
REAL-TIME MULTIPUSHDOWN AND MULTICOUNTER

AUTOMATA NETWORKS AND HIERARCHIES

A THESIS

Presented to

The Faculty of the Division of Graduate

Studies and Research

by

Lionel Earl Deimel, Jr.

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in the School of Information and Computer Science

Georgia Institute of Technology

August, 1975

Copyright 1975 by Lionel Earl Deimel, Jr.

REAL-TIME MULTIPUSHDOWN AND MULTICOUNTER

AUTOMATA NETWORKS AND HIERARCHIES

Approved:

William I. Grosky, Chairman^'

Tohja. M. GwyniuTJrT "' U '

Lucio Chiaraviglio

Date approved by Chairman : Sr-t-^S

For Betty3 to whom I promise not to do this again

iii

ACKNOWLEDGMENTS

I would like to express my sincerest appreciation to my thesis

advisor, Professor William I Grosky, and to the other members of my

guidance committee, Professors Lucio Chiaraviglio and John M. Gwynn, Jr.,

for their advice, assistance, encouragement, and friendship. A special

note of thanks is due Dr. Gwynn, who worked so closely with me while Dr.

Grosky was out of the country.

I would like to thank Professors Aubrey M. Bush and Edward B.

Wagstaff of the School of Electrical Engineering and Dr. Stephen N. Cole

of the Engineering Experiment Station for reading the thesis and serving

as examiners.

The members of the faculty of the School of Information and Com

puter Science who have been so kind to me deserve recognition, as does

Dr. David L. Morgan, formerly of the School of Mathematics, who helped

with one of the proofs.

Finally, thanks go to my wife Betty and the Reverend Woodrow McKay,Jr.

of the Presbyterian Student Center for help, encouragement, and support

of a non-academic nature.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS iii

SUMMARY v

Chapter

I. INTRODUCTION 1

Historical Background
Goals and Results

II. MULTIPUSHDOWN AUTOMATA AND AUTOMATA NETWORKS 13

Basic Definitions
The Equivalence of Pushdown Automata and Pushdown

Automata Networks
Adequate Structures for Pushdown Automata Networks
Some Related Language Hierarchies

III. MULTICOUNTER AUTOMATA NETWORKS 36

Preliminaries
Language Hierarchies Related to Multicounter Networks
New Hierarchies Arising from the Network Formulation
Relations among the Hierarchies

IV. SUGGESTED RESEARCH 71

REFERENCES 73

VITA 77

V

SUMMARY

A new formulation is developed for the real-time multistore push

down automaton. The automaton is redefined as a network of automata,

each member of which is a machine with its own finite control and push

down store, a connection to the input head, and possibly connections to

other members of the network.

The rationale behind this formulation of multistore machines is

to distinguish or classify such automata according to some measure of

internal complexity. It is asserted that the manner in which stores are

used relative to one another reflects some kind of complexity and that

this complexity can be measured by classifying the connections in the

appropriate network. An "appropriate network" is a network accepting the

same language as the multistore machine. It is shown that such a network

may always be found and that the network formulation and conventional

formulation of such machines are, in fact, equivalent. It is further

shown that the network formulation is more than adequate in the sense

that connections between all pairs of machines in a network are never

required. Languages accepted by deterministic machines may be accepted

by deterministic networks having circular or ring connections, with as

few as n connections for an n-store network. Languages accepted by non-

deterministic machines may be accepted by nondeterministic networks having

no unconnected machines, with as few as n-1 connections for an n-store

network. Real-time multipushdown automata networks are related to infin

ite acceptance hierarchies shown elsewhere by Aanderaa, Burkhard and

vi

Varaiya, and Liu and Weiner.

Automata networks are used to examine in greater detail the real

time multicounter machines, which are restricted multipushdown machines.

Five infinite hierarchies are exhibited, three of them new. Within each

hierarchy, the class is determined by the number of stores. The hier

archies previously known are those for deterministic real-time counter

networks shown for counter machines by Fischer, Meyer, and Rosenberg;

and for nondeterministic real-time counter machines shown by Kain. The

remaining hierarchies are for unconnected deterministic and nondetermin

istic networks and for linearly-connected deterministic networks. The

hierarchies are shown to relate to one another in a non-trivial way.

It is suggested that the network approach to the study of multi-

store automata is capable of leading to results not otherwise apparent.

Further, the technique may prove more useful to the study of parallel

computation than the usual polyautomata models. Future research is sug

gested.

1

CHAPTER I

INTRODUCTION

We wish to look at an area of automata theory where, we believe,

the conventional formulation of automata has failed to stimulate cer

tain interesting questions. In particular, we will examine multistore

pushdown automata operating in real time. Surveying the literature sug

gests these machines have received less attention than they deserve.

This appears to be the case because most of the "obvious" questions con

cerning these devices have been answered. We will present a different,

but equivalent, treatment of these devices and use this formulation to

derive what we believe to be significant new results. Some of these

relate to general multipushdown automata, others concern a subclass of

these machines, the multicounter automata.

Historical Background

The pushdown automaton (pda) is a model of a computing device

which has played a major role in automata and formal language theory.

Informally, a pda is a language acceptor consisting of a one-way, read

only input tape containing symbols from some alphabet Z; a finite control

represented by a state set K and transition function 6; and a pushdown

store, or last-in-first-out memory, which stores symbols from the push

down store alphabet r. The device is said to accept (or recognize) a

string of symbols over the input alphabet, that is, a word w € E , if

reading the entire word from the input tape can drive the machine from

2

its initial configuration to an accepting configuration. (A , where A

is a finite alphabet set, denotes the set of all finite length strings

of symbols of A. A* includes the empty word, the string consisting of

no symbols, which is denoted by £.) The initial configuration usually

is defined as the status of the automaton when scanning the first symbol

(if any) of the input word while in some designated initial state q_ s K

with a designated initial store symbol Z.er on the store. An accepting

configuration is commonly defined in one of two fundamental ways — either

the device enters one of a set of states designated as "final" or

empties its store upon reading the final symbol of w [30].

The pushdown store predates the pushdown automaton. It may be

traced back at least as far as the 1954 paper by Burks, Warren, and

Wright describing the theory and operation of the Burroughs Truth Func

tion Evaluator, a machine designed to evaluate logical expressions in

parenthesis-free notation [10]. The "Register" of this Burroughs machine

is essentially a pushdown store [46], The concept is treated more explic

itly in [44], where Newell and Shaw discuss pushdown store manipulation

in the context of more general list-processing techniques. (See also

[45].) Samelson and Bauer [51] and Oettinger [46] examine the pushdown

memory in connection with syntactic analysis and translation. In the

early 1960's, what had been a useful, though somewhat ad hoc programming

technique was formulated into a mathematical model of a computing device

analogous to the finite automata developed by Rabin and Scott [48]. This

is clearly seen in the paper by Schiitzenberger [54], where certain rela

tions between pda's and unambiguous context-free languages are developed.

It was Chomsky [11] and Evey [15], however, who established independently

3

the essential connection between the abstract computing device and formal

languages, namely, that the set of languages acceptable by pda's is

exactly the set of context-free languages.

There exists an extensive literature concerning pda's and their

variants. In the current literature, the finite control is taken, in

general, to be nondeterministic. (In a deterministic machine, the transi

tion function uniquely specifies the actions to be taken; in a nondeter

ministic machine, the transition function specifies only a set from which

valid transitions may be selected.) The Chomsky and Evey result applies

to nondeterministic pda's. Early studies of deterministic pda's are

those by Fischer [16], Schiitzenberger [54], Haines [26], and particularly

that by Ginsburg and Greibach [20]. This latter paper establishes many prop

erties of the deterministic languages (those languages accepted by deter

ministic pda's) such as the fact that every deterministic language is

unambiguous (has an essentially unique parsing in an appropriate context-

free grammar). These and other fundamental results are collected in

Ginsburg's important book on context-free languages [19]. In [37],

Knuth provides a class of grammars, the LR(k) grammars, which generate

exactly the deterministic languages.

Pushdown automata have been studied under a number of modifications

or restrictions and under combinations of such modifications and restric

tions. Besides being either deterministic or nondeterministic, we may

classify the input tape as one-way or two-way. "One-way" means the input

head moves from left to right on the tape and never reverses itself.

"Two-way" indicates the input head may move left or right. Two-way

pushdown automata were first studied by Gray, Harrison, and Ibarra [24].

4

Harrison and Ibarra have also studied pda's with multiple input tapes

and with more than one head on each input tape [29]. Other studies

involving two-way pda's and multiple input heads have been done by Ibarra

[32], Gwynn and Martin [25], and Martin [42]. Additional variations

include reversal-bounded pda's, whose stores can alternate between

lengthening and shortening only a limited number of times [4, 8, 23], and

tabulator machines, which can erase many symbols from a store at once [12].

One pda variation has obtained independent status and no longer is referred

to as a pushdown automaton. This is the stack automaton, first studied

by Ginsburg, Greibach, and Harrison [21]. It is a pda which can examine,

but not alter, the interior of its store. The model was developed to

be more representative of the process of compilation of computer lan

guages, which are not strictly context-free and which therefore cannot

be accepted by any pda. Stack automata claim an extensive literature of

their own.

Many early articles about pushdown automata are concerned with

the acceptance sets of various models, the relation of these sets to

one another, and the relation of these sets to formal grammars. Several

variations have been developed as automata-theoretic analogues of devel

opments in the theory of formal languages. Thus, for example, Rovan

relates bounded pda's to bounded languages [50], and Ibarra relates con

trolled pushdown automata to matrix languages [31]. Other papers deal

with the so-called simple deterministic languages [36], and the strict

deterministic languages [27,28],

Many recent articles are concerned largely with questions of

computational complexity. Such studies seek to identify resources, amount

5

of computing time and storage, required by particular models to accept

particular sets of languages. Some pda variations have appeared here

as well. Cook introduces the auxiliary pushdown automaton, which has a

number of work tapes in addition to its pushdown store [13]. Kameda

[35] studies the counter-pushdown acceptor, which is essentially similar

but which substitutes counters for auxiliary work tapes (see below).

Other complexity studies involving the pda and its variants may be found

in [2], [3], [14], and [33].

An important automaton which should be mentioned is the counter

automaton or counter machine. Although this device was at first

developed independently of the pda, it may also be viewed as a restricted

version of it. The auxiliary store is called a counter and can hold

any non-negative integer. The finite control, although it can increase

or decrease the integer stored, can only test whether that integer is

zero or positive. This machine is equivalent to a pushdown acceptor

whose store alphabet consists of a single symbol. (If we wish to

retain the initial store symbol as an end-marker of the store, we allow

a single additional symbol.) Minsky [43] shows that a machine with two

counters can simulate a Turing machine and is therefore, in some sense,

uninteresting. Each counter in his construction stores an encoding of

half the Turing machine tape. Schiitzenberger [53] is usually credited

with establishing the counter machine as an object for serious indepen

dent study. Many important characteristics of these machines and their

languages are established by Fischer, Meyer, and Rosenberg [18]. These

and related results are developed by Kain [34]. Very recently, stack

automata with one-symbol stack alphabets (stack-counter machines) have

6

been studied [6,22],

The primary machines we wish to study here are multipushdown

acceptors (multistore pda's), pda's with finitely many pushdown stores.

We will also deal with the natural restriction of such machines, the

multicounter acceptors (multicounter machines). Of course, Minsky's

result establishes a machine with two or more counters as a Turing

machine equivalent. Since a machine with two or more pushdown stores

is even more general, it too has the computational power of a Turing

machine. In either case, less powerful devices deserving of study may

be obtained by requiring acceptance within time bounded by some function

of the input length. Our main interest will be in machines operating

in so-called real time. The length of the accepting computation is

bounded by the length of the input. A machine under such a restriction

must read exactly one symbol of the input for each transition it exe

cutes.

In general, real-time computation represents only one of many

complexity classes for a given computing device. It is an intuitively

appealing concept, however. In actual practice, we generally desire to

complete computer calculations as quickly as possible. To say that we

can do so in real time is to say we can generate results as rapidly as

we can submit our input to the machine. Yamada seems to have been first

to examine the concept of real-time computability [56]. He shows that

certain recursive functions can always be found which cannot be computed

in real time by an automaton, no matter how general its computing capa

bilities. (The operating rules of the machine are assumed to be recur

sively defined. His motion of computing a function, it should be noted,

7

may be transformed easily into the notion of acceptance of words of a

language.) Thus, not all computable functions are real-time computable.

Rosenberg [49] shows the position in the classic hierarchy of the

languages which can be accepted by deterministic on-line multitape Turing

machines. (Such machines have a read-only input tape and a number of

Turing work tapes.) The set of such real-time definable languages is,

of course, a superset of the regular languages. It is also a proper

subset of the context-sensitive languages (of the set of languages

accepted by deterministic linear-bounded automata, in fact) and is incom

parable to both the context-free languages and the deterministic context-

free languages. Rabin's 1963 paper [47] raises the question of the

role of auxiliary storage in real-time computation. He shows that a

deterministic two-tape Turing machine operating in real time is strictly

more powerful than a deterministic one-tape Turing machine operating in

real time. The question of whether for k> 1 a k+l-tape machine is more

powerful than a k-tape machine is known as Rabin's problem.

In [34], Kain makes four conjectures concerning languages accepted

by real-time multipushdown machines. These conjectures address what

seem to be the major questions concerning real-time multipushdown accep

tors. They are:

(1) NRTPD c: DLBA
n

(2) DRTPD C DRTPD ...
n n+l

(3) NRTPD c NRTPD ^
n n+l

(4) DRTPD c NRTPD
n n

where n> 1 and DLBA, NRTPD, , and DRTPD are the sets of languages which

8

are accepted by deterministic linear-bounded automata (dlba), nondeter-

ministic real-time pushdown acceptors with k stores (nrtpd,), and deter

ministic real-time pushdown acceptors with k stores (drtpd), respec-
K.

tively. (We will adhere to the convention of abbreviating a type of

automaton in lower-case letters and representing the set of languages

recognizable by the class of such machines by the corresponding upper

case letters.) Rabin's paper is ultimately the inspiration for all

these conjectures. We are asking if any computing power is gained by

adding pushdown stores to an automaton operating in real time. Conjec

ture (1) attempts to establish the position of the real-time multipush-

down languages in the usual linguistic hierarchy. Notice that Rosenberg's

result does not apply, as the automata involved are nondeterministic.

Conjectures (2) and (3), the existence of infinite acceptance hierarchies

based upon the number of pushdown stores, follow from the disposition

of Rabin's problem. Conjecture (4) asserts that for a given number of

pushdown stores, nondeterminism is strictly more powerful than determin

ism.

Book and Greibach [7] essentially settle conjecture (3) and in

so doing partially resolve Rabin's problem. Their concern is with the

"quasi-realtime languages," those languages accepted by nondeterminis

tic on-line multitape Turing machines operating with finite delay. (An

on-line machine operates with finite delay if it never makes more than

t consecutive transitions without moving its input head, where t is some

integer.) They show that every quasi-realtime language is accepted by

a nondeterministic real-time (that is, t= 0) on-line multitape Turing

acceptor, and thus, by replacing each Turing tape by two pushdown stores,

is accepted by a nondeterministic real-time multipushdown acceptor.

9

([15] and [17] show that this replacement can be made without loss of

time.) Book and Greibach also show that any quasi-realtime language may

be accepted by a nondeterministic machine using one stack and one push

down store or three pushdown stores. Thus, for n£ 3, NRTPD = NRTPD ,,.

. n n+1

Conjecture (3) is shown to be incorrect, and Rabin's problem is settled

for the nondeterministic case — no infinite hierarchy based upon the

number of tapes available exists.

Conjecture (2) has recently been settled by Aanderaa [1]. He

shows there is an infinite hierarchy in the deterministic case based

upon the number of pushdown stores. This settles Rabin's problem for

deterministic machines (the pushdown stores may be paired and used as

Turing tapes) and distinguishes deterministic from nondeterministic real

time Turing or multipushdown machines.

The resolutions of conjectures (2) and (3) establish conjecture

(4) as true, at least for n>2. Conjecture (1) is open and appears to

be a difficult question to resolve [5].

Goals and Results

Thus, we see that most of the obviously interesting questions rela

ting to real-time multipushdown automata have been answered. Moreover,

meaningful variants of the basic model are few. Reversal-bounded

machines have received attention recently [8], but other standard pda

variations cannot be applied to the conventional real-time multipushdown

machine. For example, combining a two-way input head with real-time compu

tation seems inappropriate, as utilization of the head-reversing capa

bility means that words may be accepted without being read completely.

We might suspect that some measure of internal complexity could differ-

10

entiate recognition capabilities of various machines, but such measures

have received little attention.

This last observation is one of wide applicability to automata

theory. Machines other than finite automata have been distinguished

primarily on the basis of their time and storage requirements rather

than on the basis of any notion of their internal complexity. Internal

complexity measures have been discussed or proposed from time to time,

but such proposals have had little effect on the mainstream of research.

We mention two rather similar suggestions. Shannon [55] discusses the

tradeoff between the number of input symbols recognized by a universal

Turing machine and the number of states of such a machine. In effect,

he proposes the product of these two numbers as a measure of the complex

ity or efficiency of the machine. Schmitt [52] has offered a similar

suggestion. He proposes a "state complexity" measure for Turing machines,

the state complexity being the minimum number of states needed by any

Turing machine to compute a given partial recursive function using a

given input alphabet.

The multistore automaton, unlike a single-store device, exposes

to view one aspect of its internal operation — namely, its utilization

of its multiple stores. We may look at the use of each store in relation

to the others. It seems reasonable to suggest that the cooperative use

of two or more stores in such a way that they perform operations of which

they are incapable alone reflects a greater machine complexity than the

use of the same number of stores in isolation (in some appropriate sense).

This idea will be pursued by formulating automata networks in which each

store is operated by its own finite control. These controls all have

11

access to the input head and possibly communication with one another.

It is this communication, provided by "connections" within the network,

that we wish to study. We will ask how the recognition power of a net

work is affected by the presence or absence of these connections.

In Chapter II, we define what we mean by multistore pushdown

automata. Formal definitions are given for language acceptance, configu

rations of such machines, and so forth. Analogous definitions are

supplied for multistore pushdown automata networks. We then show by

means of constructions in theorems 1 and 2 that the network formulation

is equivalent to the conventional formulation. Theorems 3 and 4 estab

lish that no pushdown automata networks need have every machine in the

network connected to every other machine. Circular or ring connections

are adequate for deterministic machines; nondeterministic networks need

only have no isolated machines in order to accept the same languages as

the corresponding conventional machines. The remainder of the chapter

deals specifically with real-time automata and automata networks. Sev

eral known hierarchies are related to the new network formualtion in

theorems 5, 6, and 7.

Chapter III is devoted to real-time counter networks. Theorems 8

and 9 show counter networks to be equivalent to counter machines. Theo

rems 10 and 11 show that the connection structures adequate for multi-

pushdown networks are likewise adequate for multicounter networks. Five

infinite acceptance hierarchies are exhibited for real-time counter net

works. Two of these have been shown previously by other authors (theo

rems 12 and 13); three are new (theorems 15, 16, and 18). The network

connections involved in these theorems are either unrestricted, linear,

12

or nonexistent. The remainder of the chapter is devoted to showing the

relation of these acceptance hierarchies to one another (theorems 19-

31) and to an analysis of the significance of connections within a net

work.

Chapter IV mentions some additional results and suggest areas for

future research.

13

CHAPTER II

MULTIPUSHDOWN AUTOMATA AND AUTOMATA NETWORKS

Basic Definitions

We must begin with some formal definitions.

DEFINITION 1: An n-store pushdown automaton (we will use acceptor and

machine as interchangeable with automaton), pd , is an n+6-tuple

(K,E,ri,r2,...,rn,6,q0,Z(),F), where

(1) K is a finite set of states,

(2) E is a finite set, the input alphabet3

(3) r., l < i < n are finite sets, the pushdown store alphabets3

(4) q s K is the initial state.
o

(5) Z £ T., l < i < n is the initial store symbol which appears

initially on each pushdown store,

(6) F £ K is a set of final states, and

Kxr *xr *x.. .xr *
(7) 6:Kx(E U {e})xrixLx...xr -> 2 n is the transi-

L I n

tion function.

DEFINITION 2: A pd is deterministic if both of the following are true:
(1) For any q £ K , s e z U { e } , and

Z.e T., 1 < i < n, 6(q,s,Z-,,Z_,...,Z) contains at most one
l l " ~ n 1 2 n

element.

(2) For any qe K and Z. e I\, l < i < n , whenever 6 (q,e ,Z ,Z ,... ,Z)

is nonempty, 6(q,s,Z1,Z9,...,Z) is empty for all s e E.

A pd which is not deterministic is nondeterministic. Deterministic r n

14

pd ' s will be denoted by dpd . Where it is necessary to make explicit

that a pd is nondeterministic, we will denote it by npd .
n n

DEFINITION 3: A pd (npd , dpd) is a (nondeterministic_, deterministic)

real-time n-store pushdown automaton, rtpd , (nrtpd , drtpd), if for
n n n

all q e K and Z. e r., 1 < i < n, 6(q,e,Z ,Z , . . . ,Z) is empty.

DEFINITION 4: A configuration of a pd M is an n+1-tuple (q,Y-, >Y9> • • • > Y)>

•k
where q e K and Y . £ r. , l<i<n.

l I -

DEFINITION 5: For some pd M, let q,q'eK and, for l<i<n, let Z.e Y.

and a., Y. £ F .* . For s e I U {e}, we write

s: <q,ZlYl,Z2Y2,. • • ,ZnYn) ̂ (q- , V l ' a
2 V • • • , y n >

if and only if (q',a ,a9,•.•,a) e 6 (q,s ,Z ,Z ,. . . ,Z). For s. £ I U { E } ,

1 < i < m, and configurations C. e KxF. xT_ x. ..xT * , 0 < i < m, we write
j 1 2 n

s s ...s : C S C
1 2 m 0 M m

whenever s.: C. _ \— C. for each 1< i<m. By convention, we write
i i - 1 ' M i - - J

for any configuration C of M. For configurations C and C1 and for we E ,

we write

whenever w: C Vr. C' for some 0 < m. M may be omitted from fr-,, |-r;» and
'M ~ ' M M

Vr. when the machine is understood.
'M

The interpretation of s: (q^Y-^ z
2
y2'' ' ' ,ZnYn^t ^ ' ' ^ i '

a j ,...,a y) is that M reads s while in state q with Z1,Z9,...,Z at

the top of the n pushdown stores. M goes into state q1 and replaces Z..

i m i *k
with a,, Z_ with a0,...,Z with a . The relations hf: and hrr extend the

1 2 2 n n ' M M

15

relation h- to input strings of length greater than 1.

DEFINITION 6: The language of pd M accepted by final state, denoted T(M),

is defined as T(M) = {w e Z* |w: (q ^ Z ^ Z ^ . . . ,Z) ̂ (q, y ^y ^ . . . ,Yn) for

q e F and Y. e r* 1 < i< n}.
l l -

DEFINITION 7: The language of pd M accepted by empty stove} denoted N(M),

* i i *

is defined as N(M) = {w e Z |w: (q ,Z ,Z Q, . . . ,ZQ) \-^ (q,e,£,...,E) for qC K>.

Treatment of the concept of acceptance is not uniform in the liter

ature. Definitions 6 and 7 provide alternatives, but other definitions are

possible. For example, we could accept a word if and only if it is in both

T(M) and N(M), or perhaps if any one of the n stores empties. In fact, our

choice of definition at this point is not critical, as it is easily shown

that these definitions are equivalent. This is not true of all the auto

mata to be studied. We will somewhat arbitrarily restrict consideration to

final state acceptance, as this is certainly the most general acceptance

criterion.

We now introduce our most important definition.

DEFINITION 8: An n-stor'e pushdown automata network^ pdn , is a 4n+3-tuple

(K1,K2,...,Kn,j:,r1,r2,...,rn.«1,«2....,«n,q ,z , F I , F 2 F n) ,

where

(1) K., l < i < n , is the finite state set of the ith automaton,

(2) E is the finite input alphabet,

(3) r., 1< i<n, is the finite pushdown stove alphabet of the ith

automaton,

(4) q e K., l < i < n , is the initial state of the ith automaton,

(5) Z G r., l < i < n , is the initial stove symbol of the ith

automaton,

16

(6) F. £ K., l < i < n , is the final state set of the ith auto-
1 I

 J

K.xl*
maton, and

K
i i

v X L X I . -> Z
- ,) 1
1 1 1 1

(7) V K i x K D . (l) x V (2) X " , X V (p .) x E x r i + 2 ' Wh6re

0< p. < n- 1 and D. :{1,2,. . . ,p. }"U-{1,2,. .. ,i-l,i+l,. . .,n},

l £ i < n , is the transition function of the ith machine.

Definition 8 says that a pdn consists of n pushdown machines

sharing a common one-way input head. The actions of each machine are

governed by the input, top store symbol of its own store, its internal

state, and perhaps the internal states of other machines in the network.

Ths functions D., l < i < n , specify the dependency relations (structure)

of the network.

DEFINITION 9: Let M be a pdn as defined above. We will say that machine
n

j is connected to machine i or machine i depends upon machine j if and

only if D.(k) = j for some l<k<p.. We denote the fact that machine j

is connected to machine i by C...

The following definitions are analogous to definitions 2-7.

DEFINITION 10: A pdn is deterministic if both of the following are true:

(1) For any q e K., q e K^ ,-. N , s e £ U (e), and Z. e T.,

llk<p., l < i < n , 6 . (q,q.. ,q9, . . . ,q ,s,Z.) contains at most
Pi

one element, and

(2) For any q e K. , q e IC «x , and Z. e I\ , 1 < k< p. , 1 < i < n,

whenever 6 . (q,q.. ,q„, . . . ,q ,e,Z.) is nonempty,
I 1 z p. l ri

6. (q,q-,q«,...,q ,s,Z.) is empty for all s e Z.
i x. Z p. l

rl

A pdn which is not deterministic is nondeterministic. written npdn . A
n n

17

n

deterministic pdn will be written dpdn .
n n

DEFINITION 11: A pdn (npdn , dpdn) is a {nondetevministio_, detev-
n n n

ministio) veal-time n-store pushdown automata network, rtpdn

(nrtpdn , drtpdn), if for all qe K., q. e K_ ,. N, and Z. e T. , l < i < p .
n n 1 k D. (k; I I l

l < i < n , 6 i (q , q 1 , q 2 , . . . , q , e , Z j i s empty.
i

DEFINITION 12: A configuration of a pdn M is a 2n-tuple (q ,q ,...,q ,

YT>YO>**'>Y)> where q. e K. and y. e r- > 1 < i < n. 1 2 n l l l l

DEFINITION 13: For some pdn M, l e t q . , q ' e K., Z. e I \ , and a . , y . e r . ,
r n I i 1 1 I 1 1 I

1 < i < n. For s e E U { e }, we w r i t e

s : (q 1 > q 2 > . . . > q n > Z 1 Y 1 , Z 2 Y 2 > . . . , Z n Y n) ^ (q^ ^ . • • • ̂ . V l ' V 2 ' ' ' ' ' " n V

i f and only i f (q^ , a ±) e ^ (^ ^ D (l)»qD (2) ' " , , q D (p) » s » Z i ^ 1 - i - n '

*
for s . e E U {e} , 1< i < m, and conf igura t ions C. e K, x K . x . . . x K x r . x

l ~ ~ j l 2 n l

r * x . . . x T , 0 < j < m, we w r i t e
I n

s-s . . . s : C f-j C
1 2 m O'M m

whenever s.: C. , IT: C. for each 1< i< m. By convention, we write
I i-1'M I ~ ~ .

e: c
k £ ck

for any configuration C of M. For configurations C and C' and for w£l ,
K.

we write

w: C tlC'

whenever w: C hr, C for some 0<m. M may be omitted from [r-. , h-. , and
'M M 'M

l *

— when no ambiguity results.

Notice that the one-way input head advances if and only if no

machine executes an e-transition. The network is blocked from having

some machines execute e-transitions and other machines execute non-e-

18

transitions. This may or may not seem reasonable formulation. It is,

however, largely irrelevant, as we will be concerned mostly with real

time networks, for which no e-transitions are allowed.

DEFINITION 14: The language of pdn M accepted by final state3 denoted

T(M), is defined as T(M) = {w e Z*|w: (q0,qQ,••.,q0,ZQ,Z0,...,ZQ) \^

(q ,q , . . . ,q ,Y-, , Y 9 , . • - , Y „) f o r q e F and y e T* l < i < n } . 1 z n i z n 1 1 1 1

DEFINITION 15: The language of pdn M accepted by empty stoves denoted

N(M), is defined as N(M) = {w e Z*|w: (q0,qQ,•••,q0,ZQ,Z0,...,ZQ)^

(q^q ,.. ,,q ,E,E,... ,E) for qi e K , l < i < n } .

Again, we may conceive of other acceptance definitions. For exam

ple, any machine's being in a final state could result in acceptance by

the network. We will ignore such possibilities, however.

The Equivalence of Pushdown Automata and Pushdown Automata Networks

We now wish to show that multipushdown automata and multipushdown

automata networks are, in fact, equivalent. Once we have shown this,

we may study the latter in lieu of the former. The motivation for doing

so is straightforward. The acceptance properties of real-time multi

pushdown acceptors are mostly known. Although these properties are of

interest, they do not in any way reflect the internal complexity of the

machines involved. In particular, the information placed on the stores

may be used by the automaton in rather different ways. Intuitively, it

appears that certain operations, such as shifting information from one

pushdown store to another in order to simulate a Turing machine tape, are

more sophisticated or complex than other operations, such as comparing

the contents of a pushdown store with a subword of the input string. By

19

reformulating the multipushdown automaton as a network of machines, we

hope to isolate and systematically study information flow in the auto

maton, which we might expect to be a valid index of internal complexity.

We first show that any language accepted by a pdn is accepted by

some pd without loss of time. This is done by constructing a pd from

the pdn . The pushdown machine manipulates the stores exactly as the push

down network. Its finite control "knows" the transition function of

each machine in the network and, by "remembering" the state of each

machine, can simulate the behavior of the network.

THEOREM 1: Given any pdn M. There is a pd M' such that T(M) = T(M'),
n n

N(M) = N(M'), and every word accepted by M in m transitions is accepted

by M' in m transitions. If M is deterministic, so is M'.

PROOF: Let M = (K^,.. . ,Kn,Z . T ^ , .. . ̂ V V ' '' ' V V V
F rF 2 >...,F n).

Let M' = (K,Z,r..,...,r

K = Kx x K2 x . .

V = (vv-
F = {(qrq2,..

6,qQ ,ZQ,F), where

xK , n

•,q 0),

,q) £ Klq. e F., 1< i < n},
n ' l l ~

and ((q^ ,q2
f ,...,qn'),a1,a2,...,a) e 6 ((q^q^ . .. ,qn> ,s,Z1,Z2,. . . ,Z^) if

and only if (q.' ,a±) C ^ V V d) 'qD.(2) ' * ' ' 9\(v±) ,S ' V

for q.,q.f e K., Z.e T. and a. e r .* , l^i<n. We assert that M1 is
1 1 1 1 l l l

a pd with the properties indicated in the statement of the theorem.

Let C = (q1,q0,...,q ,Y1,Y„,...,v) be a configuration of M and 1 2. n 1 I n

let C1 = ((p1 ,p«,. . . ,p) »$-. »$»»••• »$) be a configuration of M'. We will

20

say that C and C' are corresponding configurations if and only if q. =p.

and v. = 3. for all 1 < i < n. Notice that if C and C' are correspond-
1 1

ing configurations, M is in a final state if and only if M' is, by the

definition of F, the final state set of M1. Also, M has all stores empty

if and only if M' has all stores empty.

Suppose word w is accepted by M. Let |w| = h, where |w| indi

cates the length of w, that is, the number of symbols in the word w. If

CL is the initial configuration of M, we must have w: C^i-r, C , h<m, for 0 U'M a'

some accepting configuration C of M. (An accepting configuration is a
cl

configuration in which the machine accepts a word.) Notice that the

possibility that h<m exists, as the machine may make e-transitions, that

is, may make transitions without reading input symbols. We may insert

e's (empty words) where appropriate and note that we have s..s ...s :

C„ hr, C , where s. e I U (e>, l£i<m.
0 M a l

We will show by induction that if w is accepted by M, w is accepted

(by the same criterion) by M'. We do so by showing that M' achieves con

figurations corresponding to those achieved by M. Let C« = (qn> q^^'-sq^*

Z ,Z ,...,Z) be the initial configuration of M. The initial configura

tion of M' is CQ' = ((q0,qQ,...,q0),Z0,ZQ,. .. ,ZQ), which is, by defini

tion, the corresponding configuration of C . Now assume that for

i k i k
0 < k < m, s - s s . : C_ U- C, and sn s_ . . . s , : C ' \- Cu' , where C, and C '

1 2 k O M b 1 2 k O M b b b

are corresponding configurations. In particular, let C = (q ,q ,...,q ,

Vl' Z2 y2 Z n V a n d V = ((VV---,qn)'ZlYl'Z2Y2'-">ZnYn)-

L e t sk+l: Cb k V w h e r e Cc = (ql' 'q2 '•••'%' ' V l ' V 2 Vn>' F r o m

definition 13, we have for all 1 < i < n (q .' ,a .) S 6 . (q . ,q^ ,... ,q_ ,„. ,. . . , ni l l l D.(l) D.(2)
l l

q̂ , N, s. ,,,Z.). From the construction of M1, we must have
D.(p.) k+1 I
l l

21

((q1' ,q2' ,...,qn'),ct1,a2,...,an) e 6 ((q^q^q^ ,s k + 1 yZ±, Z£,. - .,Zn>.

Thus, by definition 5, sk+1: Cb' f̂ , ((q^ ,q2* ,. . . ,q^) .a^,a2Y2> • • • ,

a„ Y„)- But ((q ' ,q ' .. . ,q '),a Y-, ,a Y ,. .. ,a Y) = C ' , the configu-n n ± z n i J. z z n n c

ration corresponding to C . Hence, M and M1 achieve corresponding

configurations in the same amount of time and, since acceptance by final

state or empty stores occurs in corresponding configurations,

T(M') £ T(M) and N(M') £ N(M). We may use a similar argument to show that

T(M) c T(M') and N(M)^ N(M'). Again, initial configurations correspond.

i k i k
I f s s . . . s : C ' h- , C ' and S . . S - . . . S . : Cn - C, , where C ' and Cu a r e

I z k U ' M b l z k O ' M b b b

corresponding configurations, and s, : C' k-T C ' , where the meaning of

symbols is as above, then we must have (q.',a.) G S.(q.,q n.,q ,.,...,

Q^ / \>si ,i»Z.) for all 1< i< n, from the definition of M'. But this MD.(p.) k+1 l

means s, ,.: C. h— C , and, by the same reasoning as above, we must have
k+1 b 'M c J b

T(M) c T(M') and N(M) c N(M'). Taken with the previous result gives us

T(M) = T(M') and N(M) = N(M').

Finally, assume M is deterministic. Since, for M1, ((q,' >q2' >•••>

q '),a ,a ,...,a) e 6((q ,q ,...,q),s,Z ,Z ,...,Z) if and only if, for
n 1 z n 1 z n l z n

M, (q^ , 0 e 6i(qi»qD (i)>% (2),"*,qD (p)>S'Z±) for a 1 1 X - i - n' it:

is clear that 6((q1,q9,...,q),s,Z1,Z ,...,Z) contains at most one ele

ment if each <5.(q.,q̂ , . q̂ , 0 w • • »Q^ t \>s,Z.) contains at most one

l ni,MDi(l),
MDi(2)'

 MD (p) ' l

element. Also, if 6((q , q ,...,q), e,Z ,Z ,...,Z) is non-empty, then each

6i^qi,qD. (l),qD (2)'**',qD (p)'£>Zi) is non-empty. But since M is deter

ministic, for any sG E, 6
i(

cli'
clD (l)'

qD (2)'"',qD (p)'s'Zi^ m u s t b e

empty. From the definition of M', each 6((q ,q , ...,q) ,s ,Z.. ,Z , . . . ,Z)

is empty. By definition 2, therefore, M1 is deterministic.

Q.E.D.

22

We complete the proof of the equivalence of the usual formulation

and the network formulation by showing that a pdn may be found to accept

the language of any pdn without loss of time. The necessary simulation

in this case is a bit more complex than that of the previous theorem.

The chief difficulty is that a given machine in the network can "know"

the state of every other machine in the network but cannot "know" the

top store symbol of the other pushdown stores. In general, however, the

operation to be performed on any store of a pd depends in part on the top

symbols of the other stores. This difficulty is overcome by incorporating

the logical top store symbol from each store into the finite control to be

associated with that store. By maintaining information about the top of

each store in the finite controls, each machine of the network has access

to enough information to simulate the finite control and one pushdown

store of the pd .
n

In order to simplify certain parts of the proof, we introduce func

tions P (for prefix) and S (for suffix). If w is some string of symbols,

P(w) is the first symbol of w, and S(w) is the string remaining when the

prefix is removed. For example, if w=abc, P(w) = a and S(w)=bc. The

following lemma provides formal definitions for these functions and

establishes some of their properties. These properties are, in fact,

intuitively obvious.

LEMMA 1: Let set A be a finite alphabet for w e A*, define P(w) and S(w)

as follows:

If w = E , then P(w) = S(w) = e. If w= ax, where a e A and x e A"

then P(w) = a and S(w) = x.

The following properties are true:

(a) w=P(w)S(w) for w e A .

(b) P(P(w)) = P(w) f o r w e A*.

(c) S(P(w)) = e f o r w e A*.

(d) P(wx) = P(w) for w,x e A* and |w| > 1 •

(e) S(wx) = S(w)x for w,x e A and |w| > 1 •

PROOF: (a) This follows directly from the definition. If w = e ,

P(w)S(w)= ee = E. If w=ax, for some a e A and x e Av, P(w)S(w)=ax

(b) Either w= e or w = ax for some a e A and x e A . Suppos

We have

P(P(w)) = P(P(e)) Substitution

= P(e) Definition

= P(w) Substitution

If w = ax, we have

P(P(w)) = P(P(ax)) Substitution

= P(a) Definition

= P(ax) Definition

= P(w) Substitution

(c) If w = e , we see that S(P(w)) = e from the definition. I

w = ax for some a e A and x e A , we have

S(P(w)) = S(P(ax)) Substitution

= S(a) Definition

= S(ae) Definition of e

= e Definition

24

(d) Let w = ay, where a e A and ye A*.

P(wx) = P(ayx) Substitution

= P(az) Let z = yx

= a Definition

= P(ay) Definition

= P(w) Substitution

(e) Defining w as in (d), we have

S(wx) = S(ayx) Substitution

= S(az) Let z = yx

= z Definition

= yx Substitution

= S(ay)x Definition

= S(w)x Substitution

Q.E.D.

THEOREM 2: Given any pd M. There is a pdn M' such that T(M) = T(M'),

N(M) = N(M'), and every word accepted by M in m transitions is accepted

by M1 in m transitions. If M is deterministic, so is M1.

PROOF: Let M = (K,Z, 1^ , 1 ^ , . . . , 1 ^ , 6 , q 0 , Z 0 , F) .

Let M' = (KxT ' , K x T J K x T ' . J l . r ' r ' r ' 5 . , 6 , 5 ,
1 Z n l z n l z n

(q 0 , Z 0) , W , F 1 , F 2 , . . . , F n) , where

r.' = r. u {w}, w 4 r . , i< i < n ,
i i i

F. = { (q , Z) |q g F and Z c r . 1 } , 1< 1< n,

and (q' , a n , a 0 , . . . ,a) G 6 (q ,s ,Z. . ,Z . , . . . ,Z) i f and on ly i f ((q ' ,P(a .X)) ,
1 I n 1 2 n I

S(a ± X)) ?. 6 i ((q , Z i) , (q , Z 1) , (q , Z 2) , . . . , (q , Z i _ 1) , (q , Z i + 1) , . . . , (q , Z n) , s , X) for a l l

1< i < n and X e T.1. We assert that M' is a pdn with the properties
" ~ l n

desired.

25

As in the previous theorem, we wish to define corresponding con

figurations of M and M1. Let C = (q,y ,y0>•••»Y) be a configuration
1 2 n

of M and let C = ((p.. ,Y) , (p ,Y),. .. , (p ,Y),a ,a0,. . . ,a) be a config-
1 1 Z Z n n l z n

uration of M'. We will say that C and C1 are corresponding configura

tions if and only if p.=q, Y. = P(y.W) and a.^S(y.W), l<i<n. From

the definition of M', it is clear that in corresponding configurations,

M is in a final state if and only if M' is. From the definition of

corresponding configurations, it is clear also that in corresponding

configurations, M has all empty stores if and only if M' does. (Note

that S(eW) = S(W) = e.)

To show that M and M' accept the same languages, we again must do

an induction on the number of transitions. This time we will do a single

induction noting that we go from step to step using biconditionals, so

that the proof could proceed forward or backward. The initial configu

rations of M and M' are CQ = (q0,ZQ,Z0,...,ZQ) and CQ' = ((q0,ZQ),

(q ,Z),...,(q,Z),W,W,...,W),respectively. By inspection, we see that

these are corresponding configurations. Now assume that for 0<k<m,
s iV--V co & cb and s iV" sk : co' & V ' w h e r e S a n d cb' a r e

corresponding configurations. In particular, let C = (q,y1,Yo»•••»Y)

and Cb' = ((q,P(Y;LW)), (q.P^W)) , . . . , (q,P(YnW)) ,S(Y;LW) ,S(y2W) ,. . . .S^W)) .

Suppose sfc+1: Cb ̂ (q' .c^S^) ,a2S(y2) ,. .. »«n
s(Yn)) = CQ> where a±e T±*.

By definition 5, it is clear that this is true if and only if (q',a.,,

a2,...,an) e 6(q,sk+1,P(y1),P(Y2),...,P(Yn))« From the definition of

M', we see this is the case if and only if, for all 1^ i<n and

X e IV, ((q,,P(a1X)),S(a±X)) e 6i((q,P(Yi)) , (q,P(Yl)) , (q,P(Y2)) »• • • ,

(q,P(Yi_1)),(q,P(Yi+1))»---,(q,P(Yn)),sk+1,X). Now, for the transition

26

represented by s. ,_: C, \r-M C to take place, each Y. must be other than
k+1 b 'M c 1

e, that is |Y. | > 1« By lemma Id, then, we may write C ' as

((q,P(Y1)),(q,P(Y2)),...,(q,P(Yn)),S(Y1W),S(Y2W),...,S(YnW)). Thus,

in this configuration, the ith store has P(S(Y.W)) as its top symbol.

Reading s therefore causes the ith machine to execute the transition

((q,,P(aiP(S(YiW)))),S(aiP(S(YiW)))) e 6;. ((q,P(Yi)) , (q ,P(Y 1)) , (q ,P(Y2)) , • • •,

(q,P(Yi_1)),(q,P(Yi+1)),.-.,(q,P(Yn)),sk+1,P(S(YiW))). Thus, we have s ^ :

Cb' kp (^^p(V(S^lW)^^^^P(a2P(S(Y2W)))),•••,(q,,P(anP(S(YnW)))),

S(aiP(S(YlW)))S(S(YlW)),S(a P(S(Y9W)))S(S(Y9W)),...,S(a P(S(Y W)))S(S(Y W)))= 1 1 l z z L n n n

C '. We will show that C and C ' are corresponding configurations. To
c c c

do so, we must show that P(a.P(S (Y.W))) = P(CX.S(Y.)W) and that

S(CX.P(S(Y.W)))S(S(Y.W)) = S(a.S(Y.)W) for all l<i<n. Either a. =e or

a.I > 1. In the first case, we have
1 l' -

P(CI.P(S(Y.W))) = P(P(S(Y.W))) Substitution

= P(S(Y.W)) Lemma lb

= P(S(Y.)W) Lemma le

= P(ES(Y.)W) Definition of e

= P(a S(Y.)W) Substitution

and S(a.P(S(Y.W)))S(S(Y.W)) = S(P(S(Y.W)))S(S(Y.W)) Substitution

= S(P(S(Y.)W))S(S(Y.)W) Lemma le

= S(S(Y.)W) Lemma lc

= S(a.S(Y.)W) Definition of e
I I

In the second case, we may write

P(a.P(S(Y.W))) = P(a.) Lemma Id
1 1 I

= P(a.S(Y.)W) Lemma Id

27

and S(a.P(S(Y.W)))S(S(y.W)) = S(a.)P(S(y.W))S(S(y.W)) Lemma le

= S(a.)S(y.W) Lemma la

= S(a.S(y.W)) Lemma le
1 1

= S(a.S(Y.)W) Lemma le

Thus C and C ' are corresponding configurations, and M accepts in m

transitions if and only if M1 accepts in m transitions. An argument

similar to that in Theorem 1 shows that M' is deterministic if M is

deterministic .

Q.E..D.

Adequate Structures for Pushdown Automata Networks

Having established the equivalence of the network formulation of

multipushdown automata and the usual single-control formulation, we will

restrict our attention to the latter. We now wish to consider specific

types of connections within a network. In theorem 1, we assumed each

machine in the network depended upon every other machine in the network.

In theorem 2, the network constructed to simulate the actions of the

multipushdown acceptor also has every machine connected to every other

machine. Can simpler networks be equally powerful? The next theorem

establishes the answer to this question to be "yes" for dpdn ' s.

First, we introduce a definition.

DEFINITION 16: Let M be a pdn , n> 2. We will say M has a ring struc

ture provided there exists a function f: {l,2,...,n} — y {l,2,...,n}
onto

such that:

(1) p. = 1 for 1 < i < n,

28

(2) D (1) = f(j+l) for l<j<n-l, and

(3) Df, ,(1) = f(l).
f (n)

We will say for completeness sake that any dpdn.. also has a ring structure.

THEOREM 3: Let M be a dpdn . There exists a dpdn M' with a ring of
n n

structure such that T(M) = T(M'), N(M) = N(M'), and every word accepted

by M in m transitions is accepted by M' in m transitions.

PROOF: Our proof will be somewhat less formal than previous proofs. We

will rely upon the basic techniques used in the proofs of theorems 1 and

2.

Before showing how to construct M', we should examine what this

theorem says. It asserts that any language accepted by a dpdn can be

accepted by a deterministic network whose machines are connected in a

ring or circle — each machine is connected only to one other machine.

In effect, information may flow around the network in either a clockwise

or counterclockwise direction, but not both.

We will construct a network M' for which C. 0,Crt0,. . . ,C, n w X,C -..
12 23 (n-1)(n) nl

(Machine 1 is connected to machine 2 and so forth.) We assume n> 2, as

the theorem is trivially true for n=l. The ith machine of M' will simu

late the ith machine of M. In the finite control of the ith machine is

coded the following information:
(1) The state of each machine of M and

(2) The top 1+ ((n+j) mod n) symbols of the pushdown store of

machine 1+ ((i+j) mod n) of network M, -1< j < n - 2.

For example, if n = 4 , machine 3 of M' has the following information rep

resented in its state:

29

(1) The states of machines 1,2,3, and 4 of M,

(2) The top 2 symbols of store 1 of M,

(3) The top 3 symbols of store 2 of M,

(4) The top 4 symbols of store 3 of M, and

(5) The top symbol of store 4 of M.

The initial store symbol of each machine of M' is W. Whenever a control

is "remembering" the top k symbols of a store which contains fewer than

k symbols, the remaining otherwise unspecified symbols are represented by

W's. (This technique is merely an extension of that used in theorem 2.)

In the first transition,from the configuration of M', it is clear

that the control of each machine of the network can properly adjust the

coding of the state and pushdown store of the corresponding machine of M.

(The transition function of machine i of M can be incorporated into its

transition function, the states of all machines of M are "known," the

pushdown store of machine i is simulated in the control and the pushdown

store, and the input symbol is known to all machines of the network.)

By a similar argument, it is clear that the encoding of the states of

machines of M can also be updated, as can the pushdown store segments.

(Note that if the bottom symbol of a store of M is removed, no more transi

tions are possible). Assume that after k transitions, each machine of M1

still properly encodes the desired information about M in its control.

We assert this condition can be maintained for the k+lst transition,and

therefore M' will accept the same language as M. It should be clear that

there is no difficulty so long as no store of M grows shorter, that is,

no symbol is removed from a store without being replaced by one or more

symbols. Suppose this is not the case, however. Say the ith machine is

30

"remembering" the top h symbols of the jth store of M and the transition

function of the jth machine of M requires that a symbol be removed from

that store. The hth symbol now becomes the h-lst, the h-lst symbol be

comes the h-2nd,..., the 2nd symbol becomes the 1st. The hth symbol,

however, should be replaced by the h+lst, knowledge of which is not

encoded in the control of machine i. It will be noticed, however, that

the machine which is connected to the ith machine of Mf, the i-lst machine

(nth machine if i=l), incorporates knowledge of the top h+1 symbols.

Since the ith machine's transition function depends upon the state of this

machine connected to the ith machine, the update can indeed take place!

This is true for all stores, of course, which completes the induction.

The final state set of each machine of Mf consists of those states encoding

final states for each machine of M. Clearly all machines of Mf empty

their stores if and only if all machines of M do so. Thus, we must have

T(M) = T(M') and N(M) = T(M').

Q.E.D.

It may seem surprising that the construction of theorem 3 may be

done without loss of time. When a machine of Mf moves a symbol from its

physical pushdown store into the logical extension of the store in the

finite control, this fact is not immediately communicated to all other

machines in the network. (The information propagates no faster than one

machine per transition.) The technique works, however, because the

information is "sent" around the ring in advance of when it will be

needed and "arrives" before it is actually required.

For nondeterministic networks, we have the following theorem which

places an even weaker restriction on the type of network connections

31

needed to accept a language of a pdn . Again, we introduce a defini

tion.

DEFINITION 17: Let C* be the reflexive, symmetric, transitive closure

of relation C. (Recall that C.. means that machine i is connected to
ij

machine j.) If M is a pdn , we say that M has a connected structure

provided that C*. for all l<i,i<n.
ij ~

THEOREM 4: Let M be a pdn . There exists a npdn M' with a connected
n n

structure such that T(M) = T(M'), N(M) = N(M'), and every word accepted

by M in m transitions is accepted by M' in m transitions.

PROOF: Notice that the restriction on the interconnections of M' is

quite minimal — no machine or group of machines may be unconnected from

the others of the network. The directions of the connections, however,

are irrelevant. Thus, for example, in a network of n machines, n-1

machines may depend only on the nth, which in turn depends upon none of

the others.

As before, each machine of M1 will simulate one of the machines of

M. Except in the initial state of each machine of M? and possibly in final

states or states which cannot lead to acceptance, the finite control of

each machine of M' encodes the following information:

(1) The state of the simulated machine

(2) The states which the other machines of M are assumed to be in,

(3) The logical top store symbol of the simulated machine,

(4) The element from I IJ {e} assumed to be an argument of the

transition functions for the next transition,

(5) The state the simulated machine will be in after the next

transition, and

32

(6) The states which the other machines of M are assumed to

take on after the next transition.

The final states of machines of M' are those which encode only final

states of machines of M. Each machine of M', on every transition except

the first, operates as follows: If the machine depends upon any other

machines, it checks to see if its allocation of current and future

states of the machines of M and the element from Z {E} which causes

the next transition agree (items (1), (2), (4), (5), and (6) above). If

they do not, it does not empty its store and enters a non-final "dead"

state from which no other transitions are possible. M' continues the

simulation of M only so long as all machines of M' make the same assump

tions about states and input symbols. (For i and j, whenever either C..

or C.., one machine is able to check this for consistency.) If these
J1

assumptions agree, they must reflect possible configurations of M, as

each machine of M' totally simulates a machine of M based upon the cor

rectness of the other states. If the predicted element of E U {E} is from

Z, the dead state is entered if the symbol read is not as predicted.

Otherwise, the next states (items (5) and (6)) become the current states

(items (1) and (2)) and the pushdown store will be adjusted according to

the transition function of the machine simulated. (This may affect (3).)

The machine "guesses" a new item (4) and "guesses" next states of other

machines (item (6)). Based on this information (it may need to know the

physical top store symbol here), item (5), the next state of the machine

simulated, can be established. As M may be nondeterministic, this in

volves another "guess." If no transition is possible, this is indicated

in the state if the new current states are final, otherwise a dead state

33

is entered. This process, which has been described sequentially, can

clearly be carried out in one step, albeit with a complex, nondetermin-

istic transition function. It should be clear that Mf actually does

simulate the actions of M. Note that the "look-ahead" feature is neces

sary to assure that incorrect "guesses" may be eliminated before they

are executed. It is this feature which requires the first transition to

be handled differently, as we have but a single initial configuration for

M' . If M accepts no words in one transition, each machine of Mf on its

first transition encodes all the information listed above into its state.

Items (1) and (2) may be inconsistent between the machines at this point.

This can be corrected on the next transition, however, after which the

machine operates as described. If M does accept some words in one

transition, each machine of M1 chooses on the first transition (if such

a word occurs) to accept the word or to treat it as the prefix of a longer

word. In the former case, it enters a final dead-end state and empties

its store. Otherwise, it proceeds as if no words are accepted in one

transition.

Q.E.D.

As has been mentioned, multipushdown acceptors with two or more

stores are equivalent to Turing machines. Thus, we now restrict our

attention to real-time multipushdown machines and networks. We will also

confine our attention to acceptance by final state.

Book and Greibach [7] have shown that any language accepted by

rtpd 's may be accepted by some nrtpd„. Theorem 4 shows that it is pos

sible to accept such a language with a nrtpdn,. such that the three machines

are related by C*.

34

Although it will not be proved as a theorem, it should be noted

that a nondeterministic network need have only one nondeterministic ele

ment — only one transition function not composed of singleton sets. One

machine can "tell" the other machines which transitions to execute.

Those machines can block acceptance if the transitions cannot, in fact,

be carried out.

Some Related Language Hierarchies

In the next chapter, we will use the network formulation to study

a restricted class of real-time multipushdown machines, namely the real

time multicounter machines. Before moving on to multicounter acceptors,

however, we conclude this chapter by relating three previously identi

fied language hierarchies to automata network theory.

THEOREM 5: There is an infinite hierarchy of languages accepted by

deterministic real-time pushdown automata networks. That is, for n>l,

DRTPDN c: DRTPDN ,,.
n n+1

PROOF: The existence of this hierarchy has been shown by Aanderaa [1]

independently of any network formulation.

Q.E.D.

COROLLARY 1: There is an infinite hierarchy of languages accepted by

drtpdn ' s with ring structure.

PROOF: This follows immediately from theorems 3 and 5.

Q.E.D.

DEFINITION 18: A network of n machines in which p. = 0 for all 1< i< n

is called an atomized network. (An atomized network is simply a network

with no connections.)

35

THEOREM 6: There is an infinite hierarchy of languages accepted by

nondeterministic atomized real-time pushdown networks (nartpdn 's).

That is, for n>l, NARTPDN d NARTPDN ...
n n+1

PROOF: Let M be a nartpdn . Let M. be the ith machine of the network.
n 1

n
(M. is just an ordinary pushdown automaton.) Clearly, T(M) = H T(M.),

1 i=l x

since a word is accepted by M if and only if it is accepted by each M..

But it is well-known that a nrtpd can accept any context-free language

[30]. The result then follows from the fact established by Liu and

Weiner [41] that there is an infinite hierarchy of intersections of con

text-free languages.

Q.E.D.

THEOREM 7: There is an infinite hierarchy of languaged accepted by

deterministic atomized real-time pushdown networks. That is, for n>l,
DARTPDN c: DARTPDN ,..

n n+1

PROOF: Burkhard and Varaiya establish this hierarchy [9], relate it to

the Liu and Weiner hierarchy, and describe their result as dealing "with

n deterministic real time pushdown automata operating independently in

parallel."
Q.E.D.

36

CHAPTER III

MULTICOUNTER AUTOMATA NETWORKS

A counter is a store which can contain a single integer of arbi

trary magnitude, which can be incremented or decremented in one step by

an integer of limited magnitude, and which can be tested only for zero

contents. Without loss of generality, we may restrict the numbers stored

to non-negative integers and the increment or decrement to 1 [18]. In

this chapter, we will be concerned with real-time multicounter networks

accepting by final state. As we will see, such networks are an equiva

lent formulation of real-time multicounter automata. We will incorporate

results by Fischer, Meyer, and Rosenberg [18] and Kain [34] into a unified

framework by means of the network formulation. In addition, we present

new results suggested by this framework.

Preliminaries

Counters and counter machines, like other constructs in automata

theory, have been defined in various ways. All too often, these defini

tions have been informal and imprecise. We will adopt a variation of

Kain's conventions here in order to show clearly the counter machine as

a special case of the usual pushdown acceptor [34].

DEFINITION 19: Let M be a pd , M = (K,E,r ,T ,...,T ,6,q ,Z ,F). If,

for l<i<n, //(r.)<2 and y. on the ith store implies y.€(T. - {Z })*Z ,

then M is called an n-store counter machine (cm). By analogy to push

down machines, we may speak of n-store counter automata networks (en),

37

veal-time n-stove counter automata networks (rtcn), and so forth.
n

In counter machines under this definition, the pushdown automaton

"counts" by tallying, using a single symbol on the store. The symbol

Z merely acts as end-marker and is always at the bottom of the store.

Alternative definitions either treat the counter as a special memory

storing a count which can be tested only for zero, or describe a counter

as a pushdown store limited to a single-symbol alphabet. This last

description is intuitively appealing because of its simplicity, but it

requires a slight redefinition of the pd . The reason for this is easily

seen. If a single symbol is on the store but is removed without replace

ment in a transition, the store will be empty and the machine must halt.

Thus, the machine cannot test for a zero count. We might circumvent this

problem in one of the following ways:

(1) Define transition functions on Cartesian products of

...xCr- U {e})x(r_ U {e})x...x(r U {e})x...
± Z n

or

(2) Base the transition function on the top two store symbols.

Neither of these alternatives seems to preserve the pushdown machine in

its usual form, so we reject them and adopt definition 17.

We first establish that real-time machines are equivalent.

THEOREM 8: Given any rtcn M. There is a rtcm M' such that T(M)=T(M').
J n n

If M is deterministic, so is M'.

PROOF: Let M be a rtcn . By definition 19, M is just a special type of

pdn . Construct M' as in theorem 1. Since the construction of M' does
n

not alter the pushdown store alphabets, Mf is also a counter machine.

Since the simulation of M by M' is done without loss of time, M? must be

a rtcm . It follows from theorem 1 that M' is deterministic if M is.
n

Q.E.D.

38

THEOREM 9: Given any rtcm M. There is a rtcn M1 such that T(M) = T(M').
n n

If M is deterministic, so is M'.

PROOF: Let M be a rtcm . By definition 19, M is a special type of pd .

The construction of M1 in theorem 2 is nearly adequate to prove this

theorem but is not quite acceptable, as it requires augmenting the push

down store alphabets with the symbol W. From M, we may construct a

machine for which each symbol on a store, except for the end-marker Z ,

represents two symbols on a store of M [18]. It follows that no two sym

bols are ever removed from the store in succession. Thus, if the logical

top store symbol is kept in the finite control of each machine, the fact

that the end-marker is on top of the physical store can be detected and

encoded into the state without ever having to remove Z to represent its

coming to the top of the logical store. (In the construction in theorem

2, Z would be removed from the store and encoded into the state, but W

would remain on the store.) Clearly, we may keep the top store symbol

and state of M in the control of each machine this way and can thus con

struct M' in a manner otherwise similar to that of theorem 2.

Q.E.D.

Corresponding to theorems 3 and 4, we have the following two theo

rems.

THEOREM 10: Let M be a drtcn . There exists a drtcn M' with a ring
n n °

structure such that T(M) = T(M').

PROOF: The proof follows along the lines of that for theorem 3. In

order to encode the top portion of the store into the finite control,

however, we must use a technique similar to that used in the last theorem.

For n> 1, modify the network so that each symbol on a store represents n

39

symbols. The transition functions may then be adjusted to follow the

proof of theorem 3.

Q.E.D.

THEOREM 11: Let M be a rtcn . There exists a nrtcn M? with a con-
n n

nected structure such that T(M) = T(MF).

PROOF: The proof follows directly from theorem 4 if the stores are

handled as.previously described to encode the top symbol into the finite

control.

Q.E.D.

We would like to develop a general theory (an exhaustive catalog,

at any rate) of the effects of interconnections within real-time counter

networks. What additional computing power, if any, is provided by addi

tional connections? The question is partially answered already. A struc

ture more extensive than a ring structure provides no recognition power

to a deterministic network beyond that provided by a ring structure. A

structure having more connections than the minimum needed for a connected

structure is similarly redundant for nondeterministic networks. Thus, a

deterministic n-counter network need have no more than n connections (no

connections, of course if n=l). A nondeterministic n-counter network need

have no more than n-1 connections. From our development so far, we see

that at least four cases must be examined:

(1) Deterministic real-time counter networks with unrestricted

connections (the connections may be limited to ring connec

tions, however),

(2) Nondeterministic real-time counter networks with unrestricted

connections (whose connections need only link all machines

in the network),

40

(3) Deterministic atomized real-time counter networks, and

(4) Nondeterministic atomized real-time counter networks.

Language Hierarchies Related to Multicounter Networks

Let us first look at deterministic, real-time counter networks.

There exists an infinite hierarchy of acceptance classes among such

machines. This was shown for counter machines independently by Fischer,

Meyer, and Rosenberg [18] and Laing [39]. Here, we shall follow the

development of the former.

DEFINITION 20: Let L be some language over alphabet Z, and let x,y,z 6 Z*.

We say that x and y are k-equivalent with respect to L3 x E y (mod L),

if, for all z such that |z| < k, xz e L if and only if yz e L.

Definition 20 says that if x E, y (mod L), prefixes x and y are

indistinguishable on the basis of their suffixes of length k or less.

LEMMA 2: Let M by a drtcm with s states. Then the number of equivalence

classes of E, (mod T(M)) is less than or equal to s(k+l) + 1 , which is

K.

less than ck for some constant c.

PROOF: First, we note that the bound in the literature is s(k+l) . The

difference here, which is incidental to the lemma, is the result of our

particular formulation of counter machines.

Since M can remove only one symbol at a time from a given store

and since all symbols on a store are the same except for the end-marker,

any store expression of length k+1 is indistinguishable in k steps from

one of length greater than k+1. Note that a store may be empty (in which

case no more transitions can occur), may contain only the end-marker, or

may contain any number of identical symbols followed by the end-marker.

41

Thus, since there are n stores, at most (k+1) +1 classes of store varia

tions are distinguishable. (All those variations having at least one

empty store are indistinguishable — none allows additional transitions.)

The classes may be paired with different states to give a maximum of

s(k+l) +1 distinguishable equivalence classes. For some c, s(k+l) + l<ck .

Q.E.D.

We now establish a hierarchy arising from deterministic real-time

counter networks of unrestricted structure using the languages

i m-i m0 m m_«
L = {0 x 1 0 z l . .. 0 nB.O 1< i< n, m. > 1, 1< i < n}, n>l,

over alphabets Z = {0,1,B-,B0,...,B }. n 1 2 n

THEOREM 12: DRTCN c DRTCN ,,, n> 1.
n n+1

PROOF: We prove the result for counter machines. The desired result then

follows from the equivalence of counter machines and counter networks.

Clearly, L e DRTCM . L is accepted by a drtcm as follows: As J n n n r J n

each string of O's is read, the corresponding m is placed on a counter.

B. tells the machine to compare the final string of O's with the count of
m.]_

the ith counter. If the string ends with 0 1, the word of L is accepted.

m1 m? mn+l Consider two distinct words x = 0 10 1...0 and
rl r2 rn+l y=0 10 ... 0 , where all the m's and r's are not greater than some

constant h. There exist s and t, l<s<n, l<t<h, such that z=B 0 ,

z < h+1, xz £ L ,_, and yz §f L Since there are h distinct words 1 ' ~ n+1 J n+1

of this form, we must have h < //(E. ,- (mod L ,.,)). But for any drtcm M,
h+i n+1 n

//(E (mod T(M)) < c(h+l)n by lemma 2. For large h, however,

#(E (mod T(M)) < c(h+l)n< hn+1. Hence, L1 jf DRTCM . But by the pre

vious argument, L in e DRTCM in. Since the inclusion of DRTCM in

n+1 n+1 n

42

DRTCM - is trivial, this proves proper inclusion.

Q.E.D.

The next theorem is the analog of theorem 12 for the nondeter-

ministic case and is a modification of a theorem in [34]. The theorem

is based on the languages

2 m-i mo m m, m0 m
L = {0 1 0 1 . . . 0 n 2 0 1 1 0 z l . . . 0 n 1 0 q q > 0 , m. > 0 , l < i < n } , n> 1
n In i - " '

over the alphabet Z = {0,1,2}.

THEOREM 13: NRTCN a NRTCN ,., n>l.
n n+1

PROOF: Again, we prove the result for counter machines. It is clear

2 2
that L e NRTCM . In fact, L e DRTCM . (We present both theorem 12 and

n n n n r

theorem 13 to illustrate two techniques for proving facts about counter

machines, as each of these techniques will be used later.) We will show

that L 2
M i NRTCM .

n+1 n
2

Let M be a nrtcm such that T(M) = L . Suppose M has read some
n n r

2
word w e L up to the 2, inclusive, and suppose k symbols of w remain to

be read. If M has s states, there are at most s(k+l) different configu

rations which the machine can be in which can affect the acceptance of w.

This is because M can be in any state and can have a count of between 0

and k on each counter. (Since each counter can be tested only for zero,

a count larger than k cannot affect the operation of M in k transitions.)

This means that M can distinguish between at most s(k+l) different w's.

Consider the suffix of w which remains to be read. It consists of k sym

bols, n of which are l's. These l's may occur anywhere in the suffix to

yield a valid suffix corresponding to a unique prefix. There are com

bination k items taken n at a time, C(k,n), such suffixes or

43

c (k, n) . k! . k(k-l) (k-n+1). , (k-n +l)
:

(k-n)!n! n! n! (k-n)

This means that we must have

i^-S^tlL. < c(k,n) < s(k+l);
n!

or

(k-n+l)n

_v '__ < s n !

(k + D n

2
On the other hand, if we assume T(M') = L ,.. for some n-counter machine,

n+1
we have

(k- n+1) / , I M - < s(n+l)!
(k+l)n

But s(n+l)! is a constant. For large values of k, the expression on the

left of the above inequality increases as k, that is, it becomes arbi

trarily large. Hence, M' does not exist.

Q.E.D.

We have now shown the existence of two infinite acceptance hier

archies arising from counter networks. These hierarchies, shown in theo

rems 12 and 13 are not identical, as we shall show in the next theorem,

also a modification of a theorem in [34]. We use the languages

m. m. „,
o m1 m^ m l-i î m-̂

L = { 0 1 1 0 Z 1 . . . 0 p 1 0 q B . 0 B. 0 ...B. 0 n | q > 0 ,
n,p H i 2 i n

H L > 0 , l < k < p , l < i . < p , l < j < n } , l < n < p ,

ove r a l p h a b e t s Z = { 0 , 1 , B ,B , . . . ,B } .

44

THEOREM 14: DRTCN <= NRTCN , n> 1.
n n

PROOF: As before we prove the result for counter machines. We assert

that for p > n, L e NRTCM .
n,p n

3
A nrtcm to accept L operates as follows: The machine nonde-

n n,p

terministically "guesses" which of the numbers m1,mr,,...,m must be
1 2 p

remembered. On the n stores, n of these numbers are saved. The machine

can verify it has guessed correctly by checking its guess against the

set of B's encountered. If it has guessed wrong, acceptance is blocked.

Otherwise, the contents of the counters are compared with the input

string.
Consider the possible configurations of a machine M accepting

3
L just before reading B. . If the number of symbols read up to this
n,p l-L

time is k, we may assume without loss of generality that no store con

tains more than k+1 symbols. (If r > 1 symbols are added to a counter in

any transition, the transition function can be coded such that each sym

bol except the end-marker represents r symbols on the original counter.)

If the machine has s states, it may be in one of no more than s(k+l)

configurations which result in acceptance of any strings in the language.

Now there are C(k,p) different k-length prefixes of words, each of which

3
requires a different set of suffixes in L . If M is deterministic, each

n,p
prefix must lead to a different configuration. Thus, we must have

(k-g,+ 1)P<C(k,p) <s(k+l) n

If this is the case, we must have

(k-p + l) P

*- — < sp!
(k + l) n

45

But sp! is a constant. For large k, the expression on the left increases

as k . But n<p means that this gets arbitrarily large. Thus, (1)

cannot hold, and M cannot be deterministic.

Q.E.D.

New Hierarchies Arising from the Network Formulation

We will now be concerned mainly with new results suggested by the

network formulation of real-time multicounter machines. First, we estab

lish the existence of infinite hierarchies for atomized machines.

THEOREM 15: DARTCN <= DARTCN ,, n>l.
n n+1

PROOF: The proof is a direct result of the proof of theorem 7 found in

[9]. In that proof, the set of languages

A m-i m9 m m.
L = (1 2 ...n n0i X m. > 0, l<j<n, 1< i<n},n2 1,

over alphabets T. = {0,1,...,n} are used to demonstrate a DARTPD hier-
n

4 4
archy. That is, for n>2, L e DARTPD but L t DARTPD n. If we can

n n n n-1
A

show that L e DARTCN for n > 1, since DARTCN c DARTPD (counter net-
n n n n

works are restricted pushdown networks), it follows that DARTCN cz DARTCN ,.,
v f n n+1

4
n> 1. But surely this is the case. A network accepting L operates as
follows: The nth machine of the network places the number m. on its

J
m.

store when j ̂ is read. If i / j, it enters and remains in a final

state no matter what the input. If i=j, it compares the number of i's

following 0 against m. on its counter. It enters a final state if there are m. I's; otherwise it remains in a non-final state.

Q.E.D.

A6

THEOREM 16: NARTCN d NARTCN ,,, n> 1.
n n+1

PROOF: The proof is analogous to that of theorem 15. The proof of the

corresponding theorem in the pushdown case is found in [Al] and uses the
languages

c m, m^ m m, ITU m
L = {1 2 ...n 1 2 ...n |m. > 1, 1 < i < n}, n > 1,

over alphabets E = {1,2,...,n}. Clearly L eNARTCN for all n, but
n J n n

since L 5
M i NARTPDN , L 5

M i NARTCN .
n+1 n n+1 n

Q.E.D.

It remains for us to illuminate the exact relationships between

the hierarchies found in theorems 12, 13, 15, and 16. A more complete

theory of interconnections requires us to look at one more connecting

scheme, however, a linear arrangement of automata.

DEFINITION 21: A rtcn such that C.. if and only if j = i + l, l<i<n-l,
n ij ~ -

is called a linear rtcn (lrtcn).
n n

In definition 21, we have avoided the generality of the definition

of a ring structure (definition 16). The linear nature of the linear

structure does not depend upon the formal numbering given the machines

of the network. Without loss of generality, therefore, we will assume

C12,C23,***,C(n-l)(n)*

THEOREM 17: There is no distinct infinite hierarchy among nlrtcn ' s.

PROOF: By theorem 11, we know that a connected structure is fully gen

eral for a nrtcn . From definition 21, it is clear that a nlrtcn has a

n n

connected structure (C*. for all l<i,j<n). Thus, a NLRTCN hierarchy

exists, but it is just the NRTCN hierarchy of theorem 13.

Q.E.D.

47

Theorem 18 will show that there is an infinite hierarchy (which

will subsequently be shown to be distinct) among deterministic lrtcn 's.

The proof that such a hierarchy exists is involved and will require a

number of technical lemmas. The proof is based on the languages

T 6 r _m am i . n _ , _
L = {0 1 m>l, l<a<2 -1}, n>l.
n

LEMMA 3: For n> 1, there exists a dlrtcn M such that T(M) = L .
n n

PROOF: We begin by noting that for any dlrtcn M', we may construct a

network M which operates in a particular way and which accepts the same

language. We first code the top store symbols for each machine of M' into

the finite control of the corresponding machine of M, as we have done in

other proofs. By so doing, the ith machine of M can always "know" whether

or not the counters of machines l,2,...,i of M' are positive or zero.

(See proof of theorem 3.) Since linear connections allow information

flow in one direction only, this machine "knows" nothing about machines

i+1, i+2,...,n of M'. The nth machine of M can determine the states of

all the machines of M' at any time. Thus, it can always determine when

M should be in a final state. We may therefore make all states of

machines l,2,...,n-l of M final. Machine n of M has both final and non-

final states. It will enter a final state if and only if all the machines

of M' are in final states after seeing the same input. For the remainder

of this proof, we will speak of the (logical) contents of a counter,

suppressing the fact that the contents of the physical counter may be

different. For machines i and j, we assume machine j "knows" when

machine i empties its counter if and only if i < j.
Suppose M operates as follows: While reading 0's, the ith counter

48

increases its contents by 2 for each 0 read. Thus, after reading 0 ,

the ith counter contains 2 m. When the first 1 is read, the counters

begin to count down. Each machine j counts either up or down by one for

each 1 read until some machine i<j empties its store, at which time it

changes from incrementing to decrementing or vice versa. M accepts a word

whenever any store empties (machine n enters a final state; other machines

have only final states). Misplaced input symbols, of course, result in

immediate rejection of a word by having machine n enter a "dead," non-final

state. We assert that T(M) = L . We will show this by induction.
n

Let n=l. After 0 has been read, the network has m on its only

counter. It then begins to decrement the counter as l's are read, empty

ing its store after reading ra of them. This causes the network (the

single machine) to enter a final state, accepting the word 0 1 . Upon

reading more l's, the counter increases its count without limit, as there

is no other counter to empty, and as the one counter there is will never

empty so long as it is being incremented. Thus, T(M) = L-.

Suppose the assertion is true when n=k. Consider the case for

n=k+l. After 0 is read, the store of the ith machine contains 2 m.

The operation of machines l,2,...,k is independent of machine k+1, of

course, as k+1 is connected to none of these machines. On the other

hand, each time one of these machines empties a counter, machine k+1
takes the network into an accepting configuration. Notice that we can

k-1 k-2
rewrite the contents of the first k counters as 2 (2m), 2 (2m),...,2m.

In other words, the first k counters contain the counts a dlrtcn. of the
k

9m

type we are considering would have on its counters after reading 0
In fact, so far as when the counters empty is concerned, these counters

49

work exactly like those of such a machine which, by hypothesis, accepts

T 6 _, . _ , _.m.,2m rm.,2 (2m) _m.,(2 -2)m ^, L,. Thus, the set of words 0 1 , U 1 ,...,01 must be

accepted, since a machine with k counters accepts words with suffixes

9m Am (0 /_n\

1 , 1 ,...,1 after being in the configuration in question.

Since the k-counter machine accepts no other words with any of these

as prefixes, the dlrtcn^ must accept no other words prefixed by 0 1 ,...

by virtue of the emptying of its first k stores. Now we consider words

accepted by virtue of the emptying of the k+lst store. Initially, it

acts just like the store for a machine for which n=l, that is, it

empties after m l's, accepting 0 1 thereby. The count increases as the

next m l's are read, until 0 1 is accepted because an earlier counter

has emptied. At this point, the count is m and the counter is being

decremented. Because the earlier counters empty every 2m counts, it is
. ,0(k+l) 1N

clear that counter k+1 empties after 0 1 , 0 1 ,...01 . After

this, its contents increase without limit as l's are read, since no more

stores are emptied. Combining this result with the strings we know are•

also accepted, we see that our dlrtcn - M accepts, for l<m,

(flm, (fl2m,..., 0ml(2 + "1)m. That is, T(M) = L£ + 1 > This completes

the induction.

Q.E.D.

Lemma 3 shows how the L languages can be accepted by dlrtcn 's.

We shall see in theorem 18 that the essentials of the algorithm given

above are necessary to accept L with a dlrtcn .

The next lemma asserts that a dlrtcn must behave periodically

under certain circumstances.

50

LEMMA 4: Let M be a dlrtcn (drtcn) and let s e E. There exist inte

gers p1, p_, p, > 0 and p_ > 1 such that if M is in state q and has 0 on

its counter (the end-marker only, in our formulation), M will be in some

p i + a p ? state q, after reading s x z for all a > 0 . Further, for every a,

p,+ap p1+(a+l)p2
between reading s ^ and s inclusive, M goes through the

same sequence of states q..,q , ...,q ,q1. If the counter contains p„

Pi 2 P-,+ap9
after reading s , it contains p + ap. after reading s x *•,

PROOF: Let b=//(S), the number of states of M, let q be the state of

M at time t , and let the input consist only of s's. There are two cases

to consider.

Case 1. The counter empties a finite number of times after t .

Thus, after some time t > t , the counter either contains 0 and never

increases its count, or contains a positive integer and never decreases

its count below that integer. Let c. be the count stored at t.. . Within

b transitions of t1, some state q1 of M must occur at least twice, say at

times t9 and t„. Let p = t - t„ and p = t_ - t . Since for all transi

tions after time t.. , the input and top store symbol remain the same, and

since M is deterministic, the fact that M is in q1 at t? and t~ means

that beginning at t„, M will execute the same t„ - t transitions it execu-

Pi+ap?
ted between times t_ and t . Thus between reading s and
p1+(a+l)p2

s for any a > 0 , M goes through the same sequence of states

q ,q ,...,q ,q . If the counter contains c at t_ and c„ at t , we must

have p = c and p. = c„ - c , since executing the same sequence of transi

tions must always alter the count by the same amount. Notice that p, > 0,

since p, < 0 would imply that for some a, the counter would contain

p + ap, < c , contrary to hypothesis.

51

Case 2. The counter empties an infinite number of times after

t„. For some b, by the time the counter has emptied b times after t„,

some state q1 of M must have occurred at least twice at times when the

counter empties. Call the first of these times t_ and the second t_.

Let p = t - t and p = t - t„. Since at time t_, M is in the same con

figuration as at t9, since the input continues the same as between t~

and t~, and since M is deterministic, we again have M going through
p1+ap2 p +(a+l)p

states q.,,q-,...,q ,q_ between reading s and s for any
1 2 p2 X

a>0. In this case, of course, we have p =p. =0.

Q.E.D.

The next lemma establishes a periodic behavior similar to that

seen in the last lemma for any deterministic real-time multicounter

network. We first introduce a definition.

DEFINITION 22: Let M be a rtcn . If M is in configuration (q.,,q2,... ,q ,

Y-,y ,...,y), we will say that M is in state configuration (q ,q ,...,q).

LEMMA 5: Let M be a drtcn in some configuration at time t~. If the
n 0

input remains constant (say s e E) and the network does not halt, there

exist integers p £ 0 and p >1 such that M is in some state configuration

P-,+ap0 C after reading s L z for each a^O for which t~ +p.. + ap~ < t, where t

is the first time after t when some counter empties (decreases from 1

to 0). Further, for all a2 0 such that t + p + (a+ l)p < t, between
p-,ap2 p1+(a+l)p2

reading s and s inclusive, M goes through the same sequence

of state configurations C.,C_,...,C ,C, .
1 2 p2 1

n
PROOF: There are p = n #(K.) possible state configurations of M.

i=l 1

Assuming no counters empty, within p(n+l) transitions after t_, some

52

state configuration must have occurred n+1 times. Further, on two of

these occurrences, the set of counters with counts of 0 must

be the same. Let these occurrences be at times t9 and t~, and let

p1 = t - t_ and p = t - t„. Since M is deterministic, if the input

remains constant and no additional stores are emptied between times t~

and t„ + p , M will execute the same sequence of transitions as between

t_ and t_. This argument is valid for each successive group of p

transitions. The desired result follows immediately.

Q.E.D.

Now we are ready to establish the existence of the linear hier

archy. The proof of the following theorem relies upon the fact that to

recognize words of L ,- beginning with 0 , a network accepting L must
n+i n+i

be able to "remember" the number m in order to compare multiples of it

with the number of l's following 0 . We will show, however, that the

linear structure of dlrtcn does not allow the network to retain m long
n

enough to recognize all such words. If these words are accepted by the

network, words not in L ... must be accepted also.

n+1
THEOREM 18: DLRTCN c DLRTCN ,,, n>l.

n n+1
PROOF: By lemma 3, we know that L e DLRTCN , n> 1. For some n> 1, J n n -
assume there exists some dlrtcn M such that T(M) = L ,.. . We will show

n n+1
that M cannot exist, and hence, the inclusion, which is trivial, is also

proper. Recall that

_6 r-m̂ ami _ _ 0n+l _ •,
L . - = {0 1 m>l, l<a<2 - 1 } .
n+1 '

Claim 1: From M, we may construct a dlrtcn M' which acts in a
n

m special way and for which T(M) = T(Mf). Suppose M' has read 0 of a word

53

in 0 1 . If counters 1,2,...,j, j < n, later empty at times t < t < . .. < t.,

these j counters never empty thereafter.

Begin by constructing M'" to operate in the manner of the network

in the proof of lemma 3. That is, only machine n of M'" has non-final

states and each machine i < n "knows" the current state and top store

symbol of machines l,2,...,i of M. From M"', we construct network M""

as follows: Modify M"' so that when counter 1 empties after reading 0

of a word in 0 1 , machine 1 of M"M begins incrementing its counter on

every transition, and machines 1,2,...,n simulate the action of machine

1 of M'" in their finite controls. That this can be done follows from

lemma 4. From M"" , construct Mllllf in a similar way, eliminating the

emptying of counter 2 after counters 1 and 2 have emptied in that order.

Old machine 2 is simulated by new machines 2,3,...,n. We continue this

process of constructing new networks from previous networks through n

iterations. Call the resulting machine M'. Clearly, M1 must behave as

described in claim 1.

Claim 2: From M', we may construct a dlrtcn M" such that

T(M) = T(M') = T(M"). In reading a word in 0ml*, M" empties no counter

j twice, 1<j < n, without emptying some counter i, i< j, in between.

In the construction of M', we have assured that each machine j of

M' "knows" the states of all machines i, i<j, of the network from which

it was constructed. We modify M' so that each time machine j empties

its counter after 0 is read, it avoids emptying it again until the

counter of an earlier machine in the linear chain empties its counter.

(This can be done in another sequence of constructions, as above. We

suppress the details.) The modification can be made, since the transition

54

functions of earlier machines can be incorporated into the control of

machine j . Looking at machine j as a dlrtcn.. , we see that its behavior

must become periodic, by lemma 4. Thus, after a fixed number of transi

tions, counter j either never empties again or empties periodically. In

the former case, machine j of M" behaves as machine j of M'. In the

latter case, since the period can be bounded, the count can be kept in

the finite control as well as on the counter. These two counts will

be made equal except when the counter of the old machine empties, in

which case a count of 1 will be maintained on the new store. This same

technique is used during the transitions before the machine becomes

periodic to avoid a count of 0. When the store of some earlier machine

empties, of course, machine j of M" reverts to operating as the corre

sponding machine of M'.

Claim 3: There is an integer p>l such that for m>p, after read

ing 0 , some counter of M" must empty for each word in 0 1 accepted.

Let p = p +p , where p.. and p are guaranteed by lemma 5. Sup

pose M" is in state configuration C after reading 0 1 . By lemma 5,

if no stores are emptied, the state configurations occurring after

m P-.
0 1 is read recur with period p_. Since m > p.. + p , C must occur

i

after reading 0 1 , where m' < m. But C must be an accepting state con

figuration (all components are final states of their respective

machines). Thus, 0mlm e T(M"). However, 0mlm i l^+±, so the hypo

thesis that no counter empties must be false. A similar argument can be

made for each word in 0 1 that M" must accept. This establishes

claim 3.

55

Claim 4: For some integer p, M" accepts no more than 2 - 1

m *
words in 0 1 , where m > p.

Let p be as in claim 3. Let T. be the number of times counter
J

m in ̂ t

j empties after 0 is read. By claim 3, the number of words in 0 1
n

accepted must be no more than T = E T.. By claim 2, we must have
max j = 1 j

j-l
T. = 1 + E T.. By claim 1, we have T = 1. It is easily seen that
J i=l J 1

T = 1 + 2 + ... + 2 n _ 1 = 2 n - 1.
max

Now L ,, contains 2 - 1> 2 - 1 words in 0 1 . This contra-
n+1

diets the contention that T(M") = L ,_. But we have seen that T(M) =
n+1

T(M') = T (M ") , so that T(M) ± L , contrary to assumption. Hence,

DLRTCN c: DLRTCN ,-.
n n+1

Q.E.D.

Relations among the Hierarchies

We have now established the existence of five infinite hierarchies

of acceptance classes arising from real-time counter networks. In rela

ting these hierarchies to one another, we may ask how corresponding

classes of the hierarchies relate to one another as well as how the

unions of all the classes relate to one another. The two following

theorems present the most obvious relationships.

THEOREM 19: For n > l , the following are true:

(a) DARTCN c DLRTCN .
n n

(b) DLRTCN G DRTCN .
n n

(c) DRTCN e NRTCN .
n n

(d) DARTCN <= NARTCN .
n n

(e) NARTCN c NRTCN .
n n

56

PROOF: All the inclusions are obvious because in each case the accept

ance class on the left arises from a network type which is a restricted

form of that giving rise to the acceptance class on the right.

Q.E.D.

We may demonstrate that all the hierarchies are distinct by

showing that all the set inclusions in theorem 19 are proper. This has

already been done for (c) in theorem 14. Notice that showing that cor

responding classes of two hierarchies are related by proper inclusion

does not imply that the infinite unions of the classes of the two hier

archies are so related.

THEOREM 20: If K , K ,...,K ,... represent acceptance classes in an
oo

infinite hierarchy, we shall represent U K. simply by K. The follow

ing are true:

(a) DARTCN £ DLRTCN.

(b) DLRTCN E DRTCN.

(c) DRTCN c NRTCN.

(d) DARTCN c NARTCN.

(e) NARTCN c NRTCN.

PROOF: The inclusions are obvious by the same reasoning as used in the

proof of theorem 19.

Q.E.D.

We now present a number of theorems to show that the inclusions

of the preceding theorems are indeed proper.

THEOREM 21: (a) DARTCN = DLRTCN .

(b) DARTCN ci DLRTCN.

(c) DARTCN a DLRTCN , n * 2 .
n n

57

PROOF: (a) This follows immediately from the fact that a dartcn.. and

dlrtcn are really the same type of device.

(b) We will show that L I DARTCN for any n. But by lemma 3,

L!J e DLRTCN .

Assume T(M) = L„ for some dartcn M.
2 n

Claim 1: There is a dartcn M1 such that T(M) = T(M!) and which
n

never empties the same counter twice after reading 0 for any m.

After 0 has been read, either all l's must be read or, without

loss of generality, we may have all machines of the network halt. By

lemma 4, however, machines which have emptied their stores once become

periodic with constant input. Thus, we may construct the machines of

Mf from those of M by simulating this periodic behavior in the finite

controls and maintaining a non-zero count on the counter.

Claim 2: For m sufficiently large, after 0 is read, at least

one counter of M1 must empty for each word of L9 accepted. This follows

from lemma 5 by an argument similar to that used in theorem 18.

Claim 3: For any given m sufficiently large, suppose counters

of M' empty at times t-,t ,...,t , where the last counter to empty

before time t , when 0 1 is accepted, does so at t-, and the last
a j-

9

counter to empty before time t, , when 0 1 is accepted, does so at

t . (By claim 2, r > 2. We assume that between t., and t , counters
r J 1 r
empty only at the times indicated.) For increasing m, the interval

between t. and tJt~ for some l<i<r-l must become arbitrarily large. l i+1 - ~ J b

From lemma 5, it is clear that t - t- must increase with m. Other-
r 1

wise, the network state behavior must become periodic between t and t, ,

and we may argue as in theorem 18 that words not in L9 must be accepted.

58

But if t - t becomes arbitrarily large, then the time between some t.

and t. -, must become arbitrarily large, as r£n, by claim 1.

m it 6

Claim 4: There exists some m such that a word of 0 1 not in L

is accepted between times t. and t , as defined in claim 3.

Suppose q machines of M' empty their counters before t. - and

n-q do not. We may view these machines as being a darten M" and

dartcn M'". By lemma 5, within some interval of t., the state behav-n-q J y ±»

ior of M" becomes and remains periodic so long as l's are read from the

input tape. Since the machines of M" must all be in final states at

t, , they must be in the same final states periodically before t, , at

least for large m. Let the period of this repetition be p . Likewise,

for large m, the state behavior of M" ' becomes periodic prior to t

and remains so until at least t. ... Since all machines of M , M must be

in final states at t , this set of final states recurs periodically

between t and t. ,., . Let this period be pn. Since the interval between
a l+l r ^2

t. and t can be made arbitrarily long, the number of recurrences of

final states of M" and M"' within this interval may be made arbitrarily

large. If the occurrences of all final states of both machines ever

coincide, all machines of M' will be in final states, and a word not in

I** will be accepted.

One may determine the possible periods of repetitive state behav

ior for each machine of M', as there are only a finite number of them.

If m is made to be a multiple of the product of all the periods of all

machines, m will be a multiple of periods p- and p^.

Suppose M" goes into all final states between t. and t. ...

(Since the interval can be made as large as we wish, we may assure that

59

this occurrence is in an interval during which both M" and M , M are

periodic.) Let this occur jp_ transitions from t, . Since m is a mul-
i b

tiple of p , this must be kp transitions from t . By making m suffi-
J. J. a

ciently large, we can also make j a multiple of p . Since m is a

multiple of p and p , it is also a multiple of P1P9« Hence, k is a

multiple of p . This means M" ' must be in all final states as well.

Therefore, M' accepts a word not in L . But T(M) = T(M'), contradicting

the assumption that T(M) = L .

(c) By theorem 19a, DARTCN C DLRTCN . But Ln £ DLRTCN and
n n 2 n

Ln t DARTCN ,n>2. Thus, DARTCN <= DLRTCN , n>2.
2 n' n n

Q.E.D.

THEOREM 22: (a) DLRTCN = DRTCN .

(b) DLRTCN C DRTCN.

(c) DLRTCN d DRTCN , n>2.
n n

PROOF: (a) Any dlrtcn- is a drtcn- and vice versa.

(b) Consider the language

,. 7 r ̂ ni, a m i - •,
L ={0 1 |m> 1, a> 1 } .

L may be accepted by a drtcn? as follows: The network places m on one

counter as 0 is read. As l's are read, this counter is decremented and

the other counter is incremented. Whenever a counter is emptied, the

network accepts. Then the roles of the counters are reversed. Each time

a counter empties, the other counter contains m. The network enters an

accepting configuration after reading 0 1 , Thus

L e DRTCN c: DRTCN.

From the proof of theorem 18, it may be seen that any dlrtcn

accepting only words of the form o mi a m for large m and certain integral

60

values of a can do so for no more than 2 - 1 such values. Thus

L i DLRTCN. Since L e DRTCN and since by theorem 20b, DLRTCN G DRTCN,

we have that DLRTCN <= DRTCN.

(c) By theorem 19b, DLRTCN G DRTCN . But for any n>2,

L G DRTCN but L7 i DLRTCN . Hence, DLRTCN <= DRTCN , n*2.
n n n n'

Q.E.D.

THEOREM 23: DRTCN <= NRTCN.

PROOF: Theorem 14 has already established that DRTCN <= NRTCN , n>l.
J n n

This result is inadequate to prove the present theorem, however, as all

the languages used to show the proper inclusion are in both DRTCN and

NRTCN.
Consider the language

L8 = { { 0 , l } a 1 (0 , l } a | a > l } ,

it

that is, the set of words consisting of a-symbol prefixes from Z =

{0,1} , followed by 1, followed by a-symbol suffixes from Z. This

language is accepted by a nrtcn.. . Such a network "guesses" when the

1 center-marker has been read. While the assumed prefix is being read,

a is placed on the counter. This count is later compared to the assumed

suffix. If the lengths are found to be the same, the network accepts.

Hence, L8 e NRTCNn G NRTCN. We assert that L8 I DRTCN for all n.
1 n

o

Assume there is some drtcn such that T(M) = L . We know from
n

lemma 2 that the number of equivalence classes of E, (mod T(M)) is not

greater than ck for some constant c. If for some k, the number of equiv-
o

alence classes of E, (mod L) is greater than this, our assumption that
o

M accepts L must be false.

61

Let k be odd and let A = U,3,...,k}, #(A) = k/2. Let A' <= A.

k/2
There are 2 such subsets of A. Suppose that for each A', we can

find a y e {0,1}* such that y{0,l}a e L if and only if a e A'. This

would mean there are at least as many equivalence classes of E, (mod L;

k/2
as there are subsets of A, namely 2 . We assert this is the case.

Consider the following procedure to generate a y given an A': Let

A' = {a ,a , ...,a }, let |y| = 2k, and let there be exactly p l's in y.

The number of symbols of y preceding the ith 1 will be denoted m. and

computed by the formula

2k+a ±- 1
m = _i y 1 < i < p .

We assert that if a e A1, then w = y{0,l} e L . Let a = a.,
a. g

l<i<P« |y{0,l} 11 = 2k+a.. If w is to be a word of L , |w| must be

odd and the center symbol must be 1. Since a. is odd, of course,

|w| = 2k+a. is odd. The number of symbols preceding the center symbol

must be (2k+a. - l)/2. But this is the number of symbols preceding a 1,
g

Since m. = (2k + a.-l)/2. Therefore, w e L . But it should be clear
Q Q

that ifw=y{0,l} e L , then a e A1. This is because each word of L

has a 1 in the center position. The only l's in w are the p l's at
positions m.+l and possibly those in the suffix from {0,1} . The

a. g
former lead to words y{0,l} -1 e L . The l's in the suffix cannot act

as center-markers, as they would lead to words of length at least 4k+1.
Q

Thus, we have shown that y{0,l} e L if and only if a e A' and hence,

there are at least 2 equivalence classes of E, (mod L). For large

k, 2 > ck Z #(E (mod T(M))). Therefore, our assumption that some
k.
o

drtcn accepts L must be false, and we conclude that DRTCN c NRTCN.

Q.E.D.

62

THEOREM 24: (a) DARTCN <= NARTCN.

(b) DARTCN C NARTCN , n>l.
n n

o
PROOF: (a) We know from the above theorem that L i DRTCN. Since

o

DARTCN c: DLRTCN c DRTCN, we must have L t DARTCN. But a nrtcn is

8 8
just a nartcn , so that L e NRTCN. (theorem 23) implies L e NARTCN..

Thus, DARTCN C NARTCN.

(b) Since L8 e NARTCN., , L e NARTCN for all n. But L $ DARTCN
I n n

l.E.D.

f o r a l l n , so DARTCN <= NARTCN, n > 1 .
n

THEOREM 25: (a) NARTCN = NRTCN .

(b) NARTCN c NRTCN.

(c) NARTCN c NRTCN , n>2.
n n

PROOF: (a) A nartcn is a nrtcn.. and vice versa.

Q
(b) There is a drtcn M such that T(M) = L , where

9 2a,
1/ = (0 |a>0 } .

Upon reading 0, M places 1 on the first counter and accepts. Upon reading

additional O's the first counter is decremented by 1 and the second

counter is incremented by 2. Whenever a counter empties, M accepts and

the roles of the counters are reversed. When the first word is accepted,

one counter contains 1. Each successive time a counter empties there

after, the count stored by the network has been multiplied by 2. Hence,

T(M) = L9. But we know that DRTCN C NRTCN (= NRTCN, so L9 e DRTCN

implies L9 e NRTCN and L9 e NRTCN.

Any language accepted by a nartcn must be the intersection of n

languages accepted by nartcn's, since the network accepts a word if and

63

only if each isolated machine accepts that word. Furthermore, all the

languages in NARTCN.. are context-free. This is because a nartcn is

just a restricted pushdown automaton and because pushdown automata

9
accept only context-free languages. Thus, L must be the intersection

9
of n context-free languages if L is accepted by some nartcn . But

9
Liu [40] has shown that L is not the intersection of any finite number

9 9
of context-free languages, so that L i NARTCN. Since L e NRTCN,

NARTCN c: NRTCN.

(c) L e NRTCN0 means that L
9 e NARTCN , n > 2 . But L 9 ^ NARTCN ,

I n n

n > 2. Thus NARTCN C NRTCN , n > 2.
n n

Q.E.D.

We have now shown that all the inclusions in theorems 19 and 20

are proper. We will now show some additional relations among the various

acceptance classes and hierarchies.

THEOREM 26: (a) DRTCN c: NARTCN .

(b) DRTCN and NARTCN , n > 2 , are incomparable.
n n

(c) DRTCN and NARTCN are incomparable.

PROOF: (a) Clearly, DRTCN c NARTCN . In the proof of theorem 23, how-

o 8 8
ever, we showed that L e NRTCN (hence, L e NARTCN^, but L £ DRTCN.

(b) L £ DRTCN , n> 2. We have shown that L9 e DRTCN_, but
n ~ z

L 9 £ NARTCN , n > 2 . Therefore it is true neither that DRTCN c NARTCN
n n n

nor that NARTCN c DRTCN , n> 2.
n n

(c) L 8
 e NARTCN, L

8 I DRTCN, L 9 e DRTCN, L 9 £ NARTCN. Thus,

neither DRTCN c: NARTCN nor NARTCN c DRTCN.

Q.E.D.

64

THEOREM 27: (a) DLRTCN C NARTCN .

(b) NARTCN p DLRTCN.

(c) NARTCN £ DLRTCN , n>2.
n n

PROOF: (a) A nartcn.. is a generalization of a dlrtcn- , so DLRTCN- £

8 8
NARTCN . The inclusion is proper because L e NARTCN , but L ft DRTCN =

DLRTCN .

(b) L t DRTCN. Since DLRTCN C DRTCN, L e NARTCN but L t DLRTCN.
o

(c) L is in each NARTCN but in no DLRTCN .
n n

Q.E.D.

We now address ourselves directly to the fundamental question:

Given a rtcn M with machines connected in some particular way, what is

the least acceptance class containing T(M)?

Suppose M is deterministic. If M has no connections,

T(M) e DARTCN ; if M has a linear structure, T(M) C DLRTCN ; if M has a
n n

ring structure or a ring structure supplemented by additional connections,

T(M) e DRTCN . As we now show, for n>2, we may have T(M) i DARTCN ,,
n n—i

T(M) t DLRTCN ,, and T(M) i DRTCN ..
n-1 n-1

THEOREM 28: L1 is accepted by some dartcn M'.
n n

i m-i ran m m,-
PROOF: Recall that L = {0 10 z l ... 0 B.O 1< i < n, m. > 1, 1< j <n},

n> 1.

M' operates as follows: As the subword preceding B. is read, the

kth machine 1 <k <n, places m, on its counter. When B. is read, all

machines except the ith enter and remain in a final state. The ith

machine compares the number on its counter to the number of 0's follow

ing B.. If and only if the numbers are equal, the machine enters a final

state. Clearly, T(M') = L1.

Q.E.D.

65

COROLLARY 2: Let M be a dartcn , n>2. It may be the case that
n

T(M) 4 DARTCN ., T(M) $ DLRTCN ,, and T(M) 0 DRTCN ,.
n-1 n-i n-i

PROOF: L1 e DRTCN but L1 t DRTCN ,.
n n n n-1

Q.E.D.

Corollary 2 is particularly significant in light of the fact that

we have found three distinct deterministic hierarchies. The L languages,

which have been used in the literature to establish an infinite hierarchy

of drtcm 's could just as easily be used to establish the linear or

atomized hierarchies. This confirms the intuition that the number of

counters of such a machine is a fundamental measure of its recognition

capabilities. At the same time, however, it is clear that the L-*- languages

fail to distinguish between machines whose internal operations are sig

nificantly different. The L languages characterize the DARTCN hierarchy

better than the DLRTCN or DRTCN hierarchies. Likewise, the L languages

characterize the DLRTCN hierarchy better than the DRTCN hierarchy. It was

in order to characterize better the real-time multipushdown and multi-

counter languages that the network formulation was developed. It would

appear that this formulation does allow us to isolate meaningful accept

ance classes whose existence we would not otherwise suspect. The non-

triviality of the interrelations of these hierarchies may be emphasized

by noting what is not clearly shown by corollary 2, namely that for n> 2,

DARTCN and DLRTCN n, DARTCN and DRTCN -, and DLRTCN and DRTCN .
n n-1 n n-1 n n-1

are incomparable.

Are there any major deterministic hierarchies we have missed? Cer

tainly we have not yet classified all possible network structures. The

following theorem suggests our three deterministic hierarchies are the

most important ones.

THEOREM 29: Let C** be the transitive closure of C.., and let M be a drtcn .
ij ij n

If C** for no 0<i^n, then T(M) DLRTCN . Otherwise, it may be the case
li n J

66

that T(M) e DRTCN - DLRTCN .
n n

PROOF: If C** for some i, there is a ring structure involving two or

more machines embedded in the structure of M. We have shown that L is

in DRTCN , n>2, but not in DLRTCN. Clearly, L can be accepted by some

network with the structure of M. (Machines not in the ring merely remain

in final states, and those in the ring accept L .) Thus, it may be the

case that T(M) e DRTCN -DLRTCN .
n n

If C** for no 0<i<n, the structure of M must have no closed
11

loops. Thus, C**, l<i,i < n implies not -C**. This means that C** is

a transitive and asymmetric relation, sometimes called a strict partial

ordering. It is known that a partial ordering may be embedded in a lin

ear ordering, a partial ordering with the additional property that for any

x and y in the field of the relation, either x is related to y or y is

related to x. This embedding may be carried out algorithmically in a

process called "topological sorting." (See [38] for discussion of such

an embedding.) We may describe C** as meaning "machine i precedes machine

j in M." In other words, there is some linear chain of machine connec

tions from machine i to machine j. To say that partial order C** can be

embedded in a linear order R is to say that (1) for all l<i,j >n, either

R. . or R.. (but not both) and (2) C** implies R... But R is exactly the

same kind of ordering we encounter in a linear network. Thus, M must be

equivalent to a linear network constructed by placing its component

machines in a linear order such that one machine precedes another in the

ordering if its corresponding machine in M is connected to the corre

sponding machine of the other. Topological sorting may place machines in

the linear network between corresponding connected machines of M. We

have seen, however, that each machine of a linear network can "know"

67

effectively information about all machines preceding it. Thus, we must

have T(M) e DLRTCN .
n

Q.E.D.

We now summarize what we know about deterministic real-time counter

networks: There are three overlapping but distinct infinite hierarchies —

one arising from machines having no connections whatever, one arising

from machines having connnections with no closed loops, and one arising

from machines whose connections include closed loops. Adding connections

to an atomized structure in general adds to computing power. Doing so

to a linear structure produces a more powerful structure only if closed

loops are created thereby. Adding connections to a ring structure does

not increase computing power. Adding additional machines to any struc

ture produces a more powerful structure.

Suppose M is nondeterministic. If M has no connections,

T(M) e NARTCN ; if M has a connected structure, T(M) e NRTCN . The set

2
of languages used in the literature to show the NRTCN hierarchy, the L

languages, could be used to demonstrate the existence of either this

hierarchy of the NARTCN hierarchy. This leads to the following theorem.

THEOREM 30: Let M be a nartcn , n> 2. It may be the case that

T(M) t NRTCN n . n-1
2

PROOF: Clearly L may be accepted by a nartcn . But we have shown

that L2 G NRTCN and that L2 I NRTCN ..
n n n n-1

Q.E.D.

From theorem 30, we see that for n>2, NARTCN and NRTCN 1 are
n n-1

incomparable. We now prove one last theorem about nondeterministic

real-time multicounter networks.

68

THEOREM 31: Let M be a nrtcn . If M has at least one connection, it may

be the case that T(M) s NRTCN - NARTCN .
n n

9
PROOF: If M has one connection, two connected machines can accept L

9
and the remaining machines can stay in final states. Since L $ NARTCN,

we may have T(M) e NRTCN - NARTCN .
n n

Q.E.D.

Summarizing, we may say that there are two distinct infinite hier

archies in the nondeterministic case, one contained in the other — one

arising from machines having no connections and one arising from machines

with a connected structure. Adding connections to an atomized structure

produces a more powerful structure. Doing so to a connected structure,

however, is redundant. Adding additional machines to any structure pro

duces a more powerful structure.

We conclude this chapter with some informal remarks to suggest what

various counter networks intuitively can and cannot do.

Lack of connections prevent machines from sharing information.

Since information stored on a counter must be removed to be used, lack

of connections prevent information from being saved for future use. Thus,

L? ĵ DARTCN. For deterministic machines, linear connections do allow

information to be used up to a fixed number of times. Any connection

which adds a closed loop, allows unlimited use of stored information and,

in general, takes the acceptance set out of the linear hierarchy. Hence,

f\ 7
L e DLRTCN , but L t DLRTCN. The number of counters limits the amount
n n

of information a network can store. If the amount of information that

must be stored at one time is limited, however, nondeterminism may be

3
substitutable for additional counters. We have L e NRTCN , n<p, but

n,p n

69

3 3
although L e DRTCN , L £ DRTCN . Nondeterminism cannot be qenev-

n,p p n,p n

ally substituted for additional counters, however, as we see in the

proof of theorem 13. Nor can nondeterminism generally replace connec

tions, as we see in theorem 26.

This last remark leads us to look at one unresolved matter rela

ting to the real-time counter network hierarchies, the relation of NARTCN

and DLRTCN. We have seen in theorem 27, that DARTCN £ DLRTCN and that

for n>2, NARTCN £ DLRTCN . Is it the case that for n>2, DLRTCN c NARTCN
n n n n

and thus DLRTCN c NARTCN; or is it the case that DLRTCN is incomparable

with NARTCN, and DLRTCN is incomparable with NARTCN , n>2? If
n n

DLRTCN c NARTCN, nondeterminism can serve in lieu of connections under

some rather general conditions. This possibility becomes plausible when

one looks for counterexamples and finds them difficult to come by. The

L languages will not do the job, as they may be shown to be in NARTCN.

In all probability, there is a counterexample, however. We conjecture

the following language is one, in fact:

L10 = {wx2w2 | w e{0,l}*, w2 = 0
z, z = //(ZCw^)},

where wn = sns_...s , n>0, |w I = n ,
1 1 z n 1

Z(w) = {i|l<i<n, T.(w) = 0}, and

r
0 if i=0 or if T (w) = 0, s. = 1, l<i<n

. (w) = < T. ,(w)-l if T. _(w)>0, s. = l, l<i<n
l \ l-l l-l l

T. , (w)+l if s. = 0, l<i<n
l-l l

Rather than describe L , we describe how it is accepted by a

dlrtcn„ M. As w- is read, the first counter is incremented by 1 for each

70

0 read and decremented by 1 for each 1 read. If the counter contains 0,

it is not decremented. For each symbol read that results in a count of

0 on the first counter, the second counter is incremented by 1. After

2 is encountered in the input string, the second machine compares the

number of 0's seen to the number on the second counter. If these num

bers are equal, the word is accepted.

The suffix of a word of L , then, depends upon characteristics

of the prefix which appear to require a counter to recognize. Since

this recognition also appears to require the counter to increase and

decrease in length, it does not seem that this recognition and the

counting associated with it can be done using the same machine. That

is, the connection in M is probably required. It is interesting to

note that L is a deterministic context-free language.

71

CHAPTER IV

SUGGESTED RESEARCH

The use of the network formulation of real-time multicounter

machines allows the identification of several hierarchies which seem

very "natural." The number and nature of connections within a network

does appear to be a reasonable index of internal complexity. This

suggests that the network approach may lead to additional results when

applied to other multistore machines. For example, some results have

been shown for real-time pushdown networks. It is reasonable to conjec

ture that other analogs of the theorems of Chapter III may be proved for

such networks. The existence of a deterministic linear real-time push

down network hierarchy would not be at all surprising. Results such as

this could be interesting in themselves, but they may, in addition, shed

light on the power of connections between automata generally. We would

like to answer such questions as what is the utility of additional con

nections within a network irrespective of the type of auxiliary stores

involved.

A more complete theory of automata networks must await such fur

ther studies; the present research can be considered only preliminary.

In particular, the development of the theory should include better lin

guistic characterization of the languages accepted by networks. We would

like theorems about the closure properties of such languages under vari

ous operations. Ideally, we would also like to find formal grammars

which exactly capture various acceptance classes. Automata networks

72

will be intellectually more attractive if they are shown to reflect, in

a "natural" way, significant linguistic properties. Many closure results

are easily enough obtained, although their contribution to the theory is

unclear at this stage of development. As an example, we may note that

each of the real-time multicounter automata hierarchies we have shown,

exoeyt the deterministic atomized one, is closed under union.

It has been emphasized that studying multistore automata as

networks allows us to see properties of machines not otherwise obvious.

We may go beyond this by noting that this technique allows us to restrict

machines in certain ways in order to study variants not otherwise of

interest. For example, multipushdown and multicounter machines always

have been studied under some time restriction because the unrestricted

machines are equivalent to Turing machines. For certain network struc

tures, however, we may remove this restriction. Deterministic linear

multicounter networks may be studied without any time restriction, as it

may be shown that no dlcn accepts L . Furthermore, upon developing
n

appropriate definitions, it would appear to be meaningful to examine

such networks having multiple input heads or two-way input heads.

The possibility of gaining insight into computer networks or

parallel processing by studying automata networks should not be over

looked. This view is hinted at by Burkhard and Varaiya [9] but not

developed systematically. Automata networks may provide a more realistic

model of parallel computation than other forms of polyautomata such as

tessellation automata.

73

REFERENCES

1. Aanderaa, S. On k-tape versus (k-l)-tape real-time computation.
SIAM-AMS Pvoc. 7 (1974), 75-96.

2. Aho, A., J. Hopcroft, and J. Ullman. Time and tape complexity of
pushdown automaton languages. Inf. and Control 13 (1968), 186-206.

3. Aho, A., J. Hopcroft, and J. Ullman. On the computational power of
pushdown automata. J. Computer and Syst. Sci. 4 (1970), 129-136.

4. Baker, B. and R. Book. Reversal-bounded multipushdown machines.
To appear in J. Computer and Syst. Sci.

5. Book, R. Personal communication.

6. Book, R. and S. Ginsburg. Multi-stack-counter languages. Math.
Syst. Theory 6 (1972), 37-48.

7. Book, R. and S. Greibach. Quasi-realtime languages. Math Syst.
Theory 4 (1970), 97-111.

8. Book, R., M. Nivat, and M. Paterson. Intersections of linear context-
free languages and reversal-bounded multipushdown machines.
Sixth Annual ACM Symp. on Theory of Computing (1974), 290-298.

9. Burkhard, W. and P. Varaiya. Complexity problems in real time
languages. Inf. Saienoes 3 (1971), 87-100.

10. Burks, A., D. Warren, and J. Wright. An analysis of a logical
machine using parenthesis-free notation. Math. Tables and Other
Aids to Computation 8 (1954), 53-57.

11. Chomsky, N. Context-free grammars and push-down storage, MIT Res.
Lab. Electron. Quart. Progress Rep. 65 (1962), 187-194.

12. Cole, S. Deterministic pushdown store machines and real-time compu
tation. J. ACM 18 (1971), 306-328.

13. Cook, S. Characterizations of pushdown machines in terms of time-
bounded computers. J. ACM 18 (1971) 4-18.

14. Cook, S. Linear time simulation of two-way pushdown automata. Proc.
IFIP Congress 71 1 (1972), 75-80.

15. Evey, J. The theory and application of pushdown store machines.
Doctoral thesis, Harvard University, Cambridge, Mass., 1963.

74

16. Fischer, P. On computability by certain classes of restricted
Turing machines. Proc. 4th Annual Symp. on Switching Circuit
Theory and Logical Design (1963), 23-32.

17. Fischer, P. Turing machines with restricted memory access. Inf.
and Control 9 (1966), 364-379.

18. Fischer, P., A. Meyer, and A. Rosenberg. Counter machines and
counter languages. Math. Syst. Theory 2 (1968), 265-283.

19. Ginsburg, S. The mathematical theory of context-free languages.
McGraw-Hill, New York, 1966.

20. Ginsburg, S. and S. Greibach. Deterministic context free languages.
Inf. and Control 9 (1966), 620-648.

21. Ginsburg, S., S. Greibach, and M. Harrison. Stack automata and com
piling. J. ACM 14 (1967), 172-201.

22. Ginsburg, S. and F. Rose. The equivalence of stack-counter accep
tors and quasi-realtime stack-counter acceptors. J. Computer and
Syst. Sci. 8 (1974), 243-269.

23. Ginsburg, S. and E. Spanier. Finite-turn pushdown automata. SIAM
J. on Control 4 (1966), 429-453.

24. Gray, J., M. Harrison, and 0. Ibarra. Two-way pushdown automata.
Inf. and Control 11 (1967), 30-70.

25. Gwynn, J. and D. Martin. Two results concerning the power of two-way
deterministic pushdown automata. Proc. ACM National Conf. (1973),
342-345.

26. Haines, L. Generation and recognition of formal languages. Doctoral
thesis, MIT, Cambridge, Mass., 1965.

27. Harrison, M. and I. Havel. Real-time strict deterministic languages.
SIAM J. on Computing (1972), 333-349.

28. Harrison, M. and I. Havel. Strict deterministic grammars. J. Compu
ter and Syst. Sci. (1973), 237-277.

29. Harrison, M. and 0. Ibarra. Multi-tape and multi-head pushdown
automata. Inf. and Control 13 (1968), 433-470.

30. Hopcroft, J. and J. Ullman. Formal languages and their relation
to automata. Addison-Wesley, Reading, Mass., 1969.

31. Ibarra, 0. Controlled pushdown automata. Inf. Sciences 6 (1973),
327-342.

75

32. Ibarra, 0. On two-way multihead automata. J. Computer and Syst.
Sci. 7 (1973), 28-36.

33. Igarashi, Y. and N. Honda. Deterministic multitape automata compu
tations. J. Computer and Syst. Sci. 8 (1974), 167-189.

34. Kain, R. Automata theory: machines and languages. McGraw-Hill,
New York, 1972.

35. Kameda, T. Pushdown automata with counters. J. Computer and Syst.
Sci. 6 (1972), 138-150.

36. Korenjak, A. and J. Hopcroft. Simple deterministic languages.
Seventh Annual Symp. on Switching and Automata Theory (1966), 36-
46.

Knith, D. On the translation of languages from left to right. Inf.
and Control 8 (1965), 607-639.

Knith, D. The art of computer programming, vol. 1 Addison-Wesley,
Reading, Mass., 1968.

Laing, R. Realization and complexity of cumulative events. U. of
Mich. Technical Rep. 03105-48-T, 1967.

Liu, L. Finite-reversal pushdown automata. Doctoral thesis,
Princeton University, Princeton, N. J., 1968.

Liu, L. and P. Weiner. An infinite hierarchy of intersections of
context-free languages. Math. Syst. Theory 7 (1973), 185-192.

Martin, D. Universal multihead automata. Doctoral thesis, Ga.
Institute of Technology, Atlanta, Georgia, 1974.

Minsky, M. Recursive unsolvability of Post's problem of "Tag" and
other topics in the theory of Turing machines. Annals of Math. 74
(1961), 437-455.

44. Newell, A. and J. Shaw. Programming the logic theory machine.
Proc. West Joint Computer Conf. (1957), 230-240.

45. Newell, A., J. Shaw, and H. Simon. Empirical explorations of the
logic theory machine: a case study in heuristic. Proc. West. Joint
Computer Conf. (1957), 218-230.

46. Oettinger, A. Automatic syntactic analysis and the pushdown store.
Proc. Symp. Applied Math. 12 (1961), 104-129.

47. Rabin, M. Real time computation. Israel J. Math. 1 (1963), 203-211.

37.

38.

39.

40.

41.

42.

43.

76

48. Rabin, 0. and D. Scott. Finite automata and their decision prob
lems. IBM J. of Res. and Dev. 3 (1959), 114-125.

49. Rosenberg, A. Real-time definable languages. J. ACM 14 (1967),
645-662.

50. Rovan, B. Bounded push down automata. Kybemetika 4 (1969), 261-
265.

51. Samelson, K. and F. Bauer. Sequential formula translation. Comm.
ACM 3 (1960), 76-83.

52. Schmitt, A. The state complexity of Turing machines. Inf. and
Control 17 (1970), 217-225.

53. Schiitzenberger, M. Finite counting automata. Inf. and Control 5
(1962), 91-107.

54. Schiitzenberger, M. On context-free languages and push-down automata.
Inf. and Control 6 (1963), 246-264.

55. Shannon, C. A universal Turing machine with two internal states, in
Automata studies, C. Shannon and J. McCarthy, eds. Princeton
University Press, Princeton, N. J., 1956.

56. Yamada, H. Real-time computation and recursive functions not real
time computable. IRE Trans, on Electronic Computers 11 (1962), 753-
760.

77

VITA

Lionel Earl Deimel, Jr. was born in New Orleans, Louisiana on

October 28, 1946. After graduating from Bemjamin Franklin High School

in New Orleans in 1964, he attended the University of Chicago, from

which he was awarded a Bachelor of Arts degree in physics in 1968. He

entered Georgia Institute of Technology the same year, but left in 1969

to enter military service. He served as a bandsman in the U. S. Army at

Ft. McPherson, Georgia and Ft. Shafter, Hawaii. He was separated from

the Army with the rank of Specialist Fifth Class in 1971 and returned

to Georgia Tech to resume his studies. He received a Master of Science

degree and a Doctor of Philosophy degree in Information and Computer

Science in 1972 and 1975, respectively.

Mr. Deimel has had a paper published in Information Processing

Letters and has presented a paper at the ACM Computer Science Conference

'75 in Washington, D.C. While at Georgia Tech, he has served successively

as a Research Assistant, Teaching Assistant, and Instructor. He has

accepted a faculty appointment in the Computer Science Department of

North Carolina State University at Raleigh, beginning August, 1975.

