174 research outputs found

    Enhanced Security and Privacy for Blockchain-enabled Electronic Medical Records in eHealth.

    Get PDF
    PhD Theses.Electronic medical records (EMRs) as part of an eHealth system are vital assets centrally managed by medical institutions and used to maintain up to date patients' medical histories. Such centralised management of EMRs may result in an increased risk of EMR damage or loss to medical institutions. In addition, it is di cult to monitor and control who can access their EMRs and for what reasons as eHealth may increasingly involve the use of IoT devices such as eHealth wearables and distributed networks. Blockchain is proposed as a promising method applied to support distributed data storage to maintain and share EMRs using its inherent immutability (forgery resistance). However, the original blockchain design cannot restrict unauthenticated or unauthorised data access for use as part of EMR management. Therefore, two novel authorisation schemes to enhance the security and privacy of blockchain use for EMRs are proposed in this work. The rst one can omit the agent layer (gateway) to authorise users' access to blockchain-enabled EMRs with block level gran- ularity, whilst maintaining compatibility with the underlying Blockchain data structure. Then, an improved scheme is proposed to implement multiple levels of granularity autho- risation, whilst supporting exible data queries. This scheme dispenses with the need to use a public key infrastructure (PKI) in authorisation and hence reduces the resource cost of computation and communication. Furthermore, to realise privacy preservation during authorisation, a challenge-response anonymous authorisation is proposed that avoids the disclosure of users' credentials when authorising data access requests. Compared with the baseline schemes, the proposed authorisation schemes can decrease the time consumption of computation and data transmission and reduce the transmitted data size so that they can be used in low-resource IoT devices applied to blockchain- enabled EMRs as demonstrated in performance experiments. In addition, theoretical i validations of correctness demonstrate that the proposed authorisation schemes work correctly

    A heterogeneous signcryption scheme for smart grid with trusted multi-ciphertext equality test

    Get PDF
    Energy utilization rates have been largely improved thanks to the wide application of smart grids, thereby realizing the reliable, economic and efficient operation of the grids. However, such an application is also accompanied by many security issues. In response to the many problems within existing security schemes, such as not supporting the communication between heterogeneous cryptosystems, low security levels and a low data retrieval efficiency, a heterogeneous signcryption (HSC) scheme that supports a trusted multi-ciphertext equality test (MET) is proposed. The adoption of the HSC helps to identify secure communications from identity-based cryptosystems to certificateless cryptosystem, eliminates the certificate management problems in the traditional public key cryptography scheme, and ensures the confidentiality and authentication of power data. The introduction of the MET technology can avoid the high cost of equality test calculations after grouping ciphertexts in pairs. Using blockchain and smart contract technologies ensure the credibility of test results and eliminates the reliance on trusted cloud servers. Under the random oracle model, on the basis of the bilinear Diffie-Hellman, the computational Diffie-Hellman and the q-strong Diffie-Hellman problems, this paper proves that the scheme proposed herein meets the requirements of indistinguishability and one-way security under adaptive choice ciphertext attacks, and the unforgeability under the adaptive choice message attack. From the findings of the analysis, it has been shown that the proposed scheme satisfies more security attributes and requires lower computational overhead compared to similar schemes

    Affiliated Keyword Search Cognomiate Reviewer and Indite Accredit Envoy Inscription Province for E-Harch Clouds

    Get PDF
    We present a novel cryptographic primitive named as conjunctive keyword search with assigned analyzer and timing empowered intermediary re-encryption work (Re-dtPECK), which is a sort of a period subordinate SE conspire. It could empower patients to appoint incomplete access rights to others to work search works over their records in a constrained day and age. The length of the day and age for the delegatee to search and decode the delegator's scrambled reports can be controlled. Also, the delegatee could be naturally denied of the entrance and inquiry expert after a predetermined time of compelling time. It can likewise bolster the conjunctive keywords hunt and oppose the keyword speculating assaults. By the arrangement, just the assigned analyzer can test the presence of specific keywords. We define a framework demonstrate and a security display for the proposed Re-dtPECK plan to demonstrate that it is an effective plan demonstrated secure in the standard model

    Secure Dynamic Cloud-based Collaboration with Hierarchical Access

    Get PDF
    In recent years, the Cloud has emerged as an attractive way of hosting and delivering services over the Internet. This has resulted in a renewed focus on information security in the case where data is stored in the virtual space of the cloud and is not physically accessible to the customer. Through this thesis the boundaries of securing data in a cloud context, while retaining the benefits of the cloud, are explored. The thesis addresses the increasing security concerns of migrating to the cloud andutilising it for data storage.The research of this thesis is divided into three separate areas: securing data in an untrusted cloud environment, ensuring data access control in the cloud, and securing data outside the cloud in the user's environment. Each area is addressed by separate conceptual designs. Together these comprise a secure dynamic cloud-based collaboration environment with hierarchical access. To further validate the conceptual designs, proof of concept prototypes have been constructed.The conceptual designs have been devised by exploring and extending the boundaries of existing secure data-storage schemes, and then combining these with well-known security principles and cutting-edge research within the field of cryptography. The results of this thesis are feasible conceptual designs for a cloud-based dynamic collaboration environment. The conceptual designs address the challenges of secure cloud-based storage and allow the benefits of cloud-based storage to be utilised. Furthermore, this thesis provides a solid foundation for further work within this field

    An architecture for secure data management in medical research and aided diagnosis

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e as Comunicacións. 5032V01[Resumo] O Regulamento Xeral de Proteccion de Datos (GDPR) implantouse o 25 de maio de 2018 e considerase o desenvolvemento mais importante na regulacion da privacidade de datos dos ultimos 20 anos. As multas fortes definense por violar esas regras e non e algo que os centros sanitarios poidan permitirse ignorar. O obxectivo principal desta tese e estudar e proponer unha capa segura/integracion para os curadores de datos sanitarios, onde: a conectividade entre sistemas illados (localizacions), a unificacion de rexistros nunha vision centrada no paciente e a comparticion de datos coa aprobacion do consentimento sexan as pedras angulares de a arquitectura controlar a sua identidade, os perfis de privacidade e as subvencions de acceso. Ten como obxectivo minimizar o medo a responsabilidade legal ao compartir os rexistros medicos mediante o uso da anonimizacion e facendo que os pacientes sexan responsables de protexer os seus propios rexistros medicos, pero preservando a calidade do tratamento do paciente. A nosa hipotese principal e: os conceptos Distributed Ledger e Self-Sovereign Identity son unha simbiose natural para resolver os retos do GDPR no contexto da saude? Requirense solucions para que os medicos e investigadores poidan manter os seus fluxos de traballo de colaboracion sen comprometer as regulacions. A arquitectura proposta logra eses obxectivos nun ambiente descentralizado adoptando perfis de privacidade de datos illados.[Resumen] El Reglamento General de Proteccion de Datos (GDPR) se implemento el 25 de mayo de 2018 y se considera el desarrollo mas importante en la regulacion de privacidad de datos en los ultimos 20 anos. Las fuertes multas estan definidas por violar esas reglas y no es algo que los centros de salud puedan darse el lujo de ignorar. El objetivo principal de esta tesis es estudiar y proponer una capa segura/de integración para curadores de datos de atencion medica, donde: la conectividad entre sistemas aislados (ubicaciones), la unificacion de registros en una vista centrada en el paciente y el intercambio de datos con la aprobacion del consentimiento son los pilares de la arquitectura propuesta. Esta propuesta otorga al titular de los datos un rol central, que le permite controlar su identidad, perfiles de privacidad y permisos de acceso. Su objetivo es minimizar el temor a la responsabilidad legal al compartir registros medicos utilizando el anonimato y haciendo que los pacientes sean responsables de proteger sus propios registros medicos, preservando al mismo tiempo la calidad del tratamiento del paciente. Nuestra hipotesis principal es: .son los conceptos de libro mayor distribuido e identidad autosuficiente una simbiosis natural para resolver los desafios del RGPD en el contexto de la atencion medica? Se requieren soluciones para que los medicos y los investigadores puedan mantener sus flujos de trabajo de colaboracion sin comprometer las regulaciones. La arquitectura propuesta logra esos objetivos en un entorno descentralizado mediante la adopcion de perfiles de privacidad de datos aislados.[Abstract] The General Data Protection Regulation (GDPR) was implemented on 25 May 2018 and is considered the most important development in data privacy regulation in the last 20 years. Heavy fines are defined for violating those rules and is not something that healthcare centers can afford to ignore. The main goal of this thesis is to study and propose a secure/integration layer for healthcare data curators, where: connectivity between isolated systems (locations), unification of records in a patientcentric view and data sharing with consent approval are the cornerstones of the proposed architecture. This proposal empowers the data subject with a central role, which allows to control their identity, privacy profiles and access grants. It aims to minimize the fear of legal liability when sharing medical records by using anonymisation and making patients responsible for securing their own medical records, yet preserving the patient’s quality of treatment. Our main hypothesis is: are the Distributed Ledger and Self-Sovereign Identity concepts a natural symbiosis to solve the GDPR challenges in the context of healthcare? Solutions are required so that clinicians and researchers can maintain their collaboration workflows without compromising regulations. The proposed architecture accomplishes those objectives in a decentralized environment by adopting isolated data privacy profiles
    • …
    corecore