527 research outputs found

    Livrable D3.3 of the PERSEE project : 2D coding tools

    Get PDF
    49Livrable D3.3 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D3.3 du projet. Son titre : 2D coding tool

    A software system for laboratory experiments in image processing

    Get PDF
    Laboratory experiments for image processing courses are usually software implementations of processing algorithms, but students of image processing come from diverse backgrounds with widely differing software experience. To avoid learning overhead, the software system should be easy to learn and use, even for those with no exposure to mathematical programming languages or object-oriented programming. The class library for image processing (CLIP) supports users with knowledge of C, by providing three C++ types with small public interfaces, including natural and efficient operator overloading. CLIP programs are compact and fast. Experience in using the system in undergraduate and graduate teaching indicates that it supports subject matter learning with little distraction from language/system learning

    Depth-based Multi-View 3D Video Coding

    Get PDF

    Analysis and Design of Lossless Bi-level Image Coding Systems

    Get PDF
    Lossless image coding deals with the problem of representing an image with a minimum number of binary bits from which the original image can be fully recovered without any loss of information. Most lossless image coding algorithms reach the goal of efficient compression by taking care of the spatial correlations and statistical redundancy lying in images. Context based algorithms are the typical algorithms in lossless image coding. One key probelm in context based lossless bi-level image coding algorithms is the design of context templates. By using carefully designed context templates, we can effectively employ the information provided by surrounding pixels in an image. In almost all image processing applications, image data is accessed in a raster scanning manner and is treated as 1-D integer sequence rather than 2-D data. In this thesis, we present a quadrisection scanning method which is better than raster scanning in that more adjacent surrounding pixels are incorporated into context templates. Based on quadrisection scanning, we develop several context templates and propose several image coding schemes for both sequential and progressive lossless bi-level image compression. Our results show that our algorithms perform better than those raster scanning based algorithms, such as JBIG1 used in this thesis as a reference. Also, the application of 1-D grammar based codes in lossless image coding is discussed. 1-D grammar based codes outperform those LZ77/LZ78 based compression utility software for general data compression. It is also effective in lossless image coding. Several coding schemes for bi-level image compression via 1-D grammar codes are provided in this thesis, especially the parallel switching algorithm which combines the power of 1-D grammar based codes and context based algorithms. Most of our results are comparable to or better than those afforded by JBIG1

    Efficient Algorithms for Large-Scale Image Analysis

    Get PDF
    This work develops highly efficient algorithms for analyzing large images. Applications include object-based change detection and screening. The algorithms are 10-100 times as fast as existing software, sometimes even outperforming FGPA/GPU hardware, because they are designed to suit the computer architecture. This thesis describes the implementation details and the underlying algorithm engineering methodology, so that both may also be applied to other applications

    Frames for Exact Inversion of the Rank Order Coder

    Get PDF
    International audienceOur goal is to revisit rank order coding by proposing an original exact decoding procedure for it. Rank order coding was proposed by Thorpe . who stated that the order in which the retina cells are activated encodes for the visual stimulus. Based on this idea, the authors proposed in a rank order coder/decoder associated to a retinal model. Though, it appeared that the decoding procedure employed yields reconstruction errors that limit the model bit-cost/quality performances when used as an image codec. The attempts made in the literature to overcome this issue are time consuming and alter the coding procedure, or are lacking mathematical support and feasibility for standard size images. Here we solve this problem in an original fashion by using the frames theory, where a frame of a vector space designates an extension for the notion of basis. Our contribution is twofold. First, we prove that the analyzing filter bank considered is a frame, and then we define the corresponding dual frame that is necessary for the exact image reconstruction. Second, to deal with the problem of memory overhead, we design a recursive out-of-core blockwise algorithm for the computation of this dual frame. Our work provides a mathematical formalism for the retinal model under study and defines a simple and exact reverse transform for it with over than 265 dB of increase in the peak signal-to-noise ratio quality compared to . Furthermore, the framework presented here can be extended to several models of the visual cortical areas using redundant representations

    Frames for Exact Inversion of the Rank Order Coder

    Get PDF
    Our goal is to revisit rank order coding by proposing an original exact decoding procedure for it. Rank order coding was proposed by Simon Thorpe et al. who stated that the retina represents the visual stimulus by the order in which its cells are activated. A classical rank order coder/decoder was then designed on this basis [1]. Though, it appeared that the decoding proce- dure employed yields reconstruction errors that limit the model Rate/Quality performances when used as an image codec. The attempts made in the litera- ture to overcome this issue are time consuming and alter the coding procedure, or are lacking mathematical support and feasibility for standard size images. Here we solve this problem in an original fashion by using the frames theory, where a frame of a vector space designates an extension for the notion of basis. First, we prove that the analyzing filter bank considered is a frame, and then we define the corresponding dual frame that is necessary for the exact image reconstruction. Second, to deal with the problem of memory overhead, we de- sign a recursive out-of-core blockwise algorithm for the computation of this dual frame. Our work provides a mathematical formalism for the retinal model under study and defines a simple and exact reverse transform for it with up to 270 dB of PSNR gain compared to [1]. Furthermore, the framework presented here can be extended to several models of the visual cortical areas using redundant representations.Notre objectif est de revisiter le codage d'images statiques par rang en proposant une procĂ©dure originale de dĂ©codage exact. Le codage par rang a Ă©tĂ© proposĂ© par Simon Thorpe et al. qui a affirmĂ© que la rĂ©tine reprĂ©sente le stimulus visuel par l'ordre selon lequel ses cellules sont activĂ©es. Un codeur par ordre classique ainsi que le dĂ©codeur ont ensuite Ă©tĂ© conçus se basant sur ces rĂ©sultats [1]. Cependant, il s'avĂšre que la procĂ©dure de dĂ©codage employĂ© engendre des erreurs de reconstruction qui limitent les performances DĂ©bit / QualitĂ© du modĂšle lorsqu'il est utilisĂ© comme un codec d'images. Les tentatives proposĂ©es dans la littĂ©rature pour surmonter ce problĂšme prennent du temps et modifie la procĂ©dure de codage, ou manquent d'apport mathĂ©matique et de faisabilitĂ© pour des images de tailles standards. Ici nous rĂ©solvons ce problĂšme de façon originale en utilisant la thĂ©orie des "frames", oĂč une frame d'un espace vectoriel dĂ©signe une extension de la notion de base. Tout d'abord, nous montrons que le banc de filtres d'analyse considĂ©rĂ© est une frame, puis nous dĂ©finissons la frame duale correspondante qui est nĂ©cessaire pour la reconstruction exacte de l'image. DeuxiĂšmement, pour faire face au problĂšme du dĂ©bordement de mĂ©moire, nous concevons un algorithme rĂ©cursif, out-of-core, et opĂ©rant par blocs pour le calcul de cette frame duale. Notre travail fournit un formalisme mathĂ©matique pour le modĂšle de la rĂ©tine Ă  l'Ă©tude et dĂ©finit une inversion simple et exacte de la transformĂ©e bio-inspirĂ©e dĂ©finie dans [1] avec un maximum de 270 dB de gain de PSNR par rapport au modĂšle originel. Par ailleurs, le travail prĂ©sentĂ© ici peut ĂȘtre Ă©tendu Ă  plusieurs autres modĂšles de zones corticales visuelles utilisant des reprĂ©sentations redondantes

    Codage d'images avec et sans pertes à basse complexité et basé contenu

    Get PDF
    This doctoral research project aims at designing an improved solution of the still image codec called LAR (Locally Adaptive Resolution) for both compression performance and complexity. Several image compression standards have been well proposed and used in the multimedia applications, but the research does not stop the progress for the higher coding quality and/or lower coding consumption. JPEG was standardized twenty years ago, while it is still a widely used compression format today. With a better coding efficiency, the application of the JPEG 2000 is limited by its larger computation cost than the JPEG one. In 2008, the JPEG Committee announced a Call for Advanced Image Coding (AIC). This call aims to standardize potential technologies going beyond existing JPEG standards. The LAR codec was proposed as one response to this call. The LAR framework tends to associate the compression efficiency and the content-based representation. It supports both lossy and lossless coding under the same structure. However, at the beginning of this study, the LAR codec did not implement the rate-distortion-optimization (RDO). This shortage was detrimental for LAR during the AIC evaluation step. Thus, in this work, it is first to characterize the impact of the main parameters of the codec on the compression efficiency, next to construct the RDO models to configure parameters of LAR for achieving optimal or sub-optimal coding efficiencies. Further, based on the RDO models, a “quality constraint” method is introduced to encode the image at a given target MSE/PSNR. The accuracy of the proposed technique, estimated by the ratio between the error variance and the setpoint, is about 10%. Besides, the subjective quality measurement is taken into consideration and the RDO models are locally applied in the image rather than globally. The perceptual quality is improved with a significant gain measured by the objective quality metric SSIM (structural similarity). Aiming at a low complexity and efficient image codec, a new coding scheme is also proposed in lossless mode under the LAR framework. In this context, all the coding steps are changed for a better final compression ratio. A new classification module is also introduced to decrease the entropy of the prediction errors. Experiments show that this lossless codec achieves the equivalent compression ratio to JPEG 2000, while saving 76% of the time consumption in average in encoding and decoding.Ce projet de recherche doctoral vise Ă  proposer solution amĂ©liorĂ©e du codec de codage d’images LAR (Locally Adaptive Resolution), Ă  la fois d’un point de vue performances de compression et complexitĂ©. Plusieurs standards de compression d’images ont Ă©tĂ© proposĂ©s par le passĂ© et mis Ă  profit dans de nombreuses applications multimĂ©dia, mais la recherche continue dans ce domaine afin d’offrir de plus grande qualitĂ© de codage et/ou de plus faibles complexitĂ© de traitements. JPEG fut standardisĂ© il y a vingt ans, et il continue pourtant Ă  ĂȘtre le format de compression le plus utilisĂ© actuellement. Bien qu’avec de meilleures performances de compression, l’utilisation de JPEG 2000 reste limitĂ©e due Ă  sa complexitĂ© plus importe comparĂ©e Ă  JPEG. En 2008, le comitĂ© de standardisation JPEG a lancĂ© un appel Ă  proposition appelĂ© AIC (Advanced Image Coding). L’objectif Ă©tait de pouvoir standardiser de nouvelles technologies allant au-delĂ  des standards existants. Le codec LAR fut alors proposĂ© comme rĂ©ponse Ă  cet appel. Le systĂšme LAR tend Ă  associer une efficacitĂ© de compression et une reprĂ©sentation basĂ©e contenu. Il supporte le codage avec et sans pertes avec la mĂȘme structure. Cependant, au dĂ©but de cette Ă©tude, le codec LAR ne mettait pas en oeuvre de techniques d’optimisation dĂ©bit/distorsions (RDO), ce qui lui fut prĂ©judiciable lors de la phase d’évaluation d’AIC. Ainsi dans ce travail, il s’agit dans un premier temps de caractĂ©riser l’impact des principaux paramĂštres du codec sur l’efficacitĂ© de compression, sur la caractĂ©risation des relations existantes entre efficacitĂ© de codage, puis de construire des modĂšles RDO pour la configuration des paramĂštres afin d’obtenir une efficacitĂ© de codage proche de l’optimal. De plus, basĂ©e sur ces modĂšles RDO, une mĂ©thode de « contrĂŽle de qualitĂ© » est introduite qui permet de coder une image Ă  une cible MSE/PSNR donnĂ©e. La prĂ©cision de la technique proposĂ©e, estimĂ©e par le rapport entre la variance de l’erreur et la consigne, est d’environ 10%. En supplĂ©ment, la mesure de qualitĂ© subjective est prise en considĂ©ration et les modĂšles RDO sont appliquĂ©s localement dans l’image et non plus globalement. La qualitĂ© perceptuelle est visiblement amĂ©liorĂ©e, avec un gain significatif mesurĂ© par la mĂ©trique de qualitĂ© objective SSIM. Avec un double objectif d’efficacitĂ© de codage et de basse complexitĂ©, un nouveau schĂ©ma de codage LAR est Ă©galement proposĂ© dans le mode sans perte. Dans ce contexte, toutes les Ă©tapes de codage sont modifiĂ©es pour un meilleur taux de compression final. Un nouveau module de classification est Ă©galement introduit pour diminuer l’entropie des erreurs de prĂ©diction. Les expĂ©rimentations montrent que ce codec sans perte atteint des taux de compression Ă©quivalents Ă  ceux de JPEG 2000, tout en Ă©conomisant 76% du temps de codage et de dĂ©codage

    Image compression techniques using vector quantization

    Get PDF
    • 

    corecore