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Abstract
We show that collapsible deterministic second level pushdown automata can recognize more
languages than deterministic second level pushdown automata (without collapse). This implies
that there exists a tree generated by a second level recursion scheme which is not generated by
any second level safe recursion scheme.
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1 Introduction

In verification we often approximate an arbitrary program by a program with variables
from a finite domain, remembering only a part of information. Then the outcome of some
conditions in the program (e.g. in the if or while statements) cannot be determined, hence
they are replaced by a nondeterministic choice (branching). If the program does not use
recursion, the set of its possible control flows is a regular language, and the program itself
is (in a sense) a deterministic finite automaton recognizing it. If the program contains
recursion, we get a deterministic context free language, and from the program one can
construct a deterministic pushdown automaton (PDA for short) recognizing this language.
In other words, stack can be used to simulate recursion (notice that the same is true for
compilers: they convert a recursive program into a program using stack). In verification it
is interesting to analyze the possibly infinite tree of all possible control flows of a program.
This tree has a decidable MSO theory [4].

A next step is to consider higher order programs, i.e. programs in which procedures can
take procedures as parameters. Such programs closely correspond to so-called higher order
recursion schemes and to typed λ-terms. They no longer can be simulated by classical PDA.
Here higher order PDA come into play. They were originally introduced by Maslov [10]. In
automata of level n we have a level n stack of level n− 1 stacks of ... of level 1 stacks. The
idea is that the PDA operates only on the topmost level 1 stack, but additionally it can
make a copy of the topmost stack of some level, or can remove the topmost stack of some
level. However the correspondence between higher order automata and recursion schemes
(programs) is not perfect. Trees recognized (in suitable sense) by a deterministic PDA of
level n coincide with higher order recursion schemes of level n with safety restriction [7]. See
[3, 5] for another characterizations of the same hierarchy. It is important that these trees
have decidable MSO theory [7].

To overcome the safety restriction, a new model of pushdown automata were introduced,
called collapsible higher order PDA [8, 1]. These automata are allowed to perform an
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additional operation called collapse (or panic in [8]); it allows to remove all stacks on which
a copy of the currently topmost stack symbol is present. These automata correspond to all
higher order recursion schemes (not only safe ones) [6], and trees generated by them also
have decidable MSO theory [11]. It is also worth to mention that verification of some real
life higher order programs can be performed in reasonable time [9].

A question arises if these two hierarchies are possibly the same hierarchy? This is an open
problem stated in [7] and repeated in other papers concerning higher order PDA [8, 2, 11, 6].
We give a negative answer to this question, which is our main theorem.

I Theorem 1. There exists a language recognized by a collapsible deterministic second level
pushdown automaton, which is not recognized by any deterministic second level pushdown
automaton without collapse.

From the equivalences mentioned above we get the following.

I Corollary 2. There exists a tree generated by a second level recursion scheme, which is
not generated by any safe second level recursion scheme.

This confirms that the correspondence between higher order recursion schemes and de-
terministic higher order PDAs is not perfect. The language used in Theorem 1 comes from
[7] and from that time was conjectured to be a good candidate.

Related work

One may ask a similar question for nondeterministic automata rather than for deterministic
ones. This is an independent problem. The answer is known only for level 2 and is opposite.
One can see that for level 2 the collapse operation can be simulated by nondeterminism,
hence normal and collapsible nondeterministic level 2 PDA recognize the same languages [2].
However it seems that in context of verification considering deterministic automata is a more
natural choice, for the following reasons. First, most problems for nondeterministic PDA are
not decidable: even the very basic problem of universality for level 1 PDA is undecidable.
Second, we want to verify deterministic programs (possibly with some not deterministic
input). A nondeterministic program is something rather strange: it has an oracle which
says what to do in order to accept. Normally, when a program is going to make some not
deterministic choice, we want to analyze all possibilities, not only these which are leading
to some „acceptance” (hence we have branching, not nondeterminism).

2 Definition

A deterministic second level pushdown automaton (D2PDA for short) is given by a tuple
(A,Γ, γI , Q, qI , δ) where A is an input alphabet, Γ is a stack alphabet, γI is an initial stack
symbol, Q is a set of states, qI is an initial state, and δ : Q × Γ → Ops is a transition
function. The set Ops contains the following operations: (pop, q), (push(γ), q), (copy, q),
read0(t), readacc(t) for each q ∈ Q, γ ∈ Γ, and t : A→ Q.

A first level stack is a nonempty sequence of elements of Γ. A second level stack is a
nonempty sequence of first level stacks. A configuration of a D2PDA consists of a second
level stack, a state from Q, and a head position over the input word. At the beginning on
the second level stack there is one first level stack, which contains one γI symbol, the state
is qI , and the head is before the first letter of the input word. The automaton always sees
only the last (topmost) symbol on the last (topmost) stack. When the current state is q and
the last stack symbol is γ, the automaton looks at the transition δ(q, γ) and:
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if δ(q, γ) = (pop, q′), it removes the last symbol from the last first level stack; when the
stack becomes empty, it is removed from the second level stack; when the second level
stack becomes empty, the automaton fails; the state becomes q′;
if δ(q, γ) = (push(γ′), q′), it places symbol γ′ on the end of the last first level stack; the
state becomes q′;
if δ(q, γ) = (copy, q′), it places a copy of the last first level stack on the end of the second
level stack; the state becomes q′;
if δ(q, γ) = read0(t), it moves the head to the next letter of the input word; if it is a, the
state becomes t(a); if we are on the end of the word, the automaton fails;
if δ(q, γ) = readacc(t), it moves the head to the next letter of the input word; if it is
a, the state becomes t(a); if we are on the end of the word, the automaton accepts the
word.

Notice that none of the stacks is empty; if the last element of a stack is removed, we remove
also the whole stack from the second level stack.

Now we are going to define collapsible D2PDA. Its first level stacks together with each
symbol γ ∈ Γ contain a number n ∈ N (hence stacks contain pairs (γ, n)). The operation
push(γ) places a pair (γ, n) on the end of the last first level stack, where n is the number of
first level stacks. We additionally have an operation (collapse, q′) for each q′ ∈ Q. When the
last element of the last stack is (γ, n) and this operation is performed, we remove all stacks
except the first n− 1 stacks; if n− 1 = 0 the automaton fails; the state becomes q′. In other
words, collapse removes all stacks on which a copy of this (γ, n) symbol is present.

An example of a collapsible D2PDA is given in the next section. In the literature one
can find some slightly different definitions of a D2PDA and a collapsible D2PDA, but one
can see that they are equivalent to ours, through some encodings.

3 The language

Let A = {[, ], ∗}. A word w ∈ {[, ]}∗ is called a prefix of a bracket expression if in each prefix
v of w the number of closing brackets is not greater than the number of opening brackets.
A word w ∈ {[, ]}∗ is called a bracket expression if it is a prefix of a bracket expression and
the number of opening brackets in w is equal to the number of closing brackets in w. Let
PBE and BE be the set of all prefixes of bracket expressions and of all bracket expressions,
respectively. For w ∈ PBE by open(w) we denote the number of [ characters in w minus
the number of ] characters in w (i.e. the number of opened brackets which are not closed).
For each w ∈ PBE we define a number char(w) as |w| − |v| where v is the longest suffix of
w, which is a bracket expression. This number is called later a characteristic of the word w.
We consider the following language over A:

U = {w∗char(w)+1 : w ∈ PBE}.

The words [ ][[ ]∗∗∗∗, [[[∗∗∗∗, [ ]∗ are examples of words in U , and [[[∗∗∗ and [ ]]∗ are
examples of words not in U (moreover, no word beginning with [[ ] is in U).

It is known that U can be recognized by a collapsible D2PDA, but for completeness we
show it below. The collapsible D2PDA will use three stack symbols: X (used to mark the
bottom of stacks), Y (used to count brackets), Z (used to mark the first stack). Initially,
the only stack contains one X symbol. The automaton first pushes Z, makes a copy, and
pops Z (hence the first stack is marked with Z, the other stacks are used later). Then, for
an opening bracket we push Y and we make a copy; for a closing bracket we pop Y and we
make a copy. Hence for each bracket we have a stack and on the last stack we have as many
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606 Collapse Increases Expressive Power of Deterministic Higher Order PDA

Y symbols as the number of currently open brackets. If for a closing bracket the topmost
symbol is X, we fail: it means that the input is not a prefix of a bracket expression.

Finally a star is read. If the topmost symbol is X, we have read a bracket expression,
hence we should accept after one star. Otherwise, the topmost Y symbol corresponds to the
last opening bracket which is not closed. We do the collapse operation. It leaves the stacks
corresponding to the earlier brackets (and the first stack), hence the number of stacks is
precisely equal to the characteristic. Now we should read as many stars as we have stacks,
and accept (after each star we remove one stack).

4 The proof

In this section we show that U is not recognized by any D2PDA. Assume otherwise: there
exists a D2PDA A recognizing U .

By ∼ we denote the Myhill-Nerode relation with respect to U : we have v ∼ w if for all
u it holds vu ∈ U ⇔ wu ∈ U . Notice, in particular, that open(v) 6= open(w) implies v 6∼ w.

Our first goal is to eliminate situations in which the number of stacks decreases. As a
first step we will eliminate situations in which the number of stacks is first increased and
later after a long time decreased to the same value. The intuition is as follows. Consider a
run of A on a word w and a moment when the number of stacks increases from some s to
s + 1. It happens when the head is over some position i of the input word. Let j be the
position of the head in the moment when the number of stacks becomes again s (for the
first time). Assume that such j exists and that j − i is big. This can happen only if we
have a very bad luck. Indeed, consider a word w′ get from w by some modification between
positions i and j, and assume that in w′ the number of stacks also comes down to s at some
moment. Notice that in the moment when the number of stacks becomes s, we have the
same stacks content for w and for w′, the only difference is the state. We have only a fixed
number of states and very many nonequivalent modifications of w, which have to give a
different state. Hence in most cases either the number of stacks goes down to s very quickly
after i, or it stays always above s.

It is formalized using fillings. We say that a function σ : PBE → PBE is a filling, when
σ(ε) = ε, and
for any vb ∈ PBE (where b ∈ {[, ]}), it holds that σ(vb) = σ(v)eb for some bracket
expression e (which may depend on both v and b).

Hence a filling of a word is received by inserting a bracket expression before each letter, but
in a deterministic way. A filling is called a k-filling, when additionally the length of each
inserted bracket expressions e is at most k. We have the following lemma.

I Lemma 3. Assume A is a D2PDA recognizing U . Then there exist constants k, l and a
k-filling σ such that if A reading σ(w) for some w ∈ PBE increases the number of stacks
from some s to s + 1 with the head over a position i, then either the number of stacks is
decreased to s for the head over a position ≤ i+ l, or it stays above s for the rest of the run.

Proof. The constant k = O(|Q|2) will follow from the proof; we take l = 2(k + 1). Our
filling σ will satisfy the following additional assumption for any w ∈ PBE:
? Let s0 be the minimal number of stacks when the head of A is over one of the last k+ 1

positions of σ(w). Then for any e ∈ PBE, the number of stacks never goes below s0
while A reads the suffix [e of σ(w)[e.

We will not define the filling explicitly. Instead, we define it in a non explicit way by
induction. We construct the values of filling σ starting from shorter words and going towards
longer.
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For the empty word we take σ(ε) = ε; property ? is satisfied (s0 = 1 and we can not
have less than one stack), as well as the thesis of the lemma.

Now consider any longer word vb ∈ PBE (where b is a letter). Let first define some
words. For any number n and any function f : {1, . . . , n} → {0, 1} we define inductively

on
f =


ε when n = 0,
on−1

f [ when f(n) = 0,
on−1

f [ ][ when f(n) = 1.

Hence on
f consists of n opening brackets, and before i-th of them we insert [ ] if f(i) = 1. Let

s0 be the minimal number of stacks when the head of A is over one of the last k+1 positions
of σ(v). Let s1 be the number of stacks after σ(v) is read (precisely, in the moment of the
read operation moving the head from the last letter of σ(v)). Let d be the greatest number
(s0 ≤ d ≤ s1) such that for some f : {1, . . . , |Q| + 1} → {0, 1} the number of stacks never
goes below d while A reads the added suffix of σ(v)[o|Q|+1

f (by the added suffix we mean the
part after σ(v)). From the ? property it follows that s0 satisfies this, hence d exists. Fix the
particular function f , for which the number of stacks never goes below d while A reads the
added suffix of σ(v)[o|Q|+1

f .
Consider the functions f1, . . . , f|Q|+1 which differ from f only on one position, namely

fi(i) 6= f(i) and fi(j) = f(j) for all j 6= i. We will show that for at most |Q| of them
the number of stacks goes below d while A reads the added suffix of σ(v)[o|Q|+1

fi
e for some

e ∈ PBE. To see this, for each such fi fix some ei (if exists) such that the number of
stacks goes below d while A reads the added suffix of σ(v)[o|Q|+1

fi
ei. Consider any two such

functions fi and fj (i < j). Let xi be the prefix of σ(v)[o|Q|+1
fi

ei such that the number of
stacks decreases to d − 1 when the head is over the last letter of xi. Similarly for j. The
key point is that neither xi nor xj can be a prefix of σ(v)[o|Q|+1

f (i.e. xi has to contain
some letters which are different for fi than for f), as for this word the number of stacks
stays at least d. Assume first that xi = σ(v)[oi−1

fi
[ ] (which is possible for fi(i) = 1).

But xj contains at least σ(v)[oj−1
fj

, so open(xi) < open(xj), hence xi 6∼ xj (recall that
∼ is the Myhill-Nerode relation). The other case is that xi contains at least σ(v)[oi

fi
.

When open(xi) 6= open(xj), we also have xi 6∼ xj . When open(xi) = open(xj), consider
z which closes open(xi) − open(σ(v)[oi

fi
) brackets. We have char(xiz) = |σ(v)[oi

fi
| and

char(xjz) = |σ(v)[oi
fj
| = char(xiz) ± 2, hence in this case also xi 6∼ xj . This means that

in the moment when the number of stacks becomes d − 1, the state has to be different for
i and j (as the stacks content is the same, but the read inputs are not equivalent). As we
have only |Q| states, the number of stacks may become d− 1 only for at most |Q| functions
fi. Thus there is g (one of f1, . . . , f|Q|+1) such that for each e ∈ PBE, the number of stacks
stays at least d while A reads the added suffix of σ(v)[o|Q|+1

g e.
Now consider the words (in BE)

ui = σ(v)[o|Q|+1
g [i]i+|Q|+2b

for i being a multiple of |Q|+ 3. We will show that for at most |Q| of them the number of
stacks goes below d while A reads their added suffixes. To see this take any two such words
ui and uj (i < j). Let xi be the prefix of ui such that the number of stacks decreases to
d − 1 when the head is over the last position of xi; similarly xj for uj . We know from the
above that the number of stacks can not be decreased to d−1 inside [o|Q|+1

g [j ]j (it is true for
[o|Q|+1

g e for any e ∈ PBE, in particular for e = [j ]j), hence |xj | ≥ |uj | − |Q| − 2. However
|uj | ≥ |ui| + |Q| + 3 and |ui| ≥ |xi|, which gives |xj | > |xi|. Thus the characteristics of xi[

STACS’11



608 Collapse Increases Expressive Power of Deterministic Higher Order PDA

and xj [ are different, xi 6∼ xj . This means that the number of stacks is decreased to d − 1
in a different state in these two words. Thus only in |Q| words ui the number of stacks may
go below d.

Observe also that there are at most |Q| words ui in which for some e ∈ PBE the number
of stacks goes below d in the part [e of ui[e, but stays at least d inside the added suffix of ui.
To see this, for each such i fix some ei ∈ PBE (if exists) such that the number of stacks goes
below d in the part [ei of ui[ei. We may assume that this happens when the head is over the
last letter of ui[ei; otherwise the last letter of ei is redundant and can be cut off. Take any two
such words ui and uj (i < j). If open(ei) 6= open(ej), we have ui[ei 6∼ uj [ej . Otherwise, let
z consist of open(ei) closing brackets; see that char(ui[eiz) = |ui[| and char(uj [ejz) = |uj [|.
But the lengths of ui and uj are different, hence ui[ei 6∼ uj [ej . Thus when the number of
stacks is decreased to d − 1, the state for i and for j has to be different. As we have only
|Q| states, there are at most |Q| such words.

From the above two paragraphs it follows that we may choose ui for i ≤ (2|Q|+1)(|Q|+3)
such that for each e ∈ PBE the number of stacks stays at least d while A reads the added
suffix of ui[e (both inside and outside ui). As k we take the maximal length of the expression
inserted for any such ui. Observe that this ui satisfies both the thesis of the lemma and
property ?. Indeed, whenever the number of stacks decreases from some s+1 to s during the
added suffix of ui, then s ≥ d ≥ s0, hence the number of stacks was increased from s to s+1
during the last l = 2(k + 1) letters of ui (and when the decrease is inside σ(v), everything
is OK from the induction assumption). From the method how d was chosen follows that at
some moment while A reads the added suffix of ui, the number of stacks is d (even inside
the [o|Q|+1

g fragment). On the other hand, for each e ∈ PBE the number of stacks never
goes below d while reading the part [e of ui[e. Thus the ? property is also satisfied. J

The next lemma eliminates also all other situations in which the number of stacks is
increased from some s to s + 1 for the head over one position of the word, and then it is
decreased from s+ 1 to s over any of the next positions of the word (not only farther than
l letters).

I Lemma 4. Assume there exists a D2PDA recognizing U . Then there exists a constant k, a
k-filling σ and a D2PDA A′ recognizing U such that if A′ reading σ(w) for some w ∈ PBE
increases the number of stacks from some s to s + 1 with the head over a position i, then
either the number of stacks is decreased to s for the head over the position i, or it stays
above s for the rest of the run.

Proof. Let A be a D2PDA recognizing U . The constant k and the k-filling σ are taken from
Lemma 3. We have to improve A such that the stronger property will be satisfied. The
automaton A′ remembers a state q of A and up to l previous letters of the input (where l is
the constant from Lemma 3), i.e. a state of A′ contains a state of A and a sequence of up to
l letters (called a buffer). We begin with the initial state of A, and no letters in the buffer.
When the number of remembered letters is smaller than l, we read the next letter and we
append it to our buffer. When the buffer is full (contains l letters), we start executing A.
First, we execute A from the remembered state q until the moment when it reads a letter
(we give him the first letter from the buffer). Then, consider also the further run of A,
which reads all the next letters of the buffer (until the moment when A wants to make a
read operation when no more letters are in the buffer). We execute the part of this run up
to the moment when the number of stacks is minimal (to the last such moment if there are
more than one); we describe below how to detect this moment. Denote this minimal number
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of stacks as s0. Of course after a letter is read by the run of A being simulated, we remove
it from the buffer.

When A′ sees a star, it executes A on the letters left in the buffer, and then it simply
emulates A on the rest of the word. Of course A and A′ accept the same language, as they
in fact perform the same operations on a given input word, the only difference is when the
read operations are done (in A′ we earlier read more letters and later perform the other
operations). Note, in particular, that in the part reading brackets, A′ may always use the
read0 operation, as all words in U have at least one star.

Observe that when such A′ reads a word σ(w), the thesis of our lemma is satisfied.
Indeed, when the number of stacks is increased from some s ≥ s0 to s+ 1, then it decreases
back to s before the head is moved (as the head is moved with s0 stacks). On the other
hand, when the number of stacks is increased from some s < s0 to s + 1, it is done by A
before reading the first letter of the buffer. Later A does not decrease the number of stacks
below s0 (hence to s) when the head is over any of the next l positions. Thus A never does
this (from the thesis of Lemma 3), hence A′ also.

How to create such A′? The difficulty is that A′ has to find the moment in which the
number of stacks is minimal. However it can be done. The part always executed (i.e. up to
the first read) is executed in a normal way. Then the rest is executed, but each new stack
(created by the copy operation) is marked by the state of A before the copy operation and
by the head position of A (i.e. how many letters of the buffer were read). More precisely,
for the last stack the marking is remembered in the state of A′; for the previous stacks a
special stack symbol is put on the top of a stack when the number of stacks is increasing,
and is taken from the top of a stack after the number of stacks decreases. Finally, after the
whole run reading the buffer is executed, we remove all the stacks with the markings. This
gives us s0 stacks (the minimal number of stacks during the second part of the run). The
marking of the last removed stack gives us the new state q of A, and the number of letters
which should be removed from the buffer. J

In the next lemma we go even further and we eliminate all situations in which the number
of stacks is decreased.

I Lemma 5. Assume there exists a D2PDA recognizing U . Then there exists a constant k,
a k-filling σ and a D2PDA A recognizing U such that A reading σ(w) for some w ∈ PBE
never decreases the number of stacks.

Proof. The constant k and the filling σ is taken from Lemma 4 (hence also from Lemma
3). Let A′ be the automaton from Lemma 4; we will improve it, getting an automaton
A. We enrich the stack alphabet: together with each stack symbol we keep a function
f : Q→ Q ∪ {nr}, where Q is the set of states of A′. The function lying on an i-th place of
an s-th stack is defined in the following way. Consider the situation when all stacks after s
are removed and all symbols from the s-th stack above the i-th symbol are removed (i.e. the
function lies on the topmost place of the last stack). Let start the automaton from a state
q. We look at the run until it tries to do a read operation, or until the number of stacks is
decreased to s−1. When the read operation is first, we assign f(q) = nr. When the decrease
is first, and it results in a state p, we assign f(q) = p. It is also possible that the run is
infinite (it loops in some stupid way), then we also assign f(q) = nr.

The claim is that we can modify the automaton A′ (getting A′′) so that it puts on the
stack the correct f function together with each symbol. This is because f lying together
with some symbol somewhere on a stack depends only on this symbol and on the function
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f one place below. In particular it depends only on the contents of the current stack, hence
after making a copy of a stack, the functions in the copy stay correct.

Now we make one more modification of A′′, getting A. Whenever A′′ is going to do the
copy operation, we look at the f function of the topmost stack symbol. When f(q) = nr
we really do the copy operation. Otherwise we immediately move to state f(q) without any
operation (formally, as each transition has to do some operation, we may for example push
something to the stack and then pop it). We may do this, since the automaton A′′, after
some work with the copy, would also return to the same stack configuration in state f(q).
Hence A accepts the same words as A′.

Observe that the automaton A never increases and then decreases the number of stacks,
without reading any letter in between (as in such situation it makes the „shortcut” described
above). When a word σ(w) is read, the decrease can not happen also after reading a letter
(from Lemma 4). Hence A never decreases the number of stacks while reading σ(w). J

The next lemma says that the automaton can know at each moment if the word read
already is a prefix of a bracket expression or not. To formalize this, we replace the read0
operation by two operations: readP BE

0 and readbad
0 .

I Lemma 6. Assume there exists a D2PDA recognizing U . Then there exists a D2PDA A
recognizing U , which instead of read0 operation uses readP BE

0 if the word already read is a
prefix of a bracket expression, and readbad

0 otherwise. Moreover, there exists a constant k
and a k-filling σ such that A reading σ(w) for some w ∈ PBE never decreases the number
of stacks.

Proof. The constant k and the filling σ is taken from Lemma 5. Let A′ be the automaton
from Lemma 5; we will improve it, getting an automaton A. We enrich the input alphabet
by a # symbol and we consider the language

U ′ = U ∪ {w# : w ∈ PBE}.

We construct first a D2PDA B recognizing U ′. Observe that w ∈ PBE if w ∈ {[, ]}∗ and
w∗k ∈ U for some k. Of course B in its state can remember if the input contained only
brackets. Hence, after a # is read, it is enough to check if, after reading some number of
stars, the automaton A′ would accept (additionally, when something appears after the #
symbol, B can not accept). It is easy to do so. We make a copy of A′, in which instead of
doing a read0 operation, we assume that a star was read. When A′ does readacc, we accept
our word.

An automaton C (also recognizing U ′) is constructed using a trick like in the previous
lemma. Together with each stack symbol we remember a function f : Q → Q ∪ {acc, na},
where Q is the set of states of B. It is defined in the same way as in the proof of the previous
lemma, but it distinguishes an accepting and a non accepting read operation: when a run
from q leads to a readacc operation, we assign f(q) = acc, and when it leads to read0 (or
the run is infinite), we assign f(q) = na. The automaton can put on the stack the correct
function together with each symbol. (One may ask if it is possible that f(q) ∈ Q, i.e. that
the automaton decreases the number of stacks. It is possible, because it does not decrease
the number of stacks only while reading the filling; here we can read arbitrary words, in
particular containing ∗ or # symbols.)

Moreover on the top of each stack except the last we keep a function g : Q→ {acc, na};
for the last stack the function is kept in the state of C. The function for an s-th stack is
defined in the following way: Assume that there are only the first s− 1 stacks; start a run
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of B from a state q and continue it to the first read operation. If it is the readacc operation,
we take g(q) = acc, otherwise g(q) = na. Notice that g for an s-th stack depends only on
g for the s − 1-th stack (which „describes” first s − 2 stacks) and on f on the top of the
s− 1-th stack (which „describes” the s− 1-th stack). Hence g can be computed whenever a
copy operation is done.

Finally we construct A. It works like C, but when a read0 operation is going to be
done, we look at f at the current character and g for the current stack. Assume reading
a # character would end in a state q. If f(q) = acc we make the readP BE

0 operation, if
f(q) = na we make the readbad

0 operation. Otherwise f(q) is a state; if g(f(q)) = acc we
make the readP BE

0 operation, if g(f(q)) = na we make the readbad
0 operation. Note that A

still recognizes U ′. Hence when the input alphabet is limited to {[, ], ∗}, it recognizes U .
Moreover, it uses the operation readP BE

0 after a word w, when w# ∈ U ′, hence when w is
a prefix of a bracket expression. J

For the rest of the proof fix the automaton A, the constant k and the k-filling σ, which
are the result of Lemma 6.

For any number n ≥ 1, let

wn = [n+1]n[n+1]n . . . [n+1]n︸ ︷︷ ︸
|Q|+1 times

.

We will see that after reading a word σ(wn), the number of symbols on the last stack has
to be small.

I Lemma 7. There exists a constant H such that for any n ≥ 1 after reading the word
σ(wn) the number of symbols on the last stack of A is not greater than H.

Proof. For each prefix u of the word σ(wn) we define a block number: u is in the first block
if u is a prefix of σ([n+1), in the second block if u is a prefix of σ([n+1]n) but not of σ([n+1),
in the third block if u is a prefix of σ([n+1]n[n+1) but not of σ([n+1]n), etc. Observe the
following property ??. Consider two prefixes u1 and u2 of σ(wn) in the same block such that
|u2| ≥ |u1|+ (a+ 2k)(k + 1) for some a ≥ 0. We have

open(u2) ≥ open(u1) + a if the block number is odd,
open(u2) ≤ open(u1)− a if the block number is even.

Indeed, assume the block number is odd. Consider the word u−1
1 u2 (the suffix of u2 which

is after u1). At the beginning it contains a suffix of a bracket expression (up to k letters),
then opening brackets (coming from wn) alternating with short (up to k letters) bracket
expressions, and finally a prefix of a bracket expression (up to k letters). There are at
least a + 2k opening brackets coming from wn (as |u2| ≥ |u1| + (a + 2k)(k + 1)). In the
bracket expressions the number of opening and closing brackets is the same. In the initial
fragment the balance is violated by at most k; the same for the final fragment.1 Thus
open(u2) ≥ open(u1) + a. For even block number (having closing brackets) we get the
opposite inequality.

Now come to a proof of the lemma. It is important that the automaton never decreases
the number of stacks (thesis of Lemma 6). Hence, as long as it reads brackets, it can
access only symbols on the last stack. Consider the run reading some σ(wn); assume its

1 In fact, only the prefix or the suffix mattes, not both of them, so we could replace a + 2k by a + k.
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configurations are numbered from 1 to some l, and in the last configuration the number
of symbols on the last stack is h. From the last configuration the automaton tries to do
the readP BE

0 operation. For each i (1 ≤ i ≤ h) let p(i) − 1 denote the number of the last
configuration in the run such that the number of symbols on the last stack is smaller than
i. Hence in the operation leading to configuration p(i) the i-th symbol is pushed on the last
stack and later it is never poped. To each i (1 ≤ i ≤ h) we assign a triple (x, q, γ), where
1 ≤ x ≤ 2(|Q|+ 1), q ∈ Q, γ ∈ Γ. Here x is the block number of the prefix already read in
configuration p(i), q is the state in configuration p(i), and γ is the stack symbol on position
i on the last stack (in all moments between p(i) and l).

There is a constant H (depending on k and |Q|) such that whenever h > H, some triple
(x, q, γ) has to repeat at least (2k + |Q| + 2)(k + 1) + 1 times. Assume first that x in this
triple is even (i.e. it corresponds to a block of closing brackets). Take any c = (2k+1)(k+1)
numbers i1 < i2 < · · · < ic to which this triple is assigned. For each j, the run after p(ij)
has no access to the symbols below ij on the last stack (as well as to the symbols on the
earlier stacks). Thus it depends only on the ij-th stack symbol, the state, and the input
word. Notice that the run between p(ij) and p(ij+1) does at least one read operation, as
otherwise the fragment between p(ij) and p(ij+1) would repeat forever (the automaton is
deterministic). Let r be the number of read operations in the run between p(i1) and p(ic).
We have r ≥ c − 1. From ?? it follows that the part of the input returned by these r read
operations contains more closing brackets than opening brackets. Let repeat |Q| + 2 more
times the fragment of the run from p(i1) to p(ic) (precisely, we repeat the operations done
in this fragment, together with the part of the input returned by the read operations, and
we leave the operations done later). We get a correct run on a new word, in particular after
the last configuration it also does the readP BE

0 operation. But the new input word is not
a prefix of a bracket expression, as it has too many closing brackets. This contradicts with
the assumption that our automaton satisfies the thesis of Lemma 6, i.e. that it should end
now doing the readbad

0 operation.
The argument is similar for odd x, but we have to consider c = (2k+ |Q|+ 2)(k+ 1) + 1

numbers i1 < · · · < ic to which the repeating triple (x, q, γ) is assigned. As previously, there
is at least one read operation between p(ij) and p(ij+1) for each j. Thus the number r of
read operations between p(i1) and p(ic) is at least c− 1. This time we remove the fragment
of the run from p(i1) to p(ic). From ??, the part of the input read between p(i1) and p(ic)
contained at least |Q| + 2 more opening brackets than closing brackets. We get the same
contradiction as previously, as the new word is not a prefix of a bracket expression. J

For any n ≥ 1, 0 ≤ c ≤ |Q| we will define a number d(n, c). Assume that after reading
σ(wn) there are s stacks. Now see what happens when we read the word σ(wn]c)∗ω, where
∗ω means that we give infinitely many stars to the automaton and we look at the infinite
run. We look for the first of the two situations:
1. the automaton accepts (i.e. makes a readacc operation), or
2. the number of stacks goes below s.
Note that for sure the automaton accepts after some number of stars (but possibly the
second situations appears earlier). Note also that none of these situations can appear before
we start reading the stars: during reading σ(v) for any v ∈ PBE the number of stacks does
not decrease, and no word without stars can be accepted. Let d(n, c) be the number of stars
after which the earlier of these two situations appears.

Observe that d(n, c) depends only on the content of the last stack (stack s) after reading
σ(wn), on the state in this moment, and on the suffix of the filling σ(wn]c) which appears
after σ(wn). This is because the run reading σ(wn]c)∗ω never accesses stacks below s,
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until some of the two interesting situations appear. Hence there are only finitely many
possibilities: The number of the suffixes is finite, as their length is bounded by |Q|(k + 1).
Thanks to Lemma 7 after reading σ(wn) stack s has height not greater than H, so the
number of its different contents is finite. Thus there is a common upper bound D for all
d(n, c).

Let now fix n = D. Let s be the number of stacks after reading σ(wn). We define a
partial function a : Q→ N. Let us remove the stack s and start the automaton from a state
q on the input word ∗ω. If in this infinite run A makes the readacc operation only once, then
let a(q) denote the number of stars after which this happens. In the other cases (A never
accepts or accepts multiple times) a(q) is undefined. Let uc = σ(wn]c) for 0 ≤ c ≤ |Q|.
Consider the run on some of the words uc∗char(uc)+1. Note that char(uc) ≥ 2D + 1 > D

(we count at least the length of prefix σ([n+1]n)), hence after reading d(n, c) ≤ D stars A
can not accept. Thus the number of stacks becomes s− 1. The rest of the run depends only
on the state q in this moment (as the content of the first s − 1 stacks is the same for each
c); the readacc operation will appear after a(q) more stars (in particular a(q) is defined for
this q). Hence char(uc) −D ≤ a(q) ≤ char(uc). As there are only |Q| states, and |Q| + 1
values of c, some state q has to be used for two values of c, say c1 and c2 (c1 < c2). Note
that char(uc1) ≥ char(uc2) + 2D+ 1 > char(uc2) +D as to char(uc1) we count at least two
blocks of brackets more than to char(uc2). This is a contradiction, as

a(q) ≤ char(uc2) < char(uc1)−D ≤ a(q).

5 Future work

The following question remains open: is there a language recognized by a collapsible de-
terministic higher order pushdown automaton which is not recognized by any deterministic
higher order pushdown automaton without collapse of any level? It is possible that the
language U from Theorem 1 has this property.
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