
Kunz Languages
Jaume Usó i Cubertorer
Mestrado em Matemática
Departamento de Matemática
2023

Orientador
Prof. Dr. Manuel Delgado, Faculdade de Ciências

Sworn Statement

I, Jaume Usó i Cubertorer, enrolled in the Master Degree in Mathematics at the Faculty

of Sciences of the University of Porto hereby declare, in accordance with the provisions

of paragraph a) of Article 14 of the Code of Ethical Conduct of the University of Porto,

that the content of this dissertation reflects perspectives, research work and my own in-

terpretations at the time of its submission. By submitting this dissertation, I also declare

that it contains the results of my own research work and contributions that have not been

previously submitted to this or any other institution. I further declare that all references

to other authors fully comply with the rules of attribution and are referenced in the text by

citation and identified in the bibliographic references section. This dissertation does not

include any content whose reproduction is protected by copyright laws. I am aware that

the practice of plagiarism and self-plagiarism constitute a form of academic offense.

Jaume Usó i Cubertorer

June 28, 2023

Acknowledgements

Em primeiro lugar queria agradecer ao meu orientador, o Manuel Delgado em geral pelo

seu trabalho e esforço, e em particular por ter conseguido encontrar um tema que me

permitisse fazer o que lhe pedi: estudar linguagens formais.

Agraïsc a la meua família. Als meus pares per l’esforç que han fet, en especial a ma

mare per insistir em que acabara esta etapa. I al meu germà, per vindre a vore’m i per

estar sempre disponible per a comentar dubtes.

Agradeço também a todos os professores que tive no mestrado pelo seu trabalho que

juntamente como os meus colegas fizeram que me sentisse muito bem na faculdade.

Muito obrigado Bernardo pela tua amizade e por tornar a minha estadia no Porto mais

agradável e interessante.

Finalment, moltes gràcies a Albert, Carlos, Miguel, Pascual, Pau, Roger i Víctor per

haver vingut a vore’m.

UNIVERSIDADE DO PORTO

Resumo
Faculdade de Ciências da Universidade do Porto

Departamento de Matemática

Mestrado em Matemática

Linguagens de Kunz

por Jaume Usó i Cubertorer

Os semigrupos numéricos são subconjuntos dos inteiros não negativos que têm o zero

como um dos seus elementos, são fechados para a adição e o seu complementar é finito.

Devido ao facto de terem uma estrutura simples, aparecem no estudo de muitos proble-

mas em diferentes áreas e é este facto o que desperta o nosso interesse neles e destaca

a sua importância.

No campo dos semigrupos numéricos há questões com diferentes graus de dificuldade,

isto é, algumas famílias de semigrupos numéricos parecem ser mais complexas do que

outras. A motivação para esta tese é formalizar essa intuição ao dar uma escala de com-

plexidade que tal vez possa ajudar a prever a dificuldade dos problemas.

Para realizar esta tarefa, associamos de forma única uma palavra a cada semigrupo nu-

mérico, e assim acabamos por associar uma linguagem a cada família de semigrupos

numéricos. Depois, aplicamos teoria de linguagens formais para estudar e classificar es-

sas linguagens, e em certo modo as famílias de semigrupos numéricos. Em particular

vamos estudar as famílias formadas por todos os semigrupos numéricos duma certa pro-

fundidade e vemos que as linguagens associadas a familias de semigrupos numéricos

de profundidade não superior a dois são menos complexas que aquelas linguagens que

associamos a famílias de semigrupos de profundidade superior. As linguagens que apa-

recem de forma natural ao levar a cabo este estudo são o que chamamos de Linguagens

de Kunz.

Palavras Chave: Semigrupos numéricos, linguagens de Kunz, hierarquia de Chomsky.

mailto:up202004096@fc.up.pt

UNIVERSIDADE DO PORTO

Abstract
Faculdade de Ciências da Universidade do Porto

Departamento de Matemática

MSc. Mathematics

Kunz Languages

by Jaume Usó i Cubertorer

Numerical semigroups are subsets of nonnegative integers that have zero as one of

their elements, are closed under addition and have a finite complement. Due to the sim-

plicity of this structure, numerical semigroups appear in the study of many problems in

different areas and hence their importance and our interest in them.

Different problems in numerical semigroups have different degrees of difficulty, that is,

some families of numerical semigroups seem to be more complex than others. The moti-

vation for this thesis is to formalize this idea by giving a complexity scale that might help

to predict the difficulty one can encounter in some problems.

For this task, we associate to each numerical semigroup a word in a unique way, and by

doing this we are associating a language to each family of semigroups. Then, we apply

language theory to study and classify these languages and somehow these families of

numerical semigroups. In particular, we will study the families consisting of all numerical

semigroups of a certain depth, and we will see that languages associated to families of nu-

merical semigroups of depth not greater than two are less complex than those associated

to semigroups with greater depth. The languages that naturally appear while performing

this task are what we call Kunz languages.

Key Words: Numerical semigroups, Kunz languages, Chomsky hierarchy.

mailto:up202004096@fc.up.pt

Contents

Acknowledgements iii

Resumo v

Abstract vii

Contents ix

List of Figures xi

Introduction 1

1 Numerical semigroups 3
1.1 Kunz Tuples . 10

2 Formal Languages and Automata 13
2.1 Formal languages . 13

2.1.1 Grammars and Automata . 14
2.1.1.1 Grammars . 14
2.1.1.2 Automata . 18

3 Kunz Languages 33
3.1 Conclusions . 51

A Details for lbas 53

ix

List of Figures

1.1 Visual example of depth for 𝑆 = ⟨4, 5, 6⟩ . 9

2.1 Transition graph for 𝑀 . 19
2.2 Transition graph for 𝑀 . 21
2.3 Transition graph of an ndfa that recognizes 𝐿 = {𝑎𝑛𝑏𝑛 ∶ 𝑛 ∈ N0} ∪ {𝑎} 26
2.4 Model of a Turing Machine. 27
2.5 Turing Machine that recognizes 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 ∶ 𝑛 ∈ N} 29

3.1 dfa that recognizes 𝐾0. 34
3.2 dfa that recognizes 𝐾1. 35
3.3 dfa that recognizes 𝐾2. 35
3.4 lba that accepts 𝐾3. 42

A.1 lba that compares two natural numbers 𝑛 and 𝑚. 54
A.2 Turing Machine that converts a natural number from base 𝑛 + 1 to unary

notation. 55
A.3 lba that converts a natural number from unary to base 𝑛+ 1 notation. 56
A.4 Turing Machine that goes to index 𝑖 ∈ {1,… , |𝑤|}. 56

xi

Introduction

Numerical semigroups are subsets of nonnegative integers that have zero as one of their

elements, are closed under addition and have a finite complement. Studying these struc-

tures usually involves investigating some notable elements and relations between them.

Among the most important notable elements, there is the least positive element of the

semigroup and the least element from which all integers belong to the semigroup. These

are called, respectively, multiplicity and conductor and are usually denoted by 𝑚 and 𝑐.

An important relationship between these two elements is the depth, defined as
⌈
𝑐
𝑚

⌉
. In

problems such as the Wilf Conjecture or Counting numerical semigroups, it appears that

for higher values of depth, things turn out to be more difficult, more elaborated proofs are

needed or even have not been found yet, see [2] and [6], respectively, for references.

Our goal in this thesis is to study this fact and constitute a possible formalization of the

intuition that depth sets a complexity scale for numerical semigroups. That is, the family

of numerical semigroups with a certain depth 𝑞 is more complex than the family of semi-

groups with some depth lower than 𝑞. In future problems regarding families of numerical

semigroups of some given depth, knowing this might help to anticipate the difficulty one

can encounter.

To formalize our intuition, we will apply formal language theory to the study of numerical

semigroups. Bringing these two branches of mathematics together relies on the fact that

given a numerical semigroup of multiplicity 𝑚, there is a unique (𝑚 − 1)-tuple associated

to it, the Kunz tuple. Every numerical semigroup has its own Kunz tuple, there are no

numerical semigroups sharing the same one. If instead of looking at a Kunz tuple as a

tuple and we see it as a word, we can then injectively associate a word to every numerical

semigroup. Taking advantage of the existence of such words, we can associate languages

to families of semigroups of a certain depth, and define the Kunz language of depth 𝑞 as

the set of all words associated to numerical semigroups of depth 𝑞. With this, we convert

the task of studying the complexity of the family of numerical semigroups with depth 𝑞 to

1

2 Kunz Languages

the study of the complexity of the Kunz language of depth 𝑞. Once we have reached this

point, we can use the Chomsky hierarchy to classify Kunz languages, and consequently

families numerical semigroups. The work carried out in this thesis gave rise to the pre-

print [3], which has been submitted for publication.

The thesis is structured in three chapters. The first one is dedicated to numerical

semigroups, the second one to formal languages and the last one includes all the results

of the classification of Kunz languages applying what has been mentioned in the previous

chapters.

In Chapter 1 we start by giving a definition and some examples of numerical semigroups.

Then we introduce some basic concepts and explain how and why the study of semigroups

appeared. After that, we define some important elements of these structures and relations

between them, paying special attention to the depth. Finally, we get to define Kunz tuples.

Chapter 2 deals with the necessary content regarding formal languages. Here we start by

defining what a formal language is and giving some examples. There are essentially two

ways to approach the study of languages: grammars and automata. We will begin with

the former and introduce the Chomsky hierarchy, as it was originally done. Afterwards, we

will continue with the latter and talk about automata and explain how for our purpose of

defining types of languages they are equivalent to grammars.

Finally, Chapter 3 is the last and most important chapter, since it is the one containing all

the results. The first thing we do here is to define Kunz languages, the object of study

in this thesis. Afterwards, step by step we start to classify these languages by applying

concepts from the previous chapters. While doing this classification we introduce some

results that we need and whenever possible we try to connect what we do with other well-

known results. Finally, we summarize some conclusions and draw some lines on how this

work could be extended.

At the end of the thesis, we added Appendix A in which we devoted some time to give

details of proofs developed throughout the third chapter.

Chapter 1

Numerical semigroups

In this first chapter, we will introduce the concept of numerical semigroup. Our goal is to

give a proper definition as well as a context of how they historically appeared. Then, step

by step, we will introduce some basic concepts and results until we can define the depth

of a numerical semigroup. This concept of depth will open the gate to Kunz languages.

For this chapter, we have mainly used [10] for the theory on numerical semigroups, [9]

for questions related to the Frobenius problem and finally [15] for Kunz tuples. Let us now

begin with the definition of numerical semigroup.

Definition 1.1. A numerical semigroup is a subset 𝑆 ⊆ N0 of the non-negative integers

such that:

∙ 0 ∈ 𝑆.

∙ 𝑆 is closed under addition.

∙ |N0∖𝑆| is finite.

A trivial example of a numerical semigroup is the whole set N0, since 0 is one of its

elements, it is closed under addition, and its complement is the empty set, which is finite.

In order to see more examples of numerical semigroups, let us think about how to build

them. Given a subset 𝐴 ⊆ N of the set of all positive integers, we will denote by⟨𝐴⟩ = {𝜆1𝑎1 +⋯+ 𝜆𝑛𝑎𝑛|𝜆1,… , 𝜆𝑛 ∈ N0, 𝑎1,… , 𝑎𝑛 ∈ 𝐴}

the set of all linear combinations over N0 of elements in 𝐴. It is clear that for any set 𝐴

we will have that ⟨𝐴⟩ is closed under addition and contains 0. Then it is natural to raise

the question of when will it have a finite complement, that is, when will it be a numerical

semigroup. In the following result, we can see that the answer is simple: when gcd(𝐴) = 1.

3

4 Kunz Languages

Lemma 1.2. Let 𝐴 ⊆ N be a nonempty set. Then ⟨𝐴⟩ is a numerical semigroup if and

only if gcd(𝐴) = 1

Proof. As it has been said, we only need to worry about N∖⟨𝐴⟩ being finite.

(→) Let 𝐴 ⊆ N be such that ⟨𝐴⟩ is a numerical semigroup and let 𝑑 = gcd(𝐴). If some

𝑠 ∈ 𝑆, then 𝑑|𝑠. Since ⟨𝐴⟩ is a numerical semigroup, its complement has to be finite and

as a consequence, there has to be an 𝑥 ∈ N such that 𝑑|𝑥 and 𝑑|𝑥+1 and so we conclude

that 𝑑 has to be 1.

(←) Let 𝐴 ⊆ N be such that 1 = gcd(𝐴). Due to generalized Bézout’s identity, here exist

𝑧1,… , 𝑧𝑛 ∈ Z and 𝑎1,… , 𝑎𝑛 ∈ 𝐴 such that 𝑧1𝑎1 +⋯ + 𝑧𝑛𝑎𝑛 = 1. Now, if we move every

negative term 𝑧𝑖 to the right,we get an equality of positive terms. That is, let 𝑖1,… , 𝑖𝑘 be

the indices of positive 𝑧𝑖 and 𝑗1,… , 𝑗𝑙 the indices of the negative 𝑧𝑖 then we have

𝑧𝑖1𝑎𝑖1 +⋯+ 𝑧𝑖𝑘𝑎𝑖𝑘
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑠+1

= 1−𝑧𝑗1𝑎𝑗1 −⋯− 𝑧𝑗𝑙𝑎𝑗𝑙
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑠

So there exists 𝑠 ∈ ⟨𝐴⟩ such that 𝑠+1 ∈ ⟨𝐴⟩. We will now prove that if 𝑛 ≥ (𝑠−1)𝑠+ (𝑠−1)

then 𝑛 ∈ ⟨𝐴⟩, what will mean that the complement of ⟨𝐴⟩ is finite.

Let 𝑛 ≥ (𝑠− 1)𝑠+ (𝑠− 1). By the division algorithm there exist 𝑞 and 𝑟 such that 𝑛 = 𝑞𝑠+ 𝑟

with 0 ≤ 𝑟 < 𝑠. Then 𝑛 = 𝑟𝑠 + 𝑟 + 𝑞𝑠 − 𝑟𝑠 = (𝑟𝑠 + 𝑟) + (𝑞 − 𝑟)𝑠 = 𝑟(𝑠 + 1) + (𝑞 − 𝑟)𝑠. Since

𝑛 ≥ (𝑠 − 1)𝑠 + (𝑠 − 1) we have that 𝑞 ≥ 𝑠 − 1 ≥ 𝑟, so 𝑞 − 𝑟 ≥ 0 and then 𝑛 ∈ ⟨𝐴⟩ as it is a

linear combination with non-negative integer coefficients of 𝑠 and 𝑠+ 1.

With this, we can now easily think of a numerical semigroup by giving a set of positive

integers 𝐴 with gcd(𝐴) = 1 that will generate it. Let’s see now some non-trivial examples

of numerical semigroups.

Example 1.1. ∙ ⟨2, 3⟩ = {0, 2, 3, 4,→}. ∙ ⟨3, 5, 7⟩ = {0, 3, 5, 6, 7, 8,→}.

The arrow → means that every number greater than the number preceding the arrow

belongs to the semigroup.

Let us also see an example to show that it is indeed important that gcd(𝐴) = 1 otherwise

we have an infinite number of gaps.

∙ ⟨2, 4⟩ = {0, 2, 4, 6, 8,…} = 2N0 which leaves all odd numbers in the complement thus

being not a numerical semigroup.

1. Numerical semigroups 5

The way of constructing numerical semigroups given a finite number of coprime gener-

ators is very convenient. Furthermore, given a numerical semigroup 𝑆 there always exist

𝑠1, 𝑠2,… , 𝑠𝑛 ∈ N such that ⟨𝑠1, 𝑠2,… , 𝑠𝑛⟩ = 𝑆. In other words, every numerical semigroup

has a finite set of generators, and moreover, there is a unique minimal set of generators

under inclusion. The elements of this minimal set of generators are usually referred to as

the minimal generators of the semigroup. The existence of the minimal generating set is

not at all obvious, we can see how it is indeed true in the following theorem.

Theorem 1.3. Every numerical semigroup admits a unique minimal set of generators un-

der inclusion. Moreover, this minimal set of generators is finite.

Proof. Given a numerical semigroup 𝑆 we will write 𝑆∗ = 𝑆∖{0} to refer to the positive

elements of 𝑆.

We will prove that the set 𝐴 = 𝑆∗∖(𝑆∗ +𝑆∗) is the minimal set of generators of 𝑆 and that

it is finite.

First, let us see that 𝐴 is a system of generators. Let 𝑠 ∈ 𝑆∗, if 𝑠 ∉ 𝐴 then there exist

𝑥, 𝑦 ∈ 𝑆∗ such that 𝑠 = 𝑥+ 𝑦. Now, either both 𝑥, 𝑦 ∈ 𝐴 or at least one of them does not,

𝑥 ∉ 𝐴 (or 𝑦 ∉ 𝐴). In the second case, we can repeat the previous process, and after a

finite number of steps, we will have found 𝑠1, 𝑠2,… , 𝑠𝑛 ∈ 𝐴 such that 𝑠 = 𝑠1 + 𝑠2 +⋯+ 𝑠𝑛.

Now, we will prove the minimality of 𝐴. Let 𝐵 be a system of generators of 𝑆 and 𝑎 ∈ 𝐴,

then there have to be 𝑛, 𝜆1,… , 𝜆𝑛 ∈ N and 𝑏1, 𝑏2,… , 𝑏𝑛 ∈ 𝐵 such that 𝑎 = 𝜆1𝑏1 +⋯+ 𝜆𝑛𝑏𝑛.

Since 𝑎 ∉ (𝑆∗ + 𝑆∗) we deduce that 𝑎 = 𝑏𝑖 for some 𝑖 ∈ {1, 2,… , 𝑛} and we can conclude

that 𝑎 ∈ 𝐵 for any 𝑎 ∈ 𝐴, that is, 𝐴 ⊆ 𝐵.

Finally, we have to see that the set𝐴 is indeed finite. Let 𝑚 be the smallest positive number

of 𝑆 and 𝑐 ∈ 𝑆 be such that (𝑐 + 𝑖) ∈ 𝑆 for any 𝑖 ∈ N. Then for every 𝑛 ∈ N with 𝑛 ≥ (𝑚+ 𝑐)

we have that 𝑛 ∈ (𝑆∗ +𝑆∗) and consequently |𝐴| = |𝑆∗∖(𝑆∗ +𝑆∗)| ≤ (𝑚+ 𝑐) and thus 𝐴 is

finite.

Remark 1.4. It is important to remark that even though numerical semigroups are semi-

groups they are actually monoids, since along with being closed under addition, they have

a neutral element. In fact, they are submonoids of the monoid N0 and some authors refer

to numerical semigroups as numerical monoids.

While proving Theorem 1.3 we have referred to some special elements of a semigroup.

Namely the smallest positive element, which we denoted by 𝑚, and the smallest positive

number such that any number greater than it is contained in the semigroup, which we

6 Kunz Languages

called 𝑐. These are two important invariants of numerical semigroups: respectively the

multiplicity and the conductor. The conductor though is usually defined using the Frobe-

nius number, which is the biggest integer that does not belong to the semigroup. Then the

conductor is the Frobenius number plus one.

It is worth now devoting some time to explain where the Frobenius number comes from

since it can be in some way the origin of the study of numerical semigroups. Afterwards,

we will see some other invariants.

The Frobenius Problem

The traditional problem, called the coin problem, is the following: given coins of different

monetary values (natural values), find the largest amount that cannot be paid using those

coins.

A similar problem, referred to as the Frobenius problem, is known to be proposed by

Frobenius in his lectures but already with somemore mathematical structure. He asked for

a formula for the largest integer that is not representable as a linear combination over non-

negative integers of a set of natural numbers whose greatest common divisor is one. As

we can see, this is equivalent to finding a formula for the solution of the coin problem with

the addition of the greatest common divisor, which guarantees the existence of a solution.

Sylvester introduced a related problem, sometimes known as the Sylvester problem, that

was to determine how many natural numbers do not have such representation.

It is not hard to see that the first problem is that of given ∅ ≠ 𝐴 ⊆ N with gcd(𝐴) = 1

find a formula in terms of the elements of 𝐴 of the so-called Frobenius number. In other

words, find a formula for the Frobenius number of a numerical semigroup in terms of its

generators.

The Sylvester problem, on the other hand, would be to find out the number of gaps of the

given numerical semigroup 𝑆, that is, to find |N0∖𝑆|.
These problems that drew the attention of Frobenius and Sylvester towards the end of the

19th century are seen as the beginnings of numerical semigroups.

Many details about the Frobenius Problem, such as algorithms for its computation, related

problems and applications, can be consulted in [9].

Let us now summarize and give proper detailed definitions and notation for the previous

concepts and introduce some more. Moreover, to exemplify these concepts, we will show

1. Numerical semigroups 7

what are the invariants over the numerical semigroups 𝑆1 = ⟨2, 3⟩ and 𝑆2 = ⟨3, 5, 7⟩, those
of Example 1.1.

Definition 1.5. Given a numerical semigroup 𝑆 the Frobenius number of s 𝐹 (𝑆) is the

greatest integer that does not belong to 𝑆.

𝐹 (𝑆1) = 1 and 𝐹 (𝑆2) = 4.

Definition 1.6. The conductor 𝑐(𝑆) of a numerical semigroup𝑆 is defined as 𝑐(𝑆) = 𝐹 (𝑆) + 1.

𝑐(𝑆1) = 2 and 𝑐(𝑆2) = 5.

Definition 1.7. Themultiplicity 𝑚(𝑆) of a numerical semigroup 𝑆 is the least positive num-

ber that belongs to 𝑆.

𝑚(𝑆1) = 2 and 𝑚(𝑆2) = 3.

Definition 1.8. Given a numerical semigroup 𝑆 whose minimal system of generators is

{𝑠1, 𝑠2,… , 𝑠𝑛} we call its cardinality 𝑛, the embedding dimension of 𝑆, and we denote it by

𝑒(𝑆).

𝑒(𝑆1) = 2 and 𝑒(𝑆2) = 3.

Definition 1.9. Let 𝑆 be a numerical semigroup, the genus of 𝑆, denoted 𝑔(𝑆), is |N0∖𝑆|.
The genus is sometimes referred to as the degree of singularity of 𝑆.

𝑔(𝑆1) = 1 and 𝑔(𝑆2) = 2.

Continuing with the Sylvester problem, with our terminology, it would be the problem of

finding the genus of the semigroup. It is interesting how the embedding dimension plays

a role in both problems. As for now, for embedding dimension greater than two there is

no known formula for the Frobenius number nor the genus. It is known though, that it can-

not exist a polynomial formula for the Frobenius number in those cases. For embedding

dimensions one and two, the situation is considerably simpler as we can see next.

For embedding dimension one there is only one numerical semigroup, the trivial one

𝑁0 = ⟨1⟩, and so we have that 𝐹 (𝑆) = −1 and 𝑔(𝑆) = 0. Let us now look at the case

of embedding dimension two, which is quite more satisfying. To begin with, there is an

infinite number of numerical semigroups with this condition.

Proposition 1.10. Let 𝑎, 𝑏 ∈ N such that gcd(𝑎, 𝑏) = 1 then, for the numerical semigroup

𝑆 = ⟨𝑎, 𝑏⟩ we have that:

8 Kunz Languages

∙ 𝐹 (𝑆) = 𝑎𝑏− 𝑎− 𝑏, ∙ 𝑔(𝑆) = 𝑎𝑏− 𝑎− 𝑏+ 1
2

.

Proof. First, we will start by proving the statement about the Frobenius number. For the

sake of contradiction suppose that 𝑎𝑏− 𝑎− 𝑏 is representable as 𝛼𝑎+ 𝛽𝑏 for some 𝛼, 𝛽 ∈

N0. Then, (𝑎𝑏 − 𝑎 − 𝑏) ≡ (𝛼𝑎 + 𝛽𝑏) (mod 𝑎), and so we have −𝑏 ≡ 𝛽𝑏 (mod 𝑎), and then

𝛽 ≡ −1 (mod 𝑎). In the same way, we get to 𝛼 ≡ −1 (mod 𝑏). But with this we have

that 𝑎𝑏 − 𝑎 − 𝑏 = 𝛼𝑎 + 𝛽𝑏 ≥ (𝑏 − 1)𝑎 + (𝑎 − 1)𝑏 = 2𝑎𝑏 − 𝑏 − 𝑎 which is a contradiction, so

(𝑎𝑏−𝑎− 𝑏) ∉ 𝑆. Nowwe need to prove that for any 𝑠 ∈ N0 such that 𝑠 > (𝑎𝑏−𝑎− 𝑏) it is true

that 𝑠 ∈ 𝑆. By the extended Euclidean algorithm, we know that there exists 𝜆, 𝜇 ∈ Z such

that 𝜆𝑎+ 𝜇𝑏 = 𝑛 for all 𝑛 ∈ N0 since for any 𝑘 ∈ N we have that (𝜆+ 𝑘𝑏)𝑎+ (𝜇 − 𝑘𝑎)𝑏 = 𝑛

we can assume 𝜆 > 0. Among all possible positive 𝜆 verifying 𝜆𝑎+ 𝜇𝑏 = 𝑛, we choose the

smallest one. Notice that this 𝜆 is such that 0 ≤ 𝜆 ≤ 𝑏−1, otherwise the choice 𝜆′ = (𝜆− 𝑏)

would be a smaller 𝜆 contradicting our choice.

Now, if 𝑠 ≥ (𝑎 − 1)(𝑏 − 1) = 𝑎𝑏 − 𝑎 − 𝑏 + 1, since 0 ≤ 𝜆 ≤ 𝑏 − 1 we have that 𝜇𝑏 = 𝑠 − 𝜆𝑎 ≥
(𝑎− 1)(𝑏− 1) − (𝑏− 1)𝑎 = 1 − 𝑏 > −𝑏 and consequently 𝑏(𝜇 + 1) > 0 so 𝜇 ≥ 0 as we wanted

to prove.

Now, studying the case of the genus, what we will do is prove that for numbers less than

or equal to 𝐹 (𝑆) there is a bijection between those numbers in 𝑆 and those that do not

belong to it.

So, let N≤𝐹 = {𝑛 ∈ N0 ∣ 𝑛 ≤ 𝐹 (𝑆)}, and let 𝐴 = N≤𝐹 ∩ 𝑆 and 𝐵 = N≤𝐹 ∩ (N0∖𝑆), we can

define
𝜑 ∶ 𝐴 ⟶ 𝐵;

𝑠 ↦ 𝐹 (𝑆) − 𝑠.

if 𝑠 ∈ 𝑆, it is clear that (𝐹 (𝑆) − 𝑠) ∉ 𝑆, otherwise 𝐹 (𝑆) = 𝑠 + (𝐹 (𝑠) − 𝑠) would be in 𝑆

which is a contradiction. Moreover, if 𝑠 ∈ 𝐴 we have that 0 < 𝐹 (𝑠) − 𝑠 ≤ 𝐹 (𝑆), and hence

(𝐹 (𝑆) − 𝑠) ∈ 𝐵. So we have that 𝜑 is well defined, and it is clear that it is injective. Next,

we want to see that it is surjective as well. In fact we will see that 𝜑 is its own inverse. Let

ℎ ∈ 𝐵, we want to see that (𝐹 (𝑆) − ℎ) ∈ 𝐴. As gcd(𝑎, 𝑏) = 1 there exist integers 𝑥, 𝑦 such

that ℎ = 𝑥𝑎+ 𝑦𝑏, and one of them has to be negative. Otherwise it would contradict the fact

that ℎ ∉ 𝑆. Let us assume without loss of generality that 𝑦 is negative. So we can write

ℎ = 𝑥𝑎− 𝑦𝑏 for 𝑥, 𝑦 > 0. In addition, as for any 𝑘 ∈ N0 it is true that ℎ = (𝑥− 𝑘𝑏)𝑎− (𝑦− 𝑘𝑎)𝑏

we may also assume that 𝑥 < 𝑏. Note that for 𝑎 and 𝑏, one of the coefficients has to

be positive and the other negative. So (𝑦 − 𝑘𝑎) will remain positive as long as (𝑥 − 𝑘𝑏)

is positive as well. Now, from this and from the fact that 𝐹 (𝑆) = 𝑎𝑏 − 𝑎 − 𝑏, we have

1. Numerical semigroups 9

𝐹 (𝑆) − ℎ = 𝑎𝑏− 𝑎− 𝑏− 𝑎𝑥+ 𝑏𝑦. And then 𝐹 (𝑆) − ℎ = (𝑏− 𝑥− 1)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

≥0
𝑎+ (−𝑦− 1)

⏟⏞⏟⏞⏟
≥0

𝑏 ∈ 𝑆. That is,

we have that 𝜑 is surjective and consequently bijective.

So |𝐴| = |𝐵|, and as |𝐴|+ |𝐵| = |N𝐹 | = 𝑎𝑏− 𝑎− 𝑏+ 1 we have that the number of gaps is

𝑔(𝑆) = |𝐵| = 𝑎𝑏− 𝑎− 𝑏+ 1
2

.

So we have seen how the embedding dimension sets a complexity scale for numerical

semigroups in terms of computation. For embedding dimension 1, the case is trivial, for

embedding dimension 2 a simple and nice formula does the trick to compute 𝐹 (𝑆), but for

greater values of 𝑒, we do not know of the existence of a formula but we do know that it will

not be as simple as a polynomial. What we aim to do in this thesis is to see if something

similar happens with the depth of a semigroup. To begin with, let us see what depth is and

why does it attract our interest.

Definition 1.11. The depth 𝑞(𝑆) of a numerical semigroup 𝑆 is defined as 𝑞(𝑆) ..=
⌈
𝑐(𝑆)
𝑚(𝑆)

⌉
.

Example 1.2.

4

3

2

1

00

1 2 3 4

5 6 7 8

9 10 11 12

D
epth

⋮ ⋮ ⋮ ⋮

Figure 1.1: Visual example of depth for
𝑆 = ⟨4, 5, 6⟩

The idea behind why the depth of a semi-
group 𝑆 has that name, is that if we order all
non-negative numbers in rows of length the
multiplicity 𝑚, and paint in a different colour
or draw a box around the numbers belong-
ing to 𝑆 we will end up with 𝑚 columns. Each
one of these columns will have its own height,
leaving some gaps on top of them. The size
of the deepest of these gaps is the depth 𝑞
of the semigroup. Note that it will be located
in the column containing the Frobenius num-
ber 𝐹 . In this example we took 𝑆 = ⟨4, 5, 6⟩
which has depth 𝑞 = 2 and Frobenius number
7 which is circled.

Even though the concept of depth was first introduced in [4], it had already appeared

before but without receiving a name. An interesting fact regarding depth is that the pro-

portion of numerical semigroups of genus 𝑔 which have depth 𝑞 ≤ 3 tends to 1 as 𝑔 tends

to infinity. This was conjectured by Zhao in [14] and proved by Zhai in [13]. In both cases

depth was not mentioned as such but in terms of the Frobenius number and the multiplic-

ity.

Next, we will introduce Kunz tuples and show a little bit of the role they play in the study

of numerical semigroups.

10 Kunz Languages

1.1 Kunz Tuples

Given a numerical semigroup 𝑆 with multiplicity𝑚, we have that 𝑆 +𝑚 = {𝑠+𝑚|𝑠 ∈ 𝑆} ⊆ 𝑆.

In fact, 𝑚 is the smallest natural number with such property. So for every 0 ≤ 𝑖 < 𝑚, there

is some 𝑘𝑖 ∈ N0 such that

{𝑠 ∈ 𝑆|𝑠 ≡ 𝑖 (mod 𝑚)} = {𝑘𝑖𝑚+ 𝑖, (𝑘𝑖 + 1)𝑚+ 𝑖,…}

Observe that since 0 ∈ 𝑆 we will always have 𝑘0 = 0, but since 𝑚 is the smallest positive

number such that 𝑆 +𝑚 ⊆ 𝑆 it comes that 𝑘𝑖 > 0 in all other cases. These 𝑘𝑖 allow us to

define a feature of a numerical semigroup, its Kunz tuple, which will be (𝑘1, 𝑘2,… , 𝑘𝑚−1).

Notice that in the case of 𝑆 = N0 the Kunz tuple associated to 𝑆 will be the empty tuple.

We will use to denote the map that associates to each numerical semigroup, its Kunz

tuple.

For example, going back to Example 1.2, we have that (⟨4, 5, 6⟩) = (1, 1, 2). To find out

why this tuple is as it is, we have to look at the numbers at the top of each column (except

the one with the 0) and divide by 𝑚 = 4.

We have 5 = 𝟏 ⋅ 4 + 1, 6 = 𝟏 ⋅ 4 + 2, 11 = 𝟐 ⋅ 4 + 3, and hence the tuple (1, 1, 2).

The interesting fact about Kunz tuples is that they characterize numerical semigroups en-

tirely. Each numerical semigroup will have its own tuple. Moreover, it is possible to go the

other way around. Given a tuple, it is known under which conditions will it be a Kunz tuple.

These two facts are reflected in the following theorem.

Theorem 1.12. [11] The map is a bijection between numerical semigroups of multiplicity

𝑚 and (𝑚 − 1)-tuples of positive integers 𝑘1, 𝑘2,… , 𝑘𝑚−1 such that for each pair of indices

𝑖,) for which it makes sense:

∙ 𝑘𝑖 + 𝑘𝑗 ≥ 𝑘𝑖+𝑗 , ∙ 𝑘𝑖 + 𝑘𝑗 + 1 ≥ 𝑘𝑖+𝑗−𝑚 .

Now, it is important to point out that just by looking at a Kunz tuple it is possible to

extract some information about the numerical semigroup it belongs to.

Proposition 1.13. Given a numerical semigroup 𝑆 and its Kunz tuple (𝑆) = (𝑘1,… , 𝑘𝑛)

we have that

∙ 𝑚(𝑆) = 𝑛+ 1;

∙ 𝑔(𝑆) =
∑𝑛

𝑖=1 𝑘𝑖;

1. Numerical semigroups 11

∙ 𝑞(𝑆) = max 𝑘𝑖 or 0 if the tuple is empty;

∙ 𝐹 (𝑆) = (𝑞 −1)𝑚+ 𝑗, where 𝑗 is maximal such that 𝑘𝑗 = 𝑞 or 𝑗 = 0 if the tuple is empty.

Proof. Let us begin by the trivial numerical semigroup N0. Since its Kunz tuple is the

empty tuple, we have that its size 𝑛 and the sum of its elements are both 0. As a conse-

quence, the formulas for 𝑚 and 𝑔 are respectively 1 and 0, which is consistent with the fact

that 𝑚(N0) = 1 and 𝑔(N0) = 0. The other two cases come directly from the definition and

agree with the values 𝑞(N0) = 0 and 𝐹 (N0) = −1.

Now, let𝑆 ≠ N0 be a numerical semigroup. The case of themultiplicity comes directly from

the definition of Kunz tuple, so let us pay attention to the other invariants. By the way we

constructed Kunz tuples, we have that N0∖𝑆 =
⋃𝑛

𝑖=1{𝑖, 𝑚 + 𝑖,… , (𝑘𝑖 − 1)𝑚 + 𝑖}. Note that

for every 𝑖 the set {𝑖, 𝑚+ 𝑖,… , (𝑘𝑖 − 1)𝑚+ 𝑖} has 𝑘𝑖 elements, so 𝑔(𝑆) = |N0∖𝑆| = ∑𝑛
𝑖=1 𝑘𝑖.

Now, recall that the Frobenius number is the greatest integer that does not belong to 𝑆,

and since 𝑆 ≠ N0, this translates to 𝐹 (𝑆) = max(N0∖𝑆) = max1≤𝑖≤𝑛((𝑘𝑖 − 1)𝑚 + 𝑖). Now,

with what we have let us look at depth.

By definition 𝑞(𝑆) =
⌈
𝑐(𝑆)
𝑚(𝑆)

⌉
=
⌈
𝐹 (𝑆) + 1
𝑚(𝑆)

⌉
, changing 𝐹 (𝑆) by the previous expression us-

ing the Kunz tuple we get to 𝑞(𝑆) =

⌈
max1≤𝑖≤𝑛((𝑘𝑖 − 1)𝑚+ 1)

𝑚(𝑆)

⌉
= max𝑖(𝑘𝑖 − 1) +

⌈
𝑖+ 1
𝑚

⌉
=

max𝑖 𝑘𝑖. The expression
⌈
𝑖+ 1
𝑚

⌉
cancels to 1 because 0 < 𝑖+ 1 ≤ 𝑚. With this new expres-

sion for 𝑞 we can now rewrite 𝐹 , and we get the desired 𝐹 (𝑆) = (𝑞 − 1)𝑚 + 𝑗, where 𝑗 is

maximal such that 𝑘𝑗 = 𝑞.

Given a Kunz tuple, if we look at its elements as letters and the whole tuple as a word

we will get a Kunz word. Then, Kunz languages, which are the object of study in this thesis,

are nothing but collections of such words. Before getting to them, in the next chapter we

will talk about the basics of formal languages that we need and then we will use them to

introduce properly Kunz languages in Chapter 3.

Chapter 2

Formal Languages and Automata

This chapter is devoted to include all the basics of formal languages and automata that are

needed to properly understand the results about Kunz languages. In the first section, we

will present some notions of formal languages that will be applied in the study of numerical

semigroups. Then, in the second section, we will start by discussing how formal languages

are studied using grammars and automata. Firstly we will talk about grammars and how

they define a hierarchy in languages and then we will talk about how automata can also be

used for this purpose and show their equivalences. The proofs of some results regarding

which languages are recognized by each machine have not been included and specific

references where they can be consulted have been given instead.

In general, everything in this chapter follows [7], but [12], [5] and [8] have also been

consulted in order to explore other points of view and expand ideas.

2.1 Formal languages

As one intuitively may think, a formal language is just a set of words formed with letters

from an alphabet.

Given a nonempty finite set of symbols Σ, we denote by Σ∗ the free monoid of Σ, i.e.

the set containing all possible results concatenating a finite number of symbols of Σ along

with the empty word, which will be denoted by 𝜆.

Then, a language 𝐿 over an alphabet Σ is a subset of Σ∗, that is, a language is a set of

words formed with letters in Σ. Sometimes, we will refer to all possible nonempty words

over an alphabet for which the notation Σ+ will be used, in other words, Σ+ = Σ∗∖{𝜆}.

13

14 Kunz Languages

Let us illustrate the concept of language with some simple examples. Let Σ = {𝑎} be the al-

phabet that just contains the letter 𝑎. In this case, we will have that Σ∗ = {𝜆, 𝑎, 𝑎𝑎, 𝑎𝑎𝑎,…}.

That is, all the strings formed by any number of letters 𝑎 and the empty string 𝜆. Over

this alphabet we can define languages such as {𝜆}, the language formed by the empty

string, {𝑎} the language formed by the string 𝑎 or {𝑎, 𝑎𝑎, 𝑎𝑎𝑎𝑎} among infinitely many others.

Moreover, we can think of infinite languages, for example {𝑎𝑖|𝑖 ∈ N0} or {𝑎𝑖+𝑗|𝑖, 𝑗 primes}.

Although all these examples are over the same alphabet, the simplest one since it only

contains one symbol, it seems natural to think that finite languages are somehow less

complex than infinite ones and that, even in that case, the last example is more complex

than the previous one. Through the rest of the section, we will define, formalize and study

this complexity which will be used later to classify families of numerical semigroups in the

same complexity scale.

2.1.1 Grammars and Automata

There are essentially two ways to describe languages. The first one is giving a set of rules

that explain how to build the strings in that language, what is known as grammars. The

other way to describe a language is to recognize which words belong to the language and

which do not. This is made by defining a machine able to do this job. These machines are

known as automata and we will see that there are some equivalences between languages

defined by grammars and languages defined by automata.

2.1.1.1 Grammars

Definition 2.1. A grammar 𝐺 is defined as a quadruple 𝐺 = (𝑉 , 𝑇 , 𝑆, 𝑃) where:

∙ 𝑉 is a finite set of objects called variables,

∙ 𝑇 is a finite set of objects called terminal symbols,

∙ 𝑆 ∈ 𝑉 is a special symbol called the start variable,

∙ 𝑃 is a finite set of productions of the form 𝑥 → 𝑦 (read 𝑥 produces 𝑦),

where 𝑥 ∈ (𝑉 ∪ 𝑇)+ and 𝑦 ∈ (𝑉 ∪ 𝑇)∗.

such that 𝑉 and 𝑇 are nonempty and disjoint.

The most important part of a grammar is its set of productions, since the production

rules are the way in which strings are produced from the start symbol 𝑆. Productions are

2. Formal Languages and Automata 15

what makes a difference in complexity between two grammars, depending on the type of

rules we will classify grammars into different classes of complexity which will result in a

complexity classification in languages.

Production rules are applied in the following way. If we have a production 𝑥 → 𝑦 and a

word 𝑤 = 𝑢𝑥𝑣, our production is applicable to 𝑤 and lets us replace 𝑥 by 𝑦 in 𝑤 obtaining

the new word 𝑧 = 𝑢𝑦𝑣. This is written as 𝑤 ⇒ 𝑧 and we say that 𝑤 derives 𝑧 or that 𝑧 is

derived from 𝑤.

A production can be applied as many times as desired as long as it is applicable, and

can be combined with other rules as well. So if there is a production or set of productions

such that 𝑤1 ⇒ 𝑤2 ⇒ ⋯ ⇒ 𝑤𝑛 we say as well that 𝑤1 derives 𝑤𝑛 and in this case we

write 𝑤1 ⇒∗ 𝑤𝑛. That is ⇒∗ denotes an unspecified non-negative number of productions

applied on 𝑤1 to obtain 𝑤𝑛.

Grammars are a tool to define languages. Given a grammar, we can consider all the

possible words derived from the start symbol 𝑆.

Definition 2.2. Let 𝐺 = (𝑉 , 𝑇 , 𝑆, 𝑃) a grammar. The set

𝐿(𝐺) = {𝑤 ∈ 𝑇 ∗|𝑆 ⇒∗ 𝑤}

is the language generated by 𝐺.

Example 2.1. Let 𝐺1 = (𝑉 , 𝑇 , 𝑆, 𝑃) with 𝑉 = {𝑆}, 𝑇 = {𝑎} and the set 𝑃 is formed by the

production 𝑆 → 𝑎. In this case, the language generated by 𝐺 is 𝐿(𝐺) = {𝑎} since there is

only one production rule that can be applied exactly once. We start with 𝑆, apply the rule

𝑆 ⇒ 𝑎, and from 𝑎 we cannot derive anything else.

Example 2.2. Let 𝐺2 = {{𝑆}, {𝑎}, 𝑆, {𝑆 → 𝑎𝑆, 𝑆 → 𝜆}}. Starting with 𝑆, we can either

apply 𝑆 → 𝜆 and derive 𝜆 or apply 𝑆 → 𝑎𝑆 and derive 𝑎𝑆. If we repeat the later 𝑛 times

we will end up with 𝑎𝑛𝑆 and at that point by using the rule 𝑆 → 𝜆 we get 𝑎𝑛. So we have

that 𝐿(𝐺2) = {𝑎𝑖 ∣ 𝑖 ∈ N0}.

During the 1950s Noam Chomsky introduced a hierarchy of four grammars each of

which had more restricted production rules than the previous one. This hierarchy is known

as the Chomsky or Chomsky-Schützenberger hierarchy due to the important role that

Marcel-Paul Schützenberger also played in the development of formal languages. As

each grammar produces a language, this hierarchy of grammars translates to a hierarchy

in languages. Through the section, we will study the different grammars and the languages

16 Kunz Languages

they produce as well as its equivalence in automata. Before getting to the definition and

results concerning this hierarchy one can look at the following table which summarizes

almost everything in the section.

Grammar Language Automaton

Type-3 Regular Deterministic finite accepter

Type-2 Context-free Nondeterministic pushdown automaton

Type-1 Context-sensitive Linear bounded nondeterministic Turing machine

Type-0 Recursively enumerable Turing machine

Table 2.1: Chomsky hierarchy and the relation between languages, automata and gram-
mars.

Remark 2.3. Although in the table grammars are named as Type-0 to Type-3which are the

names given by Chomsky at the time, we will usually refer to them by the same name as

the language they generate since it is the usual notation in most of the computer science

books. There is though the exception of Type-0 grammars which are usually referred to

as unrestricted grammars.

Definition 2.4. A grammar 𝐺 = (𝑉 , 𝑇 , 𝑆, 𝑃) is said to be right-linear if all the productions

are of the form 𝐴 → 𝑥𝐵 or 𝐴 → 𝑥 where 𝐴,𝐵 ∈ 𝑉 and 𝑥 ∈ 𝑇 ∗.

Analogously, 𝐺 is called to be left-linear if all productions are of the form 𝐴 → 𝐵𝑥 or 𝐴 → 𝑥.

A regular grammar is a grammar that is either right-linear or left-linear.

A language 𝐿 is regular if there exists a regular grammar 𝐺 such that 𝐿 = 𝐿(𝐺).

If we look again at Examples 2.1 and 2.2, we can see that both of them are right-linear

grammars and as a consequence the languages they generate are regular.

Regular languages are the simplest ones in the Chomsky Hierarchy, and as we said at

the beginning of the section, it seems reasonable to think that finite languages should be

considered simpler than infinite ones. In Example 2.2 we have already seen a regular lan-

guage that is infinite, so it would make sense that all finite languages were regular. This

is true and it is not hard to prove as can be seen in the following proposition.

Proposition 2.5. All finite languages are regular.

Proof. Let 𝐿 = {𝑤1, 𝑤2,… , 𝑤𝑛} be a language over an alphabet Σ. We need to find a

regular grammar 𝐺 such that 𝐿(𝐺) = 𝐿. This can easily be done by setting the grammar

2. Formal Languages and Automata 17

as 𝐺 = (𝑉 , 𝑇 , 𝑆, 𝑃), where 𝑉 = {𝑆}, 𝑇 = Σ, and the set 𝑃 consists of the productions

𝑆 → 𝑤1, 𝑆 → 𝑤2,… , 𝑆 → 𝑤𝑛.

Now, by relaxing the conditions the production rules must fulfil, we can get stronger

grammars that allow us to generate more languages. In the case of regular grammars,

productions have the form 𝐴 → 𝑥𝐵 (or 𝐵𝑥) where 𝐴,𝐵 ∈ 𝑉 and 𝑥 ∈ 𝑇 ∗. Now, if we let

the right hand of the production be any element of (𝑉 ∪ 𝑇)∗ we will get what is known as

context-free grammars.

Definition 2.6. A grammar 𝐺 = (𝑉 , 𝑇 , 𝑆, 𝑃) is said to be context-free if all the productions

have the form 𝐴 → 𝑥, with 𝐴 ∈ 𝑉 and 𝑥 ∈ (𝑉 ∪ 𝑇)∗.

A language 𝐿 is context-free if there exists a context-free grammar 𝐺 such that 𝐿 = 𝐿(𝐺).

Notice that any element of the form 𝑥𝐴 or 𝐴𝑥 with 𝐴 ∈ 𝑉 and 𝑥 ∈ 𝑇 ∗ is contained in

(𝑉 ∪ 𝑇)∗, so any regular grammar is a context-free grammar as well but not the other way

around. For example, a production such as 𝑆 → 𝑎𝑆𝑎 is allowed in context-free grammars

but not in regular ones. So we have that regular languages are contained in the set of

context-free languages. In fact, the inclusion is strict, and the following example of lan-

guage is context-free but not regular. We will not prove this fact, but it is easy to do so

using the Pumping Lemma from an automata approach.

Example 2.3. Let 𝐺 be the grammar 𝐺 = ({𝑆}, {𝑎, 𝑏}, 𝑆, 𝑃), with 𝑃 containing the produc-

tions 𝑆 → 𝑎𝑆𝑎, 𝑆 → 𝑏𝑆𝑏 and 𝑆 → 𝜆. Then 𝐺 is a context-free grammar.

We can do derivations such as 𝑆 ⇒∗ 𝑎𝑆𝑎 ⇒∗ 𝑎𝑏𝑆𝑏𝑎 ⇒∗ 𝑎𝑏𝑏𝑆𝑏𝑏𝑎 ⇒∗ 𝑎𝑏𝑏𝑏𝑏𝑎. It is not hard

to see that we can produce the empty word, and any word formed with 𝑎s and 𝑏s as long

as it is a palindrome. So 𝐿(𝐺) = {𝑤𝑤𝑅|𝑤 ∈ {𝑎, 𝑏}∗}

Now, as we have done previously, we can loosen up once more the conditions a gram-

mar has to meet and obtain context-free languages.

Definition 2.7. A grammar𝐺 = (𝑉 , 𝑇 , 𝑆, 𝑃) is called context-sensitive if all the productions

are of the form 𝑥 → 𝑦, where 𝑥, 𝑦 ∈ (𝑉 ∪ 𝑇)+ and |𝑥| ≤ |𝑦|.
A language 𝐿 is context-sensitive if there exists a context-sensitive grammar 𝐺 such that

𝐿 = 𝐿(𝐺).

Remark 2.8. Equivalently, a context-sensitive grammar can be defined as one whose pro-

duction rules have the form 𝑢𝐴𝑣 → 𝑢𝑤𝑣where 𝑢, 𝑣 ∈ ((𝑉 ∪𝑇)∖{𝑆})∗ and𝑤 ∈ ((𝑉 ∪ 𝑇)∖{𝑆})+.

With this alternative definition, it is makesmore sensewhy they are called context-sensitive.

18 Kunz Languages

We have that a production looks like 𝑢𝐴𝑣 → 𝑢𝑤𝑣, here 𝑢 and 𝑣 constitute the context and

what we can or cannot do with 𝐴 depends on it. The equivalence between both definitions

can be consulted in [8, p.6].

Finally, to get to the top of the Chomsky hierarchy we just have to relax completely the

conditions that a grammar must fulfil. That is, we do not put restrictions at all, and hence

the name.

Definition 2.9. A grammar 𝐺 = (𝑉 , 𝑇 , 𝑆, 𝑃) is said to be unrestricted if all the productions

are of the form 𝑢 → 𝑣, where 𝑢 ∈ (𝑉 ∪ 𝑇)+ and 𝑣 ∈ (𝑉 ∪ 𝑇)∗.

A language 𝐿 is recursively enumerable if there exists an unrestricted grammar 𝐺 such

that 𝐿 = 𝐿(𝐺).

2.1.1.2 Automata

Automata are essentially abstract objects representing the idea of digital computers. With

them, we formalize the concept of machine and computation which enables us to study

the capabilities of computers.

To begin with, let us study the simplest of automata, deterministic finite accepters or de-

terministic finite automata. These are models useful to describe computers with a very

limited amount of memory.

Definition 2.10. A deterministic finite accepter or dfa is a quintuple 𝑀 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹)

where

∙ 𝑄 is a finite set of states,

∙ Σ is a finite set of symbols called the input alphabet,

∙ 𝛿 ∶ 𝑄 × Σ → 𝑄 is a function called the transition function,

∙ 𝑞0 ∈ 𝑄 is the initial state,

∙ 𝐹 ⊆ 𝑄 is a set of final states.

This definition synthesizes the following: the machine consists of a finite number of

states (𝑄), and it is initialized at 𝑞0. Then, at each state, when given an input from the

alphabet Σ, it moves to another state according to the transition function 𝛿 and when no

more inputs are received, it can either land in a final or a non final state.

It is useful to view a dfa as a graph where each vertex is a state and oriented labeled

2. Formal Languages and Automata 19

edges represent the transition function. These graphs are known as transition graphs, in

them start symbols tend to be marked with an arrow pointing to them, non final states are

drawn as circles and final states with double circles. Next, we can see an example of dfa

with its transition graph.

Example 2.4. Automaton 𝑀 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹) and its transition graph, where

∙ 𝑄 = {𝑞0, 𝑞1}

∙ 𝑞0 initial state

∙ Σ = {1}

∙ 𝛿(𝑞0, 1) = 𝑞1, 𝛿(𝑞1, 1) = 𝑞0

∙ 𝐹 = {𝑞1}

𝑞0 𝑞1

1

1

Figure 2.1: Transition graph for 𝑀

As it has been said previously, automata can be used to describe languages by rec-

ognizing words, and our interest in automata in this thesis relies exactly on this fact.

Given an alphabet Σ and a dfa𝑀 whose input alphabet is Σ, we can think of𝑀 as reading

a word 𝑤 ∈ Σ∗ by initializing it in the start state 𝑞0 and feeding one letter at a time as input.

After reading 𝑤 if 𝑀 ends up in a final state we say that 𝑀 accepts 𝑤.

More formally this can be defined by extending the transition function 𝛿 to 𝛿∗ ∶ 𝑄×Σ∗ → 𝑄

recursively:

𝛿∗(𝑞, 𝜆) = 𝑞 and 𝛿∗(𝑞,𝑤𝑎) = 𝛿(𝛿∗(𝑞,𝑤), 𝑎) for all 𝑞 ∈ 𝑄,𝑤 ∈ Σ∗, 𝑎 ∈ Σ.

Then we say that the dfa 𝑀 with input alphabet Σ and set of final states 𝐹 accepts

𝑤 ∈ Σ∗ if 𝛿∗(𝑞0, 𝑤) ∈ 𝐹 . This allows to define a language as those words accepted by a dfa.

That is, given 𝑀 a dfa, the language defined by 𝑀 is 𝐿(𝑀) ..= {𝑤 ∈ Σ∗ ∣ 𝛿∗(𝑞0, 𝑤) ∈ 𝐹 }.

For example, in the case of Example 2.4, we have that 𝐿(𝑀) = {12𝑖−1|𝑖 ∈ N} the language

of non empty strings formed by an odd number of 1s.

Notice that dfa are called deterministic. This is to distinguish them from nondetermin-

istic finite accepters, or nfa. At this point it is worth talking about nondeterminism and why

does it play a role in computation theory. As we have said at the beginning of the chapter,

automata are a theoretical model for digital computers, and we know for a fact that com-

puters are deterministic, at each state, given a particular input, its next state is completely

determined. So at first, it does not seem very natural to think about nondeterminism, but

actually, there are some moments where it does make a lot of sense. We need to look at

nondeterminism as a machine parallelizing its calculations. When executing some kind of

20 Kunz Languages

algorithm or when modelling some problems it is common to reach some point where a

decision has to be made, and it might not be possible to know which is the best one. At

this moment, if we add nondeterminism, we allow the machine to explore several options

at the same time, that is, we allow it to explore each decision and its path. An example

of this practice is what is known as search-and-backtrack algorithms. In the context of

language theory, nondeterminism is useful because it provides us more expressiveness,

allowing us to work with some trains of thought that determinism does not permit. Some-

times, as in the case of dfa and nfa, which we will see next, it happens that even though

the possibilities of each kind of machine differ, the kind of languages that they define is

the same, regular languages. So in particular, nondeterminism helps us to reason about

regular languages with more powerful tools.

Let us now define nfa, and see how they are indeed equivalent to dfa.

Definition 2.11. A nondeterministic finite accepter, or nfa, is a quintuple𝑀 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹)

where 𝑄,Σ, 𝑞0 and 𝐹 are exactly as in dfa, and 𝛿 is a function with states and letters as

inputs and sets of states as outputs, 𝛿 ∶ 𝑄 × Σ → (𝑄), where (𝑄) denotes the power

set of 𝑄.

So, in summary, an nfa is like a dfa but it is allowed to compute several options at the

same time. This is why the outputs of 𝛿 are sets, at each of the states of the output it is as

if we had a dfa executing that path.

Sometimes, in the definition of an nfa, the domain of the transition function 𝛿 is set as

𝑄 × (Σ ∪ {𝜆}) permitting 𝜆-transitions. These transitions mean that we let the dfa change

state without consuming any symbol. We can use 𝜆-transitions for greater levels of ex-

pressiveness and simplicity. Imagine we have an nfa and it is not clear whether at some

point the machine should be in 𝑞𝑛 or 𝑞𝑚, by setting a 𝜆-transition between those states we

allow the nfa to be at both at the same time. Even though, it is a powerful tool, the family

of languages defined by both kinds of nfa are the same, we will mention this fact later in

detail.

Now we need to look at how a language is defined by a nfa. In this case, in order for a dfa

to accept a word it is required that the set of states at which the machine would end when

given an input contains at least one final state from 𝐹 , i.e., we require that at least one of

the paths the machine explores leads to a final state.

As we did in the case of dfa, we will extend 𝛿 to 𝛿∗ and define a language recognized by

an nfa from there. Given a dfa 𝑀 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹) we define 𝛿∗ ∶ 𝑄 × Σ∗ recursively as

2. Formal Languages and Automata 21

𝛿∗(𝑞, 𝜆) = {𝑞} for every 𝑞 ∈ 𝑄 and 𝛿∗(𝑞,𝑤𝑎) =
⋃

𝑞′∈𝛿∗(𝑞,𝑤) 𝛿(𝑞′, 𝑎) for all 𝑤 ∈ Σ∗, 𝑎 ∈ Σ. Then

the language generated by 𝑀 is 𝐿(𝑀) = {𝑤 ∈ Σ∗|𝛿∗(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅}.

Example 2.5. Let 𝑀 = ({𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5}, {𝑎}, 𝛿, 𝑞0, {𝑞3, 𝑞5}) with 𝛿 defined as

𝛿(𝑞0, 𝑎) = {𝑞1, 𝑞4}, 𝛿(𝑞1, 𝑎) = {𝑞2}, 𝛿(𝑞2, 𝑎) = {𝑞3}, 𝛿(𝑞3, 𝑎) = ∅, 𝛿(𝑞4, 𝑎) = {𝑞5}, 𝛿(𝑞5, 𝑎) = {𝑞4}

Notice that for the state 𝑞3 we have that 𝛿(𝑞3, 𝑎) = ∅ something that was not possible

in deterministic finite accepters. As in the case of dfa, we can draw a transition graph

representing the machine:

𝑞0

𝑞1

𝑞4

𝑞2 𝑞3

𝑞5

a

a a

a a

a

Figure 2.2: Transition graph for 𝑀

Looking at the graph may help to find out which language describes 𝐿 = 𝐿(𝑀) accepts

the nfa. It is not hard to see that 𝐿(𝑀) = {𝑎𝑎𝑎, (𝑎𝑎)𝑖|𝑖 ∈ N}.

If we have a dfa 𝑀𝐷 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹), we can build an nfa 𝑀𝑁 = (𝑄,Σ, 𝛿′, 𝑞0, 𝐹) where

𝛿′(𝑞, 𝑎) = {𝛿(𝑞, 𝑎)} for every 𝑞 ∈ 𝑄 and every 𝑎 ∈ Σ+, and then let all 𝜆-transitions go to the

empty set 𝛿′(𝑞, 𝜆) = ∅ for every 𝑞 ∈ 𝑄. It is clear that 𝐿(𝑀𝐷) = 𝐿(𝑀𝑁). That is, for every

dfa there exists an nfa accepting the same language.

Next we see the converse, how for any language defined by an nfa𝑀𝑁 = (𝑄𝑁 ,Σ, 𝛿𝑁 , 𝑞0, 𝐹𝑁),

there is a dfa 𝑀𝐷 = (𝑄𝐷,Σ, 𝛿𝐷, {𝑞0}, 𝐹𝐷) that defines the exact same language. The idea

is that the states of 𝑀𝐷 are sets of states from 𝑀𝑁 , and its final states are those sets that

contain at least one element from 𝐹𝑁 . Through the proof of the following theorem, it is

important to keep in mind that a state in 𝑀𝐷 is an element of 𝑄𝐷 but it is a subset of 𝑄𝑁 .

Concerning the transition function, we have that 𝛿𝑁 brings elements from 𝑄𝑁 to subsets

of 𝑄𝑁 , but with 𝛿𝐷 we need sets in both the domain and the codomain, so we send a set

𝑞 ⊆ 𝑄𝑁 to the union of all images by 𝛿𝑁 of every single element of 𝑞.

Theorem 2.12. Let 𝑀𝑁 = (𝑄𝑁 ,Σ, 𝛿𝑁 , 𝑞0, 𝐹𝑁) be an nfa. Then there exists a dfa 𝑀𝐷 =

(𝑄𝐷,Σ, 𝛿𝐷, {𝑞0}, 𝐹𝐷) such that 𝐿(𝑀𝑁) = 𝐿(𝑀𝐷).

22 Kunz Languages

Proof. In this proof, we will essentially define explicitly a dfa 𝑀𝐷 and then prove that it

does the same as the nfa 𝑀𝑁 .

Let 𝑄𝐷 = (𝑄𝑁), 𝐹𝐷 = {𝑞 ∈ 𝑄𝐷|𝑞 ∩ 𝐹𝑁 ≠ ∅}. Then we define the transition function as

𝛿𝐷(𝑞, 𝑎) =
⋃
𝑝∈𝑞

𝛿𝑁 (𝑝, 𝑎) for 𝑞 ∈ 𝑄𝐷 and 𝑎 ∈ Σ.

Wewill see now, that everything works as it should. Wewant to prove that𝐿(𝑀𝐷) = 𝐿(𝑀𝑁)

what by definition is equivalent to prove that 𝛿∗𝐷({𝑞0}, 𝑤) = 𝛿∗𝑁 (𝑞0, 𝑤) for every 𝑤 ∈ Σ∗. We

will proceed by induction over the length of words |𝑤|.
The initial case |𝑤| = 0 is that of𝑤 = 𝜆. In this case 𝛿∗𝐷(𝑞0, 𝜆) = 𝛿𝐷(𝑞0, 𝜆) = ∪𝑝∈{𝑞0}𝛿𝑁 (𝑝, 𝜆) =

𝛿𝑁 (𝑞0, 𝜆) = 𝛿∗𝑁 (𝑞0, 𝜆).

At his point, by induction, we assume that for any 𝑤 ∈ Σ∗ with |𝑤| = 𝑛 the statement is

true.

Now, let 𝑤 ∈ Σ∗ with |𝑤| = 𝑛+ 1. There have to exist 𝑎 ∈ Σ and 𝑢 ∈ Σ∗ such that |𝑢| = 𝑛

and 𝑤 = 𝑢𝑎. Then 𝛿∗𝐷({𝑞0}, 𝑤) = 𝛿∗𝐷({𝑞0}, 𝑢𝑎) = 𝛿𝐷(𝛿∗𝐷({𝑞0}, 𝑢), 𝑎) =
𝑖𝑛𝑑.

𝛿𝐷(𝛿∗𝑁 (𝑞0, 𝑢), 𝑎) =
(2)⋃

𝑝∈𝛿∗𝑁 (𝑞0,𝑢)
𝛿𝑁 (𝑝, 𝑎) =

(2)
𝛿∗𝑁 (𝑞0, 𝑢𝑎) = 𝛿∗𝑁 (𝑞0, 𝑤)

In (1) we used the definition of 𝛿𝐷 and in (2) the definition of 𝛿∗𝑁 .

Remark 2.13. The proof of Theorem 2.12 can be extended to take into account lambda

transitions in the case nfas had been defined with them. This can be seen in [12, p. 55].

Notice that in the proof there might be many unnecessary states of the dfa defined whose

image in the transition function is the empty set. This proof gives just certainty of the

equivalence by describing a dfa capable of recognizing the same language but does not

provide the best one computationally speaking. It is interesting to point out that converting

an nfa to an equivalent dfa is a task that plays an important role in computer science and

for which several algorithms have been proposed.

Next, we will see that the family regular languages is the family of languages recog-

nized by dfas. To do so, we will use nondeterminism, which makes the proof easier. This

an example of what has been said previously concerning the advantages of using nonde-

terminism.

Theorem 2.14. A language 𝐿 is regular if and only if there exists a dfa 𝑀 such that 𝐿 =

𝐿(𝑀).

Proof. By definition a language 𝐿 is regular if there is a regular grammar 𝐺 such that

𝐿 = 𝐿(𝐺). This grammar can be either right linear or left linear but in the proof we will

only take into account the right linear case since the other one is completely analogous.

2. Formal Languages and Automata 23

Then, as we have seen in Theorem 2.12 it is equivalent to prove the theorem for an nfa

that is what we will do since it makes things much easier. So essentially we will prove that

given a right linear grammar 𝐺 there is an nfa 𝑀 that recognizes the same language and

vice-versa.

(←) Let 𝑀 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹) be any nfa. We can define a grammar 𝐺 = (𝑉 , 𝑇 , 𝑆, 𝑃) so

that its variables are states of 𝑀 and its terminal symbols are the alphabet symbol of

𝑀 . Explicitly, the grammar 𝐺 is set as 𝑉 = 𝑄, 𝑇 = Σ, 𝑆 = 𝑞0 and its productions are

𝑃 = {𝐴 → 𝑥𝐵|𝐵 ∈ 𝛿(𝐴, 𝑥)} ∪ {𝐴 → 𝜆|𝐴 ∈ 𝐹 }.

By definition we have that 𝑆 ⇒ 𝑥𝐵 if and only if 𝐵 ∈ 𝛿(𝑞0, 𝑥). Now, if 𝑤 = 𝑤1𝑤2⋯𝑤𝑛 ∈ Σ∗

with |𝑤| = 𝑛, we have that 𝐵 ∈ 𝛿∗(𝑞0, 𝑤) if and only if 𝐵 ∈ 𝛿(𝛿(… 𝛿(𝑞0, 𝑤1),…), 𝑤𝑛−1), 𝑤𝑛).

In other words, 𝑆 ⇒∗ 𝑤𝐵 if and only if 𝐵 ∈ 𝛿∗(𝑞0, 𝑤). We want to see that for every 𝑤 ∈ Σ∗

we have that 𝑆 ⇒∗ 𝑤 if and only if 𝛿∗(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅. Notice that 𝑆 ⇒∗ 𝑤 ⟺ 𝑆 ⇒∗

𝑤𝐵 ∧ (𝐵 → 𝜆) ∈ 𝑃 ⟺ 𝐵 ∈ 𝛿∗(𝑞0, 𝑤) ∧ 𝐵 ∈ 𝐹 ⟺ 𝛿∗(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅ as we wanted to

prove.

(→) This other implication is very similar in nature. Given 𝐺 = (𝑉 , 𝑇 , 𝑆, 𝑃) we define

𝑀 = (𝑄,Σ, 𝑞0, 𝐹) with 𝑄 = 𝑉 ,Σ = 𝑇 , 𝑞0 = 𝑆, 𝐹 = {𝐴 ∈ 𝑉 |(𝑉 → 𝜆) ∈ 𝑃 } and for every 𝑥 ∈ Σ

we define 𝛿(𝐴, 𝑥) = 𝐵 for every 𝐵 such that (𝐴 → 𝑥𝐵) ∈ 𝑃 . Now following the same steps

as before but in the other direction we can get to the result.

Now, we can improve a dfa, by adding some memory to it, having then a model of a

more complex automaton.

Remark 2.15. By 𝑓 (𝐴) we will denote the finite power set of a set 𝐴. In other words,

𝑓 (𝐴) is the set of all finite subsets of 𝐴.

Definition 2.16. A nondeterministic pushdown accepter or ndpa for short, is a septuple

𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝑧, 𝐹) where

∙ 𝑄 is i a finite set of internal states,

∙ Σ is the input alphabet,

∙ Γ is a finite set of symbols called the stack alphabet,

∙ 𝛿 ∶ 𝑄 × (Σ ∪ {𝜆}) × Γ → 𝑓 (𝑄 × Γ∗) is the transition function,

∙ 𝑞0 ∈ 𝑄 is the initial state,

∙ 𝑧 ∈ Γ is the stack start symbol,

24 Kunz Languages

∙ 𝐹 ⊆ 𝑄 is the set of final states.

There are two aspects that make a difference between nondeterministic pushdown au-

tomata and deterministic finite accepters. The first one is the memory and how it is used,

and the second is nondeterminism.

In a ndpa the memory model is a stack that can be filled with symbols from the stack al-

phabet Γ and that is initialized by a start symbol 𝑧 ∈ Γ. Then, at each step, the automaton

can read and remove the top symbol of the stack and then write a string of symbols one by

one on top of it pushing all the previous symbols of the stack down. We can imagine the

memory as a stack of plates where each plate has a symbol written, we are only allowed

to remove a plate from the top and then add some other plates on top of the stack. This

type of memory access is usually referred to as last in first out. It is common as well to

use pushing and popping as synonyms of writing and reading symbols respectively.

The other aspect is nondeterminism. One might think that as in the case of dfas and nfas,

nondeterminism will not change the kind of language that the machine is able to recognize,

but this is not true in the case of pushdown automata. There is, in fact, a deterministic ver-

sion in which the transition function is similar to that in dfa, but it can be seen that this type

of pushdown automaton is not able to recognize the same languages as the nondetermin-

istic one.

Now we need to look at how a language is defined by an ndpa. In order for an ndpa

to accept a word it is required that the set of states at which the machine would end when

given an input contains at least one final state from 𝐹 , i.e., we require that at least one

of the paths the machine explores leads to a final state as in the case of dfas. The thing

though, is that since with npdas we have a memory stack that conditions the movements

through states, extending 𝛿 to 𝛿∗ is not that easy, and its notation might be confusing and

not much useful to do mathematical arguments. For this reason, we introduce the notion

of instantaneous description which is very handy to keep track of what an ndpa is doing at

a precise moment.

Given an npda 𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝑧, 𝐹), an instantaneous description of 𝑀 is a triplet

(𝑞,𝑤, 𝑢) where 𝑞 is the current state of 𝑀 , 𝑤 is the unread part of the input string, and 𝑢

is the content of the stack (with left to right in 𝑢 indicates top to bottom in the stack).

So with an instantaneous description, we can express the position of an ndpa. Now we

need to describe how does 𝑀 move from an instantaneous description to another. For

2. Formal Languages and Automata 25

𝑎 ∈ Σ, 𝑏, 𝑦 ∈ Γ, 𝑥 ∈ Γ∗ and 𝑤 ∈ Σ∗ a move from (𝑞1, 𝑎𝑤, 𝑏𝑥) to (𝑞2, 𝑤, 𝑦𝑥) is possible if and

only if (𝑞2, 𝑦) ∈ 𝛿(𝑞1, 𝑎, 𝑏). In this case, we denote (𝑞1, 𝑎𝑤, 𝑏𝑥) ⊢ (𝑞2, 𝑤, 𝑦𝑥). So we have

that (𝑞1, 𝑎𝑤, 𝑏𝑥) ⊢ (𝑞2, 𝑤, 𝑦𝑥) indicates a single step in 𝑀 ; moves with an arbitrary number

of steps are denoted by (𝑞1, 𝑎𝑤, 𝑏𝑥) ⊢∗ (𝑞2, 𝑤, 𝑦𝑥) similarly to how derivations in grammars

are denoted. With this simple notion, we can already define how is the language accepted

by 𝑀 . It is the set 𝐿(𝑀) = {𝑤 ∈ Σ∗ ∶ (𝑞0, 𝑤, 𝑧) ⊢∗ (𝑝, 𝜆, 𝑢), 𝑝 ∈ 𝐹 , 𝑢 ∈ Γ∗}. In plain

English, it is the set of words that when fed to𝑀 as input make the machine stop in a final

state. Note that we need to see this in the nondeterministic way in which several ways

are explored in an identical way as in nfa. It is important as well to point out that in order

for a word to be accepted it just needs to end in a final state. Some authors include the

additional requirement that the stack has to be empty. Both definitions are equivalent in the

sense that they accept the same family of languages. Each one has its own benefits, for

example, the one we gave allows a more general and flexible model of computation and is

better to deal with proofs while the other one simplifies the construction of the deterministic

version of the machine: the deterministic pushdown automaton.

The following theorem states which is the family of languages recognized by ndpas.

The proof is not included but each of the implications of the theorem correspond to [7,

Theorem 7.1 p.188] and [7, Theorem 7.2 p.195]

Theorem 2.17. A language 𝐿 is context-free if and only if there exists an ndpa 𝑀 such

that 𝐿 = 𝐿(𝑀).

As in any kind of automata, ndpas have a way to be represented by a transition graph.

In the very same way as we did with dfas, we draw circles to represent states, final states

are marked by a second circle, and the initial state has an arrow pointing at it. Finally,

moves are represented by arrows labelled with three symbols, the first one indicates what

is being read from the input, the second what is being read from the stack and the third

represents the string to be inserted in the stack. Let us see an example to clarify all the

contents about nondeterministic pushdown automata.

Example 2.6. Consider an ndpa𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝑧, 𝐹)where𝑄 = {𝑞0, 𝑞1, 𝑞2, 𝑞3},Σ = {𝑎, 𝑏},

Γ = {0, 1}, 𝑧 = 0, 𝐹 = {𝑞3} and 𝛿 defined as

𝛿(𝑞0, 𝑎, 0) = {(𝑞1, 10), (𝑞3, 𝜆)},

𝛿(𝑞0, 𝜆, 0) = {(𝑞3, 𝜆)},

𝛿(𝑞1, 𝑎, 1) = {(𝑞1, 11)},

𝛿(𝑞1, 𝑏, 1) = {(𝑞2, 𝜆)},

𝛿(𝑞2, 𝑏, 1) = {(𝑞2, 𝜆)},

𝛿(𝑞2, 𝜆, 0) = {(𝑞3, 𝜆)}.

26 Kunz Languages

Notice that it is indeed nondeterministic since 𝛿(𝑞0, 𝑎, 0) is a set containing two ele-

ments, so the automaton has to explore two different ways at that point. Pay attention as

well to the fact that some transitions are not specified, meaning that would go to the null

set representing a dead configuration. Using the kind of transition graphs we described,

we can represent 𝑀 as follows:

𝑞0 𝑞1

𝑞3 𝑞2

𝑎, 0, 10

𝑎, 0, 𝜆

𝜆, 0, 𝜆

𝑎, 1, 11

𝑏, 1, 𝜆

𝑏, 1, 𝜆

𝜆, 0, 𝜆

Figure 2.3: Transition graph of an ndfa that recognizes 𝐿 = {𝑎𝑛𝑏𝑛 ∶ 𝑛 ∈ N0} ∪ {𝑎} .

This npda essentially does the following, when it finds an 𝑎 it adds a 1 to the stack and

repeats this process until a 𝑏 is found. Then, when the 𝑏 is found, the machine removes

a 1 from the stack and keeps doing it. So if the input is finished and the stack is empty it

ends in the final state 𝑞3. This can happen as well if the input consists of 𝑤 = 𝑎. So the

language recognized by this ndpa is 𝐿(𝑀) = {𝑎𝑛𝑏𝑛 ∶ 𝑛 ∈ N} ∪ {𝑎}. Notice that if at the

beginning, in state 𝑞0, the input consists of a 𝑏 the move is not defined, meaning it falls

into a dead configuration thus rejecting the word. The same happens if after the first 𝑏 in

state 𝑞1 an 𝑎 is found or if at any time the input has ended and the stack is not empty or

the stack is empty but the input has not completely been read. This example can be found

in [7, p.181], as well as some other examples.

Finally, it is time to get to the most complex kind of automaton, the Turing machine.

This increase in complexity, or power of computation, is achieved by improving the kind

of memory and how it is accessed. In a Turing machine, instead of a stack, we have a

tape divided into cells in each of which a symbol can be written. The machine has a head

that moves through the tape and at each time it can read a symbol, write another one and

move one cell left or right.

Definition 2.18. A Turing machine 𝑀 is defined as a tuple 𝑀 = (𝑄,Σ,Γ, 𝑞0,□, 𝐹) where

2. Formal Languages and Automata 27

∙ 𝑄 is the set of internal states,

∙ Σ is the input alphabet,

∙ Γ is a set of symbols called the tape alphabet,

∙ 𝛿 ∶ 𝑄 × Γ → 𝑄 × Γ × {𝐿,𝑅} is the transition function,

∙ □ ∈ Γ is a special symbol called blank,

∙ 𝑞0 ∈ 𝑄 is the initial state,

∙ 𝐹 ⊆ 𝑄 is the set of final states,

In addition, we require Σ ⊆ Γ∖{□}. The elements of the set {𝐿,𝑅} represent the head of

the machine moving left (𝐿) or right (𝑅) along the tape after having written a symbol on it.

Remark 2.19. The transition function 𝛿 is actually a partial function, that is, its domain is

𝐴 ⊆ 𝑄 × Γ. However we can always turn 𝛿 into a total function by adding a non final sink

state so that for every originally undefined move, when reading the symbol on the tape the

machine moves to the sink state and then every symbol read makes the machine stay in

that sink state.

𝑎𝑏𝑏…□…□ 𝑎 𝑏 … □ … □

head

Figure 2.4: Model of a Turing Machine.

Now, as in the previous models of automata, we need to define how a Turing machine

accepts a language. In this case, just like with ndpas, the most convenient way to do so

is through instantaneous descriptions. Notice that the configuration of a Turing machine

at any time is completely determined by the position of the head at that time, the current

state, and the contents of the tape. To represent this we will use the notation 𝑥1𝑞𝑥2 with

𝑥1, 𝑥2 ∈ Γ+ and 𝑞 ∈ 𝑄 to represent that the current state is 𝑞, that the content of the tape is

𝑥1𝑥2, with anything left or right of that being blank symbols (□), and the head is positioned

over the cell containing the leftmost symbol of 𝑥2.

Once we have defined positions, it is time to talk about moves. A move from a configura-

tion to the next one, similarly to how it is done in ndpas in Page 24 will be denoted by ⊢,

28 Kunz Languages

that is, if we have 𝛿(𝑞1, 𝑎) = (𝑞2, 𝑏, 𝑅), then the move 𝑥𝑞1𝑎𝑦 ⊢ 𝑥𝑏𝑞2𝑦 is made whenever the

current state is 𝑞1 and the content of the tape is 𝑥𝑎𝑦 with the head being positioned over

the cell containing the symbol 𝑎. In order to denote an arbitrary number of moves we will

use ⊢∗ as previously.

Now we can easily define how a language is defined by a Turing machine. The idea is

that if we start the machine in its initial state with a string 𝑤 in its tape and ends up halting

in a final state then 𝑤 is accepted, otherwise it is rejected. Let us define this formally:

Definition 2.20. Let 𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑞0,□, 𝐹) be a Turing machine. The language ac-

cepted by 𝑀 is

𝐿(𝑀) =
{
𝑤 ∈ Σ+ ∶ 𝑞0𝑤 ⊢∗ 𝑥1𝑞𝑓𝑥2 for some 𝑞𝑓 ∈ 𝐹 and 𝑥1, 𝑥2 ∈ Γ∗

}
The following theorem states which is the family of languages recognized by Turing

machines. The proof is not included but each of the implications of the theorem correspond

to [7, Theorem 11.6 p.283] and [7, Theorem 11.7 p.284]

Theorem 2.21. A language 𝐿 is recursively enumerable if and only if there exists a Turing

machine 𝑀 such that 𝐿 = 𝐿(𝑀).

Remark 2.22. When giving a string as input to a Turing machine, there are three possible

outcomes: it halts in a final state, it halts in a non final state or it does not halt at all, that is

the machine enters an infinite loop. We have defined recursively enumerable languages

to be those in which every word that does not halt in a final state is rejected. There exists

as well the family of recursive languages, that is defined by just rejecting words that halt

in a non final state, in other words, strings that make the machine enter an infinite loop

are accepted as well. Recursive languages are also known as decidable languages or

Turing-decidable. At the same time, recursively enumerable languages are called Turing-

recognizable or simply recognizable.

The family of decidable languages strictly contains the family of recognizable languages

but it is not included in the Chomsky hierarchy.

In order to visually represent a Turing machine in a similar way to what we have already

done with finite accepters, we can as well draw transition graphs. The design is the same

for states, each one represented by a circle, the initial state pointed by an arrow and final

states marked with a double circle. Now, arrows between states represent the moves and

2. Formal Languages and Automata 29

they are labeled with three symbols, the first one representing the symbol to be read on

the tape, the second the symbol to be written and the third representing if the head of the

machine has to move left (𝐿) or right (𝑅). Let us now illustrate everything that has been

said about Turing machines with an example.

Example 2.7. Consider the Turing machine 𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑞0,□, 𝐹) defined by 𝑄 =

{𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞𝑎}, Σ = {𝑎, 𝑏, 𝑐}, Γ = {𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧,□}, 𝐹 = {𝑞𝑎} and the following transi-

tion function 𝛿:

𝛿(𝑞0, 𝑎) = (𝑞1, 𝑥, 𝑅),

𝛿(𝑞0, 𝑦) = (𝑞4, 𝑦, 𝑅),

𝛿(𝑞1, 𝑦) = (𝑞1, 𝑦, 𝑅),

𝛿(𝑞1, 𝑎) = (𝑞1, 𝑎, 𝑅),

𝛿(𝑞1, 𝑏) = (𝑞2, 𝑦, 𝑅),

𝛿(𝑞2, 𝑧) = (𝑞2, 𝑧, 𝑅),

𝛿(𝑞2, 𝑏) = (𝑞2, 𝑏, 𝑅),

𝛿(𝑞2, 𝑐) = (𝑞3, 𝑧, 𝐿),

𝛿(𝑞3, 𝑎) = (𝑞3, 𝑎, 𝐿),

𝛿(𝑞3, 𝑏) = (𝑞3, 𝑏, 𝐿),

𝛿(𝑞3, 𝑦) = (𝑞3, 𝑦, 𝐿),

𝛿(𝑞3, 𝑧) = (𝑞3, 𝑧, 𝐿),

𝛿(𝑞3, 𝑥) = (𝑞0, 𝑥, 𝑅),

𝛿(𝑞4, 𝑦) = (𝑞4, 𝑦, 𝑅),

𝛿(𝑞4, 𝑧) = (𝑞4, 𝑧, 𝑅),

𝛿(𝑞4,□) = (𝑞4,□, 𝐿).

Just by looking at the definition of the Turing machine, it is not easy to imagine how it

is or to get an idea of how it works. In order to fight this, let us look at its transition graph

(Figure 2.5).

𝑞0 𝑞1 𝑞2 𝑞3

𝑞4 𝑞𝑎

a,x,R b,y,R c,z,L

y,y,R

□,□,L

x,x,R

y,y,R
z,z,R

y,y,R
a,a,R

z,z,R
b,b,R

a,a,L
y,y,L
b,b,L
z,z,L

Figure 2.5: Turing Machine that recognizes 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 ∶ 𝑛 ∈ N}

30 Kunz Languages

Instead of trying first to analyze the functioning of the machine and then deduce what

language does it recognize, we will do the opposite, since this automaton has been con-

structed to recognize a specific language, so this order will seem more natural.

The language recognized by this Turing machine 𝑀 is 𝐿(𝑀) = {𝑎𝑖𝑏𝑖𝑐𝑖 ∶ 𝑖 ∈ N}.

The idea behind its functioning is that we start by finding an 𝑎 and crossing it by changing

it into an 𝑥 then go right until a 𝑏 is found and change it into a 𝑦 and next go right until a

𝑐 is found and marked as crossed by writing a 𝑧. Finally, we go all the way back to the

beginning of the word and start again doing the same thing. If we repeat this process until

no letter is left that means the word has the form 𝑎𝑖𝑏𝑖𝑐𝑖. On the other hand, if at some point

we find a letter that is not the one we are looking for, or we cannot find the letter we are

looking for, the word is rejected. In the first case that would mean the word has not the

structure 𝑎𝑖𝑏𝑗𝑐𝑘 and in the second we would have that 𝑖, 𝑗 or 𝑘 do not represent the same

natural number.

The previous example shows the increase in power of Turing machines compared to

npda, since the language 𝐿 = {𝑎𝑖𝑏𝑖𝑐𝑖 ∶ 𝑖 ∈ N} is not context-free. An explicit prove of this

fact can be found in [5, Example 7.19, p.289] or [7, Example 8.1, p.209]. The latter one

actually talks about {𝑎𝑖𝑏𝑖𝑐𝑖 ∶ 𝑖 ∈ N0} but the same argument is valid. Both of them rely on

the use of the Lemma 3.11 about which we will talk later in the next chapter.

To this point, we have seen three different types of machines each of which recognizes

a different type of language but there is still a language type missing, context-sensitive lan-

guages. The automata that recognize context-sensitive languages are a special kind of

Turing machines with a bounded tape and once more with the factor of nondeterminism

playing a role. Let us see this step by step.

A nondeterministic Turing machine is an automaton such as the regular Turing machine

but where the transition function’s set of destination is (𝑄 × Γ × {𝐿,𝑅}). That is, as in

the case of nondeterministic pushdown automata, at each step we allow the machine

to explore different paths at the same time. The interesting thing though is that unlike

dpa where nondeterminism makes a difference in the kind of language the machine can

recognize, there is no such difference when it comes to Turing machines. For any non-

deterministic Turing machine 𝑀1, there exists a deterministic one 𝑀2 accepting exactly

2. Formal Languages and Automata 31

the same words, i.e. verifying 𝐿(𝑀1) = 𝐿(𝑀2). In fact, there are many different mod-

els of Turing machines where a feature or some features of the regular one are modified

and all these are equivalent. Some of these are multi-tape Turing machines where two or

more tapes are used simultaneously used or Turing machines with a stay option, where

𝛿 ∶ 𝑄 × Γ → 𝑄 × Γ × {𝐿,𝑅, 𝑆}.

Given a nondeterministic Turingmachine𝑀 the language it recognizes𝐿(𝑀) is defined

in the same way as in the other types of nondeterministic automata. That is, a string 𝑤

is accepted if there is at least a possible configuration that accepts it. We can extend the

notation for moves between configurations in order to add nondeterminism just by saying

that 𝑥𝑞1𝑎𝑦 ⊢ 𝑥𝑏𝑞2𝑦 if and only if (𝑞2, 𝑏, 𝑅) ∈ 𝛿(𝑞1, 𝑎). Then the formal definition of 𝐿(𝑀) will

be the same as for deterministic Turing machines.

Definition 2.23. Let 𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑞0,□, 𝐹) be a nondeterministic Turing machine. The

language accepted by 𝑀 is

𝐿(𝑀) =
{
𝑤 ∈ Σ+ ∶ 𝑞0𝑤 ⊢∗ 𝑥1𝑞𝑓𝑥2 for some 𝑞𝑓 ∈ 𝐹 and 𝑥1, 𝑥2 ∈ Γ∗

}
Apart from trying to upgrade Turing machines, we can try to set some limitations. If

in a nondeterministic Turing machine instead of having an infinite tape we add a left and

right end to it we will get what is known as a linear bounded automaton.

Definition 2.24. A linear bounded automaton or lba is a nondeterministic Turing machine

𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝐹) subject to the restriction that Σ must contain two special symbols [

and], such that 𝛿(𝑞𝑖, [) ∈ (𝑄 × Γ × {𝑅}) and 𝛿(𝑞𝑖, [) ∈ (𝑄 × Γ × {𝐿}). That is, the head

of 𝑀 is not allowed to move left from [or right from] and hence the tape is restricted to

the space of the input. Equivalently, we can allow the machine to use a part of the tape

that is linearly dependent on the input length, or similarly, allow the tape to have multiple

tracks. Note that since the tape is restricted by the input, there might be no need for the

□ symbol.

The following theorem states which is the family of languages recognized by lbas. The

proof is not included but each of the implications of the theorem correspond to [7, Theorem

11.8 p.288] and [7, Theorem 11.9 p.288]

Theorem2.25. A language𝐿 is context-sensitive if and only if there exists a linear bounded

automaton 𝑀 such that 𝐿 = 𝐿(𝑀).

32 Kunz Languages

Even though nondeterministic and deterministic Turing machines are equivalent, the

same thing cannot be said when the tape is restricted to the input. To date, still remains an

open problem if the class of languages accepted by deterministic lbas and nondetermin-

istic lbas is the same. Languages accepted by deterministic lbas are called deterministic

context-sensitive and are included in the set of context-sensitive but it is unknown whether

the inclusion is strict.

With this, we end the chapter since everything about these subjects has already been

presented. In the next chapter, we will apply most of the content of this chapter, paying

special attention to linear bounded automata.

Chapter 3

Kunz Languages

The aim of this final chapter is to deal with the main subject of the thesis, Kunz languages.

We will start by defining them and showing their connections with semigroups. Right after

we will start to classify these languages by applying what has been seen in Chapter 2.

When needed, we will introduce lemmas or theorems that will be used right after.

In Section 1.1, it has been shown how given a numerical semigroup 𝑆 we can associate

in a unique way a tuple to it, its Kunz tuple. Now the idea is to see this tuple as a word

where letters are the natural numbers that constitute the tuple.

Definition 3.1. A (possibly empty) word 𝑤 = 𝑤1𝑤2⋯𝑤𝑛 is a Kunz word or simply Kunz, if

∙ 𝑤𝑖 ∈ N for all 𝑖 ∈ {1, 2,… , 𝑛}

∙ 𝑤𝑖 +𝑤𝑗 ≥ 𝑤𝑖+𝑗

∙ 𝑤𝑖 +𝑤𝑗 + 1 ≥ 𝑤𝑖+𝑗−𝑛−1

for all indices 𝑖, 𝑗 for which the inequalities are defined.

So given a semigroup 𝑆, and its Kunz tuple (𝑆) = (𝑘1, 𝑘2,… , 𝑘𝑛) its associated Kunz

word is 𝑤 = 𝑘1𝑘2⋯ 𝑘𝑛 and the same bijection between Kunz words and numerical semi-

groups seen in Theorem 1.12 holds with the same properties as in tuples. Now, we aim

to study the depth of semigroups by looking at words that come from a certain depth.

Definition 3.2. Let 𝑞 ∈ N0 the Kunz language of depth 𝑞 is

𝐾𝑞 = {𝑤 ∈ {0, 1,… , 𝑞}∗|𝑤𝑖 is Kunz and max(𝑤𝑖) = 𝑞}.

That is, the language formed by all Kunz words of depth 𝑞.

33

34 Kunz Languages

Remark 3.3. Although there is not any Kunz word containing zeros, the alphabets over

which Kunz languages are defined starting with zero in order to include 𝐾0 in a general

definition. This is due to the fact that alphabets need to be nonempty and finite. That is, for

𝐾0 which is the language formed by the empty word, we still need to have some symbol in

the alphabet in order for it to be nonempty. And for 𝐾𝑞 with 𝑞 > 0 each language needs at

least 𝑞 symbols in the alphabet, but as alphabets have to be finite we cannot use the same

alphabet to define all of these languages. So we decided to use the alphabets {0,… , 𝑞}

which are generally defined and serve our purposes. Another possible choice would have

been defining 𝐾0 over the alphabet {0}, and 𝐾𝑞 over {1,… , 𝑞} for 𝑞 > 0.

From now on, we can already start to work on our goal, classify Kunz languages in the

Chomsky hierarchy. Step by step we will determine where does each Kunz language fit in

the hierarchy by giving a machine capable to recognize it.

To begin with, we will study 𝐾0, the Kunz language of depth 0. There is only one numerical

semigroup with depth 0, the trivial one N0, and its Kunz word is the empty word 𝜆. So 𝐾0

will be the language consisting of exactly that word. That is, 𝐾0 = {𝜆}. It is easy to verify

that this language is regular, which can be seen presenting a dfa that accepts 𝐾0.

Proposition 3.4. The Kunz language of depth 0 is regular.

Proof. The following transition graph represents a dfa recognizing 𝐾0.

𝑞0 𝑞1
0

0

Figure 3.1: dfa that recognizes 𝐾0.

Our next step is that of studying 𝐾1, in this case, to think about the words contained

in 𝐾1 is easier to rely on the conditions that define a kunz language than to think about

semigroups. We are looking at words formed by ones that are not empty. In other words,

we have that 𝐾1 = {1𝑖|𝑖 ∈ N}. Once again, with a similar dfa, we can prove that 𝐾1 is

regular.

Proposition 3.5. The Kunz language of depth 1 is regular.

Proof. The following transition graph represents a dfa recognizing 𝐾1.

3. Kunz Languages 35

𝑞0 𝑞1

𝑞2

1

0
0

0,1

1

Figure 3.2: dfa that recognizes 𝐾1.

The case of𝐾2 is pretty similar to that of𝐾1, we have that any nonempty word consisting

of ones and twos that contains at least a two will belong to𝐾2, so𝐾2 = {𝑤 ∈ {1, 2}∗|2 ∈ 𝑤},

and using a very similar automaton one can prove that this language is also regular.

Proposition 3.6. The Kunz language of depth 2 is regular.

Proof. The following transition graph represents a dfa recognizing 𝐾2.

𝑞0 𝑞1

𝑞2

2

0
0

0,1,2

1,21

Figure 3.3: dfa that recognizes 𝐾2.

The case of 𝐾3 is very different from the ones we have studied until now. Up to this

moment, we have proved that languages were regular by giving a dfa that could recognize

them. The language 𝐾3 is more complex than the previous ones, and next, we will give

36 Kunz Languages

arguments to show that it cannot be of the same type as the previous ones. In fact, at the

end of the chapter, we will see that 𝐾3 is actually a context-sensitive language, but first,

we will show that it is not any of the previous types in the hierarchy. As we have seen in

the previous chapter, every family of languages in the Chomsky hierarchy is included in

the next one, so proving that 𝐾3 is not context-free would have been enough. However,

every step made during the research has been included in order to show the increase in

complexity of the arguments needed in the proofs. Let us start by showing that 𝐾3 is not

regular.

Lemma 3.7. Let 𝑛, 𝑚 and 𝑞 be positive integers, with 𝑞 ≥ 3. Then

(i) the word 𝑤 = 1𝑛2𝑛3𝑛…(𝑞 − 2)𝑛(𝑞 − 1)𝑛𝑞 is Kunz;

(ii) the word 𝑤 = 1𝑛+𝑚2𝑛3𝑛…(𝑞 − 2)𝑛(𝑞 − 1)𝑛𝑞 is not Kunz.

Proof. We now prove part (i).

In order for 𝑤 to be Kunz we have to check that it satisfies the following two conditions.

∙ 𝑤𝑖 +𝑤𝑗 ≥ 𝑤𝑖+𝑗

∙ 𝑤𝑖 +𝑤𝑗 + 1 ≥ 𝑤𝑖+𝑗−𝓁−1

for all indices 𝑖, 𝑗 for which the inequalities are defined, being 𝓁 = |𝑤|.
For 𝑥 ∈ R, let ⌈𝑥⌉ = min{𝑟 ∈ Z ∣ 𝑥 ≤ 𝑟}. It is clear that ⌈𝑥⌉+ ⌈𝑦⌉ ≥ ⌈𝑥+ 𝑦⌉.
Note that 𝓁 = (𝑞 − 1)𝑛+ 1. Observe also that 𝑤𝜅 =

⌈
𝜅
𝑛

⌉
for all indices 𝜅. It follows that if 𝑖

and 𝑗 are indices such that 1 ≤ 𝑖+ 𝑗 ≤ (𝑞 − 1)𝑛+ 1, then

𝑤𝑖 +𝑤𝑗 =
⌈
𝑖
𝑛

⌉
+
⌈
𝑗
𝑛

⌉
≥
⌈
𝑖+ 𝑗
𝑛

⌉
= 𝑤𝑖+𝑗 ,

thus 𝑤 satisfies the first Kunz condition.

If 𝑖 and 𝑗 are such that 𝑖+ 𝑗 > (𝑞 − 1)𝑛+ 1, then⌈
𝑖
𝑛

⌉
+
⌈
𝑗
𝑛

⌉
≥
⌈
𝑖+ 𝑗
𝑛

⌉
≥
⌈
(𝑞 − 1)𝑛+ 1

𝑛

⌉
= 𝑞 − 1 +

⌈
1
𝑛

⌉
= 𝑞.

It follows that 𝑤 also satisfies the second Kunz condition.

Next we prove part (ii). If we take 𝑖 = 𝑛 + 1 and 𝑗 = 𝑛 +𝑚, we have that 𝑤𝑖 +𝑤𝑗 = 2, but

𝑤𝑖+𝑗 = 𝑤2𝑛+𝑚+1 = 3, so 𝑤 does not meet the first condition to be a Kunz word.

Proposition 3.8. The Kunz language of depth 3 is not regular.

3. Kunz Languages 37

Proof. Let us suppose, for the sake of contradiction, that 𝐾3 is a regular language. Then,

there has to be a dfa 𝑀 that recognizes it. Let 𝑛 be the number of states of such dfa.

By Lemma 3.7 the word𝑤 = 1𝑛2𝑛3 is a Kunz word of depth 3, so it has to be accepted by𝑀 ,

but since 𝑀 has only 𝑛 states while reading the first 𝑛 ones of 𝑤 a 𝑀 has to come at least

twice to the same state 𝑞1 due to the pigeonhole principle. In other words, while reading

the ones in 𝑤, a cycle 𝑞1 → 𝑞2 → ⋯ → 𝑞𝑖 → 𝑞1 of length 𝑖 is walked. As a consequence,

any word adding any multiple of 𝑖 ones will be accepted as well. Then for 𝑖 > 0 the word

1𝑛+𝑖2𝑛3 is accepted by 𝑀 which is a contradiction since 1𝑛+𝑖2𝑛3 is not a Kunz word, again

by Lemma 3.7.

This same argument can be adapted to prove that𝐾3 cannot be recognized by a deter-

ministic pushdown automaton and as a consequence𝐾3 is not a deterministic context-free

language.

Proposition 3.9. The language 𝐾3 is not a deterministic context-free language.

Proof. The idea behind this proof is exactly the same as in Proposition 3.8. By contradic-

tion we will suppose that 𝐾3 is indeed recognized by a deterministic pushdown automaton

𝑀 . Then choosing a word that should be recognized and using the pigeonhole principle

we will see that some word that is not in 𝐾3 is recognized as well.

Let𝑀 be a deterministic pushdown automata that recognizes 𝐾3, the word 𝑤 = 1𝑠2𝑠3 with

𝑠 ∈ N is in 𝐾3. Since the number of states and symbols in the stack is finite, for a suffi-

ciently large 𝑠, due to the pigeonhole principle, while reading the ones in 𝑤, the automaton

𝑀 will go twice through the same state 𝑞, like this 𝑞 → 𝑞1 → ⋯ → 𝑞𝑛 → 𝑞.

Moreover, if 𝑠 is sufficiently large, 𝑀 will have both times in 𝑞 the same 𝑛 symbols on top

of the stack hence creating a cycle. So any multiple of 𝑛 ones can be added to 𝑤 so that

it will be still recognized by 𝑀 which leads to the contradiction.

It is worth noting that with the same base as in the previous proofs, one can get to

the Pumping lemma, a very well-known lemma that is useful to show that a language is

not regular and with which Proposition 3.8 can easily be proven. Many examples of the

application of this lemma can be found in [7].

Lemma 3.10 (Pumping lemma). Let 𝐿 be an infinite regular language. Then there exists

𝑚 ∈ N such that for any 𝑤 ∈ 𝐿 with |𝑤| ≥ 𝑚 can be decomposed as 𝑤 = 𝑥𝑦𝑧 with |𝑥𝑦| ≤ 𝑚

and |𝑦| ≥ 1 such that 𝑥𝑦𝑖𝑧 ∈ 𝐿 for every 𝑖 ∈ N0.

38 Kunz Languages

The lemma has many versions and generalizations, even one for context-free lan-

guages.

Lemma 3.11 (Pumping lemma for context-free languages). Let 𝐿 be an infinite context-

free language. Then there exists 𝑚 ∈ N such that for any 𝑤 ∈ 𝐿 with |𝑤| ≥ 𝑚 can be

decomposed as 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with |𝑣𝑥𝑦| ≤ 𝑚 and |𝑣𝑦| ≥ 1 such that 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐿 for every

𝑖 ∈ N0.

With this version of the lemma, though, we were not able to show that 𝐾3 does not be-

long to the family of context-free languages. There is a generalized version of the pumping

lemma for context-free languages known as Ogden’s lemma, further generalized by Bader

and Moura (see Theorem 3.14).

Lemma 3.12 (Ogden). Let𝐿 be an infinite context-free language. Then there exists𝑚 ∈ N

such that for any 𝑤 ∈ 𝐿 with |𝑤| ≥ 𝑚, we can select 𝑚 distinguished positions so that 𝑤

can be decomposed as 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with:

1. 𝑣𝑥𝑦 has at most 𝑚 distinguished positions;

2. 𝑣𝑦 has at least one distinguished position;

3. 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐿 for every 𝑖 ∈ N0.

Unfortunately, as in the previous case, with Ogden’s lemma we were not capable to

prove that 𝐾3 is not context-free. For this reason we tried without success using the pre-

viously mentioned generalization made by Bader and Moura at the end of the seventies,

but we obtained results for 𝑞 ≥ 5.

Remark 3.13. Given a language𝐿 and a word𝑤 ∈ 𝐿wemay label some positions (letters)

in 𝑤 as distinguished and some others as excluded. A particular position can be both

distinguished and excluded or maybe neither. When labeling positions of 𝑤 we will denote

𝑑(𝑢) (resp. 𝑒(𝑢)) as the number of distinguished (resp. 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑) positions of a substring 𝑢

of 𝑤.

Theorem 3.14. [1] For any context-free language 𝐿, exists 𝑝 ∈ N such that for every

𝑤 ∈ 𝐿, if 𝑑(𝑤) positions are labeled as distinguished and 𝑒(𝑤) are labeled as excluded

with 𝑑(𝑤) > 𝑝𝑒(𝑤)+1, then there exist 𝑢, 𝑣, 𝑥, 𝑦, 𝑧 such that 𝑤 = 𝑢𝑣𝑥𝑦𝑧 and:

1. 𝑑(𝑣𝑦) ≥ 1 and 𝑒(𝑣𝑦) = 0;

3. Kunz Languages 39

2. 𝑑(𝑣𝑥𝑦) ≤ 𝑝𝑒(𝑣𝑥𝑦)+1;

3. 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐿 for every 𝑖 ≥ 0.

Using this theorem we can now prove that for 𝑞 ≥ 5 the language𝐾𝑞 is not context-free.

Proposition 3.15. For 𝑞 ≥ 5 the Kunz language of depth 𝑞 is not context-free.

Proof. We will argue by contradiction. Suppose that 𝐾𝑞, the Kunz language of depth 𝑞, is

context-free. Then by Therorem 3.14, there exists a 𝑝 ∈ N satisfying the conditions of the

theorem. Let 𝑛 = 𝑝𝑞 + 1. By Lemma 3.7, the word 𝑤 = 1𝑛2𝑛3𝑛…(𝑞 − 2)𝑛(𝑞 − 1)𝑛𝑞 belongs

to 𝐾𝑞.

Now for every 2 ≤ 𝑚 ≤ 𝑞 we label the first appearance of 𝑚 in 𝑤 as excluded and the posi-

tions with the 1s as distinguished. Next we can see 𝑤 represented with the distinguished

positions in green and the excluded ones in red.

𝑤 = 11⋯ 1
⏟⏟⏟

𝑛

2 22⋯ 2
⏟⏟⏟

𝑛−1

3 33⋯ 3
⏟⏟⏟

𝑛−1

44⋯ (𝑞 − 2)(𝑞 − 1) (𝑞 − 1)(𝑞 − 1)⋯ (𝑞 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛−1

𝑞

We have 𝑑(𝑤) = 𝑛 = 𝑝𝑞 + 1, and 𝑒(𝑤) = 𝑞 − 1, hence 𝑑(𝑤) = 𝑝𝑞 + 1 > 𝑝𝑞 = 𝑝𝑒(𝑤)+1. As a

consequence, the three statements of Theorem 3.14 must hold.

So we will have 𝑤 = 𝑢𝑣𝑥𝑦𝑧, where 𝑣𝑥𝑦 contains at least a 1. Since by the first statement

𝑒(𝑣𝑦) = 0 we have that neither 𝑣 nor 𝑦 contain two different letters, and at least one of them

has to be completely made of 1s. So either 𝑣𝑥𝑦 = 1𝑘 for some 𝑘 > 0 or 𝑣 = 1𝑘 and 𝑦 = 𝑚𝑠,

for some 𝑘 > 0, 2 ≤ 𝑚 < 𝑞 and 𝑠 ≥ 0.

In the case 𝑣𝑥𝑦 = 1𝑘, by the third statement of Theorem 3.14 we could pump 𝑣 and 𝑦 and

get 1𝑛+𝑡2𝑛3𝑛…(𝑞 − 2)𝑛(𝑞 − 1)𝑛𝑞 which is not Kunz, by the proof of Lemma 3.7.

In the other case, 𝑣 = 1𝑘 and 𝑦 = 𝑚𝑠, we have two options. The first option is that 𝑦 consists

entirely of 2s. If this is so, we could pump 𝑦 until getting two indices 𝑖, 𝑗 such that𝑤𝑖, 𝑤𝑗 ≤ 2

but 𝑤𝑖+𝑗 ≥ 5.

If 𝑦 is of the form 𝑚𝑠 for some 𝑚 ≥ 3 and 𝑠 ≥ 1, we could pump 𝑣 sufficiently until getting

two indices 𝑖, 𝑗 such that 𝑤𝑖 = 𝑤𝑗 = 1 but 𝑤𝑖+𝑗 ≥ 3.

Remark 3.16. Note that in Proposition 3.15 in order for the argument to work, the condition

𝑞 ≥ 5 is necessary. This is because in the case 𝑣 = 1𝑚 and 𝑦 = 2𝑚 the word 𝑢𝑣𝜅𝑥𝑦𝜅𝑧 would

still be Kunz. That is, pumping a lot of 2s gets to a non Kunz word in the case of 𝐾5

because 2 + 2 < 5 but it would not make any difference in the cases of 𝐾3 and 𝐾4 since

2 + 2 ≥ 3, and the condition 𝑤𝑖 +𝑤𝑗 ≥ 𝑤𝑖+𝑗 would still hold.

40 Kunz Languages

So far, we have seen that 𝐾3 is not regular. In fact, Propositions 3.8 and 3.9 can be

adapted to show the same result for depth 𝑞 > 3 by simply changing the word 1𝑛2𝑛3 by

1𝑛2𝑛3𝑛…(𝑞 − 2)𝑛(𝑞 − 1)𝑛𝑞 and using Lemma 3.7. Moreover, we have seen that 𝐾𝑞 is not

context-free for 𝑞 ≥ 5.

Next, we will see how𝐾3 is context-sensitive by giving an lba capable of accepting it. Since

the machine required for this task is pretty complex we will not give a formal definition of

it, instead, a high-level description of the automaton will be provided. In this high-level

description, we will specify some steps that an lba is capable to do and hence describe its

behaviour but not its states and moves. Then, in a similar way, we will describe two kinds

of lba capable of accepting any Kunz language 𝐾𝑛 for 𝑛 ∈ N and as a consequence prove

that all Kunz languages are context-sensitive. In order to make clear that every single

step can indeed be done by an lba all the details of every subroutine needed in the other

machines have been specified in Appendix A.

Proposition 3.17. The Kunz language of depth 3 is context-sensitive.

Proof. We give a high-level description of an lba with 5 tracks that accepts 𝐾3. The first

track contains the input, and the second and third tracks will be used to store in unary

notation indices of 1s in the word 𝑤. The fourth track is used to eventually compute and

store the result of the sum of the indices of the previous tracks. Finally the last one just

stores in unary notation the length of the word 𝑤. The amount of tape used will be inferior

to 6|𝑤|where |𝑤| is the length of the input word. So at the very beginning, the first track will

be □𝑤1𝑤2⋯𝑤𝑛□⋯□ and the other tracks completely filled with blanks. The first blank

right before 𝑤1 will remain untouched since it marks the left end of the tape. We could

substitute it with the symbol [we gave in the definition of lba. And the same happens with

the rightmost □, it serves as a] we just used blanks to simplify the notation.

Notice that in order for a word 𝑤 = 𝑤1𝑤2⋯𝑤𝑛 ∈ {0, 1, 2, 3}∗ to be in Kunz it is necessary in

sufficient that 𝑤𝑖 +𝑤𝑗 ≥ 𝑤𝑖+𝑗 . To contradict this fact, the only possible way is that either 𝑤

contains a zero, (which is just a technicality), or that 𝑤𝑖 = 𝑤𝑗 = 1 and 𝑤𝑖+𝑗 = 3. Then in

order for 𝑤 to be in 𝐾3 there is the additional condition that 3 ∈ 𝑤.

The algorithm that the machine will execute is the following: first, check that the word does

not contain any zero and that it contains at least a 3. Then from the beginning of the word

going left to right, find the first 1, cross it, write its position (𝑖), check if 𝑤 has a 3 in position

(𝑖+ 𝑖), go back to the 1 we just crossed, and check for every other 1 in position 𝑗 after the 𝑥

3. Kunz Languages 41

if the word contains a 3 in position 𝑖+ 𝑗. Once all other 1s are verified for this first 1, do the

same thing with the others.

The machine is described using steps. These steps are numbered and followed in

order unless a step requires to move to another step that is not the following one. We will

call for some subroutines such as adding numbers, going a specific number of steps back

or forth or comparing natural numbers. After the design of the machine, we will analyze

how these functions can be implemented on an lba.

Steps

0. Check if there are any 0s, if so reject, otherwise go back left at the beginning of the

tape.

1. Check if there is at least a 3 and go back to the beginning of the tape, otherwise

reject. At every step add a 1 on every cell of the fifth track in order to store the length

of the word in it.

2. Go right until the first 1 is found and at every step right, write a 1 in the same cell

but in the second and third tracks. If there are not any 1s, accept the word. If a 1 is

found, change it by an 𝑥 (cross the 1) and still write 1s in the second and third tracks.

At this point, we will have the 1 we are about to check marked with an 𝑥 and its index

𝑖 written in the second and third tracks.

3. On the fourth track compute 𝑖 + 𝑖 and write it down on the fourth track. Then go to

the position with that index (2𝑖) and check if it is a 3, if so, reject the word, otherwise

(or in the case (𝑖+ 𝑖) exceeds the length of the word) go back left to the first 𝑥.

4. Go right until the next 1 is found. While doing it, at each step write on the same cell

but in track 3 a 1. If there is not any other 1, accept the word. In case there is another

1, change it by a 𝑦 and write a 1 on track 3. At this point, we have marked with a 𝑦

the 1 we are about to check along with the 1 we already marked with an 𝑥. Since the

second track remained untouched it still contains 𝑖 the index of 𝑥 while on the third

track, we have 𝑗 the index of 𝑦 in unary notation.

5. On the fourth track compute and store the sum of the two indices (𝑖+ 𝑗).

42 Kunz Languages

6. Go to the position 𝑖 + 𝑗 on the first track and check its value. If it is a 3 reject the

word, otherwise (or in the case (𝑖+ 𝑗) exceeds the length of the tape) go back to the

first 𝑦 found to the left.

7. Look for the next 1, if it is found change it by a 𝑦 and go to step 5. If there is not

any other 1 on the tape change all 𝑦 on the tape back to 1, position the head of the

tape on the rightmost 𝑥 and go to step 3. While going left to find the rightmost 𝑥 it is

important to clear all 1s up to that point in order to have the index of that 𝑥 on both

tracks.

q0 q1 q2

q3 q4

q5

q6

q7q8

qa

qr

1,R, (-,1,1))

1,(x,1,1), R

□

i
+
j
>

ℓ

i+
j ≤

ℓ

3

1/2, L

n,L

x,R

y,
R

y,R

□

1,R

□,L

1,R

x,R

x,R

Addition

Comparison

Go to cell n

Figure 3.4: lba that accepts 𝐾3.

In Figure 3.4, the black square represents the subroutine of adding two numbers in

unary notation. This corresponds to the input in the second and third tracks. So we shall

imagine that when the machine enters state 𝑞1 it computes the addition and returns the

output in track four halting in the state 𝑞2. At this point we call a second subroutine, the

comparison of numbers. This subroutine is marked with the blue square and contains three

states: 𝑞2, 𝑞3 and 𝑞4. After computing the addition of indices this comparing subroutine

3. Kunz Languages 43

checks whether the result is greater than 𝑙 (the length of the word 𝑤) and halts in either 𝑞3
or 𝑞4. Finally, in red, we represent the subroutine of going to a specific position in the word

indexed by a natural number in unary notation. This corresponds to the addition of two

indices 𝑖+ 𝑗 in which there are 1s in the case that the sum does not exceed 𝑙.

Remark 3.18. In Figure 3.4, (−, 1, 1) means leave the first track untouched and write a 1

in the second and third tracks, and similarly, (𝑥, 1, 1) stands for the same but writing an 𝑥

on the first track. Then, a bar over a symbol such as 𝑥 means anything but that symbol, in

this particular case anything except for an 𝑥. Then, in the case of state 𝑞3, while moving

left, it is not written on the graph, but the second and third tracks should be cleared as it

is specified in step 7.

It is clear that if any word contains a 0 or does not contain any 3 it will be rejected. Let

us see a couple of examples starting from step 2 that will make the functioning of the lba

clearer.

Example 3.1. 𝑤 = 1211213

As we have already completed steps 0 and step 1 we start on the left of the tape with

everything blank except for the input and the last track in which we store the length of the

word in unary notation. The position at which the machine has its head is represented by

a symbol in bold in the first track.

■ 1 2 1 1 2 1 3 □ ← track 1: input word 𝑤

□ □ □ □ □ □ □ □ □ ← track 2: value index 𝑖

□ □ □ □ □ □ □ □ □ ← track 3: value index 𝑗

□ □ □ □ □ □ □ □ □ ← track 4: computations

□ 1 1 1 1 1 1 1 □ ← track 5: stores the length of the word |𝑤|
Next, in step 2 we find the first 1 and cross it and while looking for it, the second and

third tracks will get filled with its index in unary notation.

□ x 2 1 1 2 1 3 □

□ 1 □ □ □ □ □ □ □

□ 1 □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □

□ 1 1 1 1 1 1 1 □

44 Kunz Languages

The following step, step 3 consists of three tasks. The first one is to compute the sum

of the values in the second and third tracks, that is, to obtain 2𝑖 being 𝑖 the index of the

first 1 in the word.

□ x 2 1 1 2 1 3 □

□ 1 □ □ □ □ □ □ □

□ 1 □ □ □ □ □ □ □

1 1 □ □ □ □ □ □ □

□ 1 1 1 1 1 1 1 □

Still in step 3, after having computed 2𝑖 in the fourth track it is time for theb second

task and go to the letter indexed by the value 2𝑖 and check whether or not it is a 3.

□ x 2 1 1 2 1 3 □

□ 1 □ □ □ □ □ □ □

□ 1 □ □ □ □ □ □ □

□ 1 1 □ □ □ □ □ □

□ 1 1 1 1 1 1 1 □

Finally, since in position 2𝑖, in this case 2, there is not a 3, the word is not rejected and

we will have to go back to the first 𝑥 on the left. Having thus completed the last task in

step 3.

□ x 2 1 1 2 1 3 □

□ 1 □ □ □ □ □ □ □

□ 1 □ □ □ □ □ □ □

□ 1 1 □ □ □ □ □ □

□ 1 1 1 1 1 1 1 □

After having found the 𝑥, now we execute step 4 and look for the next 1 in the word.

While doing it, we record its index by adding 1s to the third track.

3. Kunz Languages 45

□ x 2 y 1 2 1 3 □

□ 1 □ □ □ □ □ □ □

□ 1 1 1 □ □ □ □ □

□ 1 1 □ □ □ □ □ □

□ 1 1 1 1 1 1 1 □

Next, in step 5 we will just compute the sum of the indices 𝑖 and 𝑗 stored in tracks 2

and 3. This process takes place in the fourth track.

□ x 2 y 1 2 1 3 □

□ 1 □ □ □ □ □ □ □

□ 1 1 1 □ □ □ □ □

□ 1 1 1 1 □ □ □ □

□ 1 1 1 1 1 1 1 □

In the following step, step 6 we will do something similar to what has been done in

step 3. That is, this step consists of several tasks which are going to index 𝑖+ 𝑗 and check

weather or not it is a three. In case it was a three we would reject the word, otherwise we

go back to the first 𝑦 on the left (instead of 𝑥 as in step 3). The next state shows the tape

after going to index 𝑖+ 𝑗.

□ x 2 y 1 2 1 3 □

□ 1 □ □ □ □ □ □ □

□ 1 1 1 □ □ □ □ □

□ 1 1 1 1 1 □ □ □

□ 1 1 1 1 1 1 1 □

Since position 𝑖+ 𝑗, that is, position 4 happens to be a 1 we do not reject the word and

go back to the first 𝑦 we find on the left.

□ x 2 y 1 2 1 3 □

□ 1 □ □ □ □ □ □ □

□ 1 1 1 □ □ □ □ □

□ 1 1 1 1 □ □ □ □

□ 1 1 1 1 1 1 1 □

46 Kunz Languages

After having found the 𝑦, it is time now to apply step 7 and look for the next 1 just like

we did in step 4.

□ x 2 y y 2 1 3 □

□ 1 □ □ □ □ □ □ □

□ 1 1 1 □ □ □ □ □

□ 1 1 1 1 □ □ □ □

□ 1 1 1 1 1 1 1 □

Once we have found the 1 and crossed it by changing it into a 𝑦 we execute again

step 5. In other words, we compute 𝑖+ 𝑗, the next index to be inspected.

□ x 2 y y 2 1 3 □

□ 1 □ □ □ □ □ □ □

□ 1 1 1 1 □ □ □ □

□ 1 1 1 1 1 □ □ □

□ 1 1 1 1 1 1 1 □

At this point, it is time to perform step 6 and go to position 𝑖+ 𝑗, i.e., position 5.

□ x 2 y y 2 1 3 □

□ 1 □ □ □ □ □ □ □

□ 1 1 1 1 □ □ □ □

□ 1 1 1 1 1 □ □ □

□ 1 1 1 1 1 1 1 □

As in position 5 there is a 2, we do not reject the word and go back to the first 𝑦 on our

left.

□ x 2 y y 2 1 3 □

□ 1 □ □ □ □ □ □ □

□ 1 1 1 1 □ □ □ □

□ 1 1 1 1 1 □ □ □

□ 1 1 1 1 1 1 1 □

3. Kunz Languages 47

Now, in step 7 we look for another 1 on the tape while getting its index on the third

track

□ x 2 y y 2 y 3 □

□ 1 □ □ □ □ □ □ □

□ 1 1 1 1 1 1 □ □

□ 1 1 1 1 1 □ □ □

□ 1 1 1 1 1 1 1 □

In this moment, we execute step 5 to compute 𝑖+ 𝑗

□ x 2 y y 2 y 3 □

□ 1 □ □ □ □ □ □ □

□ 1 1 1 1 1 1 □ □

□ 1 1 1 1 1 1 1 1

□ 1 1 1 1 1 1 1 □

Next, in step 6 we check what happens in position 𝑖+ 𝑗, the seventh position.

□ x 2 y y 2 y 3 □

□ 1 □ □ □ □ □ □ □

□ 1 1 1 1 1 1 □ □

□ 1 1 1 1 1 1 1 1

□ 1 1 1 1 1 1 1 □

At this point, we reject the word because we found a 3 in position 𝑖+ 𝑗. That is, we are

breaking the first Kunz condition (𝑤𝑖 +𝑤𝑗 ≥ 𝑤𝑖+𝑗) for 𝑖 = 1 and 𝑗 = 6. If we had not a 3,

for example, if the word was 𝑤 = 12112123, now it would be time to look for another 1 on

the tape. Since there would not be any, we would change all 𝑦 back to 1s, and begin the

same process from the 𝑥.

We have already seen that 𝐾3 is context-sensitive, now it is time to show that this is

the same case for 𝐾𝑞 with 𝑞 ≥ 4. To do so, we will do the same thing as before, give a

high-level description of an lba, but in this case a general one that works for any 𝑞 ≥ 3.

Since this machine is way more complicated than the previous one, to simplify things we

will split the work into some machines, each one dedicated to one job taking advantage of

the following fact.

48 Kunz Languages

Proposition 3.19. Context-sensitive languages are closed under intersection.

Let us go back now to our problem, given a word 𝑤 ∈ {0, 1, 2… , 𝑞}∗, we have that

𝑤 = 𝑤1⋯𝑤𝑛 is an element of 𝐾𝑞 if for every pair of indices 𝑖, 𝑗 for which it makes sense,

it satisfies the following 4 conditions:

i) 0 ∉ 𝑤 ;

ii) 𝑞 ∈ 𝑤 ;

iii) 𝑤𝑖 +𝑤𝑗 ≥ 𝑤𝑖+𝑗 ;

iv) 𝑤𝑖 +𝑤𝑗 − 1 ≥ 𝑤𝑖+𝑗−𝑛+1 .

Since from Proposition 3.19 we know that the intersection of context-sensitive lan-

guages is context sensitive, if for every condition above we build an lba capable of rec-

ognizing words in {0, 1, 2,… , 𝑞}∗ satisfying that condition, we will have proven that there

exists an lba capable of recognizing 𝐾𝑞 as a total.

It is easy to see that an lba accepting words with the first two conditions exists. In fact, the

language 𝐿 = {𝑤 ∈ {0, 1, 2… , 𝑞}∗|0 ∉ 𝑤, 𝑛 ∈ 𝑤} is regular. Next, we will give a high-level

description of lbas for each of the last two conditions, the Kunz conditions.

Proposition 3.20. For every 𝑞 ≥ 3 the Kunz language of depth 𝑞 is context-sensitive.

Proof. We will describe lbas that are assumed to be able to go to a specific position in

the tape indexed by a number, to add and subtract whole numbers and to compare whole

numbers. They are designed to have ten tracks, the first track is for the input, and the

second track has a copy of the input that will always remain unchanged. The third and

fourth tracks are used to write indices of 𝑖 and 𝑗 in unary notation. This corresponds to the

indices of 𝑤𝑖 and 𝑤𝑗 that are being checked to verify the Kunz condition, the fifth track is

used to compute and store the sum of 𝑖 + 𝑗. Similarly, tracks six and seven are used to

store in unary notation the values of 𝑤𝑖 and 𝑤𝑗 and track number eight is used to compute

and store their sum. Finally, the ninth track is used to store the length 𝑙 of the input 𝑤 and

the tenth is used to compare. This tenth track will be used to compare if 𝑤𝑖 +𝑤𝑗 ≥ 𝑤𝑖+𝑗

and to compare if 𝑖+ 𝑗 ≥ 𝑙, one at a time. Next we can see a table that summarizes each

track of the lba and its function.

3. Kunz Languages 49

Track Function Track Function

1 working copy of 𝑤 6 store the value of 𝑤𝑖

2 copy of 𝑤 that remains untouched 7 store the value of 𝑤𝑗

3 store index 𝑖 8 sum 𝑤𝑖 +𝑤𝑗

4 store index 𝑗 9 store |w|

5 sum 𝑖+ 𝑗 10 compare numbers

Table 3.1: Table showing the function of each track in the design of lbas that recognize𝐾𝑛.

lba first Kunz condition.

The idea for this lba is to start from the left of the word on index 𝑖 = 1, check if𝑤1+𝑤1 ≥ 𝑤2,

then for every 𝑗 > 1 check if the condition𝑤𝑖+𝑤𝑗 ≥ 𝑤𝑖+𝑗 holds and then repeat the process

for every other 𝑖 > 1. If at any point the condition does not hold, the word will be rejected

otherwise, it will be accepted. The letter 𝑤𝑖 that is being checked at each time is crossed

by changing it into an 𝑥, while the other 𝑤𝑗 are crossed by changing them into a 𝑦. This

way we can keep track of which numbers are being checked and it allows us to position

the head of the machine. Once all letters are changed to a 𝑦 it means that the value𝑤𝑖 that

was crossed with an 𝑥 has been verified, then using the fourth track we change every 𝑦

back to its value and cross with an 𝑥 the letter immediately right of the previous 𝑥 and go

on with the same process as before. If we end up with all letters crossed with an 𝑥 the

word is accepted.

1. Go right until the first number 𝑤𝑖 is found, and at every step right, write a 1 in the

same cell but in the third and fourth tracks. Then cross the number by changing it

into an 𝑥 and write its value in tracks six and seven.(𝑡𝑟𝑎𝑐𝑘6 = 𝑡𝑟𝑎𝑐𝑘7 = 𝑤𝑖). If no

number is found and the right end is met, accept the word.

2. Compute and store in track five the sum of the values in the third and fourth tracks.

(𝑡𝑟𝑎𝑐𝑘5 = 𝑡𝑟𝑎𝑐𝑘3 + 𝑡𝑟𝑎𝑐𝑘4). If this number exceeds 𝑛 go to step 5.

3. In track number eight compute and store the sum of the values in the sixth and

seventh tracks. (𝑡𝑟𝑎𝑐𝑘8 = 𝑡𝑟𝑎𝑐𝑘6 + 𝑡𝑟𝑎𝑐𝑘7)

4. Go to the position indexed by the fifth track (𝑡𝑟𝑎𝑐𝑘5) and compare its value 𝛼 with the

value in track number eight (𝑡𝑟𝑎𝑐𝑘8). If (𝑡𝑟𝑎𝑐𝑘8 < 𝛼) reject the word, otherwise move

left to the first 𝑥.

50 Kunz Languages

5. Go right until the first number 𝑤𝑗 is found, at every step right, write a 1 in the same

cell but in the fourth track. Then write its value on the seventh track (𝑡𝑟𝑎𝑐𝑘7 = 𝑤𝑗),

cross 𝑤𝑗 by changing it into a 𝑦. Go to step 2. If no number is found and the right

end is met, change every letter 𝑦 back to its value and go left until the first 𝑥 is found

and then go to step 1.

lba second Kunz condition.

This lba is pretty much the same as the previous one, the main difference is that it checks

the word from right to left instead of from left to right and that in order to check the kunz

conditions it has to subtract 𝑛 and add 1. As it goes from left to right, in order to keep an

eye on 𝑖 and 𝑗 the indices of 𝑤𝑖 and 𝑤𝑗 , what we will do is initialize the third and fourth

tracks with 1s in the same length as the input 𝑤 and when going left we will erase a 1 by

changing it into a □.

0. Go right until the right end is met and find out the length of the word 𝑛.

1. Go left until the first number 𝑤𝑖 is found, at every step except the last one, change

in third and fourth tracks each 1 into a blank (□). Once the number is found, write

its value on the sixth and seventh tracks (𝑡𝑟𝑎𝑐𝑘6 = 𝑡𝑟𝑎𝑐𝑘7 = 𝑤𝑖), then cross it by

changing it into an 𝑥. If no number is found and the left end is met, accept the word.

2. Compute and store in the fifth track the sum of the values in the third and fourth

tracks (𝑡𝑟𝑎𝑐𝑘5 = 𝑡𝑟𝑎𝑐𝑘3 + 𝑡𝑟𝑎𝑐𝑘4 = 𝑖+ 𝑗), then subtract 𝑛 and finally add one. That is,

𝑡𝑟𝑎𝑐𝑘5 = 𝑡𝑟𝑎𝑐𝑘3 + 𝑡𝑟𝑎𝑐𝑘4 − 𝑛 + 1. If this number exceeds 𝑛 or is less than one go to

step 5.

3. Compute the sum of the values in the sixth and seventh tracks, subtract one and

write them in track eight. (𝑡𝑟𝑎𝑐𝑘8 = 𝑡𝑟𝑎𝑐𝑘6 + 𝑡𝑟𝑎𝑐𝑘7 − 1)

4. Go to the position indexed by the fifth track and compare its value 𝛼 with the value

in track eight. If 𝑡𝑟𝑎𝑐𝑘8 < 𝛼 reject the word, otherwise move right to the first 𝑥.

5. Go left until the first number 𝑤𝑗 is found, and at every step except the last one,

change in the fourth track each 1 into a blank (□). Once the number is found, write

its value on the seventh track (𝑡𝑟𝑎𝑐𝑘7 = 𝑤𝑗) and cross it by changing it into a 𝑦. Then

go to step 2. If no number is found and the left end is met, change every letter 𝑦

3. Kunz Languages 51

back to its value, and every cell in tracks three and four back to 1s as in the original

position, after that go right until the first 𝑥 is found and then go to step 1.

The high-level description of lbas capable of recognizing Kunz languages of depth

𝑞 ≥ 3 essentially aims to implement the following algorithm in an automaton giving as

much technicalities and formalism as possible without losing the original idea. In particular,

checking whether 0 or 𝑞 belong to the word corresponds to the first two ifs and could be

easily computed with dfas as we stated before. Then every one of the lbas described

corresponds to the if and else inside the for loop.

Data: 𝑤 = 𝑤1⋯𝑤𝑛 ∈ {0, 1,… , 𝑞}∗
Result: true if 𝑤 is a Kunz word of depth 𝑞 and false otherwise
if 0 ∈ 𝑤 then

return false;
if 𝑞 ∉ 𝑤 then

return false;
𝑝𝑎𝑖𝑟𝑠 = {(𝑖, 𝑗) ∈ {1,… , |𝑤|}2 ∣ 𝑖 ≤ 𝑗}
for (𝑖, 𝑗) ∈ 𝑝𝑎𝑖𝑟𝑠 do

if 𝑖+ 𝑗 ≤ |𝑤| then
if 𝑤𝑖 +𝑤𝑗 < 𝑤𝑖+𝑗 then

return false;

else
if 𝑤𝑖 +𝑤𝑗 + 1 < 𝑤𝑖+𝑗−(|𝑤|+1) then

return false;

return true
Algorithm 1: Algorithm to test whether a word is Kunz.

3.1 Conclusions

Summing up the results in this chapter, we have seen that 𝐾0, 𝐾1 and 𝐾2 are regular

languages while 𝐾𝑞, for 𝑞 ≥ 3, are context-sensitive and not regular and neither context-

free for 𝑞 ≥ 5. That is, we have seen that for depth 𝑞 ≥ 3 the Kunz languages are more

complex than for depth 0, 1 and 2 and hence we have formalized our intuition that higher

values of depth translate to higher levels of difficulty, at least in terms of languages. We

have established the distinction between simple and complex in 𝑞 = 3, and this result

goes in the same direction as our intuition built upon Wilf’s conjecture or the problem of

counting numerical semigroups as we mentioned in the introduction. Digging deeper into

Wilf’s conjecture we have that for depths 0, 1 and 2 it is easy to verify, for depth 3 it was

52 Kunz Languages

harder to check and for depth, 4 it remains unknown whether the conjecture holds or not.

Our results do not distinguish between 𝑞 = 3 and 𝑞 = 4, but in the case of this conjecture,

there seems to be a difference. Future work in this subject could be checking if 𝐾3 and

𝐾4 are context-free or to find another hierarchy inside context-sensitive languages that

separated Kunz languages.

Appendix A

Details for lbas

In the high-level descriptions of lbas in Chapter 3, we assumed that they were capable

of adding and comparing two natural numbers within a finite set and going an arbitrary

number of steps left or right of the tape. Let us see now, that this can indeed be computed

by this kind of machine.

Let us first describe an lba capable of comparing to numbers 𝑛, 𝑚,∈ N and get to an

accepting final state if 𝑛 ≥ 𝑚 or to a rejecting final state if 𝑛 < 𝑚. As input, it will have 𝑛 and

𝑚 written in unary notation separated by a 0, as well of course it will have the end markers

[,]. That is given 𝑛, 𝑚 ∈ N the input will be

[11⋯ 1
⏟⏟⏟

𝑛

0 11⋯ 1
⏟⏟⏟

𝑚

]

, and so the language to be accepted is 𝐿 = {1𝑛01𝑚|𝑛 ≥ 𝑚}, with the machine always

halting.

The formal description of the machine is 𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑞0,□) with

∙ 𝑄 = {𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞𝑎, 𝑞𝑟}

∙ Σ = {0, 1, [,]}

∙ Γ = {0, 1, 𝑥, [,]}

∙ 𝐹 = { 𝑞𝑎, 𝑞𝑟}

and the partial function 𝛿 is defined as follows:

∙ 𝛿(𝑞0, [) = (𝑞0, [, 𝑅), 𝛿(𝑞0, 1) = (𝑞0, 𝑥, 𝑅), 𝛿(𝑞0, 𝑥) = (𝑞0, 𝑥, 𝑅).𝛿(𝑞0, 0) = (𝑞4, 0, 𝑅)

∙ 𝛿(𝑞1, 1) = (𝑞1, 1, 𝑅), 𝛿(𝑞1, 0) = (𝑞2, 0, 𝑅)

∙ 𝛿(𝑞2, 1) = (𝑞3, 𝐿, 𝑥), 𝛿(𝑞2, 𝑥) = (𝑞2, 𝑥, 𝑅), 𝛿(𝑞2,]) = (𝑞𝑎,], 𝐿)

53

54 Kunz Languages

∙ 𝛿(𝑞3, 1) = (𝑞3, 1, 𝐿), 𝛿(𝑞3, 𝑥) = (𝑞3, 𝑥, 𝐿), 𝛿(𝑞3, 0) = (𝑞3, 0, 𝐿), 𝛿(𝑞3, [) = (𝑞0, [, 𝑅)

∙ 𝛿(𝑞4, 𝑥) = (𝑞4, 𝑥, 𝑅), 𝛿(𝑞4,]) = (𝑞𝑎,], 𝐿), 𝛿(𝑞4, 1) = (𝑞𝑟, 1, 𝑅)

Next, in Figure A.1 we can see a transition graph representing the lba 𝑀 . The idea

behind its functioning is to cross at each time a 1 from both sides of the 0 and finally detect

which side ends up with no number 1 left first.

𝑞0𝑞1

𝑞2 𝑞3

𝑞4

𝑞𝑎

𝑞𝑟

1,R,x

0.R

],R

x,R

0,R

1,R

x,R
1,L,x

1,L,x

L
[,R

],L

1

x,R

Figure A.1: lba that compares two natural numbers 𝑛 and 𝑚.

We have already shown that an lba can compare natural numbers. Now, we will show

that it is able to add numbers as well. In [7, p. 235] there is an example (Example 9.9)

that shows with all detail a Turing machine designed for this task. The way it works is

very similar to the lba built to compare numbers. In order to add two natural numbers

𝑛, 𝑚 ∈ N the automaton writes both of them in unary notation separated by a zero, then

the computation of the sum simply consists of moving the zero until the end of the word.

That is, the computation of 𝑛+𝑚 would be:

11⋯ 1
⏟⏟⏟

𝑛

0 11⋯ 1
⏟⏟⏟

𝑚

→ 11⋯ 1
⏟⏟⏟

𝑛

11⋯ 1
⏟⏟⏟

𝑚

0 = 11⋯ 1
⏟⏟⏟

𝑛+𝑚

0

Note that this Turing machine designed to add natural numbers is an lba, since the

amount of tape needed is the size of the input. If we required a machine to be able to

do further computations with the results, such as adding a number to itself repeatedly any

A. Details for lbas 55

amount of times then the automaton should have an infinite tape.

For both operations, we have used unary notation for natural numbers, but when dealing

with Kunz languages the notation used is different. In the definition of Kunz languages,

each number 𝑛 ∈ N0 is represented by its own symbol. It is base 𝑛 + 1 but without ever

exceeding 𝑛. Next, we will show that an lba can easily translate back and forth from base

𝑛+ 1 to unary notation by giving the transition graph of two Turing machines designed for

this task.

To convert a number 𝑚 ≥ 𝑛 in base 𝑛 + 1 to unary, we can use the following machine

which gets as input □𝑚𝐴□⋯□
⏟⏟⏟

𝑛

and outputs □0𝐴 11⋯ 1
⏟⏟⏟

𝑚

□⋯
⏟⏟⏟

𝑛−𝑚

.

𝑞0 𝑞1

𝑞𝑎 𝑞2

n,n-1,R

0,R

□,R

□,1,L

□,L

□,R

Figure A.2: Turing Machine that converts a natural number from base 𝑛 + 1 to unary
notation.

Note that the previous Turing machine when fixed the number 𝑛 is an lba, since the

amount of tape is limited to 𝑛+ 2 cells no matter what.

Now, for the converse, translating unary to base 𝑛 + 1 can be done with the following

machine. which gets as input 𝑚 ≥ 𝑛 written as [11⋯ 1
⏟⏟⏟

𝑚

𝐴0] and outputs [00⋯ 0
⏟⏟⏟

𝑚

𝐴𝑚]

.

56 Kunz Languages

𝑞0 𝑞1

𝑞2𝑞3

𝑞𝑎

A,R

A,R

x,R

]

1,x,L

A,L

A,L

9,0,L

n,n+1,R

Figure A.3: lba that converts a natural number from unary to base 𝑛+ 1 notation.

Once more this Turing machine is clearly an lba, so with this, we have already made

it clear that we can ask our previous machines to add and compare numbers without any

problem.

Finally, to position the head of the machine in some index 𝑖 ∈ {1,⋯ , |𝑤|} in the tape is

quite easy. Note that 𝑖 will be written in some track in unary notation ,so that track along

with the track with the input word will look like the orders are as simple as going left until

□ 𝑤1 𝑤2 ⋯ 𝑤𝑖 𝑤𝑖+1 ⋯ 𝑤|𝑤| □ ⋯ □
□ 1 1 ⋯ 1 □ □ ⋯ □ ⋯ □

the beginning and then go forward until the last one. This automaton can be represented

as:

𝑞0 𝑞1 𝑞𝑎

□,L

□,R

□,R

□,L

Figure A.4: Turing Machine that goes to index 𝑖 ∈ {1,… , |𝑤|}.
Subtraction, actually proper subtraction can be done using a TM as the one specified

in Example 8.4 [5, p. 332].

Bibliography

[1] Christopher Bader and Arnaldo Moura. “A Generalization of Ogden’s Lemma”. In:

J. ACM 29.2 (Apr. 1982), pp. 404–407. url: https://doi.org/10.1145/322307.

322315.

[2] Manuel Delgado. “Conjecture of Wilf: A Survey”. In: Numerical Semigroups. Ed. by

V. Barucci et al. Vol. 40. Springer INdAM Ser. Springer, Cham, 2020, pp. 39–62.

[3] Manuel Delgado and Jaume Usó i Cubertorer. Kunz languages for numerical semi-

groups are context sensitive. 2023. arXiv: 2306.03308 [cs.FL].

[4] Shalom Eliahou and Jean Fromentin. “Gapsets and numerical semigroups”. In: Jour-

nal of Combinatorial Theory, Series A 169 (Jan. 2020), p. 105129. url: https://doi.

org/10.1016%5C%2Fj.jcta.2019.105129.

[5] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages, and Computation (3rd Edition). USA: Addison-Wesley Longman

Publishing Co., Inc., 2006.

[6] Nathan Kaplan. “Counting numerical semigroups”. In: Amer. Math. Monthly 124.9

(2017), pp. 862–875. url: https://doi.org/10.4169/amer.math.monthly.124.9.

862.

[7] Peter Linz. An Introduction to Formal Languages and Automata, Fifth Edition. 5th.

USA: Jones and Bartlett Publishers, Inc., 2011.

[8] Alberto Pettorossi. Automata Theory and Formal Languages: Fundamental Notions,

Theorems, and Techniques. Undergraduate Topics in Computer Science. Springer

International Publishing, 2022. url: https://doi.org/10.1007/978-3-031-11965-

1.

57

https://doi.org/10.1145/322307.322315
https://doi.org/10.1145/322307.322315
https://arxiv.org/abs/2306.03308
https://doi.org/10.1016%5C%2Fj.jcta.2019.105129
https://doi.org/10.1016%5C%2Fj.jcta.2019.105129
https://doi.org/10.4169/amer.math.monthly.124.9.862
https://doi.org/10.4169/amer.math.monthly.124.9.862
https://doi.org/10.1007/978-3-031-11965-1
https://doi.org/10.1007/978-3-031-11965-1

58 Kunz Languages

[9] J. L. Ramıŕez Alfonsıń. The Diophantine Frobenius problem. Vol. 30. Oxford Lecture

Series in Mathematics and its Applications. Oxford University Press, Oxford, 2005,

pp. xvi+243. url: https://doi.org/10.1093/acprof:oso/9780198568209.001.

0001.

[10] J. C. Rosales and P. A. Garcıá-Sánchez. Numerical semigroups. Vol. 20. Develop-

ments in Mathematics. Springer, New York, 2009, pp. x+181. url: https://doi.

org/10.1007/978-1-4419-0160-6.

[11] J. C. Rosales et al. “Systems of inequalities and numerical semigroups”. In: J. Lon-

don Math. Soc. (2) 65.3 (2002), pp. 611–623. url: https://doi.org/10.1112/

S0024610701003052.

[12] Michael Sipser. Introduction to the Theory of Computation. Third. Boston, MA: Course

Technology, 2013.

[13] Alex Zhai. Fibonacci-like growth of numerical semigroups of a given genus. 2011.

url: https://arxiv.org/abs/1111.3142.

[14] Yufei Zhao. “Constructing numerical semigroups of a given genus”. In: Semigroup

Forum 80.2 (Oct. 2009), pp. 242–254. url: http://dx.doi.org/10.1007/s00233-

009-9190-9.

[15] Daniel G. Zhu. Sub-Fibonacci behavior in numerical semigroup enumeration. 2022.

url: https://arxiv.org/abs/2202.05755.

https://doi.org/10.1093/acprof:oso/9780198568209.001.0001
https://doi.org/10.1093/acprof:oso/9780198568209.001.0001
https://doi.org/10.1007/978-1-4419-0160-6
https://doi.org/10.1007/978-1-4419-0160-6
https://doi.org/10.1112/S0024610701003052
https://doi.org/10.1112/S0024610701003052
https://arxiv.org/abs/1111.3142
http://dx.doi.org/10.1007/s00233-009-9190-9
http://dx.doi.org/10.1007/s00233-009-9190-9
https://arxiv.org/abs/2202.05755

	Acknowledgements
	Resumo
	Abstract
	Contents
	List of Figures
	Introduction
	1 Numerical semigroups
	1.1 Kunz Tuples

	2 Formal Languages and Automata
	2.1 Formal languages
	2.1.1 Grammars and Automata
	2.1.1.1 Grammars
	2.1.1.2 Automata

	3 Kunz Languages
	3.1 Conclusions

	A Details for lbas

