g., some videos may become viral, which leads to the

estimated distribution to not be accurate. This problem has been addressed by

online caching (reactive) schemes [19–22]. In online caching, the decision whether

to cache a specific content is made after that content has been requested. Some

popular content replacement algorithms are the Least Frequently Used (LFU),

Least Recently Used (LRU), First In First Out (FIFO), and their variants [23].

Even though cache content placement is often performed independently, i.e.,

each SBS caches the most popular content, the performance of edge caching

systems can be further improved by taking into account users’ association [24]

with multiple SBSs, and designing the caching decisions in a collaborative way

Chapter 1 Page 6

[25–27]. Collaboration opportunities emerge due to the densification of SBSs in

5G and beyond mobile networks. As a result, users may reside in the coverage

area of multiple SBSs. In collaborative caching systems, when a content request

arrives at an SBS which does not hold a copy of this content in its cache, this

request can be forwarded to another (possibly neighboring) SBS within the user’s

communication range, instead of being redirected to distant back-end servers

through backhaul links. This accelerates the content retrieval and helps to avoid

the use of expensive backhaul links.

1.3 Challenges on caching 360o videos

Despite the existence of edge caching solutions for standard videos [24–29], these

systems are suboptimal for caching of 360o video files. This is because 360o

videos have considerably larger sizes than traditional videos, which limits the

number of videos that can be stored at the SBSs caches. Furthermore, edge

caching schemes for standard videos cannot exploit the fact that large parts of

the video scenes are never displayed, as is the case of 360o video where users

are interested in watching only a viewport. Without explicit consideration of

these characteristics of 360o videos, mobile network operators will struggle to

accommodate users’ (often diverse) demands for 360o video content. Clearly,

there is a need for novel 360o video caching schemes which exploit 360o video

features, and do not necessitate the delivery of the entire video scene.

Chapter 1 Page 7

Figure 1.3: Encoding of a 360o video scene into multiple quality layers and tiles,
and delivery of different parts of the scene at different qualities.

1.4 Contributions

1.4.1 Overview

In this dissertation, we investigate how to build efficient edge caching schemes

for 360o videos, considering that users view only some parts of the 360o video

scenes. To this end, we exploit 360o video coding tools, i.e., encoding in multiple

layers and tiles (see Fig. 1.3), in order to optimize caching at the edge servers.

With tile-encoding, each tile (rectangular area of the scene) can be encoded

independently, which facilitates parallel processing. Furthermore, tile-encoding

allows the transmission of different areas of the scene at different qualities. This

allows SBSs to cache only the parts of the video content that are popular to the

users without requiring caches of higher capacity to achieve the same level of

Quality of Experience (QoE) (see Fig. 1.4). Our aim is to maximize the quality

of the video delivered to the clients’ population, while respecting the delivery

deadlines of the 360o video content. The research efforts of this thesis focused

Chapter 1 Page 8

Figure 1.4: Users requesting different viewports that overlap.

on answering the following questions:

• Research question 1: How beneficial is the use of advanced coding tools for

caching 360o videos in mobile networks?

• Research question 2: Can content-awareness lead to better strategies for

caching and delivering 360o videos?

• Research question 3: How complex is the caching of 360o videos, and how

360o videos can be cached at the SBSs on a large scale?

• Research question 4: When the content popularity distribution is not

known in advance, what is the optimal strategy to cache and update 360o

video files at the SBSs?

• Research question 5: How to optimize the edge caching placement/eviction

policies to support 360o live video streaming?

Based on our attempt to answer the aforementioned questions, the contribu-

tions of this thesis are summarized in the next sections.

Chapter 1 Page 9

1.4.2 Tile-Based Joint Caching and Delivery of 360o Videos

in Heterogeneous Networks

To answer the first two research questions, in Chapter 3, we propose a novel

distortion-aware joint caching and delivery framework for 360o videos that makes

cache decisions on a per tile basis. In this work, we assume that the content pop-

ularity distribution is fixed and known at the SBSs (offline caching). To the best

of our knowledge, this is the first work that considers edge caching for 360o videos

on a per tile basis. We formulate the joint caching and delivery problem as an

integer linear programming (ILP) problem, which seeks to maximize the cumu-

lative video distortion reduction among the users’ population. To determine the

optimal caching and delivery policy we take into account the physical limitations

of the network, i.e., bandwidth and latency, as well as the opportunities for col-

laboration between the SBSs when users reside in the coverage area of more than

one SBSs. We show that this problem is NP-hard, answering the first part of the

third research question regarding the complexity of the problem of caching 360o

videos. Due to the high complexity of the formulated problem, we decompose it

into a number of subproblems on per Group of Pictures (GOP) basis. The solu-

tion of each subproblem is obtained using the Lagrangian relaxation method and

the subgradient algorithm. The solutions of the decomposed subproblems are

combined to obtain the solution of the original problem. We evaluate and com-

pare the performance of our solution with baseline schemes that do not exploit

one or more of the following components: (i) tile encoding, (ii) layered encoding,

and (iii) SBSs collaboration, to understand the impact of each component on the

overall delivered quality of 360o videos to the users. The results illustrate that

exploiting 360o video coding into multiple quality layers and tiles leads to better

Chapter 1 Page 10

strategies for caching and delivering 360o videos. This work has been published

in a conference paper in IEEE multimedia signal processing workshop 2019 [C1],

and a journal paper in IEEE Transactions on Multimedia [J1].

1.4.3 Viewport-Aware Deep Reinforcement Learning Ap-

proach for 360o Video Caching

Motivated by the findings in Chapter 3, where the benefits of caching 360o videos

on per tile basis instead of entire 360o videos are shown, in Chapter 4, we seek

to answer the fourth research question. To this aim, we propose a novel reactive

caching scheme which does not require a priori knowledge of 360o video and tiles

popularity distributions (online caching). To the best of our knowledge, this is

the first online caching scheme for 360o videos in the literature. Our method

aims at maximizing the overall quality of the 360o videos delivered to the users,

considering a limited history of users’ requests. Compared to our work in Chapter

3, which was shown to be NP-hard, this solution scales well with the number of

users and 360o videos, and can be used for caching 360o videos on a large scale,

answering the second part of the third research question. In order to determine

which 360o videos and tiles should be cached at the SBSs, we formulate the

problem of 360o video online caching as a Markov Decision Process (MDP). To

reduce the dimensionality of our problem, we introduce the concept of virtual

viewport, as shown in Fig. 1.5. A virtual viewport has the same number of tiles

with regular viewports, but it consists of the most popular tiles. Specifically,

a virtual viewport is shaped from the overlap between the various requests for

different viewports, and it is considered to be the most popular viewport of a

scene, among the users’ population. Virtual viewports differ from the original

Chapter 1 Page 11

ones in that the tiles that comprise them are not necessarily adjacent to each

other, i.e., they do not form a rectangular area. When a user requests a viewport

of a 360o video in a certain quality, then if some tiles of the requested viewport

also belong to the virtual viewport that is cached at the SBS that received the

request, these tiles will be served from that cache. As a result, storing virtual

viewports instead of regular ones is expected to lead to an increase in the cache

hit ratio, due to the greater flexibility virtual viewports provide in terms of

which tiles to cache in high quality. In order to solve large instances of the

formulated MDP problem, we use a Deep-Q-Network (DQN). We evaluate the

performance of our solution for both real and synthetic 360o video navigation

patterns, and compare its performance with that of known schemes such as the

LFU, LRU, and FIFO algorithms. The results illustrate the advantages of the

proposed method compared to its counterparts in terms of the overall quality

users enjoy, the overall cache hit ratio, and the cost of delivering the requested

content to the users. In addition, it is shown that the overlap between the various

requests for different viewports shapes the popularity of each tile, and defines

the virtual viewports. This work has been submitted for publication in the IEEE

Transactions on Multimedia journal, and at the moment it is under revision. A

preprint of this work is available in [P2].

1.4.4 A Tile-based caching framework for 360o live video

streaming

Considering that the content popularity distribution may be unknown at the

SBSs, in Chapter 4, we examined the caching of 360o videos for a Video on

Demand (VoD) solution. However, this scheme cannot be trivially used for

Chapter 1 Page 12

Figure 1.5: Virtual viewport, shaped from the overlap between the user requests
for various viewports.

live streaming of 360o videos where multiple simultaneous requests for the same

video may occur. Inspired by the above, in Chapter 5, we propose a novel

caching framework for live streaming 360o videos, aiming to answer the fifth

research question. To the best of our knowledge, this is the first caching scheme

for 360o videos that is applicable to live streaming scenarios. Our system aims

at maximizing the overall delivered quality and reduce the backhaul usage, by

optimizing the cache hit ratio. To achieve this, our algorithm uses observations

of users’ requests for the various 360o videos and viewports in order to decide

about the optimal cache eviction/placement strategy. Differently from Chapter

4 where we used virtual viewports, in this chapter, when our system decides to

cache a 360o video, it caches all the tiles of that video encoded in base quality to

ensure interactivity, and a number of tiles in high quality to enhance the quality

of the delivered video quality. The latter decision is based on the popularity of

a video, i.e., more tiles in high quality are cached for the most popular videos,

Chapter 1 Page 13

as well as the tiles’ popularity, which determines which tiles are most likely to

be requested. To determine which 360o videos and tiles should be cached at

the SBSs, we use Long Short-Term Memory (LSTM) networks. This allows the

continuous popularity forecast of the 360o videos and tiles for the next GOP,

which in turn is used for the prefetching of them at the SBSs. To enhance the

quality of the rendered viewports and reduce the backhaul usage, we allow users

who are located in the overlap of the coverage areas of multiple SBSs to receive

data from any of these SBSs, at different communication delays. We evaluate

the performance of our solution for both real and synthetic 360o video navigation

patterns, and compare it with that of the LFU, LRU, and FIFO algorithms. The

results demonstrate the superior performance coming from the use of LSTMs to

decide which 360o videos and tiles to cache in terms of the overall cache hit

ratio, the quality of the rendered viewports and the backhaul usage. This work

resulted in a conference paper published in IEEE multimedia signal processing

workshop 2020 [C2]. We aim at submitting this work for publication in the IEEE

Transactions on Multimedia journal.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we overview

works related to edge caching, and 360o videos. Afterwards, in Chapter 3, we

present the proposed framework for the joint caching and delivery of 360o videos

in wireless cellular networks. Next, in Chapter 4 we introduce the proposed

reactive caching scheme for 360o videos, which does not require knowledge of

the 360o video and tile popularity distributions. Then, in Chapter 5 we present

the proposed caching framework for live streaming of 360o videos, where video

Chapter 1 Page 14

and tile popularity distributions are non-stationary. Finally, in Chapter 6, we

outline the conclusions drawn in this thesis, the main contributions of our work,

and some potential future research directions.

2
Related Work

2.1 Introduction

The purpose of this chapter is to review the literature related to this thesis.

This chapter is organized as follows. In Section 2.2, we discuss works on various

research areas related to 360o videos, e.g., tile encoding of 360o videos, visual

attention in 360o videos, 360o video projection schemes, etc. Next, in Section

2.3, we overview related works to edge caching, e.g., online caching, collaborative

caching, etc, and discuss their advantages and disadvantages.

Chapter 2 Page 16

2.2 360o video related literature

2.2.1 Tile encoding of 360o videos

Recently, 360o videos have become increasingly popular on commercial social

platforms such as YouTube and Facebook. 360o videos encode a 360o field of

view of a scene, offering users an immersive experience. Users interact through

the scenes and view only a portion of the encoded 360o video frames, which

is known as viewport (see Fig. 1.2). However, this interactivity comes at the

cost of very high bandwidth requirements, as the bitrate required to provide

a high QoE to the users is much higher than that needed for regular videos.

Tile-encoding has been investigated in [30–32], as a way to cope with the high

bandwidth requirements in 360o video streaming. With tile-encoding, each 360o

video scene is encoded into independent segments, the tiles. Furthermore, each

tile is further encoded into multiple quality layers, which gradually increase the

quality of each tile. In this way, tile-encoding allows the systems in [30–32]

to save significant bandwidth resources by taking into account that users are

interested in viewing only a viewport of the 360o video scene, which removes the

need to deliver the whole scene in high quality. The selection of the tiling scheme

is investigated in [33], along with its impact on the compression and the resulting

streaming bitrate. Specifically, each 360o video is encoded in two versions with

different resolutions, while each version is further encoded into tiles. Similarly

to [33], in [34] authors investigate the performance of tile-based video streaming

in 4G networks with respect to the coding efficiency and the bandwidth savings.

In [11], a rate-adaptation scheme is presented, aiming to determine the quality

level of each tile by leveraging the predicted available bandwidth in the future

Chapter 2 Page 17

and the distribution of users’ head positions. Differently from [11], authors in [35]

propose an HTTP adaptive streaming system (HAS) that seeks the optimal rate

at which each tile should be downloaded as users navigate through the 360o video

scenes. Differently from [35], an algorithm that provides the streaming rate each

tile should be downloaded is proposed in [36], to guarantee a QoE that degrades

with low probability when the viewport prediction error is high. This algorithm

outperforms its counterparts by 50% in terms of QoE.

2.2.2 Projection schemes

Although current video compression standards, e.g., H.264, HEVC, are efficiently

used for encoding of standard videos, they have not been designed to be directly

used for the compression of the spherical surface of the 360o videos. To overcome

this limitation, the spherical surface of the 360o video scenes is initially projected

into a rectangular 2D surface. Then, this surface is encoded in the same way to

that of standard videos. Some of the most common projection schemes are the

Equirectangular (ERP) [37, 38] projection used by YouTube, and the Cubemap

(CMP) [37, 39] projection used by Facebook. The evaluation of a number of dif-

ferent projection schemes, i.e., Rhombic Pyramid, Square Pyramid, Truncated

Pyramid, along with the multi-resolution version of the ERP, and CMP schemes

is investigated in [40], in terms of the achieved rate-distortion performance. From

the results, it is noted that the multi-resolution version of the ERP and CMP

schemes showed the best performance in terms of compression gains. A hybrid

projection scheme is presented in [41] based on the ERP and the Transverse

Cylindrical Projection (TCP) scheme. This hybrid scheme improves the distor-

tion of the ERP scheme by combining the advantages of the ERP around the

equator, and of the TCP near the poles.

Chapter 2 Page 18

2.2.3 Visual attention in 360o videos

Understanding visual attention of users when they are viewing 360o videos is

crucial for improving users’ QoE [42, 43]. This is because as some regions of

a scene are more popular than others, this understanding can be exploited to

optimize the encoding and transmission of 360o videos [44]. To this aim, many

works [45–49] focus on creating datasets which contain information of the users’

behaviour when viewing 360o videos. Such an example is the dataset in [45],

which consists of 10 videos viewed by 50 users aged between 20 and 48. This

dataset provides image saliency maps [50–52] that highlight the regions of the

scenes where there is the most attention, motion maps [53] that highlight moving

objects, and sensor data from the HMDs that help to obtain the users head ori-

entation. Similarly to [45], a dataset of 48 users viewing 20 different 360o videos

on HTC Vive is presented in [48]. Apart from the user head movements, users

in [48] were asked to fill a questionnaire regarding the motion sickness experi-

enced during the viewing of the 360o videos. Differently from [45, 48], a dataset

containing view trajectories from users viewing 360o videos on computer screens

is presented in [46]. By analyzing the trajectories, it is found that when 360o

videos follow a storyline, the trajectories are bounded within a small dynamic

range. On the contrary, the trajectories are more dynamic for 360o videos such

as virtual tours. In contrast to [45–49], authors in [54] investigate how to iden-

tify clusters of users that watch the same parts of the 360o videos, by analyzing

datasets that contain users’ navigation patterns. From the results, it is shown

that their method leads to clusters where users watch at least 85% of the same

content.

Chapter 2 Page 19

2.2.4 Viewport Prediction

In 360o video streaming, the accurate prediction of the viewports that will be

requested by the users in the future is essential for their timely delivery [55],

and the ability of the users to enjoy a high QoE [56]. This is because as 360o

videos are associated with high bandwidth requirements, servers may transmit

only the viewports that will be watched by the users in high quality. However,

communication networks are not able to respond instantly to the users’ head

movements, hence, predicting the viewports that will be seen from the users

allows the delivery of them prior to their demand [57, 58] and facilitates 360o

video playback. To predict the viewports that will be requested by the users,

authors in [59] proposed a reinforcement learning approach based on contextual

bandits. Differently from [59], authors in [60] presented a deep learning network

that uses a Convolutional Neural Network (CNN) to extract the content-related

features from the 360o videos, and a Long Short-Term Memory (LSTM) network

to predict the users’ head movements. The results show that a 16.1% improve-

ment can be achieved in terms of the prediction accuracy compared to a baseline

approach that takes into account only the position data. Similarly to [60], the

use of CNN for viewport prediction is proposed in [61] for a live streaming setup.

In [62], viewport prediction is performed using Linear Regression (LR). Differ-

ently from [62], in [63], LR is initially used to predict a motion-based fixation,

and then, cross-users viewing fixations are exploited by the K-Nearest Neighbors

(KNN) algorithm to improve the prediction accuracy of LR. The prediction of

the viewports for a long time horizon is examined in [64]. The evolution of the

viewports through the 360o scenes is modeled with trajectories in the roll, pitch

and yaw angles. From the results, it is concluded that for a horizon of up to 10

Chapter 2 Page 20

seconds, the algorithm in [64] can increase the accuracy of the predicted viewport

area by 13%.

2.2.5 360o live video streaming

The use of tile encoding for 360o live video streaming has been examined in [65],

in order to deliver only the parts of the requested FoV in high quality. To this

aim, an architecture that combines the Real-time Transport Protocol (RTP) and

DASH is proposed, where authors examine the trade-off between video quality

and bandwidth usage. The results show that 50% of bandwidth savings can be

achieved. Differently from [65], authors in [66] propose a multicasting architec-

ture for 360o live video streaming. From the evaluation, it is shown that a quality

gain of 3 dB is achieved for users with low bandwidth capacities and a quality

gain of 3.5-4 dB for users with high bandwidth capacities. A generic measure-

ment system is presented in [67] for the collection of key performance statistics,

e.g., video quality change, rebuffering events, for evaluating the performance

of live streaming 360o videos on platforms such as YouTube and Facebook. To

guarantee a high QoE, a live streaming system for 360o videos is proposed in [68],

which is based on MPEG media transport (MMT).

2.2.6 Quality of Experience Metrics

A key element in designing a 360o video delivery system is the assessment of

the perceived quality by the users [69]. The quality metrics used to assess the

perceived quality can be classified in two categories, namely subjective, and ob-

jective [70]. In subjective quality metrics, a number of users (subjects) watch

various 360o videos and rate their perceived quality. Although in such an ap-

Chapter 2 Page 21

proach users are directly involved in the assessment of the QoE they enjoy, this

approach is expensive and time consuming [71]. To overcome these limitations,

objective quality metrics attempt to automate the assessment of the 360o videos’

quality through the modeling of the Human Visual System (HVS) [72]. A sub-

jective assessment analysis is presented in [73], where users rate their perceived

QoE in terms of perceptual quality, presence, acceptability, and cyber-sickness.

In particular, perceptual quality and the acceptability are measured when users

watch a 360o video both with or without a Head-Mounted Display (HMD). Dif-

ferently from [73], an objective quality metric based on Structural Similarity

Index (SSIM) is proposed in [74]. The performance of this metric is verified

using subjective quality assessments, while its usage is not dependent from the

360o video projection method. Similarly, in [75], a number of objective quality

metrics are explored for quantifying the quality of 360o video encoding. These

include PSNR, weighted to spherically uniform PSNR (WS-PSNR), spherical

PSNR without interpolation (S-PSNR-NN), spherical PSNR with interpolation

(S-PSNR-I), and PSNR in Crasters Parabolic Projection (CPP-PSNR). From

the evaluation in [75], it is concluded that traditional PSNR is the most ap-

propriate quality metric for measuring end-to-end distortion because of its low

complexity.

2.3 Edge caching systems

2.3.1 Overview

We are currently witnessing an unprecedented growth in mobile data traffic [1].

To cope with this increase, the emerging 5G mobile networks are designed to

Chapter 2 Page 22

exploit better their spatial resources [14]. However, in order for this approach to

be effective, a high-speed backhaul connectivity is required for each SBS, which

is often not possible. To overcome the above limitation, edge caching emerged

as a way to offload the traffic to the backhaul links. The benefits of edge caching

are attributed to the fact that only a small portion of the available content ac-

counts for most of the traffic load [76]. Edge caching allows users to experience

services with less latency [77], improve the QoE they enjoy [78–80], and reduce

the network operating cost [81]. This can be beneficial for applications with high

bandwidth requirements, e.g., 360o videos, which motivated us to study in Chap-

ters 3, 4, and 5, how edge caching can be used with tile-encoding, to facilitate

360o video streaming. The problem of using edge caching to facilitate the deliv-

ery of standard videos has been widely studied in the literature [77, 78, 82, 83].

For example, authors in [78] studied the delivery of standard videos adaptive

video streaming, where videos are available in multiple representations of differ-

ent qualities. The aim is to maximize the aggregate distortion reduction among

the users’ population, while the additional cost of downloading the representa-

tions is minimized. Differently, the caching placement for layered video content

on edge caching systems is investigated in [82], where the decisions about which

video layers to cache in each SBS are made by taking into account the caching

cost, the available cache capacity at the SBSs, and the various social traits of the

mobile users. In [77], authors examine how to assure the delivery of high video

resolution, i.e., 4K, in LTE-A networks. Their work showed that the proposed

live streaming system is able to sustain 4K video quality at a global scale. The

impact of the content request patterns on video streaming with edge caching is

studied in [83], where the video request patterns and users’ behaviors are an-

alyzed. Based on the users’ request analysis, authors design a caching scheme

Chapter 2 Page 23

that outperforms the LRU/LFU schemes in terms of the cache hit ratio by 30%.

2.3.2 Online edge caching

The main challenge in edge caching systems is the requirement to know the

video popularity profiles in advance, which in many cases is not possible. This

is because the content popularity distribution may not be static, but evolve

dynamically as new content is continuously added [84] or removed because it be-

comes obsolete. To this aim, the use of reinforcement learning (RL) algorithms

that predict the content popularity based on the demand history have been pro-

posed. Specifically, the use of Multi-Armed Bandit (MAB) algorithms [85] has

been investigated in [86–90], where the content popularity is predicted from the

observations of users’ requests. For example, SBSs in [86] learn the content pop-

ularity online, while considering the switching costs associated with the addition

of new files to the cache. In the same manner, three different MAB algorithms

that lead to different exploration-exploitation trade-offs are studied in [87]. Dif-

ferently from [86, 87], the use of armed-bandits that exploit contextual informa-

tion, e.g., age, sex, is proposed in [88, 89], in order to predict the popularity of

files. The content cache placement is jointly designed using an MAB framework

in [90], considering that SBSs may share their cached content via wired links,

and content retrieval comes at a cost, i.e., transmission energy. A reinforcement

learning framework for finding the optimal caching policy is presented in [91],

where the users’ requests are modeled as Markov Decision Processes (MDPs).

The optimal caching placement is found using the Q-learning [92] algorithm. A

trend-aware caching scheme is presented in [93], where the popularity trend of

each video is learnt online to determine the cache policy. From the results, it

is shown that the proposed method can achieve a 40% improvement in terms of

Chapter 2 Page 24

cache hit ratio. Differently from our approach, which will be presented in Chap-

ter 4, where we study the problem of online caching for 360o videos using neural

networks (NN), i.e., DQN, the use of NN for the problem of online caching for

standard videos is investigated in [94, 95]. Specifically, a Deep Reinforcement

Learning-based framework is presented in [94], which aims at maximizing the

long-term cache hit ratio. To solve the formulated problem in [94], an Actor-

Critic algorithm [96] based on the Wolpertinger architecture [97] is proposed.

Differently from [94], an Actor-Critic algorithm is presented in [95] where the

actor uses the Gibbs distribution [98] and the critic uses a deep neural net-

work with the goal to minimize the average transmission delay. To do so, the

user scheduling and content caching are jointly addressed. The main difference

between DQN and Actor-Critic is that in the former case, the employed DRL

framework consists of only one NN that decides which action should be taken.

On the contrary, in the latter case, the employed framework is comprised of two

NNs. The first NN (Actor), is used to decide given a state, which action should

be taken. The second NN (Critic), is used to provide feedback on how good was

the selected action from the Actor. The benefit of using Actor-Critic frameworks

is that they tend to work better for extremely large or continuous action spaces.

On the contrary, DQN frameworks as our approach followed in Chapter 4, have

the benefit of being less complicated.

2.3.3 Collaborative edge caching

To enhance the performance of edge caching in cellular networks, network op-

erators may exploit the collaboration opportunities that emerge because of the

overlap between the coverage areas of the SBSs [25–27], in 5G and beyond net-

works. In this way, when a content request is not found in the cache of the

Chapter 2 Page 25

SBS where the request was issued, it can be served to the user from the cache

of a neighboring SBS, provided the requested content is cached in it. Hence,

the requests may not be redirected to distant back-end servers, which reduces

the usage of the backhaul links. As a result, users experience services with less

latency, and their perceived QoE is increased. The joint caching placement and

users’ association is studied in [24], while taking into account the backhaul delay

and the wireless channel quality. The aim in [24] is to minimize the average

download delay. From the simulation results, it is shown that jointly designing

the caching decisions and the users’ association with the SBSs can significantly

reduce the average download delay. Similarly to [24], the joint design of cache

placement and user association policies is examined in [99], aiming to optimize

the trade-off between load balancing and backhaul saving. The benefits of col-

laborative edge caching have been also studied in [100, 101], where it is shown

that the overall cache hit ratio is increased when SBSs decide collaboratively

which video files to cache. In [100], collaborative edge caching is investigated

from a network economics point of view. This work explores how to maximize

the profit earned when a video request is served by an SBS in two cases: a) when

the video file is entirely cached in only a single cache, and b) when the video is

encoded by means of network coding [102] and the resulting coded data is split

into a number of segments that can be stored separately in various SBSs. The

impact of collaborative caching for video streaming systems in mobile networks

is studied in [101]. From the evaluation, it becomes obvious that collaboration

between caches enhances the performance of the overall edge caching system in

terms of both the cache hit ratio and the QoE perceived by the users.

Chapter 2 Page 26

2.3.4 Edge caching of layered videos

Edge caching systems can be further improved and can offer higher QoE to

the end users by exploiting video encoding into multiple quality layers. Lay-

ered videos can be generated by scalable video coders such as H.264/SVC [103],

HEVC/SHVC [104], among others. The flexibility in caching decisions coming

from encoding in multiple layers is exploited in [28, 29], where network operators

can collaboratively optimize which video layers to cache. To solve this problem,

SBSs caches are split into two parts: a part allocated for contents requested by

users of the operator who owns the cache, and a second part which is given for

caching video layers of content requested by users who belong to other operators.

From the results, it is observed that an up to 25% delay gains can be achieved,

compared to layer-agnostic caching schemes. The exploitation of video encod-

ing into multiple quality layers for Dynamic Adaptive Streaming over HTTP

(DASH) is studied in [105], where SBSs cache the base layer along with some of

the enhancement layers, depending on the encountered network conditions. It

is shown that the cache hit ratio of commonly used algorithms such as the LRU

and LFU can be improved by advancing their policies so that they decide either

the eviction of a content, or its “trimming” where only some of the stored layers

are evicted.

3
Tile-Based Joint Caching and

Delivery of 360o Videos in

Heterogeneous Networks

3.1 Introduction

In this chapter, we investigate the problem of collaborative joint caching and

delivery of 360o videos in a video on demand setting. The proposed scheme

takes advantage of encoding of 360o videos in multiple tiles and layers, in order

to maximize the cumulative video distortion reduction. Tile encoding allows to

make fine-grained decisions regarding which tiles to cache in each SBS, and from

Chapter 3 Page 28

where to deliver them to the end users. To ensure continuous video playback, we

explicitly consider the time delivery constraints. Due to the high computational

complexity of the studied optimization problem, we split it into a set of subprob-

lems. Each subproblem seeks for the optimal caching and delivery policy on per

GOP basis. The solution of each subproblem is obtained using the Lagrangian

relaxation and the subgradient algorithm. We evaluate and compare the perfor-

mance of our solution with tile-agnostic and layer-agnostic schemes, in order to

understand the impact of each component on the overall deliverd quality to the

users. The results make apparent the benefits coming from designing the caching

and delivery decisions on a per tile basis, and the importance of exploiting SBSs

collaboration.

Chapter 3 is organized as follows: In Section 3.2, we describe our system

setup. Afterwards, we provide the problem formulation in Section 3.3. In Sec-

tion 3.4, we propose a reduced complexity algorithm to solve our optimization

problem. In Section 3.5, we extensively evaluate the performance of the pro-

posed scheme and compare it with other methods. Finally, we draw conclusions

in Section 3.6.

3.2 System Setup

In this section, we examine the joint design of the caching and delivery of 360o

videos. We consider that the caching occurs at the SBSs on a per-tile basis.

We further make use of SBSs collaboration to serve most of the requests from

local caches. In the following, we first introduce the system model and explain

the various parts of the considered network architecture. Then, we provide an

analytical example that reveals the benefits of collaborative caching for tile-

Chapter 3 Page 29

encoded 360o videos.

3.2.1 Network

We consider a mobile network consisting of a set of N Small-cell Base Stations,

as shown in Fig. 3.1. Let N = {1, . . . n, . . . , N} denote the set of SBSs indices.

We also assume that the SBSs can communicate with a Macro-cell Base Station

(MBS) indexed by N + 1, through which they can retrieve the requested content

(360o video files) from distant servers via backhaul links. For notational conve-

nience, we define the set NB = N ∪{N + 1} which includes the indices of all the

SBSs and the MBS.

In the considered network, there are U = |U| users, where U = {1, . . . , U}

is the set of user indices. Each user is associated with one or more SBSs. The

association of the users with the SBSs depends on the transmission range of

each SBS. The values of the transmission range of the SBSs form the set P =

{p1, . . . pn, . . . , pN}, where pn is the communication radius of the nth SBS. The

transmission range of the MBS is denoted by pN+1, and is considered to be large

enough so that each SBS can establish a connection with the MBS. The overlap

in the coverage areas of the SBSs allows users to access multiple SBSs. We

introduce the binary variable αnu ∈ {0, 1} that equals to 1 when user u resides

in the coverage area of the SBS n, and 0 otherwise.

Each SBS is equipped with a cache with capacity Cn ≥ 0, ∀n ∈ N , where

content files can be cached. A user’s request can be satisfied by any of the asso-

ciated SBSs, if the requested 360o video file is stored in their cache. Differently,

when the file is not cached in any of the SBSs associated with the user, the

requested content is fetched from a remote content server through the backhaul

link with the help of the MBS.

Chapter 3 Page 30

Figure 3.1: Mobile network architecture consisting of multiple SBSs and a single
MBS. Due to dense placement of SBSs, users can reside in the coverage area of
multiple SBSs.

Our scheme is an offline edge caching scheme, where content retrieval is car-

ried out in two phases, namely content placement, and content delivery. In the

content placement phase, content is fetched during off-peak hours from distant

back-end servers to the caches of the SBSs. In the delivery phase, the cached

content is delivered to the users by either the SBSs or through the backhaul link

via the MBS, according to the users requests. If the requested content is not

cached in the local SBSs, it first has to be fetched via the backhaul, and then

it can be delivered to the user. Offline edge caching can help to avoid network

congestion during peak hours, as user requests are diverted from remote content

servers to local edge caches (SBSs).

3.2.2 Video Library

We assume that the video content catalogue contains V = |V| files, where V =

{1, . . . v, . . . , V } represents the set of indices of the 360o videos in the catalogue.

Chapter 3 Page 31

All the video files are stored at back-end content servers, while SBSs cache only

part of the available content catalogue. The caching decisions are taken offline

and the files to be cached are moved to the SBSs caches during the content

placement phase.

Each 360o video file is encoded in a set of GOPs G, which in turn are each en-

coded in a number ofM independently coded tiles. Let the setM = {1, . . . ,M}

denote the M independently encoded tiles of a 360o video. The use of inde-

pendently encoded tiles is motivated by the fact that users are interested in

watching different viewports of the demanded videos. That is, while users may

request different video files, they may also be interested in watching different

parts of a video scene, i.e., different viewports. As a result, the popularity of

tiles depends on both video and viewport popularity. In particular, the overlap

between the various viewports shapes the popularity of each tile. Thus, not only

the popularity across the viewports of the same video may be different, but also

the tiles within the same viewport may have different popularity due to overlap

among requested viewports. This in turn affects the optimal caching and routing

decisions.

Each tile is further encoded into a set of quality layers L. The most important

layer is called base layer. When the base layer is received by a user, it offers

a reconstruction of a tile at the lowest available quality. The next layers are

known as enhancement layers and contain information that can improve the

reconstruction quality of each tile. However, in order to reconstruct a tile at

the quality that corresponds to an enhancement layer, all previous enhancement

layers including the base layer must be available to the user. Encoding of the

360o video files in layers and tiles offers greater flexibility in deciding which data

should be stored in the SBSs caches. Thus, when some viewports are more

Chapter 3 Page 32

popular than the others or/and there is significant overlap between some of the

viewports, the tiles that form these viewports/overlap regions can be cached at

higher quality at the SBSs, if there is sufficient space, while the rest of the tiles

can be cached in lower quality. For more information on video coding, we advise

the interested reader to refer to Appendix A.

When a user requests a viewport of a 360o video file, this request translates

into requests for all the tiles of the frame at base layer and all the tiles of the

requested viewport at the highest available quality. As we mentioned in Chapter

1, while the delivery of only the desired viewport would save bandwidth resources,

it is not, in general, an optimal strategy. This is due to the fact that, as users

navigate through the scene, the actual video consumption pattern may deviate

from the expected requests used to determine the joint caching and routing

policy. If only the requested viewport was delivered, any deviation in viewing

pattern would require a re-transmission of the correct viewport, which in turn

would lead to large switching delays and bandwidth waste [35]. By delivering

the entire frame at base layer we accommodate for any deviations of the actual

viewing pattern of the users from the user requests. Hence, rapid degradation of

the perceived QoE is avoided.

3.2.3 Motivating Example

To show the benefits of the proposed approach let us consider the network setting

illustrated in Fig. 3.2, where there are two SBSs, SBS1 and SBS2, and five

users u1, u2, . . . , u5. The coverage area of SBSi, i ∈ {1, 2} is shown by a circle.

Each user demands only one video file from a content library consisting of two

360o videos v1 and v2 with v1 being more popular than v2. For the sake of

simplicity, we assume that the video files are of equal size. User requests for v1

Chapter 3 Page 33

Figure 3.2: Motivating example.

and v2 are depicted with blue and green color, respectively. We further assume

that each SBS has a cache with capacity Ci, i ∈ {1, 2} sufficient to store only

one of the 360o videos. A naïve caching policy is to cache the most popular

content at each SBS. According to this policy, both SBS1 and SBS2 would

cache video v1 and three users’ requests would be satisfied from content cached

in the SBSs. However, this caching policy is suboptimal, as it disregards SBSs

collaborative caching opportunities emerging since users may be associated with

more than one SBSs. Considering the above, the optimal caching policy would

be to cache video v1 at SBS1 and video v2 at SBS2. This would result in four

users requests being satisfied from content cached in the SBSs compared to three

when SBSs collaboration is overlooked. From this example, it is obvious that

collaborative caching helps to increase the number of the 360o videos that will

be delivered locally (from the SBSs) to the users and leads to improved overall

users satisfaction.

Differently from the previous network setting, let us now consider that the

cache capacity of each SBS is less than that needed to store an entire 360o

Chapter 3 Page 34

video. If each 360o video file is encoded in a single file, the SBSs will not cache

any video file, no user request will be satisfied from the SBSs and the video

files should be retrieved through backhaul links. However, when encoding of

360o video in tiles is enabled, then a number of the tiles may be cached at the

SBSs if they have a capacity sufficient to store a single tile. This would lead

to some user requests being partially satisfied and the load of the backhaul link

being decreased. Considering that users are interested in watching a viewport of

each 360o video, the encoding of the video in tiles would possibly allow caching

the most important tiles at the SBSs, which could potentially lead to smaller

delays and higher QoE. Following the same line of arguments, the advantages of

encoding 360o video in multiple layers can be shown. From the above, we can

conclude that the encoding of 360o video files in multiple layers and tiles allows

to make more fine-grained caching decisions.

From the above discussion, it is clear that by exploiting both the association

of some users with more than one SBSs and 360o video encoding into multiple

quality layers and tiles, the QoE perceived by the users would increase.

3.3 Problem formulation

In this chapter, we aim at finding the optimal joint caching and delivery policy

for tile-encoded 360o layered videos that maximizes the cumulative distortion

reduction experienced by the users. To determine the optimal policy we take

into account network formation, SBSs capabilities, channel characteristics, users

requests, video-specific limitations arising from the encoding of 360o video in

tiles and layers, and the requirement for smooth playback.

Let us introduce the binary variable ynuvglm ∈ {0, 1}, where ynuvglm = 1, if the

Chapter 3 Page 35

tile m ∈ M of the layer l ∈ L that belongs to GOP g ∈ G of the video v ∈ V

will be delivered directly from the SBS n ∈ N to the user u ∈ U , and ynuvglm = 0

otherwise. Similarly, let y(N+1)u
vglm ∈ {0, 1} be equal to 1 when a tile is fetched

from the backhaul through the MBS, and 0 otherwise. Therefore, the routing

decisions in our system can be described by the vector1:

y = (ynuvglm ∈ {0, 1} : n ∈ NB, u ∈ U , v ∈ V , g ∈ G, l ∈ L,m ∈M) (3.1)

We note that requests for tiles are unsplittable. This means that each tile request

is entirely satisfied either by only one SBS or it has to be fetched through the

backhaul.

Now, let us define the binary decision variable xnvglm ∈ {0, 1}, which takes the

value 1 when the tile m ∈ M of the layer l ∈ L that belongs to GOP g ∈ G of

the video v ∈ V is cached at the nth SBS, and 0 otherwise. Hence, the caching

decisions for the entire system are described by the vector:

x = (xnvglm ∈ {0, 1} : n ∈ N , v ∈ V , g ∈ G, l ∈ L,m ∈M) (3.2)

Recall that SBSs have limited cache capacity, i.e., only enough only to store

a number of tiles from the tile-encoded 360o layered videos. If ovglm denotes the

size of a tile (in Mbits), we have:

∑
v∈V

∑
g∈G

∑
l∈L

∑
m∈M

ovglmx
n
vglm ≤ Cn,∀n ∈ N (3.3)

where Cn the cache capacity (in Mbits) of the nth SBS. Eq. (3.3) is the cache
1Boldfaced letters correspond to vectors.

Chapter 3 Page 36

capacity constraint.

Another constraint of the optimization problem arises from the fact that in

order to deliver a tile requested by a user from the cache of an SBS, the tile has

to be stored in the cache and the user has to reside in the coverage area of the

SBS. Hence, it should hold that:

ynuvglm ≤ αnux
n
vglm,∀n ∈ N , u ∈ U , v ∈ V , g ∈ G, l ∈ L,m ∈M (3.4)

Recall that αnu is a binary variable that takes value 1 when user u resides in

the coverage area of the nth SBS, otherwise its value is 0.

The following constraint ensures that each tile will be received only once by

each client:

∑
n∈NB

ynuvglm ≤ 1,∀u ∈ U , v ∈ V , g ∈ G, l ∈ L,m ∈M (3.5)

In addition, we have to take into consideration limitations arising from the

encoding in multiple tiles and layers. Hence, in order to recover the video in the

lowest available quality, only the base layer should be delivered to the user. Dif-

ferently, in order to achieve the quality that corresponds to the lth enhancement

layer, the user should receive not only the lth enhancement layer, but also the

base layer and all the previous enhancement layers. Therefore, we have:

∑
n∈NB

ynuvg(l+1)m ≤
∑
n∈NB

ynuvglm,∀u ∈ U , v ∈ V , g ∈ G, l ∈ L,m ∈M (3.6)

The requirement for smooth playback introduces another constraint to our

system. The video packets should reach the user within a specific time constraint.

Chapter 3 Page 37

When this does not happen, buffer underrun occurs, where the buffer is fed

with data at a lower speed than the data is consumed. Let us denote by dnu

(sec/Mbit), the delay needed to transmit one Mbit from the nth SBS to the

uth user, and d(N+1)u (sec/Mbit) the corresponding delay to transmit one Mbit

from the backhaul. Obviously, d(N+1)u > dnu, n ∈ N due to the additional delay

needed to transmit the requested tiles from the backhaul to the SBSs. Therefore,

it should be:

∑
n∈NB

∑
g′∈{1,...,g}

∑
l∈L

∑
m∈M

ovg′ lmdnuαnuy
nu
vg′ lm

≤ tapp + (g − 1)tdisp,∀u ∈ U , v ∈ V , g ∈ G

(3.7)

where tapp and tdisp correspond to the playback delay and the time needed to

display a GOP, respectively. The idea of this constraint is that since each GOP

of a video is viewed sequentially, i.e., first GOP, second GOP, etc, future GOPs

have more time to be stored at the user’s buffer, without interrupting smooth

playback. For example, when a user starts watching a 360o video, the gth GOP

needs to be available to the user’s buffer before the previous g − 1 GOPs have

been displayed. This is captured from the term (g − 1) · tdisp of the right part

of (3.7). For the first GOP, the available time is tapp, which corresponds to the

start up delay a user may afford, e.g., 1-2 sec, to watch a 360o video. The left

part of (3.7) accounts the time needed for each tile of a GOP to be downloaded

either from a SBS (n ∈ N), or through the backhaul (n = N + 1). If the mth

tile of the lth layer of the gth GOP of the vth video is decided to be downloaded

to the uth user (ynuvglm = 1), the time needed to download this tile is added up on

the left part of (3.7), leaving less time available for the rest of the requested tiles

to be delivered on time. This is because the sum of the time needed to deliver

Chapter 3 Page 38

all of the requested tiles should be less or equal to the available time indicated

by the right part of (3.7). Furthermore, as the size of each tile, which is given

by the parameter ovglm, is different for each quality layer l ∈ L, the acquisition

of a tile at different quality layers affects the remaining time to download the

rest of the requested tiles differently. Similarly, as the delay parameter dnu,

which denotes the delay needed to download each tile, is larger when a tile is

downloaded through the backhaul, the available time to download the rest of the

requested tiles is also affected from where each tile is downloaded. Finally, the

parameter anu ensures that a tile will be downloaded to a user only from an SBS

the user resides (anu = 1).

When a user obtains a tile, the distortion observed by the user decreases. Let

us denote by δvglm, the average distortion reduction associated with tile m ∈M

of layer l ∈ L that belongs to GOP g ∈ G of the video v ∈ V . The expected

achievable cumulative distortion reduction ∆ across the user population is given

by:

∆ =
∑
u∈U

∑
v∈V

∑
g∈G

∑
l∈L

∑
m∈M

zuvglmδvglm (3.8)

where the variable zuvglm ∈ [0, 1] denotes the probability of user u to request

the lth layer of tile m that belongs to the gth GOP of the vth video file. This

probability can be computed based on the video and the viewport popularity

distributions.

The optimization objective is to maximize the normalized expected cumula-

tive distortion reduction over the client population. Denoting this quantity by

D, we have:

D =
1

∆

∑
n∈NB

∑
u∈U

∑
v∈V

∑
g∈G

∑
l∈L

∑
m∈M

zuvglmδvglmαnuy
nu
vglm (3.9)

Chapter 3 Page 39

By taking into consideration the above constraints, the problem of joint

caching and delivery of 360o videos can be formally expressed as:

P : max
x,y

D

s.t.: (3.1)− (3.7)

(3.10)

3.4 Distributed Algorithm

The optimization problem in Eq. (3.10) is NP-hard. This is because, as we will

show later, it can be decomposed into a number of subproblems, where each sub-

problem consists of two components that are NP-hard. The first component is

the caching component that can be translated to a set of 0-1 knapsack problems,

while the second component can be translated to the multidimensional multiple

choice knapsack problem. Both the 0-1 knapsack problem and the multidimen-

sional multiple choice knapsack problem are known to be NP-hard [106].

To solve the problem efficiently, we simplify the original problem by intro-

ducing a fairness constraint with respect to the cache space allocation and the

delivery delay per GOP. Specifically, in order to ensure fairness regarding the

cache, we limit the cache available for each GOP to bCn/Gc. Similarly, for the

delivery delay, we assume that the delay for delivering each GOP is tapp/G+tdisp.

This allows us to decompose the original problem in (3.10) into G subproblems

P1, . . . Pg, . . . ,PG, where:

Pg : max
xg ,yg

Dg (3.11)

s.t.:

Chapter 3 Page 40

yg = (ynuvglm ∈ {0, 1} : n ∈ NB, u ∈ U , v ∈ V , l ∈ L,m ∈M) (3.12)

xg = (xnvglm ∈ {0, 1} : n ∈ N , v ∈ V , g ∈ G, l ∈ L,m ∈M) (3.13)∑
v∈V

∑
l∈L

∑
m∈M

ovglmx
n
vglm ≤ Cn(g),∀n ∈ N (3.14)

∑
n∈NB

∑
l∈L

∑
m∈M

ovglmdnuαnuy
nu
vglm ≤ t(g),∀u ∈ U , v ∈ V (3.15)

ynuvglm ≤ αnux
n
vglm, ∀n ∈ N , u ∈ U , v ∈ V , l ∈ L,m ∈M (3.16)∑

n∈NB

ynuvglm ≤ 1,∀u ∈ U , v ∈ V , l ∈ L,m ∈M (3.17)

∑
n∈NB

ynuvg(l+1)m ≤
∑
n∈NB

ynuvglm,∀u ∈ U , v ∈ V , l ∈ L,m ∈M (3.18)

where

Dg =
1

∆

∑
n∈NB

∑
u∈U

∑
v∈V

∑
l∈L

∑
m∈M

zuvglmδvglmαnuy
nu
vglm (3.19)

In the above subproblem, xg and yg correspond to the cache and routing

variables for the gth GOP. Eq. (3.14) is the cache constraint of the subproblem

Pg. Cn(g) stands for the cache space available for the gth GOP of SBS n and is

defined as:

Cn(g) = bCn/G+ Crem
n (g − 1)c, (3.20)

where Crem
n (g − 1) ≥ 0 corresponds to the amount of cache that has not been

filled in with content after solving subproblem Pg−1. Similarly, Eq (3.15) is the

delay constraint for the subproblem Pg, where t(g) represents the delivery delay

of the gth GOP and is calculated as:

t(g) = tapp/G+ tdisp + trem(g − 1) (3.21)

Chapter 3 Page 41

Algorithm 3.1 Problem decomposition
1: Decompose P into P1, . . . ,Pg, . . . ,PG according to Eq. (3.11)
2: Set GOP index g ← 1

3: Set cache Cn(1)← bCn/Gc, ∀n ∈ N
4: Set delay t(1)← tapp/G+ tdisp

5: while g ≤ G do
6: Determine optimal delivery and cache policy xg,yg for gth GOP by solving

Pg
7: Compute ∀n ∈ N

Crem
n (g)← Cn(g)−

∑
v∈V

∑
l∈L

∑
m∈M

ovglmx
n
vglm

8: Compute
trem(g)← t(g)−

∑
n∈NB

∑
l∈L

∑
m∈M

ovglmdnuαnuy
nu
vglm

9: Update cache Cn(g + 1)← bCn/G+ Crem
n (g)c

10: Update delay t(g + 1) = tapp/G+ tdisp + trem(g)

11: g ← g + 1

12: end while
13: x =

⋃
g∈G xg

14: y =
⋃
g∈G yg

with trem(g − 1) ≥ 0 being the time remaining from the delivery of the previous

GOP. To obtain the global policy for routing and caching, i.e., x and y, we

solve each subproblem sequentially starting from the first GOP. After solving the

subproblems for all GOPs, we combine the optimal routing and caching solutions

xg and yg to obtain the global routing and caching policy. This procedure is

summarized in Algorithm 3.1.

We would like to note that the above approach of solving each subproblem

Pg for each GOP sequentially is one of the possible ways to solve our problem

of offline caching for 360o videos. The employment of more advanced policies,

could further improve the performance of the proposed system. However, more

advanced policies would be more complicated, without affecting the conclusions

Chapter 3 Page 42

regarding how the use of advanced coding tools, i.e., encoding into multiple layers

and tiles, is beneficial for edge caching systems of 360o video.

To solve each subproblem Pg, we use the method of Lagrange partial relax-

ation. Specifically, we relax the constraint (3.16), which is the “hard” constraint

of the problem as it couples the caching and routing variables. As a result of

relaxing this constraint, the Lagrangian subproblem consists of two optimization

problems that can be solved independently: one that involves only the cache re-

lated variables of the original problem and another that involves only the delivery

variables of the problem.

Specifically, let us define the set of Lagrange multipliers for every g ∈ G as

follows:

λg = (λnuvglm ≥ 0,∀n ∈ N , u ∈ U , v ∈ V , l ∈ L,m ∈M) (3.22)

By relaxing the constraint in (3.16) we obtain the Lagrangian function:

L(λg,xg,yg) =

max
xg ,yg

∑
n∈N

∑
u∈U

∑
v∈V

∑
l∈L

∑
m∈M

(
1

∆
zuvglmδvglmαnu − λnuvglm)ynuvglm

+
∑
u∈U

∑
v∈V

∑
l∈L

∑
m∈M

1

∆
zuvglmδvglmy

(N+1)u
vglm

+
∑
n∈N

∑
u∈U

∑
v∈V

∑
l∈L

∑
m∈M

λnuvglmαnux
n
vglm

(3.23)

Thus, the Lagrangian dual problem can be expressed as:

min
λg≥0

L(λg,xg,yg) (3.24)

Chapter 3 Page 43

where xg,yg satisfy (3.12)-(3.15), (3.17), (3.18). We can easily observe that the

Lagrange function can be re-expressed as follows:

L(λg,xg,yg) = f(xg) + k(yg) (3.25)

where f(xg) and k(yg) correspond to two independent optimization sub-subproblems

P1g and P2g, respectively. These sub-subproblems are defined as:

P1g : max
xg

∑
n∈N

∑
u∈U

∑
v∈V

∑
l∈L

∑
m∈M

λnuvglmαnux
n
vglm (3.26)

s.t.:∑
v∈V

∑
l∈L

∑
m∈M

ovglmx
n
vglm ≤ Cn(g),∀n ∈ N

xg = (xnvglm ∈ {0, 1} : n ∈ N , v ∈ V , l ∈ L,m ∈M)

and

P2g : max
yg

∑
n∈N

∑
u∈U

∑
v∈V

∑
l∈L

∑
m∈M

(
1

∆
zuvglmδvglmαnu

− λnuvglm)ynuvglm +
∑
u∈U

∑
v∈V

∑
l∈L

∑
m∈M

1

∆
zuvglmδvglmy

(N+1)u
vglm (3.27)

s.t.:∑
n∈NB

ynuvglm ≤ 1,∀u ∈ U , v ∈ V , l ∈ L,m ∈M

∑
n∈NB

ynuvg(l+1)m ≤
∑
n∈NB

ynuvglm,∀u ∈ U , v ∈ V , l ∈ L,m ∈M

∑
n∈NB

∑
l∈L

∑
m∈M

ovglmdnuαnuy
nu
vglm ≤ t(g),∀u ∈ U , v ∈ V

yg = (ynuvglm ∈ {0, 1} : n ∈ NB, u ∈ U , v ∈ V , l ∈ L,m ∈M)

Chapter 3 Page 44

Since P1g involves only the caching variables xg, we refer to it as the caching

component. In order to determine the optimal cache allocation xg for P1g, the

problem is further decomposed into N 0 − 1 knapsack problems, which can be

solved independently using optimization methods such as Dynamic Programming

[106]. In this case, we maximize the objective function of P1g, considering that

the cache space of each SBS is a knapsack.

The optimization subproblem P2g involves only the routing decision variables

yg, hence it is called hereafter as the routing component. The subproblem P2g

can be mapped to a multidimensional multiple choice knapsack problem. To find

the optimal solution for the routing component we use CPLEX [107].

To solve the Lagrangian dual problem in (3.24), we apply the sub-gradient

method to update the dual variables iteratively. Specifically, we start with non-

negative values for the Lagrangian multiplier variables, and then based on the

solution of the P1g and P2g, in each iteration τ the dual variables are updated

as follows:

λnuvglm(τ + 1) = [λnuvglm(τ)− σ(τ)d(λnuvglm(τ))]+ (3.28)

In (3.28), [s]+ = max(0, s) is an operator that ensures that the dual variables

cannot take negative values, and σ(τ) expresses the step size which controls

the convergence properties of the sub-gradient algorithm at each iteration. In

addition, d(λnuvglm(τ)) expresses the sub-gradient of the dual problem with respect

to λnuvglm(τ) and is given by:

d(λnuvglm(τ)) = −ynuvglm(τ) + zuvglmδvglmαnux
n
vglm(τ) (3.29)

If we denote by LB the Lower Bound of the subproblem Pg, UB the value of

the Lagrange function at iteration τ , and φ(τ) = d(λ(τ)) the subgradient, the

Chapter 3 Page 45

Algorithm 3.2 Primal-Dual Algorithm
1: Require: τ = 1, τmax = 1000, λg(1) = 0.2, UB = +∞, LB = −∞,
w ∈ (0, 2], ε = 0.01

2: while
∣∣UB−LB

LB

∣∣ ≥ ε and τ ≤ τmax do
3: Determine xg(τ) by solving P1g

4: Determine yg(τ) by solving P2g

5: UB = L(λg,xg,yg) and σ(τ) = wUB−LB
‖φ(τ)‖2

6: Update Lower Bound (LB)
7: Update the dual variables λg(τ + 1) using (3.28)
8: Update τ = τ + 1

9: end while

step size can be easily calculated using the formula below:

σ(τ) = w
UB − LB∥∥φ(τ)

∥∥2 (3.30)

In the above equation, w ∈ (0, 2] is a positive constant that scales the step

size. The value of the Upper Bound is the value of the Lagrange function at each

iteration, while the Lower Bound equals to the value of the objective function

of the subproblem Pg, by finding a feasible solution to it. The overall algorithm

is summarized in Algorithm 3.2, where the variable ε defines the maximum ac-

ceptable distance between the UB and the LB.

3.5 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithm exploiting

cache collaboration and coding in multiple layers and tiles. First, we briefly

describe all the schemes under comparison and give the simulation setup. Next,

we provide experimental results that showcase the impact of the various system

Chapter 3 Page 46

parameters on the performance of the proposed scheme. Finally, we discuss the

convergence of the proposed algorithm.

3.5.1 Simulation Setup

The schemes under comparison, including our proposed method, are described

below:

1. Independent Caching-No Tiles (ICNT): In this scheme, each video is en-

coded into a number of versions, where each version is encoded in a single

tile and represents the whole scene in low quality along with a viewport in

high quality. We assume that each user is associated only with one SBS,

which has the maximum signal-to-interference-plus-noise ratio (SINR). The

caching and delivery policy is found by solving (3.10) for each SBS sepa-

rately. In this case, the caching and delivery variables are per video per

GOP.

2. Joint Caching-No Tiles (JCNT): In this scheme, each video is encoded

into a number of versions, where each version is encoded in a single tile

and represents the whole scene in low quality along with a viewport in high

quality. Differently from ICNT, JCNT is a collaborative caching scheme

that exploits the possible association of some users to more than one SBSs.

The caching and routing decisions are jointly made using Algorithm 3.2.

As previously, the caching and routing variables are per video per GOP as

we do not use coding into multiple layers and tiles.

3. Joint Caching-Multiple Layers (JCL): In this scheme, each video is encoded

in multiple quality layers and a single tile. In JCL, the base layer represents

Chapter 3 Page 47

the whole scene in low quality, while the enhancement layers improve the

quality of the part of the scene that corresponds to the viewport. The

caching and routing policy is determined by solving Algorithm 3.2 on a

per quality-layer basis. In this scheme, the caching and routing variables

are per video per layer per GOP.

4. Independent Caching (IC): In this scheme, each video is encoded in mul-

tiple quality layers and tiles. Similarly to ICNT we assume that each user

is associated with only one SBS, i.e., the one with the maximum SINR.

This scheme exploits the granularity of encoding the video into multiple

tiles and quality layers. The caching and delivery policy is found by solv-

ing (3.10) for each SBS separately. In this case, the caching and delivery

variables are per tile and per layer per GOP.

5. Proposed Algorithm: This is the proposed scheme where videos are encoded

in multiple quality layers and tiles. This scheme is similar to IC in that it

takes advantage of the granularity of encoding the video into multiple tiles

and quality layers. It further advances IC by exploiting collaboration op-

portunities among SBSs. In this scheme, the caching and routing decisions

are jointly made on per tile and per layer basis using Algorithm 3.2.

The constant ε which controls the convergence is set to 0.01. This ensures

that UB and LB are close enough and the number of iterations required for the

convergence of the algorithm is reasonable. The value of the weight w is set to

0.02, which was found by experimentation.

We assume for all conducted experiments a cellular network with 5 SBSs

unless otherwise stated. The transmission radius of each SBS is set to pn =

300m, while each SBS has cache capacity sufficient to store 10% of the size of

Chapter 3 Page 48

the content library. The coverage radius of the MBS is set to pN+1 = 1000m,

which is large enough to allow communication between the MBS and all SBSs.

We consider 30 users, who are randomly placed in the coverage area of the

SBSs. The transmission delay from a SBS to a user is set to dnu = 1 sec/Mbit

∀n ∈ N ,∀u ∈ U , while the transmission delay when the content has to be fetched

from the backhaul to the user is d(N+1)u = 5 sec/Mbit ∀u ∈ U .

The content library contains V = 10 videos with resolution 1280 × 720. In

our scheme the videos are encoded intoM = 12 tiles per frame and L = 2 quality

layers per tile. We assume that the size of each viewport is 2×2 tiles. Each video

consists of G = 30 GOPs with duration of 1 sec per GOP. The playback delay tapp

for each video is 1sec, and the display time of a GOP tdisp is 1 sec. The videos are

encoded using the scalable extension (SHVC) [104] of H.265/HEVC [4] standard,

which allows encoding in tiles and layers. Although the results we obtain are for

video sequences encoded by SHVC, the derived conclusions are valid for videos

encoded in tiles and layers by other codecs as well. Finally, we would like to

note that we consider equirectangular projection, but our method is transparent

to the employed projection, and hence is applicable when other projections such

as cube or pyramid, etc. are used.

For the sake of simplicity, we assume that 40% of the videos in the content

library have similar characteristics with the “Hog Rider” video sequence, 30%

with the “Roller Coaster” video sequence, while the remaining 30% with the

“Chariot Race” video sequence. These videos were obtained from YouTube. The

average size and the distortion reduction per tile for both base and enhancement

layers are given in Table 3.1.

The probability that a specific video is requested by a user follows the Zipfian

distribution [108] with shape parameter ηv = 1. Hence, the probability that a

Chapter 3 Page 49

Table 3.1: Distortion reduction per tile and layer for the considered video se-
quences

Video ovg1t ovg2t δvg1t δvg2t
(in Mbits) (in Mbits)

“Hog Rider” 0.010 0.125 118 125
“Roller Coaster” 0.016 0.167 292 298
“Chariot Race” 0.029 0.275 187 192

Figure 3.3: Illustration of viewports considered for the evaluation. Numbers
indicate tiles indices, while highlighted areas denote the viewports.

user requests the video v ∈ V is calculated as:

pv =
1/vηv∑
v∈V 1/v

ηv
(3.31)

To study the effect of non-uniform popularity of tiles we consider that only

the six viewports depicted in Fig. 3.3 can be requested with non-zero probability

by the users for each 360o video. Assuming that the requests for these viewports

are uniform, results in central tiles (which belong to multiple viewports) having

higher popularity. We would like to emphasize that the set of viewports presented

in Fig. 3.3 is not complete; under equirectangular projection there are other

available viewports that we do not consider here for the sake of obtaining the

desirable distribution over the tiles and deriving interpretable results. This,

however, does not change the conclusions drawn in this section.

As JCL, ICNT and JCNT schemes do not exploit encoding of 360o video

Chapter 3 Page 50

into tiles and/or layers, these schemes would be heavily penalized if a viewport

was not cached in the SBSs caches as data chunks of large size would not be

delivered on time through the backhaul. Thus, for the sake of fairness, we allow

soft satisfaction of users’ demands [109] for these two schemes. Specifically, when

a viewport of a video requested by a user is not cached at an SBS, but another

overlapping viewport of this video is cached, we assume that the cached viewport

is delivered to the user. This way tiles that correspond to the overlap area of the

requested and the delivered viewport are recovered at the highest quality, while

the rest are recovered at the base quality. For example, if the requested and

delivered viewports are viewports 1 and 2 in Fig. 3.3, respectively, tiles 2 and 6

will be recovered in high quality. In such a case, if the video was encoded in two

quality layers, the soft cache hit ratio is computed by the following formula

SoftCHR =
ndbt + ndet
nrbt + nrer

(3.32)

where the numerator corresponds to the number of tiles delivered to the user and

the denominator to the number of requested tiles. Specifically, ndbt (ndet) and

nrbt (nret) are the number of delivered tiles at base (enhancement) quality and

requested number of tiles at base (enhancement) quality, respectively. For the

example above, the numerical values are ndbt = nrbt = 12, ndet = 2, and nder = 4

and hence, the soft cache hit ratio is 0.875. We would like to note that soft

satisfaction improves only the cache hit ratios of non-tiles based schemes (ICNT,

JCNT, JCL). These schemes suffer from low cache hit ratio when the requested

data cannot be delivered in time due to the use of larger chunks of data. In such

case, the user can often obtain part of the required viewport through the delivery

of another overlapping viewport. Through soft satisfaction cache hit ratio, we

Chapter 3 Page 51

aim at capturing the improved interactivity a user experiences when instead of

a required viewport, another viewport is delivered to the user. This happens as

the user can navigate in part of the requested viewport but at degraded quality.

Soft satisfaction assumes that tiles from base and enhancement layers are of equal

importance and, hence, it is not a fully optimized QoE metric. The consideration

of different weights for the importance of base and enhancement layers could lead

to a more accurate QoE metric that better captures the tradeoff between quality

and interactivity, but this is out of the scope of this thesis.

3.5.2 Parameter Analysis

1) Cache Size

We first study the impact of the cache size of SBSs on the achieved distortion

reduction D as computed in (3.9). We vary the cache capacity Cn in the range

[5,25]% of the size of the content library and measure the distortion reduction as

the percentage of the maximum achievable cumulative distortion reduction. The

performance of the schemes under comparison is shown in Fig. 3.4. From the

results, we can see that the proposed scheme outperforms all the other schemes,

for the entire range of SBSs’ cache sizes. Specifically, we can observe that when

SBSs can cache 5% of the content library, which is common for networks han-

dled by mobile network operators, the performance gap between the proposed

algorithm and JCNT and ICNT, which do not assume encoding into multiple

layers and tiles, is ∼ 30% and ∼ 55%, respectively. This gap is due to the fact

that the proposed algorithm takes advantage of the increased granularity in the

caching and routing decisions offered by encoding the video in multiple tiles and

layers, i.e., smaller chunks of data. This permits our algorithm to cache the most

Chapter 3 Page 52

5 10 15 20 25

Cache Size (%)

10

20

30

40

50

60

70

80

90

100

D
is

to
rt

io
n

 R
e

d
u

c
ti
o

n
(%

)

Proposed

IC

JCL

JCNT

ICNT

Figure 3.4: Distortion reduction with respect to the cache size for all schemes
under comparison.

popular and significant chunks of data locally in the SBSs, while preserving high

data diversity across the SBSs thanks to collaboration among SBSs.

Similar trends but smaller gains, ∼ 15%, can be observed when we compare

the proposed algorithm with JCL, which assumes encoding into quality layers

and a single tile. The observed gains are because the proposed algorithm benefits

from the encoding in tiles, unlike JCL which only considers layers. Specifically,

in the proposed scheme the cached tiles are obtained locally from the SBS, while

the rest of the tiles are delivered from the backhaul within the delivery dead-

lines. This is often not possible when JCL is used, as the delay constraint may

not allow timely delivery of the larger data chunks that correspond to quality

layers. Finally, to understand the gains arising from collaborative caching we

compare the proposed scheme with IC. We note that the proposed algorithm

still outperforms the IC scheme despite the fact that the latter uses tile and lay-

ered encoding. This performance difference is attributed to the exploitation of

Chapter 3 Page 53

the collaborative caching opportunities among SBSs which leads to gains when

users reside in the overlap area between the coverage area of multiple SBSs. As

we will show later in this section, the gains grow when the coverage area of the

SBSs increases, i.e. more users are in the overlap area of several SBSs.

As we can further observe from Fig. 3.4 when SBSs’ cache capacity in-

creases, the performance gap between the proposed algorithm and the compari-

son schemes becomes smaller in most of the cases. Specifically, when each SBS

can cache 25% of the content catalogue, the proposed algorithm outperforms

JCNT and ICNT by ∼ 15% and ∼ 30%, respectively. The performance gap

is smaller for such cache sizes because larger cache capacity permits ICNT and

JCNT to cache more videos in SBSs and less requests need to be served through

the backhaul links, enabling the timely delivery of more data. The performance

gap between the proposed algorithm and the JCL is ∼ 10%. JCL cannot close

the gap further, as the data chunks corresponding to the layers are of larger size.

When we compare the proposed scheme with IC we note that the performance

gap stays constant because both schemes take advantage of the additional cache

size, but the proposed scheme in addition exploits collaboration opportunities

among SBSs. However, it is expected that both schemes will perform identically

if the cache size is further increased, as most of the data will be cached locally

and the backhaul link will not be used. These results are not presented as they

are of no practical interest.

The above discussion regarding the benefits of making joint routing and

caching decisions on per layer and tile basis are verified by Fig. 3.5, which

depicts the achieved cache hit ratio for various cache sizes for all the schemes

under comparison. From this figure, we can note that for all cache sizes the

proposed scheme achieves higher cache hit ratio. This means that the majority

Chapter 3 Page 54

5 10 15

Cache Size (%)

0

10

20

30

40

50

60

70

80

90

100

C
a

c
h

e
 H

it
 R

a
ti
o

 (
%

)
Proposed

IC

JCL

JCNT

ICNT

Figure 3.5: Cache hit ratio with respect to the cache size for all schemes under
comparison.

of requests are served locally from the SBSs caches without the need to use the

backhaul links. On the contrary, the low cache hit ratio in the ICNT and JCNT

schemes indicates that user requests are not served locally and content is fetched

from the remote servers, which due to the increased delivery delay and chunk

size (compared to tile size in our scheme) may not be always delivered within the

time constraints. This, in turn, results in a small distortion reduction. When

we compare the proposed scheme with JCL and IC we can observe that for 10%

cache size, it outperforms these schemes by ∼ 20% and ∼ 14%, respectively. The

performance difference is significant, however it is smaller than that between the

proposed scheme and ICNT and JCNT. This is because JCL and IC encode the

data in smaller chunks than ICNT and JCNT, i.e., JCL considers encoding in

layers and IC encoding in layers and tiles. The gains of the proposed scheme

over IC are due to the exploitation of collaborative caching opportunities.

Chapter 3 Page 55

200 250 300

SBS Radius (m)

0

10

20

30

40

50

60

70

80

90

100

D
is

to
rt

io
n

 R
e

d
u

c
ti
o

n
 (

%
)

Proposed

IC

JCL

JCNT

ICNT

Figure 3.6: Distortion reduction with respect to the radius of the SBSs for all
schemes under comparison.

2) SBS radius

To investigate the impact of the SBSs collaboration, we change the transmission

radius (coverage area) of the SBSs on the distortion reduction from 200m up

to 300m. The results are depicted in Fig. 3.6 from where we can note that an

increase in the SBS radius affects the performance of the schemes performing

collaborative caching, i.e., the proposed algorithm, JCL and the JCNT scheme,

while the performance of non-collaborative caching schemes, i.e., ICNT and IC,

stays invariant. This can be explained by the fact that for the collaborative

caching schemes a higher overlap in the coverage area of the SBSs results in

more users being in the overlap area of multiple SBSs. On the contrary, for

the non-collaborative caching schemes an increase in the coverage area is not

translated into performance gains because each user is associated with a single

SBS, that with the maximum SINR. From the results, we can further see that

the proposed scheme in all cases outperforms all other schemes. Additionally, the

Chapter 3 Page 56

performance gap between the proposed scheme and IC grows from∼ 2% to∼ 6%,

which makes clear the significance of exploiting SBSs collaboration opportunities.

The scheme that profits the most from the increase in SBS transmission radius

is JCNT, which considers the largest chunks of data (entire videos). For this

scheme, cache collaboration partially compensates for the size of the data chunks.

3) SBS communication link delay

In Fig. 3.7, we illustrate the effect of the delay of the communication link

between the users and the SBSs on the distortion reduction D. In particular,

we assume that the value of the SBS delay dnu varies in the range [0.5, 2.5]

sec/Mbit, while the backhaul delay remains constant at 5 sec/Mbit. We can

observe that an increase in the SBS delay (i.e., the communication link becomes

slower) results in a decrease in distortion reduction D for all the schemes. We

can note that the performance of the proposed algorithm is only slightly affected

by the increase in the SBS delay (∼ 5%). Further, we can see that IC behaves

similarly to the proposed algorithm. This behavior can be explained by the

fact that both schemes exploit tile encoding; the superior performance of the

proposed scheme is due to the exploitation of the collaboration opportunities

between SBSs. We can see that JCNT and ICNT are more affected by the

higher SBS communication link delays. As a result, the performance difference

between the proposed algorithm and ICNT and JCNT grows from ∼ 48% to

∼ 50% and from ∼ 18% to ∼ 38%, respectively, as the link delay increases from

0.5 to 2.5 sec/Mbit. This happens as ICNT and JCNT schemes do not employ

encoding into tiles and layers. Hence, they are affected the most by the increase

in the SBSs link delay, since this prevents the timely delivery of large data

chunks, resulting in a significant decrease in the achieved distortion reduction.

Chapter 3 Page 57

0.5 1 1.5 2 2.5

SBS Delay (sec/Mbit)

0

10

20

30

40

50

60

70

80

90

100

D
is

to
rt

io
n

 R
e

d
u

c
ti
o

n
(%

)

Proposed

IC

JCL

JCNT

ICNT

Figure 3.7: Distortion reduction with respect to the SBS Delay for all schemes
under comparison.

JCL, which considers encoding in layers, performs better than ICNT and JCNT

because the employed data chunks are of smaller size, which means that they

are affected less from an increase in the SBSs communication link delay. From

this comparison, it is evident that caching of smaller chunks of data is beneficial,

and that collaborative caching and delivery decisions can bring additional gains.

4) Backhaul link delay

In Fig. 3.8, we compare the performance of all the schemes with respect to the

backhaul delay. Specifically, we consider that the backhaul delay d(N+1)u takes

values in the range [5, 15] sec/Mbit. From the results, we can conclude that an

increase in the backhaul link delay results in users experiencing a lower distortion

reduction. This happens because an increase in the backhaul delay results in less

data being delivered through the backhaul link within the time constraint. The

increase in the backhaul delay has a more significant impact on the JCNT and

Chapter 3 Page 58

5 7.5 10 12.5 15

Backhaul Delay (sec/Mbit)

10

20

30

40

50

60

70

80

90

100

D
is

to
rt

io
n

 R
e

d
u

c
ti
o

n
(%

)

Proposed

IC

JCL

JCNT

ICNT

Figure 3.8: Distortion reduction with respect to the Backhaul Delay for all
schemes under comparison.

ICNT, while there is a gentle decrease for all other schemes. In particular, the

difference in the distortion reduction between the proposed method and JCL

stays above 12%, while the difference between the proposed method and the IC

varies from ∼ 6% to ∼ 9%. This is because of JCL encoding into layers, and

the proposed scheme and IC encoding in both tiles and layers. By increasing

the backhaul delay, the proposed scheme and IC are not affected significantly

as the tiles (layers for JCL) of the requested videos are stored and delivered by

the SBSs. Also, due to the smaller size of the tiles (layers for JCL) compared

to videos, more tiles can be delivered in time to the users through the backhaul

even when the backhaul delay increases. ICNT and JCNT are affected more by

this delay increment, and the performance gap grows from ∼ 48% and ∼ 18%

to ∼ 56% and ∼ 20%, respectively.

Chapter 3 Page 59

0.5 1 1.5 2 2.5

Zipf Shape parameter
v

0

10

20

30

40

50

60

70

80

90

100

D
is

to
rt

io
n

 R
e

d
u

c
ti
o

n
(%

)

Proposed

IC

JCL

JCNT

ICNT

Figure 3.9: Distortion reduction with respect to Zipf shape parameter for all
schemes under comparison.

5) Video popularity distribution

In Fig. 3.9, we examine the effect of the skewness parameter of the Zipfian distri-

bution on the distortion reduction. To this end, we vary the shape parameter ηv

from 0.5 up to 2.5. For small values of ηv, i.e., very diverse content demands, the

difference between the proposed scheme and ICNT and JCNT is approximately

54% and 25%, respectively. This difference is due to the encoding in tiles which

permits to cache the base layer tiles locally and hence satisfy most of the users’

requests with a basic video quality. This is not the case in ICNT and JCNT, as

without encoding in tiles and layers, the local caches are occupied by large data

chunks which can satisfy only a small percentage of the diverse users’ requests.

Similarly to the previous comparisons, we can see that the performance difference

between the proposed algorithm and JCL and IC is smaller than that with ICNT

and JCNT, because the former schemes consider data chunks of smaller size, lay-

ers for JCL and tiles for IC. The proposed scheme outperforms IC because of the

Chapter 3 Page 60

exploitation of cache collaboration opportunities. The performance gap closes

when the value of ηv becomes higher, as the majority of the user requests refer

to a smaller number of videos. Higher values of ηv are more beneficial for ICNT

and JCNT, as these schemes do not encode videos in tiles and layers, but even

for such ηv values, ICNT and JCNT schemes performance remains inferior to

that of the other schemes.

6) Viewports popularity distribution

We also study the effect of viewports popularity on the performance of the consid-

ered schemes. To this aim, we examine three viewport popularity distributions:

(a) the viewport popularity distribution described in Section 3.5.1, which we

term hereafter as “BiGauss”, as according to this distribution the central tiles

are more popular than the rest; (b) a uniform distribution where we consider all

possible viewports (allowing viewports to fold around) with uniform popularity

which results in uniform popularity of tiles; and (c) a selective viewport distribu-

tion where for each video all users request the same viewport of this video. We

compare the performance of the proposed scheme and the JCNT scheme. The

results are presented in Fig. 3.10. As expected the more concentrated are users’

requests in fewer tiles, the higher is the distortion reduction for both schemes.

Further, we can see that the proposed scheme outperforms significantly JCNT,

as caching and delivery decisions are made per tile, and tiles are of small size

which means they can be delivered to the users within the delivery deadlines.

The performance gains become smaller when the cache size increases. This is

attributed to the fact that when the cache space increases, JCNT can cache

more than one viewports of popular videos assuming BiGauss or uniform distri-

bution, and more videos for selective distribution. For the proposed scheme the

Chapter 3 Page 61

5 10 15 20 25

Cache Size (%)

20

30

40

50

60

70

80

90

100

D
is

to
rt

io
n

 R
e

d
u

c
ti
o

n
 (

%
)

Proposed Alg (Selective)

Proposed Alg (BiGauss)

Proposed Alg (Uniform)

JCNT (Selective)

JCNT (BiGauss)

JCNT (Uniform)

Figure 3.10: Distortion reduction with respect to the cache size for the proposed
scheme and JCNT considering three viewport popularity distributions.

distortion reduction improvements are smaller, as already for small cache sizes

our scheme is able to achieve distortion reductions that exceeds 75%. In the

proposed scheme even when cache resources are scarce, thanks to tile and layer

granularity, the most popular tiles are cached locally at the SBS and the rest

can be delivered through the MBS.

3.5.3 Convergence

For the sake of completeness, we examine the convergence of the proposed algo-

rithm. Recall that each subproblem Pg involves routing and caching decisions of

gth GOP and is obtained by solving iteratively Algorithm 2. The convergence for

subproblem P1, i.e., for the first GOP, is depicted in Fig. 3.11. Similar conver-

gence behavior is noticed for all GOPs, but is omitted here for brevity reasons.

From Fig. 3.11, we can see that the proposed algorithm requires only a few hun-

dreds iterations to converge. This is in accordance with the work in [110], where

Chapter 3 Page 62

0 100 200 300 400 500

Iteration

60

65

70

75

80

85

90

95

100

D
is

to
rt

io
n
 R

e
d
u
c
ti
o
n

 (
%

)
Upper Bound

Lower Bound

Figure 3.11: Convergence of the proposed algorithm.

it was shown that the Lagrange partial relaxation method provides an upper

bound when applied to Pg, which is guaranteed to converge to the optimal value

of the Pg in a finite number of iterations. We would like to note that P1 and

P2 problems were solved in approximately the same amount of time. Although

P1 is NP-hard, as it composed of multiple 0-1 Knapsack problems, it is possible

to solve it in pseudo-polynomial time. Specifically, as the capacity of each SBS

(knapsack) is Cn, and the maximum number of available items are M tiles of L

quality layers of V videos, the theoretical run-time to obtain the caching deci-

sions of one SBS, following a dynamic programming approach, is Θ(CnV LM).

Since the number of GOPs, which captures the length of the 360o videos, affects

directly the number of decision variables, the run-time to solve our problem in-

creases linearly with the number of GOPs. The run-time to solve our problem

can be reduced by solving each one of the subproblems P1 and P2 in parallel.

Finally, since our scheme is an offline caching scheme, the caching decisions are

proactively decided in off-peak hours, e.g., late hours at night, which allows our

Chapter 3 Page 63

scheme to be used for the caching of 360o videos without the run-time of our

problem being prohibiting.

3.6 Conclusion

In this chapter, we studied the problem of the joint caching and delivery of 360o

videos in cellular networks comprising an MBS and multiple SBSs that can col-

laborate. To maximize the quality of the video delivered to the end users, we

exploited advanced video coding tools offered by video coding standards such

as HEVC that permits encoding of video in multiple tiles and layers offering

greater granularity of information. We also exploited SBSs collaboration oppor-

tunities to prevent neighboring SBSs from caching the same video data, which

is an efficient technique to reduce the load of the backhaul link. The proposed

algorithm decided the routing and caching policies by taking into consideration

not only the content importance, but also video popularity at tile level. As the

original problem is of high complexity, we decomposed it into a number of sub-

problems, one per each GOP, which were then solved sequentially. To further

reduce the complexity of the proposed algorithm, we decoupled the subproblems

into their routing and caching components and solved them using the Lagrange

decomposition method. The experimental evaluation showed that collaborative

caching and video encoding into tiles and quality layers allows to cache the most

important data locally in the SBSs and deliver it in a timely manner to the users.

Consequently, our method outperformed significantly its counterparts that did

not use collaboration and/or encoding into multiple tiles and quality layers.

4
Viewport-Aware Deep

Reinforcement Learning Approach

for 360o Video Caching

4.1 Introduction

In the previous chapter, we showed that caching 360o videos at the edge servers

on per quality layer and tile basis, instead of entire 360o videos, leads to a better

cache hit ratio, and improves the overall quality of the delivered video to the

users. It was considered that the content popularity distribution is known at

the SBSs in advance, hence our system was an offline caching system. How-

Chapter 4 Page 65

ever, the content popularity distribution may change dynamically, and is not

always known a priori. Motivated by the above, in this chapter we propose a

reactive caching scheme that does not assume that the videos and viewports’

popularity are known. To this end, we formulate the online content cache place-

ment/eviction of 360o videos as a Markov Decision Process (MDP). To reduce

the dimensionality of the cache optimization problem, we introduce the concept

of virtual viewports. Virtual viewports have the same number of tiles with origi-

nal viewports, while the tiles forming these viewports are the most popular ones

(see Fig. 1.5). The online content cache placement/eviction problem is solved

using the Deep Q-Network (DQN) algorithm, which can be efficiently used for

large state and action spaces. We extensively evaluate the performance of the

proposed system and compare it with that of known systems, i.e., LFU, LRU,

and FIFO, over both synthetic and real 360o video traces. The results reveal

the large benefits coming from online caching of virtual viewports instead of the

original ones in terms of the overall quality of the rendered viewports, the cache

hit ratio and the backhaul usage.

The rest of the chapter is organized as follows. In Section 4.2, we describe

our system setup. Next, in Section 4.3 we introduce the considered model of the

users’ requests. Then, we first formulate our problem as an MDP in Section 4.4,

and right after in Section 4.5, we show how DQN can be used to solve the cache

placement problem for 360o videos. In Section 4.6, we thoroughly evaluate the

performance of the proposed scheme and compare it with other methods in the

literature. Finally, we draw conclusions in Section 4.7.

Chapter 4 Page 66

4.2 System Setup

In this section, we first introduce the network architecture, and the video li-

brary. Finally, we present the employed viewport prediction algorithm, and the

considered end-to-end delay of the network.

1) Wireless cellular network

In this chapter, we consider a heterogeneous cellular network (HCN), like the one

depicted in Fig. 4.1. Similarly to Chapter 3, this network consists of N SBSs

with a cache capacity Cn ≥ 0, ∀n ∈ N , an MBS denoted by N + 1, and U users.

The communication range of the nth SBS is pn, and the communication range

of the MBS is pN+1. Differently from Chapter 3, where SBSs could collaborate,

in this chapter we assume that users located in the overlap of the coverage areas

of multiple SBSs are associated with only one SBS, the one with the maximum

SINR.

2) Video Library

We assume that users request 360o video files from a content catalogue of V

files, in a similar way as presented in Chapter 3. Specifically, each 360o video is

comprised of G GOPs, while each GOP is encoded into L quality layers and M

tiles. However, compared to Chapter 3 where the caching decisions were made

offline during the content placement phase, in this chapter the caching decisions

are made online in a reactive manner.

Chapter 4 Page 67

Figure 4.1: Considered network architecture. Users located in the overlap of
the coverage areas of the SBSs are associated with the SBS with the maximum
SINR, as shown with black dashed lines.

3) Viewport Prediction

A critical component of 360o video streaming is the Viewport Prediction (VP)

[111–113]. The aim of VP is to predict the requested viewport by a user in

the near future (e.g., 1-2 sec), and prefetch it to the user. This is essential to

provide smooth playback, as SBSs are not able to respond instantly to the user

head movements due to the end-to-end delay.

VP can be done by observing the most recently requested frames by a user.

These past requests are used to forecast the viewport that will be requested

in the next few seconds. Such an approach is examined in [111, 112], where

authors use variants of the linear regression algorithm to predict the users’ head

movements. A more naïve approach is presented in [113], where VP is performed

assuming that the users’ head orientation will not change in the next 3 seconds.

In our system, to perform viewport prediction, we use the Last Sample Repli-

cation (LSR) algorithm [112]. We have selected this algorithm because of its low

Chapter 4 Page 68

complexity. Based on the LSR, the predicted viewport of the GOP g + 1 is as-

sumed to be the same as the one that was requested in the GOP g. For the first

GOP, without loss of generality, we assume that the predicted viewport is the re-

quested viewport. Although the employment of advanced VP algorithms [50, 51]

would further improve the accuracy of the predicted viewports, we do not adopt

such algorithms as we aim to show the advantages coming from caching. Fur-

ther, the employment of more advanced prediction algorithms would increase the

complexity of our system. At the same time, the conclusions derived regarding

the benefits of tile encoding and caching for 360o videos would stay unaltered.

4) End-to-end-delay

As we already mentioned, for each GOP g ∈ G, all the tiles encoded at the base

quality along with all the enhancement layers up to the targeted quality for the

tiles that form the output viewport of the VP algorithm, need to be prefetched

to the users within a specific time window. Failing to deliver these tiles on time

would lead to buffer underruns, as the tiles would not be available to the buffer

at the time they should be displayed. This would lead to degraded QoE, as tiles

that are not delivered on time are discarded. Considering the above, the timely

delivery of the tiles of each GOP must respect the following equation:

∑
n∈NB

∑
l∈L

∑
m∈M

ovglm · dnu · qnuvglm ≤ tdisp,∀v ∈ V, ∀u ∈ U , g ∈ G (4.1)

where the variable qnuvglm takes the value 1 when the mth encoded tile of the lth

quality layer of the gth GOP of the vth 360o video is delivered to the uth user

from the cache of the nth SBS (n ∈ N) or the MBS (n = N+1), and 0 otherwise.

Recall that dnu is the time needed to transmit one Mbit from the nth SBS to the

uth user, and d(N+1)u the time needed to transmit one Mbit from the backhaul

Chapter 4 Page 69

of the MBS to the uth user, as described in Chapter 3. In addition, ovglm is the

size of the mth tile encoded in the lth quality layer of the gth GOP of the vth

360o video, and tdisp denotes the playback duration of each GOP. This constraint

determines whether the tiles of the (g + 1)th GOP can be prefetched to a user

during the playback of the gth GOP.

4.3 Users’ Requests Model and Cache Update

Schedule

In this section, we present the considered users’ requests model and the cache

update schedule. We assume that for each cached 360o video, our system caches

all the tiles at the base quality layer for all the GOPs, as well as the tiles of a

virtual viewport for each GOP in high quality. Recall that a viewport consists

of k tiles that form a rectangular area, while a virtual viewport is comprised of

the k most popular tiles, which do not necessarily form a rectangular area.

We assume that time is slotted in T time slots, and each time slot has the

duration of one GOP. When a user is interested in watching a 360o video with

duration of G GOPs, they should send G consecutive requests,1 as shown in Fig.

4.2. The first request is special and comprises a request w0, which is used by

our algorithm in Section 4.5 to predict the popularity of each 360o video, and

a request w1 for obtaining the viewport for the first GOP. The request w0 is

to acquire the 360o video at the base quality for all GOPs. As we will show in

Section 4.5 this request is used to reduce the size of the optimization problem.

Though all the tiles encoded at the base layer are requested at the first time slot,
1When a user wants to stop watching a video, they halt sending requests for the following

GOPs.

Chapter 4 Page 70

Figure 4.2: User requests for a 360o video.

they may be delivered to the users along with the enhancement layer tiles. We

assume that the request w0 occurs at the same time slot with the request w1. The

wgth request, g ∈ {1, . . . , G}, is to obtain the tiles that comprise the requested

viewport, and belong to the gth GOP, in high quality. These requests are used

by our algorithm presented in the next sections to calculate the popularity of

each tile per GOP. For notational convenience, we denote the ith set of requests

{wi0, wi1, . . . , wiG} made by a user for a 360o video by W i, while W = ∪iW i

contains all the sets of users’ requests. Hereafter, we drop the index of the ith

set of requests when it is not needed.

The decisions of which tiles of a 360o video to cache at an SBS and in what

quality are made online, i.e., when the content is requested. Specifically, when

a user request w0 arrives at an SBS in the time slot 1, if the tiles of the re-

quested 360o video at base quality are not cached in it, a decision has to be

made regarding whether to cache them. This decision depends on the popularity

of the video. If the decision is to cache these tiles, all the tiles of the base layer

for all GOPs will start being fetched through the backhaul and cached at the

SBS, replacing the tiles of another 360o video that will be evicted. When the

user issues further requests wg for receiving tiles of the GOPs of the 360o video

in high quality, our system uses the viewport prediction algorithm described in

Section 4.2 to decide which tiles of the predicted viewport will be fetched from

the backhaul so that they can be delivered to the user on time. When the tiles

Chapter 4 Page 71

that form the predicted viewport arrive at the SBS, we identify two cases: (a) if

the decision for w0 was not to cache the 360o video in base quality, the fetched

tiles will be delivered to the user but these tiles will not be cached at the SBS, as

the video is not popular enough, (b) if the decision for w0 was to cache the 360o

video in base quality, then for each request wg, g ∈ G, in case some (or none) of

the tiles that form the predicted viewport are cached in high quality a soft cache

hit [109] will occur. In such a case, the cached tiles of the predicted viewport

will be served to the user directly from the SBS, while the tiles of the predicted

viewport that are not cached at the SBS will be fetched to the SBS from a re-

mote content server through the backhaul link of the MBS and be delivered to

the user if the end-to-end constraint permits. Then, a decision is made about

whether to cache some or all of the tiles that were fetched through the backhaul.

The latter decisions reflects tiles’ popularity in a 360o video.

The proposed cache optimization algorithm regarding which tiles to cache is

presented in the next sections.

4.4 MDP Formulation

In this section, we formulate the problem of caching 360o videos in cellular net-

works as a Markov Decision Process [114]. Since in our setting users can down-

load the requested content only from the SBS that they are connected to, each

SBS optimizes the cache use and the content replacement strategy independently

of each other. Hereafter, following reinforcement learning terminology, SBSs are

also called agents. The formulated MDP consists of a number of states, where

each state is comprised by features extracted from past requests. At any given

state, the agents takes a specific action, i.e., to cache a requested content in place

Chapter 4 Page 72

of another, and receives a reward. This process is shown in Fig. 4.3

Figure 4.3: Markov Decision Process.

State Space: In the considered setting, the SBS n ∈ N can be in a state

s ∈ S, where S represents the set of all possible states. Each state s is a vector

comprised of three features. Each feature is extracted from past users’ requests,

considering two time windows: a short one and a longer one. The aforementioned

features as well as the considered time windows are discussed in detail below.

The first feature has two components that refer to the total number of re-

quests for each cached 360o video that occurred in: a) a short-term window of

Hs sets of user requests (see Fig. 4.2), and b) a long-term window of Hl sets

of user requests. This feature associated with the cache of SBS n ∈ N can be

described by the vector xn = [xns xnl] with xnf = [xnf,i], ∀f ∈ {s, l}, ∀i ∈ 1, . . . , C,

and xnf,i ∈ {1, . . . , Hf}. xnf,i refers to the total number of times the video in

the ith cache position was requested (either in short-term or long-term). Thus,

the feature space X n
f is given by {1, . . . , Hf}C and the overall feature space is

X n = X n
s × X n

l . C is the cache capacity of the SBSs, where we dropped the

subscript for notational convenience. It is worth noting that the above definition

of features reduces the feature space drastically, as features are computed for

all the tiles (cached videos) in base quality instead of each tile in base quality

Chapter 4 Page 73

independently.

Similarly, the second feature has two components that correspond to the

total number of requests for tiles in high quality of the cached 360o videos that

happened during: a) the short-term window ofHs sets of user requests, and b) the

long-term window of Hl sets of user requests. This feature is associated with the

cache of SBS n ∈ N and is computed for each cached tile in high quality of GOP

g, when request wg, g > 0 is processed. Let the vector yn = [yns ynl] describe

this feature, where ynf = [ynf,i,j], ∀f ∈ {s, l}, ∀j ∈ {1, . . . , k}, ∀i ∈ {1, . . . , C}

and ynf,i,j ∈ {1, . . . , Hf}. ynf,i,j denotes the number of times the jth tile of the ith

cached 360o video was requested at the nth SBS. Thus, the feature space Ynf is

given by {1, . . . , Hf}kC and the overall feature space for the cache space at the

nth SBS is given by Yn = Yns × Ynl .

Finally, the third feature has two components that correspond to the number

of times the examined item (tile in high quality or 360o video in base quality)

was requested at the nth SBS: a) in the short-term window of Hs sets of user

requests, and b) in the long-term window of Hl sets of user requests. Specifically,

when the examined item is a 360o video in base quality, this feature refers to the

total number of times this video was requested at the nth SBS. This is the case

when a request w0 is received. When the examined item is a tile of a 360o video

in high quality, i.e. for requests wg, g > 0, the feature corresponds to the total

number of times the examined tile was requested. The feature vector is defined

as zn = [zns znl] with znf = [znf], ∀f ∈ {s, l}, and ∀znf ∈ {1, . . . , Hf}. znf stands

for the total number of times the item (tile in high quality or 360o video in base

quality) was requested. Thus, the feature space Znf is given by {1, . . . , Hf} and

the overall feature space for the examined item is Zn = Zns ×Znl .

Following the above definitions of the features, the overall state space is given

Chapter 4 Page 74

by:

Sn = X n × Yn ×Zn. (4.2)

Hereafter, we drop the superscript of the state space and use S as each SBS

makes decisions independently of each other.

Action Space: As we mentioned in Section 4.3, users’ requests w0 correspond

to a request for a 360o video in base quality for all the GOPs of this video, while

requests wg ∈ W with g ∈ 1, . . . , G stand for a request for a viewport of the gth

GOP encoded in high quality.

When an SBS receives a request from a user, given the current state s, it

takes an action a which determines which content item to evict, to cache the

requested content in that place. When a request is received at an SBS, there

are three possible cases regarding the status of the cached data at that SBS: a)

no data for the requested 360o video is cached, b) the 360o video is cached at

the base quality and the predicted viewport is cached at high quality and, c) the

360o video is cached at the base quality, but a different viewport is cached at

high quality.

In case a user requests a 360o video that is not cached at the SBS, this

has to be fetched through the backhaul and be delivered to the user. Fetching

content through the backhaul adds cost to the network operator and increases

the delay experienced by the users. When no data of a 360o video are cached at

the SBS, a user request wg ∈ W with g ∈ {0, . . . , G} is processed as follows. To

accommodate a request w0, all the tiles of the requested 360o video encoded at the

base quality will start being fetched through the backhaul and delivered to the

user for all the GOPs. For each of the following requests wg with g ∈ {1, . . . , G},

Chapter 4 Page 75

all the tiles of the viewport indicated by the prediction algorithm in Section 4.2

encoded in high quality will be fetched through the backhaul in high quality, and

be delivered to the user. Therefore, when the requested 360o video is not cached

at the SBS, there are two types of possible actions: a) to leave the cached content

at the SBS unchanged, or b) to evict the tiles of a cached 360o video from the

cache of the SBS and replace them with the tiles of the requested one. Thus,

there are C + 1 possible actions. Let the set A1 = {A10, A11 . . . , A1i, . . . , A1C}

denotes all the possible actions when a video is not cached at the SBS. A10

stands for the case the cached content at the SBS is left unchanged, and A1i

means that all the tiles of the ith cached video at the SBS will be replaced by

the corresponding tiles of the requested 360o video.

If both the requested 360o video encoded in the base quality and the tiles

that form the predicted viewport for the examined GOP, e.g., g ∈ {1, . . . , G}

encoded in high quality are cached at the SBS, the request wg will be served

from the cache, and no action will be taken. Then, a decision regarding whether

to cache the tiles of the predicted viewport for the next GOP, i.e., g+1, is made.

This happens because our scheme employs the LSR algorithm, as we described

in Section 4.2.

Finally, if the 360o video is cached at the base quality, but a different viewport

than the predicted one is cached at the SBS at high quality, the requested tiles

that are not cached have to be fetched through the backhaul, and then be served

to the user. In that case, the possible actions are the following: a) to leave the

cached viewport unchanged, or b) to cache some of the tiles, which were not

part of the predicted viewport, and were fetched through the backhaul. To limit

the action space, we assume that each action concerns only one tile that may be

updated at the SBS cache. In this way, the agent takes sequential actions for all

Chapter 4 Page 76

tiles that were fetched through the backhaul in terms of whether to cache them

at the SBS or not. This process is repeated until a decision is made for all the

fetched tiles. Since each viewport consists of k tiles, the possible actions for a tile

form the set A2 = {A20, A21 . . . , A2j, . . . , A2k}. The action A20 denotes the case

where the cached content is left unchanged, while the action A2j corresponds to

the case where the candidate tile will replace the jth tile in high quality of the

requested 360o video that was cached at the SBS. We consider that a GOP is

fully processed when a decision has been made for all the tiles that were fetched

through the backhaul. After completing the sequential decisions, the cached

virtual viewport for the considered video is updated. Next, the subsequent GOP

is processed in a similar way. We would like to note that the use of virtual

viewports and the decomposition of actions on a per tile basis permits to greatly

reduce the action space as, otherwise the action space would have been comprised

of all possible viewports.

Considering the above, the overall action space A is defined as:

A = A1 ×A2. (4.3)

Reward: We define the reward of each action to be the average distortion

reduction the users will experience in the next H sets of users’ requests. Thus,

given a state s ∈ S, the reward of taking action a ∈ A is calculated as:

r(s, a) =
1

H

∑
h∈H

∑
v∈V

∑
g∈G

∑
l∈L

∑
m∈M

1(φhvglm) · δvglm (4.4)

When we process the ith set of requests W i, the set H contains the next H

sets of user requests. In our formulation, the reward in (4.4) is obtained after

Chapter 4 Page 77

the next H sets of user requests have occurred [115]. The term φhvglm represents

the mth tile of the lth quality layer of the gth GOP of the vth 360o video of

the W i+hth set of user requests. Recall from Chapter 3 that δvglm denotes the

distortion reduction achieved by obtaining the corresponding tile. The indicator

function 1(φhvglm) in (4.4) is defined as:

1(φhvglm) =


1, if φhvglm can be delivered on time

0, if φhvglm cannot be delivered on time

Optimization Problem:

In order to quantify how good a particular state s is, we estimate the value

function. This function corresponds to the expected discounted reward of policy

π when starting from a state s and then following this policy. The value function

is formally expressed as:

Vπ(s) = Eπ[Gτ |Sτ = s] = Eπ[
∞∑
κ=0

γτRτ+κ+1|Sτ = s] (4.5)

where Gτ , Rτ , and Sτ are the expected reward, the immediate reward and the

state at time τ , respectively. The parameter 0 ≤ γ ≤ 1 is called discount rate

and gradually discounts the effect of an action to future rewards. If γ = 0, the

agent is “myopic” and maximizes the immediate reward. As γ approaches 1, the

objective takes into account future rewards more strongly, and the agent becomes

farsighted. The above equation can be rewritten as a Bellman equation [116] as

follows:

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s′)] (4.6)

where p(s′, r|s, a) is the transition probability from the state s to the state s′ by

Chapter 4 Page 78

taking the action a with a reward r.

4.5 DQN based cache optimization

The main challenge to solve (4.6) is the requirement to know the transition

probabilities p(s′, r|s, a). For the studied problem, continuous computation of

the transition probability matrix is necessary because of the dynamics of the

non-stationary requests, which is computationally demanding. To overcome this

problem, we can adopt the Q-learning algorithm [92], which learns the optimal

policy through interaction with the environment. Q-learning uses the Q(s, a)

values instead of using the value function in (4.6). These values reflect how

“good” is it to take action a when in state s. Similarly, Qπ(s, a) represents how

good it is to take action a when starting from state s, and thereafter follow the

policy π. This is defined as follows:

Qπ(s, a) = Eπ[
∞∑
k=0

γτRτ+k+1|Sτ = s, Aτ = a] (4.7)

where Aτ is the action at time τ .

The optimal policy is the one that maximizes the expected reward for all

states and is given by:

π?(s) = arg max
a∈A

(Q(s, a)), s ∈ S (4.8)

To determine the optimal policy π?(s), the Q-learning algorithm updates the

Q(s, a) values iteratively. Specifically, the Q(s, a) values are updated according

Chapter 4 Page 79

to the formula:

Q(sτ , aτ)← (1− ατ)Q(sτ , aτ) + ατ [Rτ + γmax
a∈A

Q(sτ+1, a)] (4.9)

where ατ is the learning rate at time τ . The learning rate corresponds to the

rate at which newly acquired information overrides old information.

Q-learning can select actions using policies such as the ε-greedy, where ε ∈

[0, 1], which ensures that random actions are always explored and overfitting is

avoided. According to the ε-greedy policy, the action resulting in the maximum

Q(sτ , aτ) value is selected with probability 1− ε, and a random action is selected

with probability ε. The Q-learning algorithm is guaranteed to converge to the

optimal solution [117] when all the state-action pairs are visited infinitely often,

and the learning rate ατ satisfies the following conditions:
∞∑
τ=0

ατ (s, a) =∞ and
∞∑
τ=0

α2
τ (s, a) <∞, ∀(s, a) ∈ S ×A (4.10)

The Q-learning algorithm is an efficient method to determine the optimal

policy when the state-action space is small. However, when the state-action

space grows, the lookup table where the Q(s, a) values are stored becomes pro-

hibitively large. To overcome this drawback of Q-learning, we employ a Deep

Reinforcement Learning (DRL) [118] approach. Using DLR the Q(s, a) values

are approximated by a Deep Neural Network (DNN). Specifically, the employed

DNN takes as an input the current state s of the SBS, which is given as a vector

comprised of the three features (both in the short term, and in the long term)

described in Section 4.4. Then, it outputs a vector of Q(s, a) values which in-

dicate how “good” is to take each of the possible actions a, given the current

state s. The DRL framework consists of two phases: a) the offline phase where

the DNN is trained, and b) the online phase during which the actual caching

Chapter 4 Page 80

decisions are made.

During the offline phase, the DNN is initially built by selecting some random

weights θ. Then, the DNN is trained with a number of historic transition profiles,

as in [119]. These profiles correspond to request patterns experienced in the past.

The training of the DNN is performed in a mini-batch manner. Specifically, at

each training epoch, a sample of the transition profiles and their estimated Q

values are obtained by randomly sampling the experience replay memory D,

which has capacity ND. This mechanism is used to remove the correlations

between observations, while the transitions between the states become more

independent and identically distributed.

To stabilize DNN training, apart from the experience replay, we use the

mechanism of the fixed target network [117]. According to this mechanism, a

second DNN is employed, which is called the fixed-target network. This network

has the same architecture as the original DNN that is used for the function

approximation (evaluation network). Not using a separate network to estimate

the target Q values would lead to destabilization. This would happen because

as the Q values (output of the evaluation network) are updated towards the

target values (calculated by (4.9)), the target values will also be updated in the

same direction. To overcome this problem, the weight parameters of the target

network are kept fixed and are copied from the evaluation network only every

NT steps. Thus, using a second network to estimate the target Q-values leads to

a more stable training, since the Q-values obtained from the evaluation network

are updated towards a target that is kept fixed (for a number of steps).

When the offline phase is completed, the obtained weights θ are used to

initialize the DNN in the online phase. During this phase, if the candidate item

(360o video in base quality or tile in high quality) is not cached at an SBS, the

Chapter 4 Page 81

agent takes an action according to the ε-greedy policy (i.e., it decides whether to

cache the item or not and what content will be replaced), and then proceeds to

the next state. In this way, new actions are always explored, and cached content

whose popularity the algorithm overestimated in the past will not stay in the

cache forever. After the execution of each action, the tuple (sτ , aτ , rτ , sτ+1) is

stored in the experience replay buffer D, in order to be used later for the training

of the DNN.

In the online phase, the DNN is trained in a similar way to the offline phase,

where a batch ofMB transition profiles is randomly sampled from the experience

replay memory D every NB steps. The DNN is trained towards the target

Q values using the back-propagation method, by minimizing the loss function

Loss(θ). The loss function is given by:

Loss(θ) =
1

MB

∑
i∈{1,...,MB}

(yi −Q(si, ai, θ))
2 (4.11)

where yi = ri+maxa′iQ(s′i, a
′
i, θ
−
i) represents the target Q value of the ith sample,

and θ−i = θi−NB
.

The overall DRL framework is presented in Algorithm 4.1.

Chapter 4 Page 82

Algorithm 4.1 DRL Framework
1: Offline Phase
2: Initialize the evaluation network with weights θ
3: Initialize the fixed target network with weights θ′

4: Initialize the experience buffer D with capacity ND

5: Initialize a random exploration process
6: Train the DNN with features (s, a) and outcomes Q(s, a) in a mini-batch

manner
7: Online Phase
8: for each time slot do
9: for each user request in a time slot do

10: for each candidate item of a user request do
11: Receive observation sτ
12: if the candidate item is not cached at the SBS then
13: With probability 1− ε select
14: aτ = arg max

a∈A
Q(sτ , a, θ)

15: Otherwise,
16: aτ ← random action
17: Take action aτ and observe rτ , sτ+1

18: Store the tuple (sτ , aτ , rτ , sτ+1) in the experience replay buffer D
19: end if
20: Update cache hit ratio
21: Update Feature Space
22: if Modulo(w, NB)==0 then
23: Sample MB tuples from D
24: Update DNN by minimizing Loss(θ) in (4.11)
25: Update fixed target network weights
26: end if
27: end for
28: end for
29: end for

4.6 Performance Evaluation

In this section, we examine the performance of the proposed DQN-based online

caching algorithm for 360o videos in cellular networks. First, we describe the

schemes under comparison and provide the simulation setup. Next, we show the

Chapter 4 Page 83

convergence of the loss function during the training of the DNN. Then, we analyze

the impact of various system parameters on the performance of the system.

Finally, we demonstrate how the viewports’ popularity shapes the popularity of

each tile.

4.6.1 Simulation Setup

Let us describe the main characteristics of the schemes under comparison and

the proposed scheme:

1. Least Frequently Used (LFU): In this scheme, the network operator keeps

track of the number of requests that occurred for each cached 360o video.

When a user request arrives at an SBS, then: a) if the requested 360o video

is not cached at it, all the tiles of the 360o video that was requested the

least number of times will be evicted from the cache of the SBS. Then,

for all the GOPs, all the tiles of the requested 360o video encoded at the

base layer along with the tiles of the predicted viewport in high quality will

be cached at the SBS; b) if the 360o video is already cached at the base

quality for all the GOPs, but some of the cached tiles in high quality are

different from the ones that belong to the predicted viewport, these tiles

will be evicted and be replaced by the tiles of the predicted viewport.

2. Least Recently Used (LRU): In this scheme, the network operator keeps

track of how recent are the requests that occurred for each cached 360o

video. When a user request happens at an SBS, then: a) if the requested

360o video is not cached at the SBS, all the tiles of the 360o video that

were requested the least recently will be evicted from the SBS cache. Next,

all the tiles of the requested 360o video will be cached at the SBS at the

Chapter 4 Page 84

base quality for all GOPs along with the tiles of the predicted viewport in

high quality; b) if the 360o video is cached at the SBS, for each GOP, if

some of the cached tiles in high quality are different from the ones of the

predicted viewport, these tiles will be replaced by the corresponding tiles

of the predicted viewport.

3. First In First Out (FIFO): In this scheme, the network operator keeps

track of when the requests for each cached 360o video occurred. When

a user request arrives at an SBS, then: a) if the requested 360o video is

not cached at the SBS, all the tiles of the 360o video that was cached the

earliest will be evicted from the SBS. Then, for all GOPs, all the tiles of

the requested 360o video encoded at the base layer, along with, for each

GOP, the tiles of the predicted viewport in high quality will be cached at

the SBS in the place of the evicted tiles; b) if the 360o video is cached at

the SBS, then for each GOP, if some of the cached tiles in high quality are

different from the ones forming the predicted viewport, these tiles will be

evicted, and be replaced by the tiles of the predicted viewport.

4. Proposed Scheme: In the proposed scheme, the caching decisions are made

exploiting observations derived from past users’ requests. This scheme

employs the DQN algorithm presented in Section 4.5 to decide on the cache

updates. For each cached 360o video, all the tiles at the base quality along

with the most popular tiles in high quality that form a virtual viewport,

are cached at the SBS for all the GOPs.

For the sake of simplicity, all the conducted experiments are done assum-

ing a single SBS and an MBS. This does not affect the derived conclusions, as

SBSs make caching decisions independently of each other. As we have already

Chapter 4 Page 85

mentioned in Section 4.2, although SBSs’ coverage area may overlap, users are

assigned to a single SBS, i.e., the one with the maximum SINR. The exploitation

of opportunities arising because of the overlapped coverage areas is part of our

future work. We would like to emphasize that our algorithm can be applied to

networks with an arbitrary number of SBSs. This is because as each user is

assigned to a single SBS, our algorithm can run in parallel for each SBS. The

coverage range of the SBS is set to be pn = 300m, while the coverage range of

the MBS is pN+1 = 2000m, and is large enough to permit the communication

with the SBS. The delay needed to obtain one Mbit from the SBS is dnu = 1/14

sec/Mbit, while the delay to deliver one Mbit from the backhaul of the MBS

to the user is d(N+1)u = 1/2.9 sec/Mbit. The cache capacity of the SBS is set to

be enough to store 10% of the 360o videos of the content library. The number

of users is U = 200 who are randomly placed in the coverage area of the SBSs.

Recall that, when a 360o video is cached at the SBS, this means that for each

GOP, all the tiles are cached at the base quality, and the tiles that form a virtual

viewport are cached in high quality.

The content library contains V = 500 videos, while each video is encoded in

30 GOPs. The duration of each GOP is assumed to be tdisp = 1 sec. Each GOP

is encoded intoM = 12 tiles, where each tile is encoded into L = 2 quality layers.

The bitrate of the base layer is 2 Mbps, while the bitrate of the enhancement

layer is 12 Mbps. The size of each viewport consists of 4 tiles, while the available

viewports are the ones depicted in Fig. 4.4. The distortion reduction achieved by

obtaining a tile at the base quality layer is 30 dB, while the distortion reduction

achieved by receiving a tile at the enhancement quality layer is 10 dB. Similarly

with Chapter 3, the probability of a 360o video to be requested from a user

follows the Zipfian distribution [108], as is common to the literature. The shape

Chapter 4 Page 86

Figure 4.4: Considered set of viewports. The light blue area highlight the area
covered by the viewport.

parameter of the Zipfian distribution is set to ηv = 1. Recall that the probability

of a 360o video v ∈ V to be selected under the Zipfian distribution is given by

the Eq. (3.31).

We consider realistic navigation patterns, extracted from the dataset in [46],

from which we sampled 200 trajectories of head movements. These trajectories

are obtained from 10 different videos, where for each video, we sampled 20 differ-

ent trajectories. With equal probability, we mapped the index of each one of the

V = 500 videos from the content library to one of the 10 sampled videos of the

dataset. Then, for each of the V = 500 videos of the content library, according

to its mapped index, we selected one of the 20 available trajectories uniformly

at random.

We assume that the total number of sets of users’ requests is W = 10000.

The short-term time window refers to Hs = 300 sets of user requests,2 while

the long-term time window corresponds to Hl = 1000 sets of user requests. The

reward in (4.4) is calculated for the next H = 1000 sets of user requests.
2Each set of requests corresponds to the tiles of a single video demanded by a user.

Chapter 4 Page 87

4.6.2 Deep Neural Network Training

We consider a Deep Neural Network (DNN), which consists of four fully con-

nected layers, i.e., the input layer, two hidden layers, and the output layer. As

the cache capacity of our system is C, the input layer consists of 10C + 2 nodes

that reflect the vector size of each state. The hidden layers and the output layer

consist of 5C+1 nodes, as there are 5C+1 total actions. The activation function

of the hidden layers is the ReLu, while the activation function of the output layer

is the linear function. The DNN is trained with the Adam optimizer. The DNN

is trained for 100 epochs in order to become sufficiently accurate. The learning

rate is set to be α = 0.001, while the ε-greedy parameter is set to ε = 0.05. The

discount factor is set to be γ = 0.6. The experience replay buffer is set to be

D = 2000, while the mini-batch size is set to MB = 32. The mini-batch samples

are obtained every NB = 200 requests. The convergence of the loss function

during the training phase for the basic scenario is presented in Fig. 4.5. When

the DNN is trained with different system settings than the ones of the basic sce-

nario, a similar convergence behavior is noticed. For more information regarding

ANNs, we refer the interested reader in Appendix B .

4.6.3 System Parameter Analysis

1) Cache Size

First, we examine the impact of the cache size on the overall quality of the

rendered viewports. To this aim, we vary the cache capacity C in the range

[5,25]% of the size of the content library. As we can see in Fig. 4.6, the proposed

scheme outperforms the LFU, LRU and FIFO schemes, for all cache sizes. In

Chapter 4 Page 88

0 20 40 60 80 100

Epoch

0

5

10

15

20

25

30
M

S
E

10 3

Figure 4.5: MSE of the loss function with respect to the training epochs.

particular, for typical cache capacity sizes, i.e., [5-10]%, the performance gap

between the proposed scheme and the LFU, the LRU and the FIFO is about

1 dB, 1.5 dB, and 2 dB, respectively. This is because the proposed scheme

achieves a better cache hit ratio, as shown in Fig. 4.7. The increased cache hit

ratio of the proposed scheme is attributed to the use of the DQN that learns

from the experience of the past observations, which content should be cached.

In addition, unlike LFU, LRU and FIFO, where the cached tiles in high quality

correspond to actual viewports, in the proposed algorithm, the tiles that will be

cached for each 360o video in high quality correspond to virtual viewports. This

provides us with greater flexibility to decide the cached tiles. The effect of the

increased cache hit ratio on the quality of the rendered viewports comes from

the fact that the tiles that are delivered from the cache of the SBS to the users

are delivered with a smaller delay. Hence, more tiles are delivered in total to the

users under the considered tight time constraints. When the cache capacity is

large, i.e., 25%, the performance gap between the proposed algorithm and the

Chapter 4 Page 89

5 10 15 20 25

Cache Size (%)

32

33

34

35

36

37

38

Y
-P

S
N

R
 (

d
B

)

Proposed

LFU

LRU

FIFO

Figure 4.6: Y-PSNR with respect to the cache size for all the schemes under
comparison.

5 10 15 20 25

Cache Size (%)

20

30

40

50

60

70

80

C
a
c
h
e
 H

it
 R

a
ti
o
 (

%
)

Proposed

LFU

LRU

FIFO

Figure 4.7: Cache Hit Ratio with respect to the cache size for all the schemes
under comparison.

LFU, the LRU and the FIFO schemes closes to about 0.8 dB, 1 dB and 1.4 dB,

respectively. This happens because as the cache capacity becomes larger, most

of the popular content is stored in the SBS cache for all the schemes.

Chapter 4 Page 90

0.8 1 1.2 1.4 1.6

Zipf Shape parameter
v

30

32

34

36

38

40

Y
-P

S
N

R
 (

d
B

)

Proposed

LFU

LRU

FIFO

Figure 4.8: Y-PSNR with respect to the Zipf shape parameter of the 360o videos
for all schemes under comparison.

2) Video popularity distribution

In Fig. 4.8, we analyze the impact of the skewness parameter of the Zipfian

distribution, which characterizes the 360o video popularity. Specifically, we alter

the shape parameter ηv in the range [0.8, 1.6] and measure the overall quality of

the rendered viewports for all the schemes under comparison. We note that an

increase in the value of the Zipf shape parameter ηv leads to an increase in the

overall rendered quality for all the schemes. This is because bigger values of ηv

mean that the video popularity distribution gets steeper, i.e., a smaller number

of 360o videos is popular, which increases the efficiency of the cache utilization.

We can further observe that as the users’ requests concern a smaller number

of videos (big ηv values), the performance gap between the proposed algorithm

and the LFU, the LRU, and the FIFO schemes decreases. For example, as the

skewness parameter changes from 0.8 to 1.6, the performance gap between the

proposed algorithm and the LFU decreases from ∼ 1 dB to ∼ 0.6 dB. This is

Chapter 4 Page 91

0.5 1 1.5 2 2.5

Zipf Shape parameter
p

32

33

34

35

36

37

38

Y
-P

S
N

R
 (

d
B

)

Proposed

LFU

LRU

FIFO

Figure 4.9: Y-PSNR with respect to the Zipf shape parameter of the viewports
for all schemes under comparison.

attributed to the fact that as a smaller number of 360o videos becomes popular,

most of these videos will be cached at the SBS for all the schemes.

3) Viewports’ popularity distribution

Besides video popularity, we examine the impact of viewports’ popularity. We

first assume that the viewports’ popularity follows a Zipfian distribution with

skewness parameter ηp. To analyze the impact of the skewness parameter on the

quality of the rendered viewports, we vary the shape parameter ηp in the range

[0.5, 2.5]. The performance of the schemes under comparison is depicted in Fig.

4.9. From the results, we can note that an increase in the skewness parameter

ηp leads to an increase in the overall quality of the rendered viewports for all

the examined schemes. This is because as the parameter ηp increases, the user

requests for the various parts of the 360o video scenes become less diverse. Thus,

the cache effectiveness is improved. In addition, as the skewness parameter

Chapter 4 Page 92

5 10 15

Cache Size (%)

30

40

50

60

70

80

C
a

c
h

e
 H

it
 R

a
ti
o

 (
%

)
Selective

Zipf np=1.5

Zipf np=1

Zipf np=0.5

Dataset

Figure 4.10: Cache hit ratio with respect to the cache size for the proposed
scheme considering different viewport popularity distributions.

changes from 0.5 to 2.5, the performance gap between the proposed algorithm

and the LFU increases from about 0.5 dB to about 0.65 dB, respectively. This is

because unlike LFU, in the proposed algorithm, the caching decisions for the tiles

that will be cached in high quality are made for virtual viewports, which offers

increased flexibility in the caching decisions regarding which tiles to cache. Thus,

as the requests for the various viewports become less diverse, the performance

gains in the proposed algorithm increase. Similar conclusions can be drawn by

comparing the proposed scheme with the LRU and FIFO schemes.

In Fig. 4.10, we evaluate the cache hit ratio of the proposed scheme for:

a) our basic scenario where the requests for the viewports are according to the

dataset [46], b) the case where the requests for the viewports follow the Zipfian

distribution while the shape parameter ηp takes a value from the range [0.5, 1.5],

and c) the case where all the user requests are for one viewport, which we term

as “Selective”. To this aim, we vary the cache size from 5% to 15% of the content

Chapter 4 Page 93

library. As we can observe, the “Selective” distribution achieves a better cache

hit ratio in all cases. This is expected, as when the viewports follow either the

dataset or the Zipfian distribution, the requests for the viewports are diverse,

while in case of the Selective distribution, all requests are for one viewport. In

addition, the cache hit ratio is better when the skewness parameter is higher as

described above, while the performance of the dataset, is comparable with the

case when the skewness parameter is ηp = 1.

4) Backhaul Usage

In Fig. 4.11, we compare the performance of all the schemes under comparison

in terms of the backhaul usage. This is a very important performance indicator

of the caching schemes since field trials [110] have shown that by reducing the

backhaul usage, the network service cost is also reduced. To this end, we vary the

cache size in the range [5, 25]% of the content library and measure the backhaul

usage, in terms of the bandwidth that should be communicated to satisfy the

demands. As expected, an increase in the cache size leads to a decrease in

the backhaul usage for all cases. This is because as the cache size increases,

more videos will be able to be stored at the SBS cache, thus, more content

will be served locally to the users. In addition, we can note that as the cache

size increases, the performance gap between the proposed method and the other

schemes under comparison decreases. Specifically, as the cache size increases

from 5% to 25%, the performance gap between the proposed method and the

LFU decreases from about 15.6 GB to approximately 10.7 GB. This is because as

the cache size increases, most of the requested content will be able to be cached

at the SBS, and thus, the effectiveness of the caching improves for all schemes.

Chapter 4 Page 94

5 10 15 20 25

Cache Size (%)

100

120

140

160

180

200

B
a

c
k
h

a
u

l
U

s
a

g
e

 (
G

B
)

Proposed

LFU

LRU

FIFO

Figure 4.11: Backhaul usage with respect to the Cache Size for all schemes under
comparison.

4.6.4 Overlap between Viewports

In this section, we present how the overlap between the various viewports shapes

the popularity of each tile. To this aim, we examine the popularity of each view-

port, along with the popularity of each tile. These popularities are computed by

measuring the frequency of occurrence of a request wg in a window of the previ-

ous Hl = 1000 sets of user requests. The popularity of each viewport is depicted

in Fig. 4.12 and the popularity of each tile is depicted in Fig. 4.13. Although

the most popular viewport is the viewport 8 (see the viewports illustrated in

Fig. 4.4), by observing the Fig. 4.13, we can see that the most popular tiles do

not correspond to the tiles of that viewport. The overlap between the diverse

requests for the various viewports is what determines the popularity of each tile.

Thus, by using virtual viewports, which consist of the most popular tiles, the

most popular tiles can be cached at the SBS. This results in higher cache hit

ratio and better quality for the rendered viewports.

Chapter 4 Page 95

1 2 3 4 5 6 7 8 9 10

Viewport index

0

10

20

30

40

R
e
q
u
e
s
ts

 f
o
r

V
ie

w
p
o
rt

Figure 4.12: Total amount of requests for each one of the available viewports.

Figure 4.13: Total amount of requests for each one of the in high quality encoded
tiles.

Chapter 4 Page 96

4.7 Conclusion

In this chapter, we studied the problem of delivering 360o videos in mobile net-

works using edge caching, considering unknown 360o video and viewport pop-

ularities. We formulated the caching placement/eviction problem as a Markov

Decision Process that aimed at maximizing the overall quality of the videos

delivered to the users. To deal with the dimensionality of this problem, we in-

troduced the concept of virtual viewports, which have the same number of tiles

with original viewports and are comprised by the most popular tiles. To solve

the cache optimization problem for large state and action spaces, we employed a

DQN solution that exploited the patterns obtained from the observations in the

sequence of users’ requests. These observations were used to train our system to

learn for each state, which cache update action should be taken. In this way, we

were able to cache the 360o videos that were predicted to be the most popular,

along with for each GOP, a virtual viewport. To evaluate our method, we used

both real and synthetic navigation patterns. We compared our proposed method

with the LFU, LRU, and FIFO schemes. The results showed that the proposed

method outperformed its counterparts significantly. The improved performance

of our method is attributed to the exploitation of the observations of the users’

requests by the DQN, and the increased flexibility in the caching decisions that

came from using virtual viewports.

5
A Tile-based caching framework for

360o live video streaming

5.1 Introduction

In the previous two chapters, we showed the benefits of using edge caching for the

delivery of 360o videos. However, these systems are Video on Demand (VOD)

solutions and cannot be trivially used for 360o live video streaming. This is

because the network traffic related to 360o live video streaming differs from that

of VOD systems, as in the former case multiple requests take place for the same

content simultaneously. Motivated by the above, in this chapter we propose a

novel caching framework for 360o live video streaming. Our framework aims

Chapter 5 Page 98

to determine the optimal cache placement/evictions strategies to optimize the

quality of the delivered video to the users. To this aim, SBSs update their cached

content using LSTM networks, which have been be shown to be efficient for time

series forecasting. To enhance the delivered video quality and reduce the service

cost, users located in the overlap of the coverage areas of multiple SBSs may be

associated with any of these SBSs at different SBS delays, from where they can

receive their data. We evaluate and compare the performance of our algorithm

with the LFU, LRU, and FIFO algorithms, which are commonly used in the

literature. The results show the superiority of the proposed method against its

counterparts, and make clear the benefits of users association with multiple SBSs

in terms of the delivered quality.

The rest of this chapter is organized as follows. In Section 5.2 we describe the

system setup. Next, in Section 5.3 we provide the system model. Afterwards,

in Section 5.4 we evaluate the performance of the proposed scheme. Finally, we

present the drawn conclusions in Section 5.5.

5.2 System Setup

In this section, we first introduce the considered live streaming architecture.

Then, we discuss the transcoding of 360o videos so that they have multiple

quality layers and tiles. Finally, we describe the considered mobile edge network

architecture, the users’ requests model and the end-to-end delay of the mobile

edge network.

Chapter 5 Page 99

1) Live Streaming Architecture

A high level representation of the considered live 360o video streaming archi-

tecture is depicted in Fig. 5.1. We assume multiple users (broadcasters) that

capture a 360o FoV of a scene, using omnidirectional cameras. The captured

360o videos are first transmitted to the Live Stream server using the Real-Time

Messaging Protocol (RTMP) [120]. RTMP is selected as it can ensure low end-

to-end latency between the broadcaster and viewers. The Live Stream server

transcodes the 360o videos so that they consist of multiple quality layers and

tiles. This is because the captured 360o videos from the broadcasters may not

be necessarily encoded in that format. The transcoded video streams are trans-

mitted to the Content Delivery Network (CDN) using HTTP. The mobile edge

servers are populated with content from the CDN according to the proposed

cache optimization algorithm, which will be presented in Section 5.3. We would

like to note that in the considered live streaming architecture, the latency be-

tween the broadcasters and the end-users is in the order of few seconds, e.g., 1-2

secs, which is considered to be affordable by the users [121]. Considering the

above, the focus of this work is on the cache optimization of the mobile edge

caches.

2) Transcoding of 360o videos

Similarly to the previous two chapters, we assume that the video library consists

of V = |V| that are captured by the broadcasters, and V = {1, . . . v, . . . , V } is

the set of 360o videos that comprise the content library. The video transcoding

at the Live Stream servers is performed using H.265/HEVC [4], but our scheme is

compliant with other video codecs. Each video stream is encoded into a number

Chapter 5 Page 100

Figure 5.1: Considered live streaming architecture.

of L quality layers andM tiles, in the same way videos are encoded in Chapter 3.

As the duration of each video may vary, each video consists of a variable number

of GOPs, depending on the length of each video.

3) Content Delivery Network

CDN is comprised of geographically distributed servers that collaboratively cache

and distribute popular content to a global reach, using high speed links. Each

CDN server has the capacity to cache a number of video files. Using a CDN, the

requested content in a geographic area may be served from the cache of the CDN

server that is closer to the users. In this way, the demanded content is retrieved

by the users with less latency, as their requests do not have to be routed to the

Live Stream server. The use of CDNs reduces significantly the traffic reaching

the Live Stream server.

4) Mobile Edge Network

We consider a mobile network architecture as the one depicted in Fig. 5.2.

Similarly to the previous two chapters, this network consists of N SBSs that are

Chapter 5 Page 101

Figure 5.2: Considered mobile-edge architecture. The connection of users that
reside in the coverage area of multiple SBSs is depicted with green dashed-lines
for their primary SBS, and with yellow dashed-lines for their non-primary SBSs.

equipped with a cache capacity Cn ≥ 0, ∀n ∈ N , an MBS, and U users. The

transmission ranges of the SBSs are given by the set P = {p1, . . . pn, . . . , pN},

and the communication range of the MBS is pN+1. The MBS is connected with

the CDN through a high capacity backhaul link, i.e., optical fiber, while the

connection of the SBSs with the CDN is established through the MBS.

In contrast to the previous two chapters, users located in the overlap of the

coverage areas of multiple SBSs can be associated with any of these SBSs as

follows. The primary SBS for each user is the one that has the maximum SINR,

while the rest of the SBSs are the non primary ones. When a user makes a

request for a number of tiles, if the requested tiles are cached at the primary

SBS, they will be served from that SBS to the user, However, when some of the

requested tiles are not cached at the primary SBS, but are stored in the cache

of one (or more) of the other SBSs the user resides, these tiles will be delivered

to the user from these caches.

Chapter 5 Page 102

Similarly to Chapter 4, we assume that time is slotted in T time slots. In

each time slot t ∈ T , we denote the request of user u ∈ U for GOP g ∈ G of a

360o video v ∈ V by wtu. Let Wu = {w1
u, . . . , w

t
u, . . . , w

T
u } be the set which has T

consecutive requests from user u ∈ U .

5) End-to-end delivery constraint

As we have already mentioned, the overall delay a user experiences from when

they request the data until the data is delivered to them is captured by the end-

to-end delay. This delay depends from where the data is retrieved. In order to

guarantee the timely delivery of the tiles of each GOP to the users, the constraint

given by the Eq. (4.1) should be met. Recall that the delay needed to transmit

one Mbit from the cache of the nth SBS to the uth user is denoted by dnu.

In addition, the delay needed to transmit one Mbit that is fetched from the

backhaul of the MBS to a user is d(N+1)u.

5.3 System Model

1) Caching Entity (CE)

We consider that each SBS is equipped with a CE, as shown in Fig. 5.3. This

entity is responsible for deciding which 360o videos and tiles should be cached at

each SBS. Each caching entity is composed of a number of modules, e.g., User

Requests Processor, User Requests Forecasting, Feature Updater, etc., that their

operation will be discussed later.

Chapter 5 Page 103

Figure 5.3: Flow of operations in a caching entity.

2) Users Request Processor (URP)

The URP module is responsible for decomposing the user requests wtu, t ∈ T , u ∈

U . Specifically, if a viewport consists of k tiles, each user request wtu is decom-

posed into k + 1 requests wtu,i, as shown in Fig. 5.4. The first request wtu,0 is

for receiving all the tiles of the requested 360o video at the base quality. The

rest k requests {wtu,1, . . . , wtu,i, . . . , wtu,k} are for receiving each of the k tiles of

the requested viewport in high quality. This decomposition gives our system the

flexibility to decide which 360o videos (all tiles at the base quality) should be

cached to ensure interactivity, and which tiles of these videos should be cached

in high quality. Let the set W t
u = {wtu,0, wtu,1, . . . , wtu,i, . . . , wtu,k} describe these

k + 1 requests.

Chapter 5 Page 104

Figure 5.4: Decomposition of user request wtu into k + 1 requests.

3) Feature Updater (FU)

The FU module is responsible for updating features regarding the requests for

the various 360o videos and tiles. Specifically, this module calculates in each time

slot t ∈ T , the number of times each request (for receiving either a 360o video at

the base quality, or a tile of a viewport in high quality) was encountered. The

computed features are transferred to the Feature Database (FD) module, where

this information is stored.

4) Feature Database (FD)

The FD module stores the features computed by the FU module regarding the

number of times the various 360o videos (all tiles at base quality) and tiles (in

high quality) were requested at an SBS.

Chapter 5 Page 105

5) Users’ Requests Queue (URQ)

After the decomposition of each user request into multiple requests by the URP

module, the decomposed requests are directed to the URQ module. This module

applies a technique called request coalescing [122]. According to this technique,

when multiple requests for the same content arrive simultaneously at an SBS, the

first request is prioritized for processing, while the rest of the user requests are

held in a queue. This mechanism is needed because in live streaming scenarios,

many people are watching the same content almost simultaneously. Without

such mechanism, in case a requested content is not cached at the SBS, a cache

miss will occur for all the users’ requests for that content. This would cause all

the traffic related to that content to be redirected to the origin CDN or even the

Live Stream server, causing the crashing of these servers.

6) Content Prefetcher (CP)

Due to the end-to-end delay, SBSs are not able to respond instantly to the users’

head movements and transmit the demanded tiles by the users. To overcome

this problem, the CP module is used. Specifically, when the CP module receives

requestsW t
u = {wtu,0, wtu,1, . . . , wtu,i, . . . , wtu,k} for the various 360o videos (in base

quality) and tiles (in high quality) from the URP at the time slot t, it decides

what content should be prefetched for the various 360o videos and tiles for the

next time slot t + 1. Let the set Z t+1
u = {zt+1

u,0 , z
t+1
u,1 , . . . , z

t+1
u,i , . . . , z

t+1
u,k } denote

the content that will be prefetched to the users regarding the time slot t + 1.

Enabling prefetching allows the timely delivery of the content to the users. To

decide which content should be prefetched, similarly to Chapter 4, we use the

LSR [112] algorithm. According to this algorithm, when the CP module receives

Chapter 5 Page 106

a user request wtu,i at time slot t, the content zt+1
u,i that is decided to be prefetched

for the time slot t+ 1 is considered to be the same with the request wtu,i. For the

sake of simplicity, we assume that for the first time slot, the content that will be

prefetched to the users is the requested content.

7) Cache Query (CQ)

The CQ module examines whether the content indicated by the CP module is

already cached at the SBS. When this content is cached at the SBS, it is served

to the user locally from the Cache Storage (CS) of the SBS. When the content in-

dicated by the CP module is not available at the SBS, the Information Exchange

(IE) module is activated to check whether it can be served by a neighbouring

SBS. This happens when the user is in the communication range of the neigh-

bouring SBS. In case the content is cached at a neighbouring SBS and the user

can be associated with that SBS, the content is delivered to the user from that

SBS. Differently, when the content indicated by the CP module is not cached at

any neighbouring SBS the user may be associated with, the content is fetched at

the SBS through the backhaul of the MBS, and served from there to the user.

8) Cache Storage (CS)

The CS module is responsible for storing the 360o videos at the base quality and

the tiles of the cached videos in high quality. Each SBS has a separate cache

storage module with capacity Cn, where n is the index of the SBS node.

9) Content Retrieval (CR)

The CR module is responsible for the delivery of the content to the users. This

module retrieves the content either through: a) the CS module, when it is cached

Chapter 5 Page 107

at the SBS, or b) the Retrieval from Backhaul (RFB) module that retrieves the

content from the backhaul, when it is not cached at the SBS.

10) Information Exchange (IE)

The IE module is responsible for the communication of an SBS with its neigh-

bouring SBSs. Specifically, in case of a cache miss for a content at an SBS, the

SBS checks whether that content may be served to the user from a neighbouring

SBS. The communication between the SBSs is accomplished by millimeter wave

links through the MBS. The delay needed for the above communication is cap-

tured by the delay parameter dnu. Recall, that this parameter denotes the delay

needed to deliver one Mbit from the nth SBS to a user, in the constraint (4.1).

11) Retrieval from Backhaul (RFB)

The RFB module is responsible for the retrieval of the content that will be

prefetched to caches of the SBSs through the backhaul. After the retrieval of

that content at the RFB module, its popularity is estimated by the Popularity

Forecasting (PF) module, and a decision is made at the Caching Decision (CD)

module about whether to cache that content.

12) Popularity Forecasting (PF)

The PF module forecasts at each time t, the popularity of the content that will

be prefetched for the time slot t+ 1. Specifically, the PF module uses a window

of h time slots, in order to capture the trends in the popularity of the content

that will be prefetched to the users, and cache at the SBSs content that will

be popular. To this aim, the features (number of requests for videos and tiles)

stored at the FD module regarding the previous h− 1 time slots along with the

Chapter 5 Page 108

current time slot t ∈ T are used. Let us denote by λtn,v,0 the popularity of the

360o video v ∈ V (base quality) at the SBS n ∈ N in the time slot t ∈ T .

Similarly, let λtn,v,m stand for the popularity of the tile m ∈ M of the video

v ∈ V at the SBS n ∈ N , whereM = {1, . . . ,m, . . .M}.

One way to predict these popularities would be to use Recurrent Neural Net-

works (RNNs), as they have been shown to be effective for time series data

forecasting [123]. However, simple RNNs cannot capture long-term dependen-

cies, as they lack control structures, which causes the norm of gradients to decay

or explode during training [124]. To overcome this problem, LSTM networks

may be used [125]. LSTMs are a special type of RNNs able to learn long-term

dependencies. Inspired by [126], we use an LSTM network for the forecasting

of the popularity of the content retrieved by the RFB module. The LSTM net-

work takes as input the features of content regarding the previous h − 1 time

slots along with the current time slot t, and outputs the estimated popularity

for the content for the time slot t+ 1. The LSTM is initially pre-trained offline

(warm-up phase) with historic data profiles using the backpropagation through

time method, in order to find a good starting point for its weights. Then, these

weights are used for the popularity prediction of the content retrieved by the

RFB module. For more information regarding ANNs such as RNNs and LSTM

networks, we refer the interested reader in Appendix B .

13) Caching Decision (CD)

The CD module makes decisions regarding whether to cache the retrieved content

by the RFB module. To this aim, it uses the popularities predicted by the PF

module.

Let us denote the total number of cached 360o videos (at the SBS n ∈ N)

Chapter 5 Page 109

at the base quality as bn, and the total number of cached tiles in high qual-

ity as fn. In addition, let the forecast popularities of the cached 360o videos

at the base quality at the time slot t + 1 be described by the set Bn,t+1 =

{Bn,t+1
1 , . . . , Bn,t+1

i , . . . , Bn,t+1
bn
}, and the forecast popularities of the cached tiles

in high quality by the set Fn,t+1 = {F n,t+1
1 , . . . , F n,t+1

j , . . . , F n,t+1
fn
}.

When the content that will be prefetched to a user is cached locally or at a

neighbouring SBS the user resides, it is delivered to the user from the SBS it

is cached. In such case, no decision is made at the CD module. In a different

case, the content is retrieved at the RFB module, and a decision is made about

whether to cache it. Specifically, a decision is first made about whether to cache

at the SBS the request zt+1
u,0 regarding the 360o video indicated by the CP module

(when it is not cached). If the predicted popularity by the PF module for the

zt+1
u,0 is λt+1

n,v,0, the z
t+1
u,0 will be cached at the SBS in the place of the ith cached 360o

video at the base quality if λt+1
n,v,0 > Bn,t+1

i and min(Bn,t+1) = Bn,t+1
i . Next, in

case the 360o video is cached at the base quality, a decision is made for each one

of the tiles in high quality {zt+1
u,1 , . . . , z

t+1
u,i , . . . , z

t+1
u,k } that are not cached about

whether they should be stored at the CS module. Specifically, if the predicted

popularity by the PF module for the tile zt+1
u,i is given by λt+1

n,v,m, the tile z
t+1
u,i will

be cached in the place of the jth cached tile in high quality if λt+1
n,v,m > F n,t+1

j

and min(Fn,t+1) = F n,t+1
j . However, if the initial decision regarding the request

zt+1
u,0 was not to cache it, no further decision is made, and none of the content

requests {zt+1
u,1 , . . . , z

t+1
u,i , . . . , z

t+1
u,k } regarding the tiles in high quality are cached.

Following the above workflow, the cache is populated with the most popular

360o videos at the base quality. Tiles in high quality are cached only for the

videos with cached base layer tiles. The number of cached tiles in high quality

for each cached 360o video depends on videos’ popularity, i.e., the more popular

Chapter 5 Page 110

Algorithm 5.1 Caching decisions using forecast popularities
1: Offline Phase
2: Pre-train the LSTM network with historic transition profiles, using the back-

propagation through time method
3: Online Phase
4: for each time slot t do
5: for each user u do
6: for each user request wtu,i, i ∈ {0, 1, . . . , k} do
7: if zt+1

u,0 (all tiles at base quality) are not cached then
8: if λt+1

n,v,0 > Bn,t+1
i and min(Bn,t+1) = Bn,t+1

i then
9: Cache zt+1

u,0 in place of the ith cached 360o video at base quality
10: end if
11: end if
12: if zt+1

u,0 (all tiles at base quality) are cached then
13: if zt+1

u,i (tile in high quality) is not cached then
14: if λt+1

n,v,m > F n,t+1
j and min(Fn,t+1) = F n,t+1

j then
15: Cache zt+1

u,i in place of the jth cached tile in high quality
16: end if
17: end if
18: end if
19: end for
20: end for
21: end for

is a 360o video, the more tiles are cached at the SBSs. Hence, for the least

popular videos a small number of tiles or even no tiles may be cached at the

SBSs. This provides our scheme greater flexibility in deciding how many tiles

to cache per video, helps increase the cache hits, and enhance the quality of

the displayed video, as we see in the next section. The aforementioned decision

process (cache updates) made by the CD module using the forecast popularities

by the PF module is summarized in Algorithm 5.1.

Chapter 5 Page 111

5.4 Performance Evaluation

In this section, we evaluate the performance of the proposed framework for en-

abling live 360o video streaming. For all the schemes under comparison, users

can be associated with multiple SBSs, when they reside in the transmission range

of these SBSs. Hence, they can obtain their data from one of the neighboring

SBSs when the data is not found in the primary SBS. We should note that when

the users’ requests arrive at an SBS, the cache update decisions are made at that

SBS regardless if the users obtained their data from a neighboring SBS, or the

backhaul.

5.4.1 Simulation Setup

Following a similar methodology with that in Chapter 4, we compare the perfor-

mance of the proposed scheme with that of the LFU, LRU, and FIFO algorithms.

However, differently from Chapter 4, in these chapter the comparison schemes

are always applied on a per GOP basis. In addition, the cache capacity is split

into two tiers. The first tier is used to store all tiles of each cached 360o video

at the base quality. The second tier is used only for 360o videos that are already

cached at the base quality, in order to store for these videos tiles in high quality

according to the selected caching policy. Considering the above, the schemes

under comparison, as well as the proposed scheme, are described below.

1. Least Frequently Used (LFU): In this scheme, the network operator keeps

track of the number of requests that occurred for each cached 360o video

and tile in high quality of each GOP. When a request for the gth GOP

of a 360o video arrives at an SBS, the LSR algorithm is used to decide

Chapter 5 Page 112

which content should be prefetched as follows: a) if no tiles of the GOP

g + 1 are cached at the SBS, all the tiles of the GOP g + 1 of the 360o

video that was requested the least frequently will be evicted from the SBS

cache. Then, the tiles indicated by the LSR algorithm will be cached in

the corresponding places of the evicted tiles; b) if the tiles of the GOP

g + 1 are cached at the first tier at the base quality, but some (or all) of

the requested tiles are not cached in high quality, the cached tiles in high

quality at the second tier that were requested the least will be evicted, and

the requested tiles that were not cached will be stored in the place of the

evicted tiles.

2. Least Recently Used (LRU): In this scheme, the network operator keeps

track of how recent are the requests that occurred for each cached 360o

video and tile in high quality of each GOP. When an SBS receives a user

request for the GOP g of a 360o video, according to the LSR algorithm: a)

if no tiles of the GOP g+ 1 are cached at the SBS, all the tiles of the GOP

g+1 of the 360o video that was requested the least recently will be evicted

from the SBS cache. Then, the tiles indicated by the LSR algorithm will

be cached in the corresponding places of the evicted tiles; b) if the tiles of

the GOP g+ 1 are cached at the first tier at the base quality, but some (or

all) of the requested tiles are not cached in high quality, the cached tiles in

high quality at the second tier that were requested the least recently will

be evicted, and the requested tiles that were not cached will be stored in

these places.

3. First In First Out (FIFO): In this scheme, the network operator keeps

track of when the requests for each cached 360o video and tile in high

Chapter 5 Page 113

quality of each GOP happened. For a user request for the GOP g of a 360o

video, according to the LSR algorithm: a) if no tiles for the GOP g+ 1 are

cached at the SBS, all the tiles of the GOP g + 1 of the 360o video that

was requested the earliest will be evicted from the cache at the SBS. Next,

all tiles of the viewport predicted by the LSR algorithm for the GOP g+ 1

will be cached at the SBS; b) if the tiles of the GOP g+1 are cached at the

first tier at the base quality, but some (or all) of the requested tiles in high

quality are different from the tiles of the viewport indicated by the LSR,

the cached tiles in high quality at the second tier that were requested the

earliest will be evicted, and the requested tiles that were not cached will

replace these tiles.

4. Proposed Scheme: In the proposed scheme, the caching decisions are per-

formed following the cache update framework described in Section 5.3. The

proposed scheme uses popularity forecasting to decide with what content

to populate the SBSs caches and how to update them. For each cached

video, all the tiles in base quality are cached at the SBS. In addition, for

each GOP, a number of tiles for the most popular videos are cached in high

quality.

For all the conducted experiments, unless otherwise specified, we assume a cel-

lular network that consists of N = 3 SBSs along with an MBS. The coverage

range of each SBS is pn = 200m, and the coverage range of the MBS is pN+1

= 2000m. The cache capacity of the SBSs is set to be enough to cache 10% of

the 360o videos content libary. This space is calculated assuming that for each

GOP of each cached 360o video, all the tiles at the base quality along with the

tiles of one viewport in high quality are cached. However, as we have already

Chapter 5 Page 114

mentioned, for all schemes the number of tiles in high quality that will be cached

for each 360o video depends on the corresponding caching policy of each scheme.

Furthermore, we consider that the total number of users is U = 540, who are

randomly placed in the coverage area of the N = 3 SBSs. The delay at which

data is delivered from the cache of the users’ primary SBS is dnu = 1/14 sec/Mbit.

The delay at which data is delivered from the cache of a SBS that is not the

primary one to a user equals to dnu = 1/13 sec/Mbit. When a request for a 360o

video at base quality or tile in high quality is not cached at any of the SBSs the

user resides, the delay needed to deliver that request from the backhaul equals

to d(N+1)u = 1/2.9 sec/Mbit.

The content library is comprised of V = 100 videos. Each 360o video has a

duration of 300 GOPs, with each GOP lasting tdisp = 1 sec. Each GOP of the

360o videos is encoded inM = 12 tiles and L = 2 quality layers, while the size of

each viewport is 4 tiles. The considered viewports are depicted in Fig. 4.4. The

bitrate of the base layer is 2 Mbps, while the bitrate of the enhancement layer

is 12 Mbps. The distortion reduction achieved by acquiring a tile at the base

quality layer is δvg1m = 30 dB, while the distortion reduction achieved obtaining

a tile at the enhancement quality layer is δvg2m = 10 dB.

We assume that the popularity of the 360o videos through the GOPs is time-

varying, and at any given moment, users may drop the 360o video they are

watching to view another one. To this aim, we assume that for the first GOP,

the users’ requests for the various 360o videos follow the Zipfian distribution (see

Eq. (3.31)), with shape parameter parameter ηv = 1.

To capture the evolution of the popularity of the 360o videos with the time,

inspired by [127], we assume that the probability of a user to stop watching a 360o

video at the GOP g ∈ {2, . . . , G} follows the Weibull distribution. Specifically,

Chapter 5 Page 115

we assume that each one of the 360o videos that comprise our content library

falls with equal probability to one of the 14 video categories, e.g., News, Sports,

Education, etc., presented in [127]. Then, according to the video category each

360o video falls into, we use the corresponding Weibull distribution parameters

presented in [127], to estimate for each user, the probability of dropping a 360o

video at the GOP g ∈ {2, . . . , G}. For each GOP, when users stop watching a

360o video, the probability to select a different one to watch follows again the

Zipfian distribution.

In terms of the viewports’ requests, we simulated them with realistic navi-

gation patterns obtained from the dataset described in [46], following a similar

methodology with the one discussed in Chapter 4. To this aim, we initially

sampled 10 different videos from this dataset, where for each sampled video,

we obtained 30 trajectories. To assign these trajectories to the considered user

requests, we mapped with equal probability, each of the V = 100 videos that

comprise the content library to one of the 10 sampled videos. Then, for each

user request for a specific 360o video, according to its mapped index, we assigned

with equal probability one of the 30 available trajectories for that video.

5.4.2 LSTM Neural Network training

We consider a Deep LSTM network comprised of four layers. The input layer gets

as input a 3D tensor with shape (samples, time-steps, 1). Each of the two hidden

layers is an LSTM layer with 100 LSTM cells. The output layer is a Dense layer

comprised by 1 unit. The Deep LSTM network is implemented with the open

source library Keras in Python. The hidden layers have as activation function the

ReLu function. The optimizer used is Adam. The LSTM network is initially pre-

trained (warm-up phase) with 2000 samples of historic data profiles, as explained

Chapter 5 Page 116

0 10 20 30 40 50

Epoch

0

50

100

150

200

250

300

L
o

s
s

Train

Validation

Figure 5.5: Popularity estimation of a 360o video, using LSTM network.

in Section 5.3. Each sample represents the evolution in the popularity (of a 360o

video or tile in high quality) over h = 10 consecutive time slots (time-steps).

The LSTM is pre-trained with a batch size of 300 for 50 epochs, using the MSE

loss function between the outputs of the LSTM and the actual popularities. The

historic data profiles are split into a training set and validation set, where the

training set accounts for the 90% of the historic data profiles, and the validation

set the rest 10%. After the pre-training of the LSTM, the trained weights are

used by the PF module for the forecasting of the future content popularities

(online phase). Specifically, during the time slot t, for each content retrieved by

the RFB module, the features regarding the h− 1 = 9 previous time slots along

with the current time slot t are provided as an input to the LSTM network,

while its output is the predicted popularity at the time slot t + 1. During the

online phase, the weights of the LSTM network are updated every 20 time slots

by randomly sampling 100 samples from the FD module, and training the LSTM

network with that samples for 20 epochs. As we can note from Fig. 5.5, the loss

decreases with the number of epochs for both training and validation sets. We

Chapter 5 Page 117

5 10 15 20 25

Cache Size (%)

30

32

34

36

38

40

Y
-P

S
N

R
 (

d
B

)
Proposed

LFU

LRU

FIFO

Figure 5.6: Y-PSNR of the rendered viewports with respect to the cache size for
all the schemes under comparison.

can also see that the loss function converges to zero which means that the LSTM

network is able to predict the popularity of the content that is prefetched to the

caches of the SBSs with a small error.

5.4.3 Parameter Analysis

1) Cache Size

We first study the impact of the cache size on the overall quality of the rendered

viewports. To this end, we vary the cache capacity Cn in the range [5, 25]% of

the content’s library size. We can note from Fig. 5.6 that the proposed scheme

outperforms the schemes under comparison significantly in terms of the overall

quality of the rendered viewports in all the range of cache sizes. Specifically, for

small cache sizes, i.e., 5%, the performance gap between the proposed scheme

and the LFU, LRU, and FIFO is approximately 1.7 dB, 2.1 dB, and 2.2 dB,

respectively. For large cache size values, i.e., 25%, this gap grows to about 2.8

Chapter 5 Page 118

5 10 15 20 25

Cache Size (%)

20

30

40

50

60

70

80

C
a
c
h
e
 H

it
 R

a
ti
o
 (

%
)

Proposed

LFU

LRU

FIFO

Figure 5.7: Cache Hit Ratio with respect to the cache size for all the schemes
under comparison.

dB, 2.9 dB, and 3 dB, respectively. This performance gap is attributed to the

fact that the proposed scheme achieves a better cache hit ratio compared to

its counterparts, as is evident from Fig. 5.7. Specifically, the performance gap

between the proposed scheme and the LFU, which is the second best performing

scheme in terms of the cache hit ratio for small cache sizes (e.g., 5-10%) is about

9%. When the cache size takes large values, i.e., 25%, this gap closes to about

5%. This is because as the cache size increases, more content can be cached at

the SBSs, and all schemes benefit from the additional cache space. The proposed

scheme achieves the highest cache hit ratio due to the use of the LSTM network,

which can help accurately predict the popularity evolution of the content that

will be prefetched to the SBSs caches. Due to the increased cache hit ratio in the

proposed scheme, more tiles are delivered in high quality to the users from the

caches of the SBSs at a small delay. Thus, it is more likely for a greater number

of tiles in high quality to be delivered in total from the caches of the SBSs along

Chapter 5 Page 119

0.8 1 1.2 1.4 1.6

Zipf Shape parameter
v

30

32

34

36

38

40

Y
-P

S
N

R
 (

d
B

)
Proposed

LFU

LRU

FIFO

Figure 5.8: Y-PSNR of the rendered viewports with respect to the Zipf shape
parameter of the 360o videos for all schemes under comparison.

with the backhaul of the MBS to the users under the tight end-to-end delivery

constraint.

2) Video popularity distribution

In Fig. 5.8, we investigate the impact of the users’ requests for the various 360o

videos on the quality of the rendered viewports. To this aim, we vary the Zipf

shape parameter ηv in the range [0.8, 1.6]. As we can see, an increase in the Zipf

shape parameter ηv leads to an increase in the overall quality of the rendered

viewports for all the schemes. This is because as the parameter ηv increases, the

video popularity distribution gets steeper, and a smaller number of 360o videos

becomes more popular. As a result, the overall cache efficiency increases, as

shown in Fig. 5.9. Thus, more tiles will be served directly from the caches of

the SBSs at a small delay, allowing more tiles to be served in total to the users

under the end-to-end time constraint. Similarly to the previous comparison,

Chapter 5 Page 120

0.8 1 1.2 1.4 1.6

Zipf Shape parameter
v

20

30

40

50

60

70

80

90

C
a
c
h
e
 H

it
 R

a
ti
o
 (

%
)

Proposed

LFU

LRU

FIFO

Figure 5.9: Cache Hit Ratio with respect to the Zipf shape parameter of the
360o videos for all schemes under comparison.

the superiority of the proposed scheme regarding the overall cache hit ratio is

attributed to the accurate prediction of the popularities of the content that is

prefetched to the SBSs caches, using LSTM networks. As the value of the shape

parameter increases from 0.8 to 1.6, the performance gap between the proposed

scheme and the LFU widens from 1.9 dB to about 3.7 dB. Similar observations

can be made from the comparison of the proposed scheme with the LRU and

FIFO schemes.

3) Viewports popularity distribution

To examine the impact of the viewports’ popularity on the overall quality of

the rendered viewports, we assume that the viewports’ popularity follows a Zipf

distribution with shape parameter ηp. We vary the shape parameter ηp in the

range [0.5, 2.5], while we keep the cache capacity constant at Cn = 10%. The

performance of all the schemes under comparison is shown in Fig. 5.10. We can

note that an increase in the value of the shape parameter ηp leads to an increase in

Chapter 5 Page 121

0.5 1 1.5 2 2.5

Zipf Shape parameter
p

30

31

32

33

34

35

36

Y
-P

S
N

R
 (

d
B

)
Proposed

LFU

LRU

FIFO

Figure 5.10: Y-PSNR of the rendered viewports with respect to the Zipf shape
parameter of the viewports for all schemes under comparison.

0.5 1 1.5 2 2.5

Zipf Shape parameter
p

30

40

50

60

70

C
a

c
h

e
 H

it
 R

a
ti
o

 (
%

)

Proposed

LFU

LRU

FIFO

Figure 5.11: Cache Hit Ratio with respect to the Zipf shape parameter of the
viewports for all schemes under comparison.

the overall quality of the rendered viewports for all the examined schemes. This

is attributed to the fact that as the shape parameter ηp increases, the requests

for the viewports become less diverse, and a smaller number of viewports is more

Chapter 5 Page 122

popular. Thus, most of the requests for tiles in high quality are served from the

SBSs while respecting the end-to-end constraint, and overall the cache space is

better used, as is evident from Fig. 5.11. For small values of ηp, i.e., ηp = 0.5, the

performance gap between the proposed scheme and the LFU, LRU, and FIFO

schemes is about 1.1 dB, 1.2 dB, and 1.3 dB, respectively. When the shape

parameter ηp is large, i.e., ηp = 2.5, the performance gap between the proposed

scheme and the LFU, LRU, and FIFO grows to about 1.8 dB, 2.4 dB, and 2.8

dB, respectively.

4) SBS Radius

To understand the impact of users’ association with multiple SBSs on the over-

all quality of the rendered viewports, we vary the SBSs radius pn in the range

[200, 300]m. As the radius of the SBSs increases, the overlap between the cov-

erage areas of the SBSs also increases. This results in more users being within

the transmission range of multiple SBSs, and hence being able to be associated

with multiple SBS. For the sake of completeness, we also examine the case where

users are assigned only to the SBS with the maximum SINR. In such a case, the

increase of the transmission range of the SBSs from 200m to 300m does not affect

the overall rendered quality of the viewports because users are always assigned

to the same SBSs regardless of the increase in the SBSs’ transmission range.

The simulation results are depicted in Fig. 5.12. As we can see, an increase in

the radius of the SBSs leads to an increase in the overall quality of the rendered

viewports due to the increase of the cache hit ratio achieved because users will

be associated with multiple SBSs (see Fig. 5.13) for all cache sizes. As expected,

when users are assigned to the SBS with the maximum SINR, the overall quality

of the rendered viewports is lower compared to its counterparts. This is due

Chapter 5 Page 123

5 10 15 20 25

Cache Size (%)

30

32

34

36

38

40

Y
-P

S
N

R
 (

d
B

)
Max SINR

p
n
=200m

p
n
=250m

p
n
=300m

Figure 5.12: Y-PSNR of the rendered viewports with respect to the cache size
for all schemes under comparison.

5 10 15 20 25

Cache Size (%)

30

40

50

60

70

80

C
a

c
h

e
 H

it
 R

a
ti
o

 (
%

)

Max SINR

p
n
=200m

p
n
=250m

p
n
=300m

Figure 5.13: Cache Hit Ratio with respect to the cache size for all schemes under
comparison.

to the fact that users are associated with only one SBS from which they can

download their data.

Chapter 5 Page 124

5 10 15 20 25

Cache Size (%)

20

40

60

80

100

120

B
a
c
k
h
a
u
l
U

s
a
g
e
 (

G
B

)
Proposed

LFU

LRU

FIFO

Figure 5.14: Backhaul usage with respect to the Cache Size for all schemes under
comparison.

5) Backhaul Usage

In Fig. 5.14, we examine the backhaul usage of the MBS with respect to the

cache size of the SBSs for all the schemes under comparison. To this aim, we vary

the cache capacity of the SBSs in the range [5, 25]% of the content library. We

can observe that an increase in the cache size of the SBSs leads to a decrease in

the backhaul usage of the MBS for all schemes. This is because as the cache size

increases, most of the demanded content is cached at the SBSs. As a result, more

user requests will be served directly from the SBSs caches with no need to use

the MSB’s backhaul to fetch content from the core network. We can further note

that as the cache size of the SBSs increases from 5% to 25%, the performance

gap in terms of the backhaul usage between the proposed method and the LFU

scheme closes from about 20.2 GB to about 16.7 GB. This is attributed to the

fact that as the cache size increases, more content will be delivered to the users

from the caches of the SBSs in both cases. Similar conclusions can be drawn

Chapter 5 Page 125

when comparing the proposed scheme with the LRU and FIFO schemes.

5.5 Conclusion

In this chapter, we studied the problem of online caching to support live stream-

ing of 360o videos in mobile networks. The proposed framework used LSTM

networks to predict the evolution of the popularity of video tiles in future GOPs.

These estimates were used to update the cached content at the SBSs, and allowed

prefetching of it to the users on time. In addition, it permitted the backhaul

usage to be minimized, and the overall quality of the rendered videos to be

increased. To further enhance the performance of our proposed method, we

exploited the potential association of users with multiple SBSs. Hence, users lo-

cated in the overlapping coverage areas of the SBSs had access to all the caches

of these SBSs. We tested our scheme for both real and synthetic navigation pat-

terns and compared it with the LFU, LRU, and FIFO schemes. From the results,

it was showed that our method outperformed its counterparts significantly, in

terms of the overall quality of the rendered viewports, the cache hit ratio and

the backhaul usage. In addition, it made apparent the benefits of using LSTM

networks to predict the evolution of the content popularity, and make the most

from content prefetching and caching at the SBSs.

6
Discussion and Future Work

6.1 Summary

360o video is an essential component of VR/AR systems that provides users an

immersive experience. However, 360o video is associated with high bandwidth

requirements, which makes streaming of such content on mobile networks chal-

lenging. Edge caching can be utilized as an enabling technology to facilitate the

delivery of video content in wireless cellular networks. Through edge caching,

users receive content with less latency, and the usage of the backhaul links is lim-

ited. However, existing edge caching schemes proposed for regular videos perform

suboptimally for the delivery of 360o videos. This is because 360o videos’ size

is significantly larger than that of standard videos, which limits the number of

Chapter 6 Page 127

360o video files that can be cached at the SBSs. In addition, caching entire 360o

videos is not an efficient strategy, as users are viewing only a portion of the 360o

video scenes, i.e., the viewport. Clearly, caching 360o videos at the wireless edge

without considering the aforementioned 360o video special characteristics leads

to significant bandwidth and storage resources waste, and may be unnecessary

as parts of the 360o videos may not be displayed.

6.2 Main Contributions

In this dissertation, we researched the optimization of edge caching for the de-

livery of 360o videos. To this aim, we exploited advanced coding tools, i.e.,

encoding in multiple layers and tiles, to cache 360o videos at the SBSs in a

more fine-grained way. Tile encoding creates a flexible video stream structure

that allows intelligent caching schemes to store only the parts of the 360o video

scenes that are viewed by the users. The main contributions of this thesis are

summarized as follows:

• In Chapter 3, we examined the problem of joint caching and delivery of 360o

videos on a per-tile basis, given the content popularity distribution for the var-

ious 360o videos and viewports (offline caching). To this end, we proposed a

distortion-aware proactive caching scheme, which aimed to maximize the over-

all distortion reduction to the users’ population. Our scheme exploited SBSs

collaboration opportunities for users located in the coverage area of more than

one SBSs. To determine the optimal caching placement, we took into account

both the popularity of the 360o videos and viewports, in order to cache only the

parts of the scenes that are viewed by most of the users in high quality. Since

the formulated problem is of high complexity, we decomposed it into a num-

Chapter 6 Page 128

ber of subproblems on per GOP basis, which were solved sequentially. Each

of these subproblems was decoupled into its caching and routing components

with the Lagrange relaxation method, while the solution of these subprob-

lems was combined to determine the solution to the original problem. We

compared our method with other baseline schemes that did not exploit SBSs

collaboration and/or encoding into multiple quality layers and tiles. The re-

sults made clear that encoding 360o videos into multiple quality layers and

tiles allows their caching in a more fine grained way, and leads to an increase

in the overall delivered quality compared to storing entire 360o videos.

• In Chapter 4, we proposed a reactive caching scheme for caching 360o videos

at the SBSs, considering that the content popularity distribution is not known

a priori (online caching). To determine which 360o videos and tiles should

be cached at the SBSs, we formulated the problem of 360o videos caching

as a Markov Decision Process. To reduce the dimensionality of the cache

optimization problem, we introduced the concept of virtual viewports, which

have the same number of tiles with standard viewports, but consist of the most

popular tiles. To solve the formulated MDP, we used the DQN algorithm. We

evaluated our method using both real and synthetic navigation patterns, and

compared our solution with that of the LFU, LRU, and FIFO schemes. The

results revealed that our method achieved a better performance compared to

its counterparts in terms of the delivered quality of the rendered viewports,

the overall cache hit ratio, and the backhaul usage.

• In Chapter 5, we proposed a novel caching scheme for live streaming of 360o

videos, considering unknown video and viewport popularities across the GOPs

of the 360o videos. Through the optimization of caching, we were able to

Chapter 6 Page 129

maximize the overall quality of the rendered viewports and reduce the usage

of the backhual links. To determine which 360o videos (base quality) and tiles

(high quality) would be cached at the SBSs, we deployed an LSTM network.

Using LSTM, we were able to predict the popularity of each 360o video and tile

for the next GOP, cache them at the SBSs, and facilitate the delivery of them

to the users. To enhance the delivered quality of the 360o videos to the users,

we allowed the association of users with multiple SBSs (provided they were

located in the coverage area of these SBSs). We compared our method with

the LFU, LRU, and FIFO schemes, using both real and synthetic navigation

patterns. From the results, it was shown that our method achieved a better

performance compared to its counterparts in terms of the delivered quality of

the rendered viewports, the overall cache hit ratio, and the backhaul usage. In

addition, it was shown how the association of users with more than one SBSs

leads to better caching and delivery strategies.

6.3 Future Work

We conclude this dissertation by presenting some research directions for future

investigation. Some possible extensions of our work are:

• In the proposed caching scheme in Chapter 3, we considered that users’ lo-

cation are fixed. However, an interesting extension of that work would be to

take into account users’ mobility. This would make our formulated problem

in Chapter 3 even more challenging, as the users association with SBSs would

be more complicated, due to the uncertainty in the users’ loacation. One way

to model users’ mobility would be with the use of Markov chains [128], where

the uncertainty in the users’ locations would be modelled with the transition

Chapter 6 Page 130

probabilities of the Markov chains. Another interesting extension of our work

in Chapter 3, could be to consider that apart from SBSs caches, users may

exploit local cache space in their devices, as in device-to-device (D2D) [129]

communication systems. This approach would make the formulated problem

in Chapter 3 even more challenging, as it would add one more layer of complex-

ity due to the D2D communications. However, the use of D2D communications

could allow users in proximity to share their cached contents, increase their

experienced QoE, and further decrease the backhaul usage.

• In Chapter 4, the caching decisions of the proposed scheme were designed

independently at each SBS. However, an interesting way to extend that work

could be to design the caching decisions among the SBSs in a collaborative way.

This may be accomplished by describing the problem of caching 360o videos

using multiagent MDPs [130], where each agent would be an SBS. However,

compared to our approach in Chapter 4, using multiagent MDPs would further

increase the overall complexity for the problem of caching 360o videos. This

is because the actions of each SBS would affect the state of the other SBSs.

Another possible extension of our work in Chapter 4, would be to examine

the effect of various encoding settings, e.g., number of quality layers, number

of tiles, etc., on the overall quality of the rendered viewports. This is because

different encoding settings, e.g., increased number of tiles, would increase the

flexibility in the caching decisions in terms of which parts of the 360o scenes

to cache, but at the expense of the increased dimensionality of the state space

and action space.

• A topic of significant interest for extending our work in Chapter 5, would be

to organize a number of subjective tests, where users will verify our findings

Chapter 6 Page 131

regarding 360o live video streaming and caching. Such an approach has also

the potential for creating a dataset regarding the users’ navigation patterns,

for live streaming 360o videos. The main challenge of this extension is to

schedule a large number of users to watch a number of 360o videos at the

same time. This is due to the fact that in live streaming scenarios, users

watch the broadcasted videos “live”, at the time these videos are created. The

examination of live streaming 360o videos and caching from the perspective of

reducing the total energy consumption would be another interesting extension

of the work presented in Chapter 5. This is because as the distances between

the users and the SBSs they may be associated with are different, this leads

to different transmission energies required to transmit data to the users.

Overall, 360o video is an emerging technology, which will have a tremendous

impact in fields such as medical training, education, and entertainment [131].

360o videos offer an immersive way to share our stories, by allowing users to

interact in a virtual environment. Major content providers, e.g., YouTube, Face-

book, etc, have already available a great number of 360o videos for streaming.

Besides recent advances of communications systems and the emergence of 5G

networks, due to the high bandwidth requirements of 360o videos, the delivery

of them in mobile networks is still challenging. Since edge caching will be an

instrumental component of 5G and beyond networks, it can be utilized with ad-

vanced coding tools, i.e., encoding into multiple layers and tiles, to satisfy the

forthcoming high expectations of the users’ demands. In addition, the use of

machine learning techniques will be instrumental for facilitating the caching of

360o videos when the content popularity distribution is unknown, and will enable

the caching of the 360o videos at the SBSs in a large scale.

Appendix A

Video Coding

A.1) Overview

Video compression is a key technology that allows videos to be communicated

through the Internet, stored, and consumed by the users [3]. Video compression

is the process of encoding the visual information of video files, which in turns

helps to reduce the enormous size of the raw video streams. Video files are

compressed by minimizing the redundancy in the video frames. There are two

main types of redundancy, namely spatial and temporal .

To remove spatial redundancy, intra-frame compression is used. Each frame

is compressed individually [132], and is treated as a still image. The techniques

used for spatial compression of videos are similar to the ones used for image files,

e.g., JPEG, PNG, etc. In spatial compression, various algorithms are employed

to look for similarities though a frame, e.g., pixels in proximity of a blue sky, in

order to exploit these similarities and describe large areas of an image in a more

compact way.

To remove temporal redundancy, inter-frame compression is used. Specifi-

cally, sets of neighboring frames, also known as Group of Pictures (GOPs) are

APPENDIX A: VIDEO CODING Page 133

Figure A.1: Group of Pictures (GOP), comprised from I, B, and P frames

compressed together to exploit the similarities in a scene through the time. This

is because consecutive frames may be correlated to a great extend, e.g., static

background in the news. Each GOP my consist of a number of I, P, and B frames,

as shown in Fig. A.1. Each type of frame is described in detail as follows:

• I-frame (intra-coded). This type of frame is encoded independently of the

others, using only intra-frame compression. Because of that, it requires the

most space compared to the P, and B frames. The advantage of I-frames is

that they can be decoded independently. This offers flexibility to seek through

a video and start its playback at any point an I-frame is present.

• P-frame (predictive-coded). This type of frame is encoded by means of both

intra-frame compression, and inter-frame compression that encodes the differ-

ences that took place compared to the previous decoded frame, which may be

an I-frame, or a P-frame. For this reason, this type of rame is smaller in size

compared to an I-frame, however, it cannot be decoded independently.

• B-frame (bipredictive-coded). This type of frame is encoded by using both

intra-frame compression, and inter-frame compression that encodes the differ-

APPENDIX A: VIDEO CODING Page 134

ences that took place between both the preceding and the following decoded

frames, which may be either an I-frame, or a P-frame. It requires even less

space than an I-frame or a P-frame, however, similarly to the P-frame, it

cannot be decoded independently.

A.2) Video Quality Evaluation

Although lossy video compression reduces significantly the size of the video files

[133], it induces distortion to the original video files that may affect the QoE users

enjoy. The perception of the experienced QoE by the users is subjective [134], and

can be influenced by many factors such as the viewing environment. To avoid the

induction of biases when evaluating video quality, subjective quality tests may

be performed in controlled environments, where users are watching a number

of videos and rate their perceived QoE. However, this process is not always

practical and requires resources that are not always available, e.g., equipment

for the playback of multiple videos, scheduling of users to watch them, etc. To

address these limitations, objective quality quality metrics [135] are widely used

to evaluate video quality in an algorithmic way. Some popular quality metrics

are the Mean Squared Error (MSE), and the Peak Signal to Noise Ratio (PSNR).

MSE measures the average squared error between the pixels of the luminance

component between the decoded frame and the reference frame. The MSE be-

tween two frames with resolution M ×N is calculated as follows:

MSE =
1

M ×N

M∑
i=1

N∑
j=1

(Ŷij − Yij) (A.1)

where Ŷij, (Yij) represents the values of the pixels i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}

of the luminance component of the decoded (reference) frame.

APPENDIX A: VIDEO CODING Page 135

PSNR measures on a logarithmic scale the ratio between the maximum pos-

sible signal, relative to the MSE. Specifically, PSNR is calculated as follows:

PSNR = 10 log10(
MAX2

I

MSE
) (A.2)

where MAXI is the maximum value a pixel can take in an image, e.g., for an

8-bit image MAXI = 255.

Appendix B

Artificial Neural Networks

B.1) Introduction

An Artificial Neural Network (ANN) is a computational model consisting of a

large number of interconnected units, inspired by biological neural networks such

as the human brain [136]. ANNs are an essential part of multiple applications

such as computer vision [137], speech recognition [138], and text interpretation

[139].

The basic unit of a neural network is the neuron (see Fig. B.1), also known

as node. A node receives several inputs {X1, . . . , XN}, where each input is

associated with a weight {W1, . . . ,WN}. In addition, a special input is provided

to each node, which is called bias. This input has the value 1, and is associated

with a weight b. The role of bias is to provide a node with more flexibility in terms

of its computed output, given its inputs. The output of a node is defined from

its activation function f , e.g., sigmoid, linear, etc. Specifically, the activation

function takes as input the weighted sum
∑N

i=1Xi ·Wi + b of all the inputs of

the node, and calculates the f(
∑N

i=1Xi ·Wi + b), which is the output Y of the

node.

APPENDIX B: ARTIFICIAL NEURAL NETWORKS Page 137

Figure B.1: Basic computation unit of neural networks

B.2) Feedforward Neural Network

A Feedforward Neural Network (FNN) consists of multiple layers, i.e., input

layer, hidden layers, output layer, where each layer is comprised by a number of

nodes, as shown in Fig. B.2. The nodes of adjacent layers are interconnected

[140], with each connection being associated with a weight. The computations

of a neural network are determined by the set of the weights associated with the

interconnections of the various nodes of different layers, as well as the activation

function of each node.

FNNs may be used for regression or classification. Both problems belong

to the family of supervised machine learning. In both cases, a training dataset

that contains historic data with known inputs along with their corresponding

outputs is initially used for the training of an FNN, in order to initially estimate

its weights. Afterwards, the performance, e.g., MSE, accuracy, of the FNN is

tested on the test dataset.

Two problems that may occur during the training of ANNs such as FNNs

are the underfitting, and the overfitting. In the former case, the trained model

performs poorly both on the training and the test set. In the latter case, the

APPENDIX B: ARTIFICIAL NEURAL NETWORKS Page 138

Figure B.2: Feedforward Neural Network

trained model has a very good performance on the training set, but performs

poorly on the test set. Thus, the model fails to generalize on unseen data. There-

fore, in order to have confidence in the ability of an FNN to make predictions,

its training and testing must be performed on different datasets. In addition, a

high performance should be observed both on the training, and the test dataset.

B.3) Recurrent Neural Network

Unlike FNNs where the information can move only in one direction, in Recurrent

Neural Networks (RNNs) there are loops in the nodes of the hidden layers that do

not restrict the flow of information in one way, as shown in Fig. B.3. Due to these

loops, the output of the neurons in the hidden layers depends not only on their

immediate inputs, but also on their previous state. This helps RNNs to maintain

information over time, and makes them suitable for modeling tasks where the

sequence of data is important, e.g., time-series, natural language processing, etc.

APPENDIX B: ARTIFICIAL NEURAL NETWORKS Page 139

Figure B.3: Recurrent Neural Network

However, training RNNs to capture long-term dependencies can be difficult, as

the norm of the gradients may vanish or explode.

B.4) Long Short-Term Memory Cell

To overcome the challenges in capturing long-term dependencies in RNNs, Long

Short-Term Memory (LSTM) networks were proposed. LSTMs are a special type

of RNNs, which have control structures that regulate the flow of information.

Specifically, these control structures are called gates, and control the update and

removal of information to the cell (memory) of the LSTM, as well as the output

(see Fig. B.4). These gates are the forget gate, input gate, and output gate.

The operation of these is described as follows:

• Forget gate: This gate decides what information should be kept and what

information should be thrown away from the cell state. Specifically, it takes

as input information from the previous hidden state ht−1 and the current

APPENDIX B: ARTIFICIAL NEURAL NETWORKS Page 140

Figure B.4: Long Short-Term Memory (LSTM) cell

input xt, and passes that information through a sigmoid function. The

output of the sigmoid function is the output of the forget gate ft, with

values between 0 and 1. Values close to 0 are forgotten from the cell state

ct−1, while values close to 1 are kept.

• Input gate: This gate is responsible for the update of the cell state. Specif-

ically, the previous hidden state ht−1 and the current input xt are initially

passed through a sigmoid function that outputs values between 0 and 1,

which are the output it of the input gate. Values close to 0 are considered

as not significant, while values close to 1 are important. The hidden state

ht−1 and the current input xt are also passed through the tanh function,

which provides the output ĉt with values between -1 and 1. Then, the out-

put of the sigmoid it and the output of the tanh function ĉt are multiplied,

and the outcome of that multiplication, is added to the cell state. After

that addition, the cell state is updated to ct.

• Output gate: The output gate along with the updated cell state ct deter-

APPENDIX B: ARTIFICIAL NEURAL NETWORKS Page 141

mine what would be the next hidden state ht. Specifically, the previous

hidden state ht−1 and the current input xt are initially passed through the

sigmoid function. The output of the sigmoid function is denoted by ot.

Simultaneously, the updated cell state ct is passed through the tanh func-

tion. The outcome of the tanh function is multiplied with the output of

the sigmoid function, and their multiplication provides the next state ht.

The above computations are summarized in the next equations.

f(t) = σ(Wfxt + Ufht−1 + bf)

i(t) = σ(Wixt + Uiht−1 + bi)

o(t) = σ(Woxt + Uoht−1 + bo)

ĉ(t) = tanh(Wcxt + Ucht−1 + bc)

c(t) = ft � ct−1 + it � ct

ht = ot � tanh(ct)

(B.1)

where Wi, Ui, bi, i ∈ {f, i, o, c} are the weights and bias associated with the cur-

rent input xt and the previous hidden state ht−1 of the forget, input, output

gate, and tanh function, respectively. In addition, � stands for element-wise

multiplication.

List of Publications

Journal Publications

J1. P. Maniotis, E. Bourtsoulatze, and N. Thomos, “Tile-based joint caching
and delivery of 360o videos in heterogeneous networks,” IEEE Trans.on
Multimedia, in press

Conference Publications

C1. P. Maniotis, E. Bourtsoulatze, and N. Thomos, “Tile-based joint caching
and delivery of 360o videos in heterogeneous networks,” in Proc. of IEEE
21st Int. Workshop on Multimedia Signal Processing (MMSP’19), Kuala
Lumpur, Malaysia, Sep. 2019

C2. P. Maniotis and N. Thomos, “Smart caching for live 360o video streaming
in mobile networks,” in Proc. of IEEE 22st Int. Workshop on Multimedia
Signal Processing (MMSP’20), Tampere, Finland, Sep. 2020

Preprints

P1. P. Maniotis, E. Bourtsoulatze, and N. Thomos, “Tile-based joint caching
and delivery of 360o videos in heterogeneous networks,” CoRR, vol.
abs/1902.09581, 2019.

P2. P. Maniotis and N. Thomos, “Viewport-aware deep reinforcement learning
approach for 360o video caching,” CoRR, vol. abs/2003.08473, 2020.

https://ieeexplore.ieee.org/document/8931628
https://ieeexplore.ieee.org/document/8931628
https://ieeexplore.ieee.org/document/8901727
https://ieeexplore.ieee.org/document/8901727
https://ieeexplore.ieee.org/
https://ieeexplore.ieee.org/
https://arxiv.org/abs/1902.09581
https://arxiv.org/abs/1902.09581
https://arxiv.org/abs/2003.08473
https://arxiv.org/abs/2003.08473

Bibliography

[1] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Up-
date, 2016—2021,” White paper, Mar. 2017.

[2] K. Huang, P. Chien, C. Chien, H. Chang, and J. Guo, “A 360-degree
panoramic video system design,” in Proc. of Technical Papers of 2014 In-
ternational Symposium on VLSI Design, Automation and Test, Hsinchu,
Taiwan, Apr. 2014, pp. 1–4.

[3] G. J. Sullivan and T. Wiegand, “Video compression - from concepts to the
h.264/avc standard,” Proceedings of the IEEE, vol. 93, no. 1, pp. 18–31,
Jan. 2005.

[4] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of
the high efficiency video coding (hevc) standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668,
Dec. 2012.

[5] Y. Chen, D. Murherjee, J. Han, A. Grange, Y. Xu, Z. Liu, S. Parker,
C. Chen, H. Su, U. Joshi, C. Chiang, Y. Wang, P. Wilkins, J. Bankoski,
L. Trudeau, N. Egge, J. Valin, T. Davies, S. Midtskogen, A. Norkin, and
P. de Rivaz, “An overview of core coding tools in the av1 video codec,” in
Proc. of Picture Coding Symposium (PCS’18), San Francisco, CA, USA,
Jun. 2018, pp. 41–45.

[6] D. Mukherjee, J. Han, J. Bankoski, R. Bultje, A. Grange, J. Koleszar,
P. Wilkins, and Y. Xu, “A technical overview of vp9 – the latest open-
source video codec,” in Proc. of Annual Technical Conference Exhibition,
Hollywood, CA, USA, Oct. 2013, pp. 1–17.

[7] Y. Zhang and R. Wang, “A study on the effects of head mounted displays
movement and image movement on virtual reality sickness,” in Proc. of
IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW’20), Atlanta, GA, USA, USA, Mar. 2020, pp. 631–632.

BIBLIOGRAPHY Page 144

[8] M. Qadri, M. S. Hussain, S. Jawed, and S. A. Iftikhar, “Virtual tourism
using samsung gear vr headset,” in Proc. of International Conference on In-
formation Science and Communication Technology (ICISCT’19), Karachi,
Pakistan, Pakistan, Mar. 2019, pp. 1–10.

[9] X. Xie and X. Zhang, “Poi360: Panoramic mobile video telephony over
lte cellular networks,” in Proc. of the 13th International Conference on
Emerging Networking EXperiments and Technologies, ser. CoNEXT ’17.
New York, NY, USA: ACM, Nov. 2017, pp. 336–349.

[10] A. TaghaviNasrabadi, A. Mahzari, J. D. Beshay, and R. Prakash, “Adaptive
360-degree video streaming using layered video coding,” in Proc. of IEEE
Virtual Reality (VR’17), Los Angeles, CA, USA, Mar. 2017, pp. 347–348.

[11] A. Ghosh, V. Aggarwal, and F. Qian, “A rate adaptation algorithm for
tile-based 360-degree video streaming,” CoRR, vol. abs/1704.08215, 2017.
[Online]. Available: http://arxiv.org/abs/1704.08215

[12] J. Tan, G. Cheung, and R. Ma, “360-degree virtual-reality cameras for the
masses,” IEEE MultiMedia, vol. 25, no. 1, pp. 87–94, Jan. 2018.

[13] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski, “Viewport-adaptive
navigable 360-degree video delivery,” in Proc. of IEEE International Con-
ference on Communications (ICC’17), Paris, France, May 2017, pp. 1–7.

[14] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the wireless edge:
design aspects, challenges, and future directions,” IEEE Communications
Magazine, vol. 54, no. 9, pp. 22–28, Sept. 2016.

[15] J. Poderys, M. Artuso, C. M. O. Lensbøl, H. L. Christiansen, and J. Soler,
“Caching at the mobile edge: A practical implementation,” IEEE Access,
vol. 6, pp. 8630–8637, Feb. 2018.

[16] T. X. Vu, S. Chatzinotas, and B. Ottersten, “Edge-caching wireless net-
works: Performance analysis and optimization,” IEEE Transactions on
Wireless Communications, vol. 17, no. 4, pp. 2827–2839, Apr. 2018.

[17] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation algorithms
for mobile data caching in small cell networks,” IEEE Transactions on
Communications, vol. 62, no. 10, pp. 3665–3677, Oct. 2014.

[18] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, “Femtocaching
and device-to-device collaboration: A new architecture for wireless video
distribution,” IEEE Communications Magazine, vol. 51, no. 4, pp. 142–149,
Apr. 2013.

http://arxiv.org/abs/1704.08215

BIBLIOGRAPHY Page 145

[19] G. S. Paschos, A. Destounis, and G. Iosifidis, “Online convex optimization
for caching networks,” IEEE/ACM Transactions on Networking, vol. 28,
no. 2, pp. 625–638, Apr. 2020.

[20] F. Gabry, V. Bioglio, and I. Land, “Online caching in heterogeneous net-
works,” in Proc. of IEEE International Conference on Communications
(ICC’17), Paris, France, May 2017, pp. 1–5.

[21] N. Garg, M. Sellathurai, V. Bhatia, B. N. Bharath, and T. Ratnara-
jah, “Online content popularity prediction and learning in wireless edge
caching,” IEEE Transactions on Communications, vol. 68, no. 2, pp. 1087–
1100, Feb. 2020.

[22] S. Rahman, M. G. R. Alam, and M. M. Rahman, “Deep learning-based
predictive caching in the edge of a network,” in Proc. of International Con-
ference on Information Networking (ICOIN’20), Barcelona, Spain, Spain,
Jan. 2020, pp. 797–801.

[23] M. Z. Shafiq, A. X. Liu, and A. R. Khakpour, “Revisiting caching in content
delivery networks,” SIGMETRICS Perform. Eval. Rev., vol. 42, no. 1, p.
567–568, Jun. 2014.

[24] Y. Wang, X. Tao, X. Zhang, and G. Mao, “Joint caching placement and
user association for minimizing user download delay,” IEEE Access, vol. 4,
pp. 8625–8633, Dec. 2016.

[25] P. Ostovari, J. Wu, and A. Khreishah, “Efficient online collaborative
caching in cellular networks with multiple base stations,” in Proc. of
IEEE 13th International Conference on Mobile Ad Hoc and Sensor Systems
(MASS), Brasilia, Brazil, Oct. 2016, pp. 136–144.

[26] Q. Gong, J. W. Woods, K. Kar, and J. Chakareski, “Fine-grained scalable
video caching,” in Proc. of IEEE International Symposium on Multimedia
(ISM’15), Miami, FL, USA, Dec. 2015, pp. 101–106.

[27] B. Zhang, Z. Liu, S. H. G. Chan, and G. Cheung, “Collaborative wireless
freeview video streaming with network coding,” IEEE Transactions on
Multimedia, vol. 18, no. 3, pp. 521–536, Mar. 2016.

[28] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tassiulas,
“Caching and operator cooperation policies for layered video content deliv-
ery,” in Proc. of the 35th Annual IEEE International Conference on Com-
puter Communications (IEEE INFOCOM’16), San Francisco, CA, USA,
Apr. 2016, pp. 1–9.

BIBLIOGRAPHY Page 146

[29] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tassiulas,
“Distributed caching algorithms in the realm of layered video streaming,”
IEEE Transactions on Mobile Computing, vol. 18, no. 4, pp. 757–770, Apr.
2019.

[30] R. Skupin, Y. Sanchez, C. Hellge, and T. Schierl, “Tile based hevc video
for head mounted displays,” in Proc. of IEEE International Symposium on
Multimedia (ISM’16), San Jose, CA, USA, Dec. 2016, pp. 399–400.

[31] M. Hosseini, “View-aware tile-based adaptations in 360 virtual reality video
streaming,” in Proc. of IEEE Virtual Reality (VR’17), Los Angeles, CA,
USA, Mar. 2017, pp. 423–424.

[32] J. Le Feuvre and C. Concolato, “Tiled-based adaptive streaming using
mpeg-dash,” in Proc. of the 7th International Conference on Multimedia
Systems, Klagenfurt, Austria, May 2016, pp. 41–43.

[33] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj, “Hevc-
compliant tile-based streaming of panoramic video for virtual reality ap-
plications,” in Proc. of the 2016 ACM on Multimedia Conference, Amster-
dam, Netherlands, Oct. 2016, pp. 601–605.

[34] W. C. Lo, C. L. Fan, S. C. Yen, and C. H. Hsu, “Performance measurements
of 360o video streaming to head-mounted displays over live 4g cellular net-
works,” in Proc. of 19th Asia-Pacific Network Operations and Management
Symposium (APNOMS’17), Seoul, South Korea, Sep. 2017, pp. 205–210.

[35] S. Rossi and L. Toni, “Navigation-aware adaptive streaming strategies for
omnidirectional video,” in Proc of. IEEE 19th International Workshop on
Multimedia Signal Processing (MMSP’17), Luton, UK, Oct. 2017, pp. 1–6.

[36] A. Ghosh, V. Aggarwal, and F. Qian, “A robust algorithm for
tile-based 360-degree video streaming with uncertain fov estimation,”
vol. abs/1812.00816, 2018. [Online]. Available: http://arxiv.org/abs/1812.
00816

[37] M. Jamali, F. Golaghazadeh, S. Coulombe, A. Vakili, and C. Vazquez,
“Comparison of 3d 360-degree video compression performance using differ-
ent projections,” in Proc. of IEEE Canadian Conference of Electrical and
Computer Engineering (CCECE’19), Edmonton, AB, Canada, Canada,
May 2019, pp. 1–6.

[38] “Encoder settings for live 360-degree videos.” [Online]. Available:
https://support.google.com/youtube/answer/6396222

http://arxiv.org/abs/1812.00816
http://arxiv.org/abs/1812.00816
https://support.google.com/youtube/answer/6396222

BIBLIOGRAPHY Page 147

[39] “Under the hood: Building 360 video.” [Online]. Available: https://
engineering.fb.com/video-engineering/under-the-hood-building-360-video

[40] K. K. Sreedhar, A. Aminlou, M. M. Hannuksela, and M. Gabbouj,
“Viewport-adaptive encoding and streaming of 360-degree video for vir-
tual reality applications,” in Proc. of IEEE International Symposium on
Multimedia (ISM’16), San Jose, CA, USA, Dec. 2016, pp. 583–586.

[41] J. Tang and X. Zhang, “Hybrid projection for encoding 360 vr videos,”
in Proc. of IEEE Conference on Virtual Reality and 3D User Interfaces
(VR’19), Osaka, Japan, Japan, Mar. 2019, pp. 440–447.

[42] A. De Abreu, C. Ozcinar, and A. Smolic, “Look around you: Saliency
maps for omnidirectional images in vr applications,” in Proc. of Ninth In-
ternational Conference on Quality of Multimedia Experience (QoMEX’17),
Erfurt, Germany, May 2017, pp. 1–6.

[43] M. Almquist, V. Almquist, V. Krishnamoorthi, N. Carlsson, and D. Eager,
“The prefetch aggressiveness tradeoff in 360 video streaming,” in Proceed-
ings of the 9th ACM Multimedia Systems Conference, ser. MMSys ’18.
New York, NY, USA: Association for Computing Machinery, Jun. 2018, p.
258–269.

[44] Y. Rai, J. Gutiérrez, and P. Le Callet, “A dataset of head and eye move-
ments for 360 degree images,” in Proceedings of the 8th ACM on Multimedia
Systems Conference, ser. MMSys’17. New York, NY, USA: Association
for Computing Machinery, Jun. 2017, p. 205–210.

[45] W.-C. Lo, C.-L. Fan, J. Lee, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,
“360o video viewing dataset in head-mounted virtual reality,” in Proc. of the
8th ACM on Multimedia Systems Conference (MMSys’17), Taipei, Taiwan,
Jun. 2017, pp. 211–216.

[46] F. Duanmu, Y. Mao, S. Liu, S. Srinivasan, and Y. Wang, “A subjective
study of viewer navigation behaviors when watching 360-degree videos on
computers,” in Proc. of IEEE International Conference on Multimedia and
Expo (ICME’18), San Diego, CA, USA, Jul. 2018, pp. 1–6.

[47] C. Ozcinar and A. Smolic, “Visual attention in omnidirectional video for
virtual reality applications,” in 2018 Tenth International Conference on
Quality of Multimedia Experience (QoMEX), Cagliari, Italy, May 2018,
pp. 1–6.

[48] S. Fremerey, A. Singla, K. Meseberg, and A. Raake, “Avtrack360: An open
dataset and software recording people’s head rotations watching 360 videos

https://engineering.fb.com/video-engineering/under-the-hood-building-360-video
https://engineering.fb.com/video-engineering/under-the-hood-building-360-video

BIBLIOGRAPHY Page 148

on an hmd,” in Proceedings of the 9th ACM Multimedia Systems Confer-
ence, ser. MMSys ’18. New York, NY, USA: Association for Computing
Machinery, Jun. 2018, p. 403–408.

[49] C. Wu, Z. Tan, Z. Wang, and S. Yang, “A dataset for exploring user be-
haviors in vr spherical video streaming,” in Proceedings of the 8th ACM on
Multimedia Systems Conference, ser. MMSys’17. New York, NY, USA:
Association for Computing Machinery, Jun. 2017, p. 193–198.

[50] M. Assens, X. Giro-i-Nieto, K. McGuinness, and N. E. O’Connor, “Saltinet:
Scan-path prediction on 360 degree images using saliency volumes,” in
Proc. of IEEE International Conference on Computer Vision Workshops
(ICCVW’17), Venice, Italy, Oct. 2017, pp. 2331–2338.

[51] A. D. Aladagli, E. Ekmekcioglu, D. Jarnikov, and A. Kondoz, “Predicting
head trajectories in 360 virtual reality videos,” in Proc. of International
Conference on 3D Immersion (IC3D’17), Brussels, Belgium, Dec. 2017,
pp. 1–6.

[52] J. Ling, K. Zhang, Y. Zhang, D. Yang, and Z. Chen, “A saliency prediction
model on 360 degree images using color dictionary based sparse represen-
tation,” Signal Processing: Image Communication, vol. 69, Mar. 2018.

[53] Y. Kavak, E. Erdem, and A. Erdem, “A comparative study for feature
integration strategies in dynamic saliency estimation,” Image Commun.,
vol. 51, no. C, p. 13–25, Feb. 2017.

[54] S. Rossi, F. De Simone, P. Frossard, and L. Toni, “Spherical clustering of
users navigating 360 content,” in Proc. of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP’19), Brighton, United
Kingdom, United Kingdom, May 2019, pp. 4020–4024.

[55] W. Lin, X. Zhang, Z. Guo, and W. Hu, “Opv: Bias correction based op-
timal probabilistic viewport-adaptive streaming for 360-degree video,” in
Proc. of IEEE International Conference on Multimedia Expo Workshops
(ICMEW’19), Shanghai, China, China, Jul. 2019, pp. 384–389.

[56] E. Jeong, D. You, C. Hyun, B. Seo, N. Kim, D. H. Kim, and Y. H. Lee,
“Viewport prediction method of 360 vr video using sound localization in-
formation,” in Proc. of Tenth International Conference on Ubiquitous and
Future Networks (ICUFN’18), Prague, Czech Republic, Jul. 2018, pp. 679–
681.

[57] H. Hu, Z. Xu, X. Zhang, and Z. Guo, “Optimal viewport-adaptive 360-
degree video streaming against random head movement,” in Proc. of IEEE

BIBLIOGRAPHY Page 149

International Conference on Communications (ICC’19), Shanghai, China,
China, May 2019, pp. 1–6.

[58] Q. Yang, J. Zou, K. Tang, C. Li, and H. Xiong, “Single and sequential
viewports prediction for 360-degree video streaming,” in Proc. of IEEE
International Symposium on Circuits and Systems (ISCAS’19), Sapporo,
Japan, Japan, May 2019, pp. 1–5.

[59] J. Heyse, M. T. Vega, F. de Backere, and F. de Turck, “Contextual bandit
learning-based viewport prediction for 360 video,” in Proc. of IEEE Con-
ference on Virtual Reality and 3D User Interfaces (VR’19), Osaka, Japan,
Japan, Mar. 2019, pp. 972–973.

[60] X. Chen, A. T. Z. Kasgari, and W. Saad, “Deep learning for content-based
personalized viewport prediction of 360-degree vr videos,” IEEE Network-
ing Letters, pp. 1–1, Jun. 2020.

[61] X. Feng, Z. Bao, and S. Wei, “Exploring cnn-based viewport prediction for
live virtual reality streaming,” in Proc. of IEEE International Conference
on Artificial Intelligence and Virtual Reality (AIVR’19), San Diego, CA,
USA, USA, Dec. 2019, pp. 183–1833.

[62] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan, “Optimizing 360 video
delivery over cellular networks,” in Proc. of the 5th Workshop on All Things
Cellular: Operations, Applications and Challenges, ser. ATC ’16. New
York, NY, USA: Association for Computing Machinery, Oct. 2016, p. 1–6.

[63] Y. Ban, L. Xie, Z. Xu, X. Zhang, Z. Guo, and Y. Wang, “Cub360: Ex-
ploiting cross-users behaviors for viewport prediction in 360 video adaptive
streaming,” in Proc. of IEEE International Conference on Multimedia and
Expo (ICME’18), San Diego, CA, USA, Jul. 2018, pp. 1–6.

[64] S. Petrangeli, G. Simon, and V. Swaminathan, “Trajectory-based viewport
prediction for 360-degree virtual reality videos,” in Proc. of IEEE Interna-
tional Conference on Artificial Intelligence and Virtual Reality (AIVR’18),
Taichung, Taiwan, Taiwan, Dec. 2018, pp. 157–160.

[65] M. Jeppsson, H. Espeland, C. Griwodz, T. Kupka, R. Langseth,
A. Petlund, P. Qiaoqiao, C. Xue, K. Pogorelov, M. Riegler, D. Johansen,
and P. Halvorsen, “Efficient live and on-demand tiled hevc 360 vr video
streaming,” in Proc. of IEEE International Symposium on Multimedia
(ISM’18), Taichung, Taiwan, Dec. 2018, pp. 81–88.

[66] R. Aksu, J. Chakareski, and V. Swaminathan, “Viewport-driven rate-
distortion optimized scalable live 360 video network multicast,” in

BIBLIOGRAPHY Page 150

Proc. of IEEE International Conference on Multimedia Expo Workshops
(ICMEW’18), San Diego, CA, USA, Jul. 2018, pp. 1–6.

[67] X. Liu, B. Han, F. Qian, and M. Varvello, “Lime: Understanding com-
mercial 360° live video streaming services,” in Proc. of the 10th ACM
Multimedia Systems Conference, ser. MMSys ’19. New York, NY, USA:
ACM, Jun. 2019, pp. 154–164.

[68] Y. Hu, S. Xie, Y. Xu, and J. Sun, “Dynamic vr live streaming over mmt,” in
Proc. of IEEE International Symposium on Broadband Multimedia Systems
and Broadcasting (BMSB’17), Cagliari, Italy, Jun. 2017, pp. 1–4.

[69] J. Li, R. Feng, Z. Liu, W. Sun, and Q. Li, “Modeling qoe of virtual re-
ality video transmission over wireless networks,” in Proc. of IEEE Global
Communications Conference (GLOBECOM’18), Abu Dhabi, United Arab
Emirates, United Arab Emirates, Dec. 2018, pp. 1–7.

[70] W. Sun, K. Gu, G. Zhai, S. Ma, W. Lin, and P. Le Calle, “Cviqd: Subjective
quality evaluation of compressed virtual reality images,” in Proc. of IEEE
International Conference on Image Processing (ICIP’17), Beijing, China,
Sep. 2017, pp. 3450–3454.

[71] Z. Sinno and A. C. Bovik, “Large scale subjective video quality study,”
in Proc. of 25th IEEE International Conference on Image Processing
(ICIP’18), Athens, Greece, Oct. 2018, pp. 276–280.

[72] M. Vranjes, S. Rimac-Drlje, and D. Zagar, “Objective video quality met-
rics,” in ELMAR’07, Zadar, Croatia, Sep. 2007, pp. 45–49.

[73] H. T. T. Tran, N. P. Ngoc, C. T. Pham, Y. J. Jung, and T. C. Thang,
“A subjective study on qoe of 360 video for vr communication,” in Proc.
of IEEE 19th International Workshop on Multimedia Signal Processing
(MMSP’17), Luton, UK, Oct. 2017, pp. 1–6.

[74] S. Chen, Y. Zhang, Y. Li, Z. Chen, and Z. Wang, “Spherical struc-
tural similarity index for objective omnidirectional video quality assess-
ment,” in Proc. of IEEE International Conference on Multimedia and Expo
(ICME’18), San Diego, CA, USA, Jul. 2018, pp. 1–6.

[75] H. T. T. Tran, N. P. Ngoc, C. M. Bui, M. H. Pham, and T. C. Thang,
“An evaluation of quality metrics for 360 videos,” in Proc. of the Ninth
International Conference on Ubiquitous and Future Networks (ICUFN’17),
Milan, Italy, Jul. 2017, pp. 7–11.

[76] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of youtube network
traffic at a campus network - measurements, models, and implications,”
Comput. Netw., vol. 53, no. 4, pp. 501–514, Mar. 2009.

BIBLIOGRAPHY Page 151

[77] C. Ge, N. Wang, W. K. Chai, and H. Hellwagner, “Qoe-assured 4k http
live streaming via transient segment holding at mobile edge,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 8, pp. 1816–1830, Aug.
2018.

[78] C. Li, L. Toni, J. Zou, H. Xiong, and P. Frossard, “Qoe-driven mobile edge
caching placement for adaptive video streaming,” IEEE Transactions on
Multimedia, vol. 20, no. 4, pp. 965–984, Apr. 2018.

[79] A. Mehrabi, M. Siekkinen, and A. Ylä-Jaaski, “Qoe-traffic optimization
through collaborative edge caching in adaptive mobile video streaming,”
IEEE Access, vol. 6, pp. 52 261–52 276, Sep. 2018.

[80] M. F. Tuysuz and M. E. Aydin, “Qoe-based mobility-aware collaborative
video streaming on the edge of 5g,” IEEE Transactions on Industrial In-
formatics, pp. 1–1, Feb. 2020.

[81] S. Zhang, N. Zhang, P. Yang, and X. Shen, “Cost-effective cache deploy-
ment in mobile heterogeneous networks,” IEEE Transactions on Vehicular
Technology, vol. 66, no. 12, pp. 11 264–11 276, Dec. 2017.

[82] Z. Su, Q. Xu, F. Hou, Q. Yang, and Q. Qi, “Edge caching for layered video
contents in mobile social networks,” IEEE Transactions on Multimedia,
vol. 19, no. 10, pp. 2210–2221, Oct. 2017.

[83] G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu, “Understanding
performance of edge content caching for mobile video streaming,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1076–
1089, May 2017.

[84] N. Carlsson and D. Eager, “Ephemeral content popularity at the edge and
implications for on-demand caching,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 6, pp. 1621–1634, Jun. 2017.

[85] S. Vakili, Q. Zhao, and Y. Zhou, “Time-varying stochastic multi-armed
bandit problems,” in Proc. of 48th Asilomar Conference on Signals, Sys-
tems and Computers, Pacific Grove, CA, USA, Nov. 2014, pp. 2103–2107.

[86] P. Blasco and D. Gündüz, “Multi-armed bandit optimization of cache con-
tent in wireless infostation networks,” in Proc. of IEEE International Sym-
posium on Information Theory, Honolulu, HI, USA, Jun. 2014, pp. 51–55.

[87] P. Blasco and D. Gündüz, “Learning-based optimization of cache content
in a small cell base station,” in Proc. of IEEE International Conference
on Communications (ICC), Sydney, NSW, Australia, Jun. 2014, pp. 1897–
1903.

BIBLIOGRAPHY Page 152

[88] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Smart caching in
wireless small cell networks via contextual multi-armed bandits,” in Proc.
of IEEE International Conference on Communications (ICC’16), Kuala
Lumpur, Malaysia, May 2016, pp. 1–7.

[89] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-aware
proactive content caching with service differentiation in wireless networks,”
IEEE Transactions on Wireless Communications, vol. 16, no. 2, pp. 1024–
1036, Feb. 2017.

[90] J. Song, M. Sheng, T. Q. S. Quek, C. Xu, and X. Wang, “Learning-based
content caching and sharing for wireless networks,” IEEE Transactions on
Communications, vol. 65, no. 10, pp. 4309–4324, Oct. 2017.

[91] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and scalable
caching for 5g using reinforcement learning of space-time popularities,”
IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp.
180–190, Feb. 2018.

[92] C. J. C. H. Watkins and P. Dayan, “Q-learning,” pp. 279–292, 1992.

[93] S. Li, J. Xu, M. van der Schaar, and W. Li, “Trend-aware video caching
through online learning,” IEEE Transactions on Multimedia, vol. 18,
no. 12, pp. 2503–2516, Dec. 2016.

[94] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement
learning-based framework for content caching,” in Proc. of the 52nd An-
nual Conference on Information Sciences and Systems (CISS), Princeton,
NJ, USA, Mar. 2018, pp. 1–6.

[95] Y. Wei, Z. Zhang, F. R. Yu, and Z. Han, “Joint user scheduling and con-
tent caching strategy for mobile edge networks using deep reinforcement
learning,” in Proc. of IEEE International Conference on Communications
Workshops (ICC Workshops), Kansas City, MO, USA, May 2018, pp. 1–6.

[96] J. Wang and I. C. Paschalidis, “An actor-critic algorithm with second-order
actor and critic,” IEEE Transactions on Automatic Control, vol. 62, no. 6,
pp. 2689–2703, Jun. 2017.

[97] G. Dulac-Arnold, R. Evans, P. Sunehag, and B. Coppin, “Deep
reinforcement learning in large discrete action spaces,” CoRR, vol.
abs/1512.07679, 2015. [Online]. Available: http://arxiv.org/abs/1512.
07679

[98] V. N. Vasyukov and A. A. Spector, “Gauss markov sequences with gibbs
distribution,” in Proc. of Third Russian-Korean International Symposium

http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/1512.07679

BIBLIOGRAPHY Page 153

on Science and Technology. KORUS’99 (Cat. No.99EX362), vol. 1, Novosi-
birsk, Russia, Russia, Jun. 1999, pp. 253–256 vol.1.

[99] B. Dai and W. Yu, “Joint user association and content placement for cache-
enabled wireless access networks,” in Proc. of IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP’16), Shanghai,
China, Mar. 2016, pp. 3521–3525.

[100] A. Khreishah and J. Chakareski, “Collaborative caching for multicell-
coordinated systems,” in Proc. of IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS’15), Hong Kong, China,
Apr. 2015, pp. 257–262.

[101] J. George and S. Sebastian, “Cooperative caching strategy for video stream-
ing in mobile networks,” in Proc. of International Conference on Emerging
Technological Trends (ICETT’16), Kollam, India, Oct. 2016, pp. 1–7.

[102] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,”
IEEE/ACM Transactions on Networking, vol. 24, no. 2, pp. 836–845, Apr.
2016.

[103] G. Van der Auwera, P. T. David, and M. Reisslein, “Traffic and
quality characterization of single-layer video streams encoded with the
h.264/mpeg-4 advanced video coding standard and scalable video coding
extension,” IEEE Transactions on Broadcasting, vol. 54, no. 3, pp. 698–
718, Sep. 2008.

[104] J. M. Boyce, Y. Ye, J. Chen, and A. K. Ramasubramonian, “Overview
of shvc: Scalable extensions of the high efficiency video coding standard,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 26,
no. 1, pp. 20–34, Jan. 2016.

[105] Z. Ye, F. D. Pellegrini, R. El-Azouzi, L. Maggi, and T. Jimenez, “Quality-
aware dash video caching schemes at mobile edge,” in Proc. of 29th Inter-
national Teletraffic Congress (ITC 29), vol. 1, Genoa, Italy, Sep. 2017, pp.
205–213.

[106] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer,
2004.

[107] ILOG CPLEX optimization studio. http://is.gd/3GGOFp.

[108] L. Alexander, R. Johnson, and J. Weiss, “Exploring zipf’s law,” Teach-
ing Mathematics and Its Applications: International Journal of the IMA,
vol. 17, no. 4, pp. 155–158, Dec. 1998.

BIBLIOGRAPHY Page 154

[109] P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri, “Soft cache
hits: Improving performance through recommendation and delivery of
related content,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 6, pp. 1300–1313, Jun. 2018.

[110] K. Poularakis, G. Iosifidis, A. Argyriou, and L. Tassiulas, “Video delivery
over heterogeneous cellular networks: Optimizing cost and performance,”
in Proc. of IEEE INFOCOM 2014 - IEEE Conference on Computer Com-
munications, Toronto, ON, Canada, Apr. 2014, pp. 1078–1086.

[111] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices,” in Proc.
of the 24th Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’18. New York, NY, USA: ACM, Oct. 2018,
pp. 99–114.

[112] L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai, “A two-
tier system for on-demand streaming of 360 degree video over dynamic
networks,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 9, no. 1, pp. 43–57, Mar. 2019.

[113] M. Xiao, C. Zhou, Y. Liu, and S. Chen, “Optile: Toward optimal tiling
in 360-degree video streaming,” in Proc. of the 25th ACM International
Conference on Multimedia, ser. MM ’17. New York, NY, USA: ACM,
Oct. 2017, pp. 708–716.

[114] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 1995.

[115] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[116] R. E. Bellman, Dynamic Programming. Dover Publications, 2003.

[117] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang, and D. I.
Kim, “Applications of deep reinforcement learning in communications and
networking: A survey,” IEEE Communications Surveys Tutorials, vol. 21,
no. 4, pp. 3133–3174, 2019.

[118] H. Li, T. Wei, A. Ren, Q. Zhu, and Y. Wang, “Deep reinforcement
learning: Framework, applications, and embedded implementations,”
CoRR, vol. abs/1710.03792, 2017. [Online]. Available: http://arxiv.org/
abs/1710.03792

[119] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam et al., “Mastering

http://arxiv.org/abs/1710.03792
http://arxiv.org/abs/1710.03792

BIBLIOGRAPHY Page 155

the game of Go with deep neural networks and tree search,” Nature, vol.
529, no. 7587, pp. 484–489, 2016.

[120] X. Lei, X. Jiang, and C. Wang, “Design and implementation of streaming
media processing software based on rtmp,” in Proc. of 5th Int. Congress on
Image and Signal Processing, Chongqing, China, Oct. 2012, pp. 192–196.

[121] G. Gualdi, R. Cucchiara, and A. Prati, “Low-latency live video stream-
ing over low-capacity networks,” in Proc. of the 8th IEEE International
Symposium on Multimedia (ISM’06), San Diego, CA, USA, Dec. 2006, pp.
449–456.

[122] [Online]. Available: https://engineering.fb.com/ios/
under-the-hood-broadcasting-live-video-to-millions/

[123] T. Ergen and S. S. Kozat, “Online training of lstm networks in distributed
systems for variable length data sequences,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, no. 10, pp. 5159–5165, Oct. 2018.

[124] N. M. Vural, S. Ergut, and S. S. Kozat, “An efficient and
effective second-order training algorithm for lstm-based adaptive
learning,” CoRR, vol. abs/1910.09857, 2019. [Online]. Available:
https://arxiv.org/abs/1910.09857

[125] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997.

[126] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang, “Mak-
ing content caching policies “smart” using the deepcache framework,” SIG-
COMM Comput. Commun. Rev., vol. 48, no. 5, p. 64–69, Jan. 2019.

[127] E. Baccour, A. Erbad, A. Mohamed, K. Bilal, and M. Guizani, “Proactive
video chunks caching and processing for latency and cost minimization in
edge networks,” in Proc. of IEEE Wireless Communications and Network-
ing Conference (WCNC’19), Marrakesh, Morocco, Morocco, Apr. 2019,
pp. 1–7.

[128] L. T. Tan and R. Q. Hu, “Mobility-aware edge caching and computing in
vehicle networks: A deep reinforcement learning,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 11, pp. 10 190–10 203, Nov. 2018.

[129] Z. Chen and M. Kountouris, “D2d caching vs. small cell caching: Where
to cache content in a wireless network?” in Proc. of IEEE 17th Interna-
tional Workshop on Signal Processing Advances in Wireless Communica-
tions (SPAWC’16), Edinburgh, UK, Jul. 2016, pp. 1–6.

https://engineering.fb.com/ios/under-the-hood-broadcasting-live-video-to-millions/
https://engineering.fb.com/ios/under-the-hood-broadcasting-live-video-to-millions/
https://arxiv.org/abs/1910.09857

BIBLIOGRAPHY Page 156

[130] S. Mukhopadhyay and Bindu Jain, “Multi-agent markov decision processes
with limited agent communication,” in Proc. of the 2001 IEEE Interna-
tional Symposium on Intelligent Control (ISIC ’01) (Cat. No.01CH37206),
Mexico City, Mexico, Mexico, Sep. 2001, pp. 7–12.

[131] V. Akre, A. Abdulla, A. Rajan, A. Rashed, J. Ahamed, M. Mohammed,
and O. Abdulla, “Virtual reality for medical science in the uae,” in Proc.
of the Fifth HCT Information Technology Trends (ITT’18), Dubai, United
Arab Emirates, Nov. 2018, pp. 325–330.

[132] Geheng Chen and Xiaowei Wang, “Intra-frame prediction algorithm based
on the h.264/avc research and improvement,” in Proc. of International
Conference on Computer, Mechatronics, Control and Electronic Engineer-
ing, vol. 5, Changchun, China, Aug. 2010, pp. 338–340.

[133] J. Zhang, A. Moon, X. Zhuo, and S. W. Son, “Towards improving
rate-distortion performance of transform-based lossy compression for hpc
datasets,” in Proc. of IEEE High Performance Extreme Computing Con-
ference (HPEC’19), Waltham, MA, USA, USA, Sep. 2019, pp. 1–7.

[134] P. Spachos, T. Lin, W. Li, M. Chignell, A. Leon-Garcia, J. Jiang, and
L. Zucherman, “Subjective qoe assessment on video service: Laboratory
controllable approach,” in 2017 IEEE 18th International Symposium on A
World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau,
China, Jun. 2017, pp. 1–9.

[135] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack,
“Study of subjective and objective quality assessment of video,” IEEE
Transactions on Image Processing, vol. 19, no. 6, pp. 1427–1441, Jun.
2010.

[136] R. E. Uhrig, “Introduction to artificial neural networks,” in Proc. of IECON
’95 - 21st Annual Conference on IEEE Industrial Electronics, vol. 1, Or-
lando, FL, USA, USA, Nov. 1995, pp. 33–37 vol.1.

[137] E. Nishani and B. Çiço, “Computer vision approaches based on deep learn-
ing and neural networks: Deep neural networks for video analysis of human
pose estimation,” in Proc. of 6th Mediterranean Conference on Embedded
Computing (MECO’17), Bar, Montenegro, Jun. 2017, pp. 1–4.

[138] J. Wang and Z. Han, “Research on speech emotion recognition technology
based on deep and shallow neural network,” in Proc. of Chinese Control
Conference (CCC’19), Guangzhou, China, China, Jul. 2019, pp. 3555–
3558.

BIBLIOGRAPHY Page 157

[139] S. Marinai, M. Gori, and G. Soda, “Artificial neural networks for document
analysis and recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, no. 1, pp. 23–35, Jan. 2005.

[140] A. Galindo-Serrano and L. Giupponi, “Distributed q-learning for aggre-
gated interference control in cognitive radio networks,” IEEE Transactions
on Vehicular Technology, vol. 59, no. 4, pp. 1823–1834, May 2010.

	Cover
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Algorithms
	List of Symbols
	Acronyms
	Introduction
	Motivation
	Edge caching
	Challenges on caching 360o videos
	Contributions
	Overview
	Tile-Based Joint Caching and Delivery of 360o Videos in Heterogeneous Networks
	Viewport-Aware Deep Reinforcement Learning Approach for 360o Video Caching
	A Tile-based caching framework for 360o live video streaming

	Thesis Outline

	Related Work
	Introduction
	360o video related literature
	Tile encoding of 360o videos
	Projection schemes
	Visual attention in 360o videos
	Viewport Prediction
	360o live video streaming
	Quality of Experience Metrics

	Edge caching systems
	Overview
	Online edge caching
	Collaborative edge caching
	Edge caching of layered videos

	Tile-Based Joint Caching and Delivery of 360o Videos in Heterogeneous Networks
	Introduction
	System Setup
	Network
	Video Library
	Motivating Example

	Problem formulation
	Distributed Algorithm
	Performance Evaluation
	Simulation Setup
	Parameter Analysis
	Convergence

	Conclusion

	Viewport-Aware Deep Reinforcement Learning Approach for 360o Video Caching
	Introduction
	System Setup
	Users' Requests Model and Cache Update Schedule
	MDP Formulation
	DQN based cache optimization
	Performance Evaluation
	Simulation Setup
	Deep Neural Network Training
	System Parameter Analysis
	Overlap between Viewports

	Conclusion

	A Tile-based caching framework for 360o live video streaming
	Introduction
	System Setup
	System Model
	Performance Evaluation
	Simulation Setup
	LSTM Neural Network training
	Parameter Analysis

	Conclusion

	Discussion and Future Work
	Summary
	Main Contributions
	Future Work

	Appendix A: Video Coding
	Appendix B: Artificial Neural Networks
	List of Publications
	Bibliography

