41 research outputs found

    IEEE Transactions on Broadcasting Special Issue on: 5G for Broadband Multimedia Systems and Broadcasting

    Full text link
    [EN] The upcoming fifth-generation ( 5G ) of wireless communications technologies is expected to revolutionize society digital transformation thanks to its unprecedented wireless performance capabilities, providing speeds of several Gbps, very low latencies well below 5 ms, ultra-reliable transmissions with up to 99.999% success probability, while being able to handle a huge number of devices simultaneously connected to the network. The first version of the 3GPP specification (i.e., Release 15) has been recently completed and many 5G trials are under plan or carrying out worldwide, with the first commercial deployments happening in 2019."© 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."Gomez-Barquero, D.; Li, W.; Fuentes, M.; Xiong, J.; Araniti, G.; Akamine, C.; Wang, J. (2019). IEEE Transactions on Broadcasting Special Issue on: 5G for Broadband Multimedia Systems and Broadcasting. IEEE Transactions on Broadcasting. 65(2):351-355. https://doi.org/10.1109/TBC.2019.2914866S35135565

    A REVIEW STUDY OF EUROPEAN R&D PROJECTS FOR SATELLITE COMMUNICATIONS IN 5G/6G ERA

    Get PDF
    Κατά τις τελευταίες δεκαετίες τα δορυφορικά συστήματα τηλεπικοινωνιών έχουν προσφέρει μια γκάμα από πολυμεσικές υπηρεσίες όπως δορυφορική τηλεόραση, δορυφορική τηλεφωνία και ευρυζωνική πρόσβαση στο διαδίκτυο. Οι μακροπρόθεσμες τεχνολογικές αναβαθμίσεις σε συνδυασμό με την προσθήκη νέων δορυφορικών συστημάτων γεωστατικής και ελλειπτικής τροχιάς και με την ενσωμάτωση τεχνολογιών πληροφορικής έχουν ωθήσει την αύξηση του μέγιστου εύρους των δορυφόρων στο 1Gbps σε μεμονωμένους δορυφόρους ενώ σε διάταξη αστερισμού μπορούν να ξεπεράσουν το 1 Tbps. Σε συνδυασμό με την μείωση του χρόνου απόκρισης σε ρυθμούς ανταγωνιστικούς με τις χερσαίες υποδομές ανοίγουν νέες ευκαιρίες και νέους ρόλους εντός ενός οικοσυστήματος ετερογενούς δικτύων 5ης γενιάς. Σε αυτήν την διατριβή, αξιολογούμε επιδοτούμενα επιστημονικά προγράμματα έρευνας και ανάπτυξης της Ευρωπαϊκής Επιτροπής Διαστήματος (ESA) και του προγράμματος επιδότησης Horizon 2020 της Ευρωπαϊκής Ένωσης, προκειμένου να εξηγήσουμε τις δυνατότητες των δορυφόρων εντός ενός ετερογενούς δικτύου 5ης γενιάς, αναφέρουμε συγκεκριμένα αυτά που αφορούν την εξέλιξη των δορυφορικών ψηφιακών συστημάτων και την ικανότητα ενσωμάτωσης τους σε τωρινές αλλά και μελλοντικές υποδομές χερσαίων τηλεπικοινωνιακών δικτύων μέσω της εμφάνισης νέων τεχνολογιών στις ηλεκτρονικές και οπτικές επικοινωνίες αέρος μαζί με την εμφάνιση τεχνολογιών πληροφορικής όπως της δικτύωσης βασισμένης στο λογισμικό και της εικονικοποίησης λειτουργιών δικτύου. Αναφερόμαστε στους στόχους του κάθε project ξεχωριστά και κατηγοριοποιημένα στους ακόλουθους τομείς έρευνας: -Συσσωμάτωση των δορυφόρων με τα επίγεια δίκτυα 5ης γενιάς με οργανωμένες μελέτες και στρατηγικές -Ενσωμάτωση των τεχνολογιών δικτύωσης βασισμένης στο λογισμικό και εικονικοποίησης λειτουργιών δικτύου στο δορυφορικών τμήμα των δικτύων 5ης γενιάς -Ο ρόλος των δορυφόρων σε εφαρμογές του διαδικτύου των πραγμάτων σε συνάφεια με τα χερσαία δίκτυα 5ης γενιάς -Ο ρόλος των δορυφόρων στην δίκτυα διανομής πολυμεσικού περιεχομένου & η επιρροή των πρωτοκόλλων διαδικτύου στην ποιότητα υπηρεσίας χρήστη κατά την διάρκεια μιας δορυφορικής σύνδεσης. -Μελλοντικές βελτιώσεις και εφαρμογές στα δορυφορικά συστήματα με έμφαση στα μελλοντικά πρότυπα του φυσικό επιπέδου Στο τέλος διαθέτουμε ένα παράρτημα που αφορά τεχνικές αναλύσεις στην εξέλιξη του φυσικού επιπέδου των δορυφορικών συστημάτων, συνοδευόμενο με την συσχετιζόμενη βιβλιογραφία για περαιτέρω μελέτη.Over the last decades satellite telecommunication systems offer many types of multimedia services like Satellite TV, telephony and broadband internet access. The long-term technological evolutions occurred into state-of-the-art satellite systems altogether with the addition of new high throughput geostatic and non-geostatic systems, individual satellites can now achieve a peak bandwidth of up to Gbps, and with possible extension into satellite constellation systems the total capacity can reach up to Tbps. Supplementary, with systems latency being comparable to terrestrial infrastructures and with integration of several computer science technologies, satellite systems can achieve new & more advanced roles inside a heterogeneous 5G network’s ecosystem. In this thesis, we have studied European Space Agency (ESA’s) and European Union’s (EU) Horizon 2020 Research and Development (R&D) funded projects in order to describe the satellite capabilities within a 5G heterogeneous network, mentioning the impact of the evolution of digital satellite communications and furthermore the integration with the state-of the art & future terrain telecommunication systems by new technologies occurred through the evolution of electronic & free space optical communications alongside with the integration of computer science’s technologies like Software Defined Networking (SDN) and Network Function Virtualization (NFV). In order to describe this evolution we have studied the concepts of each individual project, categorized chronically and individual by its scientific field of research. Our main scientific trends for this thesis are: -Satellite Integration studies & strategies into the 5G terrestrial networks -Integration of SDN and NFV technologies on 5G satellite component -Satellite’s role in the Internet of Things applications over 5G terrestrial networks -Satellite’s role in Content Distribution Networks & internet protocols impact over user’s Quality of Experience (QoE) over a satellite link -The future proposals upon the evolution of Satellite systems by upcoming improvements and corresponding standards Finally, we have created an Annex for technical details upon the evolution of physical layer of the satellite systems with the corresponding bibliography of this thesis for future study

    Watching Stars in Pixels: The Interplay of Traffic Shaping and YouTube Streaming QoE over GEO Satellite Networks

    Full text link
    Geosynchronous satellite (GEO) networks are a crucial option for users beyond terrestrial connectivity. However, unlike terrestrial networks, GEO networks exhibit high latency and deploy TCP proxies and traffic shapers. The deployment of proxies effectively mitigates the impact of high network latency in GEO networks, while traffic shapers help realize customer-controlled data-saver options that optimize data usage. It is unclear how the interplay between GEO networks' high latency, TCP proxies, and traffic-shaping policies affects the quality of experience (QoE) for commonly used video applications. To fill this gap, we analyze the quality of over 22k YouTube video sessions streamed across a production GEO network with a 900900Kbps shaping rate. Given the average bit rates for the selected videos, we expected seamless streaming at 360360p or lower resolutions. However, our analysis reveals that this is not the case: 28%28\% of TCP sessions and 18%18\% of gQUIC sessions experience rebuffering events, while the median average resolution is only 380380p for TCP and 299299p for gQUIC. Our analysis identifies two key factors contributing to sub-optimal performance: (i)unlike TCP, gQUIC only utilizes 63%63\% of network capacity; and (ii)YouTube's imperfect chunk request pipelining. As a result of our study, the partner GEO ISP discontinued support for the low-bandwidth data-saving option in U.S. business and residential markets to avoid potential degradation of video quality -- highlighting the practical significance of our findings

    Demonstrating Immersive Media Delivery on 5G Broadcast and Multicast Testing Networks

    Get PDF
    This work presents eight demonstrators and one showcase developed within the 5G-Xcast project. They experimentally demonstrate and validate key technical enablers for the future of media delivery, associated with multicast and broadcast communication capabilities in 5th Generation (5G). In 5G-Xcast, three existing testbeds: IRT in Munich (Germany), 5GIC in Surrey (UK), and TUAS in Turku (Finland), have been developed into 5G broadcast and multicast testing networks, which enables us to demonstrate our vision of a converged 5G infrastructure with fixed and mobile accesses and terrestrial broadcast, delivering immersive audio-visual media content. Built upon the improved testing networks, the demonstrators and showcase developed in 5G-Xcast show the impact of the technology developed in the project. Our demonstrations predominantly cover use cases belonging to two verticals: Media & Entertainment and Public Warning, which are future 5G scenarios relevant to multicast and broadcast delivery. In this paper, we present the development of these demonstrators, the showcase, and the testbeds. We also provide key findings from the experiments and demonstrations, which not only validate the technical solutions developed in the project, but also illustrate the potential technical impact of these solutions for broadcasters, content providers, operators, and other industries interested in the future immersive media delivery.Comment: 16 pages, 22 figures, IEEE Trans. Broadcastin

    IoT and UAV Integration in 5G Hybrid Terrestrial-Satellite Networks

    Get PDF
    The Fifth Generation of Mobile Communications (5G) will lead to the growth of use cases demanding higher capacity and a enhanced data rate, a lower latency, and a more flexible and scalable network able to offer better user Quality of Experience (QoE). The Internet of Things (IoT) is one of these use cases. It has been spreading in the recent past few years, and it covers a wider range of possible application scenarios, such as smart city, smart factory, and smart agriculture, among many others. However, the limitations of the terrestrial network hinder the deployment of IoT devices and services. Besides, the existence of a plethora of different solutions (short vs. long range, commercialized vs. standardized, etc.), each of them based on different communication protocols and, in some cases, on different access infrastructures, makes the integration among them and with the upcoming 5G infrastructure more difficult. This paper discusses the huge set of IoT solutions available or still under standardization that will need to be integrated in the 5G framework. UAVs and satellites will be proposed as possible solutions to ease this integration, overcoming the limitations of the terrestrial infrastructure, such as the limited covered areas and the densification of the number of IoT devices per square kilometer

    Field Trial on 5G New Radio Over Satellite

    Get PDF
    5G New Radio (NR) is the 3rd Generation Partnership Project (3GPP) radio access technology for the next generation mobile communications network. A major evolution of 5G constitutes the integration of non-terrestrial networks including geostationary and low Earth orbit satellites. The seamless integration of satellites in the terrestrial mobile network requires significant adaptations within the radio access network and the development of new features in the core network to cope with the specific satellite channel characteristics. To date, the 5G control and data plane has been standardized to handle only continuous backhaul communication between the network components. However, a mobile satellite enabled next generation Node B (gNB) located in a vehicle or in a moving aerial platform needs to be able to handle frequent backhaul outages of various duration as well as longer signal delays as opposed to short terrestrial connections via fiber. In this paper, we report the results of an over-the-air (OTA) field trial comprising a mobile edge node connected to the 5G standalone core network components over a geostationary satellite. We analyze Transmission Control Protocol (TCP) acceleration and GPRS Tunneling Protocol (GTP)/TCP/Internet Protocol (IP) header compression features through the GTP. Moreover, the influence of short and long interruptions in the communication between the edge node and the central components on the entire system performance is investigated. The header compression and TCP acceleration modules were implemented on the satellite modems and are now part of the protocol stack of these devices. The results show up to 12% higher data rates for the 5G user equipment (UE), on a 1.5 MHz single carrier return link compared to deactivated TCP acceleration and header compression. We increased the data rate by 20% on the 4.5 MHz DVB-S2X forward link between the UE and 5G core. Moreover, our measurements reveal that even satellite-enabled gNB mobility is possible with the current Release 15 standard. After a short outage of the satellite connection due to shadowing, the UE can successfully re-establish the user plane connection to the core network. Our results will facilitate the full integration of satellite components in 5G through open and standard solutions

    An innovative machine learning-based scheduling solution for improving live UHD video streaming quality in highly dynamic network environments

    Get PDF
    The latest advances in terms of network technologies open up new opportunities for high-end applications, including using the next generation video streaming technologies. As mobile devices become more affordable and powerful, an increasing range of rich media applications could offer a highly realistic and immersive experience to mobile users. However, this comes at the cost of very stringent Quality of Service (QoS) requirements, putting significant pressure on the underlying networks. In order to accommodate these new rich media applications and overcome their associated challenges, this paper proposes an innovative Machine Learning-based scheduling solution which supports increased quality for live omnidirectional (360◦) video streaming. The proposed solution is deployed in a highly dy-namic Unmanned Aerial Vehicle (UAV)-based environment to support immersive live omnidirectional video streaming to mobile users. The effectiveness of the proposed method is demonstrated through simulations and compared against three state-of-the-art scheduling solutions, such as: Static Prioritization (SP), Required Activity Detection Scheduler (RADS) and Frame Level Scheduler (FLS). The results show that the proposed solution outperforms the other schemes involved in terms of PSNR, throughput and packet loss rate
    corecore