181 research outputs found

    Kunz Languages

    Get PDF

    Nondeterminism and Guarded Commands

    Full text link
    The purpose of this paper is to discuss the relevance of nondeterminism in computer science, with a special emphasis on Dijkstra's guarded commands language.Comment: 34 pages. This is authors' version of Chapter 8 of the book K.R. Apt and C.A.R. Hoare (editors), Edsger Wybe Dijkstra: His Life, Work, and Legacy, volume 45 of ACM Books. ACM/Morgan & Claypool, 202

    Computations and interaction

    Get PDF
    We enhance the notion of a computation of the classical theory of computing with the notion of interaction. In this way, we enhance a Turing machine as a model of computation to a Reactive Turing Machine that is an abstract model of a computer as it is used nowadays, always interacting with the user and the world

    Reachability in Higher-Order-Counters

    Full text link
    Higher-order counter automata (\HOCS) can be either seen as a restriction of higher-order pushdown automata (\HOPS) to a unary stack alphabet, or as an extension of counter automata to higher levels. We distinguish two principal kinds of \HOCS: those that can test whether the topmost counter value is zero and those which cannot. We show that control-state reachability for level kk \HOCS with 00-test is complete for \mbox{(k−2)(k-2)}-fold exponential space; leaving out the 00-test leads to completeness for \mbox{(k−2)(k-2)}-fold exponential time. Restricting \HOCS (without 00-test) to level 22, we prove that global (forward or backward) reachability analysis is \PTIME-complete. This enhances the known result for pushdown systems which are subsumed by level 22 \HOCS without 00-test. We transfer our results to the formal language setting. Assuming that \PTIME \subsetneq \PSPACE \subsetneq \mathbf{EXPTIME}, we apply proof ideas of Engelfriet and conclude that the hierarchies of languages of \HOPS and of \HOCS form strictly interleaving hierarchies. Interestingly, Engelfriet's constructions also allow to conclude immediately that the hierarchy of collapsible pushdown languages is strict level-by-level due to the existing complexity results for reachability on collapsible pushdown graphs. This answers an open question independently asked by Parys and by Kobayashi.Comment: Version with Full Proofs of a paper that appears at MFCS 201

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families

    The Surprising Computational Power of Nondeterministic Stack RNNs

    Full text link
    Traditional recurrent neural networks (RNNs) have a fixed, finite number of memory cells. In theory (assuming bounded range and precision), this limits their formal language recognition power to regular languages, and in practice, RNNs have been shown to be unable to learn many context-free languages (CFLs). In order to expand the class of languages RNNs recognize, prior work has augmented RNNs with a nondeterministic stack data structure, putting them on par with pushdown automata and increasing their language recognition power to CFLs. Nondeterminism is needed for recognizing all CFLs (not just deterministic CFLs), but in this paper, we show that nondeterminism and the neural controller interact to produce two more unexpected abilities. First, the nondeterministic stack RNN can recognize not only CFLs, but also many non-context-free languages. Second, it can recognize languages with much larger alphabet sizes than one might expect given the size of its stack alphabet. Finally, to increase the information capacity in the stack and allow it to solve more complicated tasks with large alphabet sizes, we propose a new version of the nondeterministic stack that simulates stacks of vectors rather than discrete symbols. We demonstrate perplexity improvements with this new model on the Penn Treebank language modeling benchmark.Comment: 20 pages, 7 figures. Submitted to ICLR 202

    Towards a Uniform Theory of Effectful State Machines

    Full text link
    Using recent developments in coalgebraic and monad-based semantics, we present a uniform study of various notions of machines, e.g. finite state machines, multi-stack machines, Turing machines, valence automata, and weighted automata. They are instances of Jacobs' notion of a T-automaton, where T is a monad. We show that the generic language semantics for T-automata correctly instantiates the usual language semantics for a number of known classes of machines/languages, including regular, context-free, recursively-enumerable and various subclasses of context free languages (e.g. deterministic and real-time ones). Moreover, our approach provides new generic techniques for studying the expressivity power of various machine-based models.Comment: final version accepted by TOC

    Real-time multipushdown and multicounter automata networks and hierarchies

    Get PDF
    Ph.D.William I. Grosk

    Collapse Operation Increases Expressive Power of Deterministic Higher Order Pushdown Automata

    Get PDF
    We show that collapsible deterministic second level pushdown automata can recognize more languages than deterministic second level pushdown automata (without collapse). This implies that there exists a tree generated by a second level recursion scheme which is not generated by any second level safe recursion scheme

    Solving Infinite Games in the Baire Space

    Full text link
    Infinite games (in the form of Gale-Stewart games) are studied where a play is a sequence of natural numbers chosen by two players in alternation, the winning condition being a subset of the Baire space ωω\omega^\omega. We consider such games defined by a natural kind of parity automata over the alphabet N\mathbb{N}, called N\mathbb{N}-MSO-automata, where transitions are specified by monadic second-order formulas over the successor structure of the natural numbers. We show that the classical B\"uchi-Landweber Theorem (for finite-state games in the Cantor space 2ω2^\omega) holds again for the present games: A game defined by a deterministic parity N\mathbb{N}-MSO-automaton is determined, the winner can be computed, and an N\mathbb{N}-MSO-transducer realizing a winning strategy for the winner can be constructed.Comment: Minor revision. 26 pages, 1 figur
    • …
    corecore