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a b s t r a c t 

To address security and privacy issues in messaging services, we present a public key sign- 

cryption scheme with designated equality test on ciphertexts (PKS-DET) in this paper. The 

scheme enables a sender to simultaneously encrypt and sign (signcrypt) messages, and to 

designate a tester to perform equality test on ciphertexts, i.e., to determine whether two 

ciphertexts signcrypt the same underlying plaintext message. We introduce the PKS-DET 

framework, present a concrete construction and formally prove its security against three 

types of adversaries, representing two security requirements on message confidentiality 

against outsiders and the designated tester, respectively, and a requirement on message 

unforgeability against the designated tester. We also present three extensions, analyze the 

efficiency of our PKS-DET construction and extensions, and compare them with related 

schemes in terms of ciphertext sizes and computation costs of signcryption (encryption), 

unsigncryption (decryption) and ciphertext equality testing. Experimental results further 

confirmed the practicality of our construction. 

© 2019 Elsevier Inc. All rights reserved. 

1. Introduction 

With increased business and consumer awareness of data security and privacy, popular messaging services have built 

end-to-end encryption into their platforms in recent years. Yet, this privacy protection can and has been abused, for exam- 

ple for organizing coordinated attacks or spreading fake news. Consequently, the regulatory framework of many jurisdictions 

mandates a business or individual to release protected messages to law enforcement, on the ground of national/social in- 

terests or efficient operation of government functions. It would be desirable for a secure messaging platform to balance 

between privacy protection and law enforcement, by making the following provisions besides privacy and authentication: 
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Fig. 1. Secure messaging system. 

(a) For users to disclose only requisitioned messages to law enforcement without compromising other messages, as well as 

(b) for law enforcement to track the communication patterns of encrypted messages that are being monitored. 

To the best of our knowledge, there is no existing solution that satisfies all the above requirements. Public key signcryp- 

tion (PKS) schemes [52] concurrently sign and encrypt messages, thus providing data confidentiality and authentication; 

however, they do not support equality test on ciphertexts by a third party. On the other hand, existing public key encryp- 

tion schemes with equality test on ciphertexts (PKEET) [26,31,32,43,46,47,50] do not support data authentication. 

1.1. Contributions 

In this paper, we present a public key signcryption scheme with designated equality test on ciphertexts (PKS-DET), in which 

a sender can signcrypt (i.e., simultaneously encrypt and sign) messages, and allow a designated tester to perform one or 

both of the following functions (see Fig. 1 ): 

• Verify that a plaintext message surrendered by a user indeed corresponds to a specific ciphertext. With this function, a 

user only needs to surrender the requisitioned plaintext messages and law enforcement can verify that the messages are 

genuine; the user does not need to grant anyone access to her messaging device nor disclose her decryption key, thus 

keeping her remaining messages protected. 

• Test the equality of two ciphertexts, i.e., determine whether two ciphertexts signcrypt the same underlying plaintext 

message. In a secure messaging service, the same message could be forwarded from user to user, or a user could retweet 

a message to her friends. The forwarded message or retweet would get re-encrypted to a different ciphertext each time. 

The ability to compare the plaintext messages behind two ciphertexts, without decrypting them, enables law enforce- 

ment to monitor traffic patterns to isolate messages that may warrant further investigation. Note that in a data outsourc- 

ing scenario, this functionality can also be delegated to a remote server, so that the server could execute a deduplication 

procedure on outsourced encrypted data to save storage space. 

Our notion of PKS-DET combines the functionalities of PKS and PKEET. PKS-DET allows a sender to generate a ciphertext 

that simultaneously encrypts and signs a message, while designating a tester to perform equality test on ciphertexts, i.e., 

test the equality of the underlying plaintext messages of two ciphertexts. We formulate the security model of PKS-DET 

against three types of adversaries, representing two security requirements on message confidentiality and a requirement on 

message unforgeability . Specifically, the two message confidentiality requirements are IND-CCA2 security against an outsider 

and OW-CCA2 security against the designated tester, respectively, and the message unforgeability requirement is EU-CMA 

security against the designated tester. 

We present a concrete PKS-DET construction on bilinear groups, which enables a designated tester to perform equal- 

ity test on ciphertexts associated with arbitrary sender and recipient pairs. Moreover, the designated tester can match a 

surrendered plaintext message against a ciphertext without resorting to unsigncryption (which has the undesirable conse- 

quence of allowing the tester to unsigncrypt arbitrary ciphertexts), or sequentially signcrypting the message and testing the 

equality of ciphertexts which is inefficient (as shown in our experiments in Section 4.4 , direct plaintext-ciphertext match- 

ing requires only 12 msec, compared with 17 msec for signcryption plus 18 msec for ciphertext-ciphertext matching). We 

then extend our PKS-DET construction to support longer and shorter messages, and to allow more flexible delegation on 

ciphertext equality test. The security of our construction is proved against the three types of adversaries as defined in our 

security framework in the random oracle model. Theoretical comparison with related schemes and experimental analysis 

demonstrate that our construction is practical in applications. 
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Table 1 
Property comparison with existing encryption schemes supporting equality test on ciphertexts. 

Scheme Confidentiality Authentication Token 

Outsider Tester (Prior to Aut) Tester (After Aut) 

Yang et al. [50] – – OW-CCA2 ✗ –

Tang [41] IND-CCA2 IND-CCA2 OW-CCA2 ✗ Required 
Tang [43] IND-CCA2 IND-CCA2 OW-CCA2 ✗ Required 
Lee et al. [25] IND-CCA2 IND-CCA2 OW-CCA2 ✗ Required 
Lee et al. [27] IND-CCA2 IND-CCA2 OW-CCA2 ✗ Required 
Ma et al. [31] IND-CCA2 IND-CCA2 OW-CCA2 ✗ Required 
Ma [30] IND-CCA2 IND-CCA2 OW-ID-CCA2 ✗ Required 
Ma et al. [32] IND-CCA2 IND-CCA2 OW-CCA2 ✗ Required 
Wang and Pang [46] IND-CCA2 IND-CCA2 OW-CCA2 ✗ Required 
Slamanig et al. [40] IND-CCA2 IND-CCA2 OW-CCA2 ✗ Required 
Wang et al. [47] IND-CCA2 IND-CCA2 OW-CCA2 ✗ Required 
Pang and Ding [35] IND-CPA IND-CPA OW-CPA ✗ Required 
PKS-DET Section 3 IND-CCA2 – OW-CCA2 

√ 
No 

Section 4.1 (1) IND-CCA2 – OW-CCA2 
√ 

No 
Section 4.1 (2) IND-CCA2 – OW-CCA2 

√ 
No 

Section 4.2 IND-CCA2 IND-CCA2 OW-CCA2 
√ 

Required 

1.2. Related work 

The notion of public key encryption with equality test (PKEET) and a concrete construction on bilinear groups were in- 

troduced by Yang et al. [50] . PKEET allows anyone to verify whether two ciphertexts encrypt the same plaintext, even if they 

are generated with different public keys. Since then, the functionality of authorized/delegable equality test on ciphertexts has 

been incorporated into PKEET schemes [19,31,32,40,41,43] , to enable an authorized/delegated tester to compare ciphertexts. 

Note that the authorized/delegated tester in [19,31,32,43] can be authorized by two users to compare ciphertexts from both 

users or ciphertexts from one of the users. The security properties of our PKS-DET construction and the existing PKEET 

schemes are summarized in Table 1 , where ‘Aut’ denotes the authorization/delegation/designation of testing equality on 

ciphertexts, whereas ‘1’ and ‘2’ denote case 1 and case 2 of extensions of PKS-DET in Section 4.1 , respectively. 

Tang proposed an all-or-nothing PKEET (AoN-PKEET) [43] , in which a tester can be authorized by two users, acting in- 

dependently, to compare their ciphertexts. In [40] , Slamanig et al. proposed an AoN-PKEET ∗ construction on asymmetric 

bilinear groups based on the ElGamal encryption scheme [14] , which is a special case of AoN-PKEET [43] in that the tester 

is only able to compare ciphertexts generated with the same public key. The AoN-PKEET ∗ construction [40] only offers 

IND-CPA security for ciphertexts prior to the authorization of the tester; Table 1 refers to an enhanced construction that is 

IND-CCA2 secure in the random oracle model, derived with the approach in [13,33,34] . 

Ma [30] studied identity-based encryption supporting outsourced equality test on ciphertexts (IBEET), which combines 

the functionalities of PKEET and identity-based encryption (IBE). In [25] , Lee et al. identified a flaw in the scheme proposed 

in [19] and provided a solution to enhance its security. Semi-generic constructions for PKEET and IBEET were given in [26] . 

Lee et al. [27] presented a generic PKEET construction based on 2-level hierarchical IBE and strongly unforgeable one-time 

signature without using random oracles, and extended it to the IBEET construction. They also noted in [27, Section 6.2] that 

a PKEET construction can be instantiated from [2] and [5] following their generic framework, which is the construction 

compared in Table 1 . Wang et al. [47] proposed a scheme in Type-3 bilinear groups based on the ElGamal scheme, which 

guarantees the confidentiality of ciphertexts as well as tokens in standard model. 

Pang and Ding [35] for the first time studied controlled equijoin in relational databases and proposed an IND-CPA secure 

construction in symmetric bilinear groups in the secret key setting. The idea behind [35] is equality test on encrypted 

fields in outsourced records. In [46] , Wang and Pang presented a public key encryption for controlled equijoin in relational 

databases, which offers IND-CCA2 security for outsourced records before the tester gets the authorization token. Recently, 

ciphertext comparability was adopted in [9,4 8,4 9] to address the problem of deduplication on encrypted data, and in [45] to 

identify the same road condition reports in clouds. 

To save the costs of separately signing and encrypting a message, Zheng [52] introduced the notion of public key 

signcryption (PKS). Since then, identity-based signcryption [1,6,7] and (threshold/dynamic) attribute-based signcryption 

[12,15,37,38,51] , and their applications [36] , have been extensively studied. Li et al. [28] presented a PKS scheme with con- 

fidentiality, existential unforgeability and anonymity, and extended it to a ring signcryption scheme. Huang et al. [20] de- 

signed a heterogeneous signcryption scheme, where the sender has an identity-based secret key while the recipient holds 

a certificate-based key pair. In [44] , Wang et al. analyzed the security of two signcryption schemes [18,23] , and found that 

[18] cannot provide confidentiality while [23] does not provide unforgeability, coalition-resistance, and traceability. 

Herranz et al. [17] presented a PKS that supports threshold unsigncryption in a multi-user setting. Cui et al. [10,11] ad- 

dressed the security issue regarding related-key attacks in PKS. In [24] , Lai et al. presented an online/offline PKS scheme in 

the random oracle model, where the signcryption procedure is divided into two phases such that most computation can be 

pre-computed in the offline phase without knowing the plaintext to be signcrypted. Li et al. [29] designed a certificateless 
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signcryption scheme to achieve access control in industrial wireless sensor networks. Karati et al. [21] used identity-based 

signcryption to secure crowdsourced industrial IoT data in clouds. 

1.3. Paper organization 

The remainder of this paper is organized as follows. In Section 2 , we formulate the PKS-DET framework and the corre- 

sponding security requirements. We present a PKS-DET construction and prove its security in Section 3 . In Section 4 , we 

describe three extensions of our PKS-DET construction, compare their performance with those of existing schemes in the 

literature, and conduct experimental analysis. Finally, Section 5 concludes the paper. 

2. PKS-DET framework and security definitions 

A PKS-DET based secure messaging system should satisfy the following requirements: 

• Designated equality test on ciphertexts: Only the designated tester is able to check whether two ciphertexts signcrypt 

the same plaintext message. 

• Plaintext-ciphertext matching: The designated tester is able to match a surrendered plaintext against a given ciphertext 

without unsigncryption. 

• Message/ciphertext authentication: Both the recipient and designated tester can verify whether a given ciphertext is 

really produced by the claimed sender. 

• Message confidentiality: Even though the tester is designated to perform equality test on ciphertexts and plaintext- 

ciphertext matching, he is unable to infer unsurrendered plaintexts from ciphertexts. 

2.1. PKS-DET framework 

A PKS-DET scheme consists of the following procedures: 

• Setup (1 λ) → gp : Given a security parameter λ, the system setup procedure produces a global parameter gp . 

• KeyGen s ( gp ) → ( sk s , pk s ) : With the global parameter gp , a sender runs the sender key generation procedure to produce 

a pair of secret key sk s and public key pk s . 

• KeyGen r ( gp ) → ( sk r , pk r ) : With the global parameter gp , a recipient runs the recipient key generation procedure to pro- 

duce a pair of secret key sk r and public key pk r . 

• KeyGen t ( gp ) → ( sk t , pk t ) : With the global parameter gp , a tester runs the tester key generation procedure to produce a 

pair of secret key sk t and public key pk t . 

• Signcrypt ( gp , pk r , pk t , sk s , m ) → C: With the global parameter gp , the recipient’s public key pk r , the tester’s public key pk t 
and the sender’s secret key sk s , the sender runs the signcryption procedure on message m ∈ M to produce a ciphertext 

C . 

• Unsigncrypt ( gp , pk s , pk t , sk r , C) → m/ ⊥ : With the global parameter gp , the sender’s public key pk s , the tester’s public key 

pk t and the recipient’s secret key sk r , the recipient runs the unsigncryption procedure on ciphertext C to produce a 

message m or ⊥ that signifies an error in unsigncryption. 

• PCMatch ( gp , sk t , ( pk s , pk r , C) , m ′ ) → 1 / 0 : With the global parameter gp and the tester’s secret key sk t , the tester runs the 

plaintext-ciphertext matching procedure on a ciphertext C along with its sender and recipient’s public keys pk s , pk r , and 

a message m ′ ∈ M . The procedure outputs 1 if the message signcrypted in C is equal to m ′ ; otherwise, the procedure 

outputs 0. 

• EqTest ( gp , sk t , ( pk s , pk r , C) , ( pk ′ s , pk ′ r , C ′ )) → 1 / 0 : With the global parameter gp and the tester’s secret key sk t , the tester 

runs the equality test procedure on two ciphertexts C and C ′ along with their respective sender and recipient’s public 

keys pk s , pk r , pk ′ s and pk ′ r . The procedure outputs 1 if C and C ′ signcrypt the same message; otherwise, the procedure 

outputs 0. 

A PKS-DET scheme must be sound in the sense that: (1) Every ciphertext generated by Signcrypt is unsigncryptable by 

Unsigncrypt ; (2) For any pair of ciphertext and plaintext, the procedure PCMatch must output 1 when the ciphertext sign- 

crypts the given plaintext; (3) For any pair of ciphertext and plaintext, the procedure PCMatch must output 0 with over- 

whelming probability when the ciphertext does not signcrypt the given plaintext; (4) For any two ciphertexts that signcrypt 

the same plaintext, which may be generated by different senders for different recipients but are designated to the same tester 

to perform ciphertext equality test, the procedure EqTest must output 1; (5) For any two ciphertexts that signcrypt different 

plaintexts, the procedure EqTest must output 0 with overwhelming probability. 

Definition 2.1 (Soundness) . A PKS-DET scheme is sound if, for any security parameter λ ∈ N , any global parameter gp ← 

Setup (λ) , any secret/public key pairs of two senders ( sk s , pk s ) ← KeyGen s (gp ) , ( sk ′ s , pk ′ s ) ← KeyGen s (gp ) , any secret/public 

key pairs of two recipients ( sk r , pk r ) ← KeyGen r (gp ) , ( sk ′ r , pk ′ r ) ← KeyGen r (gp ) , and any secret/public key pair of tester 

( sk t , pk t ) ← KeyGen t (gp ) , the following conditions are satisfied: 

1. For every m ∈ M , Unsigncrypt ( gp , pk s , pk t , sk r , C) = m, where C ← Signcrypt ( gp , pk r , pk t , sk s , m ) . 
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2. For any m, m ′ ∈ M such that C ← Signcrypt ( gp , pk r , pk t , sk s , m ) , if m = m ′ , then PCMatch ( gp , sk t , ( pk s , pk r , C) , m ′ ) = 1 , 

otherwise Pr [ PCMatch ( gp , sk t , ( pk s , pk r , C) , m ′ ) = 1] ≤ ε(λ) , where ε( ·) is a negligible function. 

3. For any m, m ′ ∈ M such that C ← Signcrypt ( gp , pk r , pk t , sk s , m ) and C ′ ← Signcrypt ( gp , pk ′ r , pk t , sk 
′ 
s , m ′ ) , if m = m ′ , then 

EqTest ( gp , sk t , ( pk s , pk r , C) , ( pk ′ s , pk ′ r , C ′ )) = 1 , otherwise Pr [ EqTest ( gp , sk t , ( pk s , pk r , C) , ( pk ′ s , pk ′ r , C ′ )) = 1] ≤ ε(λ) , where 

ε( ·) is a negligible function. 

2.2. Security definitions 

In a messaging system, ciphertexts may be subjected to three types of attacks. First, anyone in the system listening 

to the communication channel may intercept the transmitted ciphertexts and try to deduce the corresponding plaintext 

messages. Second, the law enforcement (tester) that is monitoring all the ciphertexts may try to infer the plaintext messages 

of ciphertexts, which is easier than that in the first case since the tester has been designated to perform equality test on 

ciphertexts. Third, someone may try to forge a ciphertext of a message, in a bid to generate fake news. 

Accordingly, we consider three types of adversaries: 

• Type-1 adversary models a curious outsider who has the global parameter gp and public keys pk s , pk r and pk t of the 

sender, recipient and tester, and tries to distinguish between ciphertexts. 

• Type-2 adversary models a curious tester who has been designated by the sender. The tester has the global parameter 

gp , the public keys pk s , pk r of the sender and recipient, and the tester’s secret/public key pair ( sk t , pk t ) , and tries to get 

the plaintexts corresponding to some ciphertexts. 

• Type-3 adversary models a malicious tester who has been designated by the sender. The tester has the global parameter 

gp , the public keys pk s , pk r of sender and recipient, and the tester’s secret/public key pair ( sk t , pk t ) , and tries to forge a 

ciphertext for some message. 

The first two types of adversaries capture the requirement of message confidentiality, while the third captures the re- 

quirement of message/ciphertext unforgeability. We formally define the security of a PKS-DET scheme in the following three 

definitions. 

Definition 2.2 (IND-CCA2 security against Type-1 adversary) . Let � be a PKS-DET scheme. Suppose A is a probabilistic 

polynomial-time (PPT) adversary who interacts with a challenger C to perform the following security game. 

Set-up : Challenger C runs the Setup procedure to produce global parameter gp and derives ( sk s , pk s ) ← KeyGen s (gp ) , 

( sk r , pk r ) ← KeyGen r (gp ) and ( sk t , pk t ) ← KeyGen t (gp ) . The global parameter gp and public keys pk s , pk r and pk t are given 

to A . 

Phase 1 : The adversary is able to adaptively issue two types of queries. 

• Signcryption query: For a queried message m ∈ M , the challenger runs C ← Signcrypt ( gp , pk r , pk t , sk s , m ) and returns C . 

• Unsigncryption query: For a queried ciphertext C , the challenger returns m or ⊥ according to 

Unsigncrypt ( gp , pk s , pk t , sk r , C) . 

Challenge : At the end of Phase 1, the adversary randomly picks two messages m 0 , m 1 
$ ← M with the same length, and 

sends them to C. The challenger chooses a random value d $ ← { 0 , 1 } , computes C d ← Signcrypt ( gp , pk r , pk t , sk s , m d ) , and gives 

C d to the adversary. 

Phase 2 : The adversary is able to issue queries as in Phase 1, except that C d cannot be submitted for unsigncryption. 

Guess : At the end of Phase 2, the adversary outputs a guess d ′ , and succeeds in the security game if d ′ = d. 

Let 

Adv ind - cca2 
�, A = 

∣∣∣Pr [ d ′ = d] − 1 

2 

∣∣∣
� is said to offer indistinguishability under adaptive chosen ciphertext attack (IND-CCA2) against Type-1 adversary if, for 

all PPT adversary A , there exists a negligible function ε( ·) such that Adv ind - cca2 
�, A ≤ ε(·) . 

Definition 2.3 (OW-CCA2 security against Type-2 adversary) . Let � be a PKS-DET scheme. Suppose A is a PPT adversary 

who interacts with a challenger C to perform the following security game. 

Set-up : Challenger C runs the Setup procedure to produce global parameter gp and derives ( sk s , pk s ) ← KeyGen s (gp ) and 

( sk r , pk r ) ← KeyGen r (gp ) . The global parameter gp and public keys pk s and pk r are given to A . The adversary runs the 

KeyGen t (gp ) procedure to obtain a key pair ( sk t , pk t ) , where pk t is published. 

Phase 1 : The adversary is able to adaptively issue two types of queries. 

• Signcryption query: For a queried message m ∈ M , the challenger runs C ← Signcrypt ( gp , pk r , pk t , sk s , m ) and returns C . 

• Unsigncryption query: For a queried ciphertext C , the challenger returns m or ⊥ according to 

Unsigncrypt ( gp , pk s , pk t , sk r , C) . 

Challenge : At the end of Phase 1, the challenger randomly picks a message m ∗ $ ← M , computes C ∗ ← Signcrypt 

( gp , pk r , pk t , sk s , m ∗) , and sends C ∗ to the adversary. 

Phase 2 : The adversary is able to issue queries as in Phase 1, except that C ∗ cannot be submitted for unsigncryption. 



Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 490 (2019) 146–165 151 

Fig. 2. Application of the PKS-DET scheme in securing messaging systems. 

Guess : At the end of Phase 2, the adversary outputs a guess m ′ , and succeeds in the security game if m ′ = m ∗. 

Let 

Adv ow - cca2 �, A = Pr [ m ′ = m ∗] 

� is said to offer one-way confidentiality under adaptive chosen ciphertext attack (OW-CCA2) against Type-2 adversary if, 

for all PPT adversary A , there exists a negligible function ε( ·) such that Adv ow - cca2 �, A ≤ ε(·) . 

Definition 2.4 (EU-CMA security against Type-3 adversary) . Let � be a PKS-DET scheme. Suppose A is a PPT adversary who 

interacts with a challenger C to perform the following security game. 

Set-up : Challenger C runs the Setup procedure to produce global parameter gp , and derives ( sk s , pk s ) ← KeyGen s (gp ) 

and ( sk r , pk r ) ← KeyGen r (gp ) . The global parameter gp and public keys pk s and pk r are given to A . The adversary runs 

( sk t , pk t ) ← KeyGen t (gp ) , where pk t is published. 

Queries : The adversary is able to adaptively issue the following queries: 

• Signcryption query: For a queried message m i ∈ M , the challenger returns C i ← Signcrypt ( gp , pk r , pk t , sk s , m i ) . 

• Unsigncryption query: For a queried ciphertext C i , the challenger returns m i or ⊥ according to 

Unsigncrypt ( gp , pk s , pk t , sk r , C i ) . 

Output : Eventually, the adversary outputs a tuple ( m ∗, C ∗). 

Adversary A wins the game if both of the following conditions are satisfied: 

1. m ∗ 
∈ { m i } , that is, m ∗ has not been submitted in signcryption queries; 

2. Unsigncrypt ( gp , pk s , pk t , sk r , C 
∗) = m ∗. 

Let 

Adv eu - cma 
�, A = Pr [ A wins ] 

� is said to offer existential unforgeability under adaptive chosen message attack (EU-CMA) against Type-3 adversary if, for 

all PPT adversary A , there exists a negligible function ε( ·) such that Adv eu - cma 
�, A ≤ ε(·) . 

2.3. Application in securing messaging systems 

Fig. 2 shows how PKS-DET can be applied in a secure messaging system. There are three types of entities in the system: 

senders, recipients, and testers (which could be law enforcement agencies). There is also a manager to initiate the system 

by issuing global parameters, who can be some agency trusted by all system entities. To communicate with a recipient, 

a sender runs the signcryption procedure Signcrypt on a message using her secret key, the recipient’s public key and a 

tester’s public key. The designated tester collects ciphertexts and tests if they correspond to the same plaintext message by 

running the EqTest procedure, without additional authorization from the sender or recipient. In the event that a sender or 

a recipient is required to surrender a plaintext message corresponding to some ciphertext, the designated tester can match 

the two by invoking the PCMatch procedure with only the sender and recipient’s public keys. 

2.4. Mathematical assumptions 

Let G 1 = 〈 g 1 〉 , G 2 = 〈 g 2 〉 and G T be cyclic groups of prime order p , where 〈 g x 〉 denotes that g x is a generator of G x (x = 

1 , 2) . The mapping ˆ e : G 1 × G 2 → G T is bilinear if the following conditions hold: 

• Bilinearity: ∀ u ∈ G 1 , v ∈ G 2 and a, b ∈ Z ∗p , ˆ e (u a , v b ) = ˆ e (u, v ) ab . 

• Non-degeneracy: ˆ e (g 1 , g 2 ) 
 = 1 . 

• Computability: All group operations in G 1 , G 2 , G T and bilinear mapping ˆ e (·, ·) can be computed efficiently. 
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Table 2 
Notation. 

Symbol Meaning 

G, G T Cyclic groups with bilinear mapping ˆ e : G × G → G T 
p Large prime number, the order of G and G T 
g A generator of G 
H 1 (.), H 2 (.), H 3 (.) One-way, collision-resistant hash functions 
x s , X s Secret key and public key of sender 
( x r ,1 , x r ,2 ), ( X r ,1 , X r ,2 ) Secret key and public key of recipient 
x t , X t Secret key and public key of tester 
m Message in domain M 
C = (c 1 , c 2 , c 3 , c 4 ) Ciphertext of m 
α1 , α2 Random elements in Z ∗p 
[ x ] l Substring with length l that is taken from string x 
PRG Pseudo-random bit generator 

Moreover, if G 1 = G 2 , then ˆ e is a Type 1 (symmetric) bilinear map; if G 1 
 = G 2 and there exists an efficiently computable 

homomorphism from G 2 to G 1 , then ˆ e is a Type 2 (asymmetric) bilinear map; if G 1 
 = G 2 and there exists no efficiently 

computable homomorphism from G 2 to G 1 , then ˆ e is a Type 3 (asymmetric) bilinear map [16] . 

Our PKS-DET construction relies on the following complexity assumptions. 

Computational Diffie-Hellman assumption (CDH). Let G = 〈 g〉 be a cyclic group with bilinear mapping ˆ e : G × G → G T , where 

G and G T have prime order p . Given a tuple ( g, g a , g b ) for random values a, b ∈ R Z 
∗
p , any PPT algorithm E would have negli- 

gible probability in computing g ab ∈ G . 

Computational bilinear Diffie-Hellman assumption (BDH) [3] . Let G = 〈 g〉 be a cyclic group with bilinear map ˆ e : G × G → G T , 

where G and G T have prime order p . Given a tuple ( g, g a , g b , g v ) for some random values a, b, v ∈ R Z 
∗
p , any PPT algorithm E

would have negligible probability in computing ˆ e (g, g) abv ∈ G T . 

3. Concrete PKS-DET construction 

We now present our basic PKS-DET construction in Type 1 bilinear groups. Table 2 summarizes the frequently used 

notations in our constructions. 

Setup : This algorithm picks a symmetric bilinear map: ˆ e : G × G → G T , where G = 〈 g〉 and G T are cyclic groups with 

prime order p . Then it picks two cryptographic hash functions H 1 : G T → G and H 3 : G 4 → { 0 , 1 } τm + log p , where τm denotes 

the message size in domain M = { 0 , 1 } τm and |M| = | G | , and a target collision-resistant hash function H 2 which can be a 

bijective encoding function from M to G [8,22] . The global parameters are gp = (G, G T , g, ̂  e , p, H 1 , H 2 , H 3 ) . 

KeyGen s : The sender randomly picks a secret key sk s = x s 
$ ← Z ∗p and computes the corresponding public key pk s = X s = g x s . 

KeyGen r : The recipient randomly picks a secret key sk r = ( sk r, 1 , sk r, 2 ) = (x r, 1 , x r, 2 ) 
$ ← (Z ∗p ) 2 and computes the correspond- 

ing public key pk r = (X r, 1 = g x r, 1 , X r, 2 = g x r, 2 ) . 

KeyGen t : The tester randomly picks a secret key sk t = x t 
$ ← Z ∗p and computes the corresponding public key pk t = X t = g x t . 

Signcrypt : For a message m ∈ M , the sender randomly selects α1 , α2 
$ ← Z ∗p , and generates ciphertext C = (c 1 , c 2 , c 3 , c 4 ) 

as follows: 

c 1 = g α1 c 2 = g α2 

c 3 = H 1 ( ̂  e (X r, 1 , X t ) α2 ) · H 2 (m ) α1 + x s c 4 = H 3 (c 1 ‖ c 2 ‖ c 3 ‖ X 
α2 
r, 2 ) � (m ‖ α1 ) 

Unsigncrypt : Given a ciphertext C = (c 1 , c 2 , c 3 , c 4 ) , the recipient computes 

m ‖ α1 = c 4 � H 3 (c 1 ‖ c 2 ‖ c 3 ‖ c 
x r, 2 
2 ) 

then verifies 

c 1 
? = g α1 (1) 

and 

ˆ e 

(
c 3 

H 1 ( ̂  e (X t , c 2 ) x r, 1 ) 
, g 

)
? = ˆ e (H 2 (m ) , c 1 · X s ) (2) 

If both conditions are met, the recipient outputs m . 

PCMatch : Given ciphertext C , the tester who is designated to perform equality test may check whether C signcrypts m ′ 
as follows: 

ˆ e 

(
c 3 

H 1 ( ̂  e (X r, 1 , c 2 ) x t ) 
, g 

)
? = ˆ e (H 2 (m ′ ) , c 1 · X s ) (3) 

If the condition is met, the tester outputs 1; otherwise he outputs 0. 
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EqTest : Given ciphertexts C and C ′ , a tester who is designated to perform equality test may check whether they signcrypt 

the same message (i.e., m = m ′ ) as follows: 

ˆ e 

(
c 3 

H 1 ( ̂  e (X r, 1 , c 2 ) x t ) 
, c ′ 1 · X ′ s 

)
? = ˆ e 

(
c ′ 3 

H 1 ( ̂  e (X ′ 
r, 1 , c 

′ 
2 ) 

x t ) 
, c 1 · X s 

)
(4) 

If the condition is met, the tester outputs 1; otherwise he outputs 0. 

Soundness. For unsigncryption, the equality in (2) holds because 

ˆ e 

(
c 3 

H 1 ( ̂  e (X t , c 2 ) x r, 1 ) 
, g 

)
= ˆ e 

(
H 1 ( ̂  e (X r, 1 , X t ) α2 ) · H 2 (m ) α1 + x s 

H 1 ( ̂  e (X t , X r, 1 ) α2 ) 
, g 

)
= ˆ e 

(
H 2 (m ) α1 + x s , g 

)
= ˆ e (H 2 (m ) , c 1 · X s ) 

The equality in (3) holds in the same way as the equality in (2) if the message m encrypted by C is equal to m ′ . On the 

other hand, if the equality in (3) holds, then H 2 (m ) = H 2 (m ′ ) must be true. Since H 2 is bijective, H 2 (m ) = H 2 (m ′ ) implies 

m = m ′ . 
For ciphertext equality test, we have 

ˆ e 

( 

c 3 

H 1 

(
ˆ e (X r, 1 , c 2 ) x t 

) , c ′ 1 · X ′ s 

) 

= ˆ e 

(
H 1 ( ̂  e (X r, 1 , X t ) α2 ) · H 2 (m ) α1 + x s 

H 1 ( ̂  e (X r, 1 , X t ) α2 ) 
, g α

′ 
1 · g x 

′ 
s 

)

= ˆ e 
(
H 2 (m ) α1 + x s , g α

′ 
1 + x ′ s 

)
= ˆ e ( H 2 (m ) , g ) 

(α1 + x s )(α′ 
1 + x ′ s ) 

and similarly 

ˆ e 

(
c ′ 3 

H 1 ( ̂  e (X ′ 
r, 1 , c 

′ 
2 ) 

x t ) 
, c 1 · X s 

)
= ˆ e 

(
H 1 ( ̂  e (X ′ r, 1 , X t ) α

′ 
2 ) · H 2 (m ′ ) α′ 

1 + x ′ s 

H 1 ( ̂  e (X ′ 
r, 1 , X t ) 

α′ 
2 ) 

, g α1 · g x s 

)
= ˆ e 

(
H 2 (m ′ ) α′ 

1 + x ′ s , g α1 + x s 
)

= ˆ e 
(
H 2 (m ′ ) , g 

)(α′ 
1 + x ′ s )(α1 + x s ) 

Thus, if m = m ′ , then equality in (4) holds. On the other hand, if the equality in (4) holds, then H 2 (m ) = H 2 (m ′ ) must hold, 

which implies m = m ′ . 
The proposed PKS-DET construction offers IND-CCA2, OW-CCA2 and EU-CMA security for ciphertexts. To prove the secu- 

rity of our PKS-DET construction, we need the following Difference Lemma [39] . 

Lemma 3.1. Let E 1 , E 2 , and F be events defined on some probability space. Suppose that the event E 1 ∧ ¬ F occurs if and only if 

E 2 ∧ ¬ F occurs. Then | Pr [ E 1 ] − Pr [ E 2 ] | ≤ Pr [ F ] . 

Theorem 3.1. The above PKS-DET construction is IND-CCA2 secure against Type-1 adversary in the random oracle model assum- 

ing that the CDH and BDH assumptions hold. 

The following proof for Theorem 3.1 follows the standard framework established in [32,39,50] . 

Proof. Let A be a PPT adversary that has advantage ε in attacking the IND-CCA2 security for ciphertexts of the PKS-DET 

scheme. Suppose A issues at most q S signcryption queries, at most q U unsigncryption queries, at most q H 1 hash queries of 

H 1 and at most q H 3 hash queries of H 3 (here, q S , q U , q H 1 and q H 3 are positive). We prove the theorem through a sequence 

of games. 

Game G 0 : We define Game G 0 as formulated in Definition 2.2 . 

1. x s , x r, 1 , x r, 2 , x t 
$ ← Z ∗p , X s = g x s , X r, 1 = g x r, 1 , X r, 2 = g x r, 2 , X t = g x t . 

2. (m 0 , m 1 ) ∈ M 2 ← A 
O H 1 , O H 3 , O S , O U (X s , X r, 1 , X r, 2 , X t ) such that | m 0 | = | m 1 | . 

3. d $ ← { 0 , 1 } , α∗
1 , α

∗
2 

$ ← Z ∗p , C ∗ = (c ∗
1 , c 

∗
2 , c 

∗
3 , c 

∗
4 ) where c ∗

1 = g α
∗
1 , c ∗

2 = g α
∗
2 , c ∗

3 = H 1 ( ̂  e (c ∗
2 , X t ) 

x r, 1 ) · H 2 (m d ) 
x s + α∗

1 , and c ∗
4 = 

H 3 (c ∗1 ‖ c ∗2 ‖ c ∗3 ‖ (c ∗2 ) 
x r, 2 ) � (m d ‖ α∗

1 ) . 

4. d ′ ∈ { 0 , 1 } ← A 
O H 1 , O H 3 , O S , O U (m 0 , m 1 , C 

∗) , where the oracles work as follows. 

• H 1 oracle query: For an input element w ∈ G T , O H 1 responds with a random value θ ∈ G in a consistent way, meaning 

that the same value will be returned for the same input. 

• H 3 oracle query: For an input element ( ϖ1 , ϖ2 , ϖ3 , ϖ4 ) ∈ G 4 , O H 3 responds with a random value η ∈ { 0 , 1 } τm + log p in a 

consistent way, meaning that the same value will be returned for the same input. 

• O S oracle query: For an input message m , O S responds with a ciphertext C = (c 1 , c 2 , c 3 , c 4 ) by running the Signcrypt 

procedure with x s . 
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• O U oracle query: For an input ciphertext C = (c 1 , c 2 , c 3 , c 4 ) , O U responds with a message m or ⊥ by running the 

Unsigncrypt procedure with x r ,1 and x r ,2 . Here, unsigncryption queries on C ∗ are not allowed. 

Let E i be the event that d ′ = d in Game G i . Thus, we have 

Adv ind - cca2 
�, A = 

∣∣∣Pr [ E 0 ] − 1 

2 

∣∣∣ (5) 

We then define the following game which is indistinguishable from Game G 0 . 
Game G 1 : 

1. x s , x r, 1 , x r, 2 , x t 
$ ← Z ∗p , X s = g x s , X r, 1 = g x r, 1 , X r, 2 = g x r, 2 , X t = g x t , L 3 = ∅ . 

2. (m 0 , m 1 ) ∈ M 2 ← A 
O H 1 , O H 3 , O S , O U (X s , X r, 1 , X r, 2 , X t ) such that | m 0 | = | m 1 | . 

3. d $ ← { 0 , 1 } , α∗
1 , α

∗
2 

$ ← Z ∗p , η∗ ∈ { 0 , 1 } τm + log p , C ∗ = (c ∗
1 , c 

∗
2 , c 

∗
3 , c 

∗
4 ) where c ∗

1 = g α
∗
1 , c ∗

2 = g α
∗
2 , c ∗

3 = H 1 ( ̂  e (X r, 1 , X t ) 
α∗

2 ) ·
H 2 (m d ) 

x s + α∗
1 , and c ∗4 = η∗

� (m d ‖ α∗
1 ) . L 3 ← L 3 ∪ { (c ∗1 , c 

∗
2 , c 

∗
3 , X 

α∗
2 

r, 2 , η
∗) } . 

4. d ′ ∈ { 0 , 1 } ← A 
O H 1 , O H 3 , O S , O U (m 0 , m 1 , C 

∗) , where the oracles work as follows. 

• H 1 oracle query: The same as in Game G 0 . 
• H 3 oracle query: For answering O H 3 queries, challenger C maintains a list L 3 which is initially empty. For an input 

element ( ϖ1 , ϖ2 , ϖ3 , ϖ4 ) ∈ G 4 , if there exists an entry (	 1 , 	 2 , 	 3 , 	 4 , η) ∈ L 3 , then O H 3 responds with η; otherwise, 

a random value η ∈ { 0 , 1 } τm + log p is picked and returned, and L 3 is updated as L 3 ∪ (	 1 , 	 2 , 	 3 , 	 4 , η) . 

• O S oracle query: For an input message m , O S randomly picks α1 , α2 
$ ← Z ∗p , queries O H 1 to get H 1 ( ̂  e (X r, 1 , X t ) 

α2 ) = 

w ∈ G, computes c 1 = g α1 , c 2 = g α2 and c 3 = w · H 2 (m ) x s + α1 , queries O H 3 to get H 3 (c 1 , c 2 , c 3 , X 
α2 
r, 2 ) = η ∈ { 0 , 1 } τm + log p , 

computes c 4 = η � (m ‖ α1 ) , and responds with the ciphertext C = (c 1 , c 2 , c 3 , c 4 ) . 

• O U oracle query: For an input ciphertext C = (c 1 , c 2 , c 3 , c 4 ) , O U queries O H 3 to get H 3 (c 1 , c 2 , c 3 , c 
x r, 2 
2 ) = η ∈ 

{ 0 , 1 } τm + log p , computes m ‖ α1 ← c 4 �η, and checks Equalities (1) and (2) , where ˆ e (X t , c 2 ) 
x r, 1 is queried to oracle O H 1 . 

If both hold, then m is returned; otherwise, ⊥ is returned. Also, unsigncryption queries on C ∗ are not allowed. 

Due to the idealness of random oracle, we have 

Pr [ E 1 ] = Pr [ E 0 ] (6) 

We next modify the simulation in an indistinguishable manner. 

Game G 2 : 

1. x s , x r, 1 , x r, 2 , x t 
$ ← Z ∗p , X s = g x s , X r, 1 = g x r, 1 , X r, 2 = g x r, 2 , X t = g x t , L 3 = ∅ . 

2. (m 0 , m 1 ) ∈ M 2 ← A 
O H 1 , O H 3 , O S , O U (X s , X r, 1 , X r, 2 , X t ) such that | m 0 | = | m 1 | . 

3. d $ ← { 0 , 1 } , α∗
1 , α

∗
2 

$ ← Z ∗p , η∗ ∈ { 0 , 1 } τm + log p , C ∗ = (c ∗1 , c 
∗
2 , c 

∗
3 , c 

∗
4 ) where c ∗1 = g α

∗
1 , c ∗2 = g α

∗
2 , c ∗3 = H 1 ( ̂  e (X r, 1 , X t ) 

α∗
2 ) ·

H 2 (m d ) 
x s + α∗

1 , and c ∗
4 = η∗. L 3 ← L 3 ∪ { (c ∗

1 , c 
∗
2 , c 

∗
3 , X 

α∗
2 

r, 2 , η
∗

� (m d ‖ α∗
1 )) } . 

4. d ′ ∈ { 0 , 1 } ← A 
O H 1 , O H 3 , O S , O U (m 0 , m 1 , C 

∗) , where the oracles work in the same way as in Game G 1 except for the following 

cases. 

• H 3 oracle query: If (·, c ∗
2 , ·, (c ∗

2 ) 
x r, 2 ) is queried, the game aborts. Let this abortion event be F 1 . 

• O U oracle query: If (c ∗
1 , c 

∗
2 , c 

∗
3 , ̄c 

∗
4 ) is queried such that c̄ ∗

4 
 = c ∗
4 , then ⊥ is returned. 

Since c ∗
4 is a random value in both games of G 1 and G 2 , the challenge ciphertext C ∗ generated in Game G 2 is identically 

distributed as in Game G 1 . Thus, if event F 1 does not occur, then G 2 is identical to G 1 . According to Lemma 3.1 , we have 

| Pr [ E 2 ] − Pr [ E 1 ] | ≤ Pr [ F 1 ] (7) 

Lemma 3.2. Pr [ F 1 ] ≤ Adv CDH + 
q U 

2 τm p . 

Proof. Suppose that event F 1 happens with non-negligible probability. Using adversary A , we can construct a PPT algorithm 

I to break the CDH assumption. At first, algorithm I is given a CDH instance ( g, g a , g b ) ∈ G 3 , with the goal of computing g ab . 

Algorithm I randomly picks x s , x r, 1 , x t 
$ ← Z ∗p , computes the public keys X s = g x s , X r, 1 = g x r, 1 and X t = g x t , and sets X r, 2 = g a . 

Algorithm I invokes adversary A in Game G 2 on public keys ( X s , X r ,1 , X r ,2 , X t ). 

Algorithm I generates a challenge ciphertext C ∗ = (c ∗1 , c 
∗
2 , c 

∗
3 , c 

∗
4 ) for m d as follows: 

α∗
1 

$ ← Z ∗p , c 
∗
1 = g α

∗
1 , c ∗2 = g b , c ∗3 = H 1 ( ̂  e (X r, 1 , c 

∗
2 ) 

x t ) · H 2 (m d ) 
α∗

1 + x s , η∗ ∈ { 0 , 1 } τm + log p , c 4 = η∗

Algorithm I adds the tuple (c ∗1 , c 
∗
2 , c 

∗
3 , � , � ) to list L 3 , where � denotes an ‘unknown’ value. The challenge ciphertext C ∗ has 

the same distribution as that in Game G 2 . Algorithm I simulates the oracles in the same way as in Game G 2 except for the 

following: 

• H 3 oracle query: If (·, c ∗
2 , ·, χ) is queried, algorithm I checks ˆ e (c ∗

2 , X r, 2 ) 
? = ˆ e (χ, g) . If it holds, algorithm I outputs χ and 

aborts the game. 
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• O U oracle query: On input a ciphertext C = (c 1 , c 2 , c 3 , c 4 ) , if c j = c ∗
j holds for 1 ≤ j ≤ 3 yet c 4 
 = c ∗4 , algorithm I returns 

⊥ . Otherwise, algorithm I performs the following steps: Search for an entry ( c 1 , c 2 , c 3 , 
∗, ∗) in L 3 . If some entry 

( c 1 , c 2 , c 3 , χ , η) exists, then compute m ‖ α1 ← η�c 4 . The unsigncryption m is returned only when both c 1 = g α1 and 

ˆ e ( 
c 3 

H 1 ( ̂ e (X r, 1 ,c 2 ) 
x t ) , g) = ˆ e (H 2 (m ) , c 1 · X s ) are satisfied, otherwise ⊥ is returned. 

Let F 2 be the event that a tuple (·, c ∗
2 , ·, g ab ) is queried to oracle O H 3 . If event F 2 does not happen by the end of the sim- 

ulation, then algorithm I aborts with failure. To show that the unsigncryption queries to O U are simulated indistinguishably 

from Game G 2 , we analyze the unsigncryption queries as follows: 

• Case 1: (c 1 , c 2 , c 3 , c 
a 
2 ) has been queried to O H 3 before an unsigncryption query for C = (c 1 , c 2 , c 3 , c 4 ) is issued. In this 

case, c 4 is uniquely determined. Thus, the unsigncryption oracle O U is perfectly simulated. 

• Case 2: (c 1 , c 2 , c 3 , c 
a 
2 ) has not been queried to O H 3 before an unsigncryption query for C = (c 1 , c 2 , c 3 , c 4 ) is issued. In 

this case, O U will output ⊥ . Thus, the simulations would fail if C is a valid ciphertext. Due to the idealness of O H 3 , this 

happens with probability 1 / 2 τm + log p . 

Letting F 3 denote the event that a valid ciphertext is rejected in the simulation, we have 

Pr [ F 3 ] ≤ q U 
2 τm p 

. 

Thus, if event F 3 does not happen, the simulations are identical to Game G 2 . According to Lemma 3.1 , we have 

| Pr [ F 2 ] − Pr [ F 1 ] | ≤ Pr [ F 3 ] . 

Therefore, 

Adv CDH = Pr [ F 2 ] ≥ Pr [ F 1 ] − Pr [ F 3 ] ≥ Pr [ F 1 ] − q U 
2 τm p 

. (8) 

This completes the proof of Lemma 3.2 . �

We continue to modify the simulation in an indistinguishable manner. 

Game G 3 : 

1. x s , x r, 1 , x r, 2 , x t 
$ ← Z ∗p , X s = g x s , X r, 1 = g x r, 1 , X r, 2 = g x r, 2 , X t = g x t , L 1 = ∅ , L 3 = ∅ . 

2. (m 0 , m 1 ) ∈ M 2 ← A 
O H 1 , O H 3 , O S , O U (X s , X r, 1 , X r, 2 , X t ) such that | m 0 | = | m 1 | . 

3. d $ ← { 0 , 1 } , α∗
1 , α

∗
2 

$ ← Z ∗p , θ ∗ $ ← G, η∗ ∈ { 0 , 1 } τm + log p , C ∗ = (c ∗1 , c 
∗
2 , c 

∗
3 , c 

∗
4 ) where c ∗1 = g α

∗
1 , c ∗2 = g α

∗
2 , c ∗3 = θ ∗ · H 2 (m d ) 

x s + α∗
1 , 

and c ∗
4 = η∗. L 1 ← L 1 ∪ { ( ̂  e (X r, 1 , X t ) 

α∗
2 , θ ∗) } , L 3 ← L 3 ∪ { (c ∗

1 , c 
∗
2 , c 

∗
3 , X 

α∗
2 

r, 2 , η
∗

� (m d ‖ α∗
1 )) } . 

4. d ′ ∈ { 0 , 1 } ← A 
O H 1 , O H 3 , O S , O U (m 0 , m 1 , C 

∗) , where the oracles work as follows. 

• H 1 oracle query: For an input w ∈ G T , if there exists (w, θ ) ∈ L 1 , then O H 1 returns θ ; otherwise, O H 1 randomly picks 

θ $ ← G, inserts L 1 ← L 1 ∪ { (w, θ ) } , and returns θ . 

• H 3 oracle query: It works in the same way as in Game G 2 . 
• O S oracle query: Similar to that in Game G 2 , where both O H 1 and O H 3 should be queried. 

• O U oracle query: Similar to that in Game G 2 , where both O H 1 and O H 3 should be queried. If (c ∗
1 , c 

∗
2 , c 

∗
3 , ̄c 

∗
4 ) is queried 

such that c̄ ∗4 
 = c ∗4 , then ⊥ is returned. 

Due to the idealness of random oracle, the H 1 oracle O H 1 and signcryption oracle O S are identical to those in Game G 2 . To 

show that the unsigncryption queries to O U are simulated indistinguishably from Game G 2 , we analyze the unsigncryption 

queries as follows: 

• Case 1: ˆ e (X r, 1 , c 2 ) 
x t has been queried to O H 1 before an unsigncryption query for ( c 1 , c 2 , c 3 , c 4 ) is issued. In this case, 

θ ← H 1 ( ̂  e (X r, 1 , c 2 ) 
x t ) is uniquely determined. Thus, the unsigncryption oracle O U is perfectly simulated. 

• Case 2: ˆ e (X r, 1 , c 2 ) 
x t has not been queried to O H 1 before an unsigncryption query for ( c 1 , c 2 , c 3 , c 4 ) is issued. In this case, 

O U will output ⊥ . Thus, the simulations would fail if ( c 1 , c 2 , c 3 , c 4 ) is a valid ciphertext. Due to the idealness of O H 1 , this 

happens with probability 1/ p . 

Letting F 4 denote the event that a valid ciphertext is rejected in Case 2, we have 

Pr [ F 4 ] ≤ q U 
p 

. 

If event F 4 does not happen, Game G 3 is identical to Game G 2 . According to Lemma 3.1 , we have 

| Pr [ E 3 ] − Pr [ E 2 ] | ≤ Pr [ F 4 ] ≤ q U 
p 

. (9) 

We continue to modify the simulation in an indistinguishable manner. 

Game G 4 : 
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1. x s , x r, 1 , x r, 2 , x t 
$ ← Z ∗p , X s = g x s , X r, 1 = g x r, 1 , X r, 2 = g x r, 2 , X t = g x t , L 1 = ∅ , L 3 = ∅ . 

2. (m 0 , m 1 ) ∈ M 2 ← A 
O H 1 , O H 3 , O S , O U (X s , X r, 1 , X r, 2 , X t ) such that | m 0 | = | m 1 | . 

3. d $ ← { 0 , 1 } , α∗
1 , α

∗
2 

$ ← Z ∗p , θ ∗ $ ← G, η∗ ∈ { 0 , 1 } τm + log p , C ∗ = (c ∗
1 , c 

∗
2 , c 

∗
3 , c 

∗
4 ) 

where c ∗
1 = g α

∗
1 , c ∗

2 = g α
∗
2 , c ∗

3 = θ ∗, and c ∗
4 = η∗. L 1 ← L 1 ∪ { ( ̂  e (X r, 1 , X t ) 

α∗
2 , θ ∗/H 2 (m d ) 

x s + α∗
1 ) } , L 3 ← L 3 ∪ 

{ (c ∗
1 , c 

∗
2 , c 

∗
3 , X 

α∗
2 

r, 2 , η
∗

� (m d ‖ α∗
1 )) } . 

4. d ′ ∈ { 0 , 1 } ← A 
O H 1 , O H 3 , O S , O U (m 0 , m 1 , C 

∗) , where the oracles work as follows. 

• H 1 oracle query: It works in the same way as in Game G 3 , except that if ˆ e (c ∗
2 , X t ) 

x r, 1 is queried, the game aborts. Let 

this abortion event be F 5 . 

• H 3 oracle query: It works in the same way as in Game G 3 . 
• O S oracle query: It works in the same way as in Game G 3 . 
• O U oracle query: It works in the same way as in Game G 3 . 

Since c ∗
3 is a random value in games G 4 and G 3 , the challenge ciphertext C ∗ generated in these two games are identically 

distributed. Note that if event F 5 happens, then adversary A can correctly guess d with probability 1. If event F 5 does not 

occur, then G 4 is identical to G 3 . According to Lemma 3.1 , we have 

| Pr [ E 4 ] − Pr [ E 3 ] | ≤ Pr [ F 5 ] . (10) 

In next lemma, we prove that event F 5 can only happen with negligible probability. 

Lemma 3.3. Pr [ F 5 ] ≤
q H 1 

1 −q U /p Adv BDH . 

Proof. Suppose that event F 5 happens with non-negligible probability. Using adversary A , we can construct a PPT algorithm 

I to break the BDH assumption. At first, algorithm I is given a BDH instance ( g, g a , g b , g v ) ∈ G 4 , with the goal of computing 

ˆ e (g, g) abv . 

Algorithm I randomly picks x s , x r, 2 
$ ← Z ∗p , computes X s = g x s and X r, 2 = g x r, 2 , and sets X r, 1 = g a and X t = g b , respectively. 

Algorithm I generates a challenge ciphertext C ∗ = (c ∗
1 , c 

∗
2 , c 

∗
3 , c 

∗
4 ) as follows: 

α∗
1 

$ ← Z ∗p , c 
∗
1 = g α

∗
1 , c ∗2 = g v , θ ∗ $ ← G, c ∗3 = θ ∗, η∗ $ ← { 0 , 1 } τm + log p , c 4 = η∗

Algorithm I initiates list L 1 as empty and adds the tuple (c ∗1 , c 
∗
2 , c 

∗
3 , � , � ) to list L 3 , where � denotes an ‘unknown’ value. 

The challenge ciphertext C ∗ has the same distribution as that in Game G 4 . Algorithm I invokes adversary A in Game G 4 
with public keys ( X s , X r ,1 , X r ,2 , X t ) and the challenge ciphertext C ∗, where the oracles are simulated by I in the same way as 

in Game G 4 except for the following: 

• O U oracle query: On input a ciphertext C = (c 1 , c 2 , c 3 , c 4 ) , if c j = c ∗
j holds for 1 ≤ j ≤ 3 yet c 4 
 = c ∗

4 , algorithm I returns ⊥ . 

Otherwise, algorithm I performs the following steps: Query O H 3 to get H 3 (c 1 , c 2 , c 3 , c 
x r, 2 
2 ) = η. Compute m ‖ α1 ← η�c 4 . 

Continue to search each entry ( w, θ ) in L 1 , if both c 1 = g α1 and c 3 = θ · H 2 (m ) α1 + x s are satisfied, then m is returned; 

otherwise ⊥ is returned. 

To show that the unsigncryption queries to O U are simulated indistinguishably from Game G 4 , we analyze the unsign- 

cryption queries as follows: 

• Case 1: ˆ e (X t , c 2 ) 
x r, 1 has been queried to O H 1 before an unsigncryption query for C = (c 1 , c 2 , c 3 , c 4 ) is issued. In this case, 

θ is uniquely determined. Thus, the unsigncryption oracle O U is perfectly simulated. 

• Case 2: ˆ e (X t , c 2 ) 
x r, 1 has not been queried to O H 1 before an unsigncryption query for C = (c 1 , c 2 , c 3 , c 4 ) is issued. In this 

case, O U will output ⊥ . Thus, the simulations would fail if C is a valid ciphertext. Due to the idealness of O H 1 , this 

happens with probability 1/ p . 

Letting F 6 denote the event that a valid ciphertext is rejected in the simulation, we have 

Pr [ F 6 ] ≤ q U 
p 

. 

Thus, if event F 6 does not happen, the simulations are identical to Game G 4 . Algorithm I randomly picks a pair ( w, θ ) from 

L 1 , and sets w as the solution to the given BDH problem instance. Letting F 7 denote the event that w = ˆ e (g, g) abv . We have 

Pr [ F 7 |¬ F 6 ] = 
1 

q H 1 
Pr [ F 5 ] . 
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Therefore, 

Adv BDH = Pr [ F 7 ] = Pr [ F 7 | F 6 ] Pr [ F 6 ] + Pr [ F 7 |¬ F 6 ] Pr [ ¬ F 6 ] 

≥ Pr [ F 7 |¬ F 6 ] Pr [ ¬ F 6 ] 

= 
1 

q H 1 
Pr [ F 5 ](1 − Pr [ F 6 ]) 

≥ 1 − q U /p 

q H 1 
Pr [ F 5 ] (11) 

This completes the proof of Lemma 3.3 . �

In Game G 4 , the challenge ciphertext C ∗ is independent of message m d , which means that adversary has no advantage in 

correctly guessing d . Thus, 

Pr [ E 4 ] = 1 / 2 . (12) 

Combining the above results for games G i , we have 

Adv ind - cca2 
�, A ≤ Pr [ E 2 ] + Pr [ F 1 ] − 1 

2 

≤ Pr [ E 2 ] + Adv CDH + 
q U 

2 τm p 
− 1 

2 

≤ Pr [ E 3 ] + 
q U 
p 

+ Adv CDH + 
q U 

2 τm p 
− 1 

2 

≤ Pr [ E 4 ] + 
q H 1 

1 − q U /p 
Adv BDH + 

q U 
p 

+ Adv CDH + 
q U 

2 τm p 
− 1 

2 

= Adv CDH + 
q U 

2 τm p 
+ 

q U 
p 

+ 
q H 1 

1 − q U /p 
Adv BDH 

This completes the proof of Theorem 3.1 . �

Theorem 3.2. The above PKS-DET construction is OW-CCA2 secure against Type-2 adversary in the random oracle model assum- 

ing that the CDH assumption holds. 

The following proof for Theorem 3.2 follows the standard framework established in [32,39,50] . 

Proof. Let A be a PPT adversary that has non-negligible advantage in attacking the OW-CCA2 security for ciphertexts of the 

PKS-DET scheme. Suppose A issues at most q S signcryption queries, at most q U unsigncryption queries, at most q H 1 hash 

queries of H 1 and at most q H 3 hash queries of H 3 (here, q S , q U , q H 1 and q H 3 are positive). We prove the theorem through a 

sequence of games. 

Game G 0 : We define Game G 0 as formulated in Definition 2.3 . 

1. x s , x r, 1 , x r, 2 
$ ← Z ∗p , X s = g x s , X r, 1 = g x r, 1 , X r, 2 = g x r, 2 . 

2. (x t 
$ ← Z ∗p , X t = g x t ) ← A 

O H 2 , O H 3 , O S , O U (X s , X r, 1 , X r, 2 ) . 

3. m ∗ $ ← M , α∗
1 , α

∗
2 

$ ← Z ∗p , C ∗ = (c ∗1 , c 
∗
2 , c 

∗
3 , c 

∗
4 ) where c ∗1 = g α

∗
1 , c ∗2 = g α

∗
2 , c ∗3 = H 1 ( ̂  e (X r, 1 , X t ) 

α∗
2 ) · H 2 (m ∗) x s + α

∗
1 , and c ∗4 = 

H 3 (c ∗
1 ‖ c ∗2 ‖ c ∗3 ‖ X α

∗
2 

r, 2 ) � (m ∗‖ α∗
1 ) . 

4. m ′ ← A 
O H 2 , O H 3 , O S , O U (C ∗) , where the oracles work in the same way as that in Game G 0 in proving Theorem 3.1 , except 

for O H 2 . 

• H 2 oracle query: For an input message m ∈ M , O H 2 responds with a random value h ∈ G in a consistent way, meaning 

that the same value will be returned for the same input. 

Let E i be the event that m ′ = m ∗ in Game G i for 0 ≤ i ≤ 3. Thus, we have 

Adv ow - cca2 �, A = Pr [ E 0 ] (13) 

We then define the following game which is indistinguishable from Game G 0 . 
Game G 1 : 

1. x s , x r, 1 , x r, 2 
$ ← Z ∗p , X s = g x s , X r, 1 = g x r, 1 , X r, 2 = g x r, 2 , L 3 = ∅ . 

2. (x t 
$ ← Z ∗p , X t = g x t ) ← A 

O H 2 , O H 3 , O S , O U (X s , X r, 1 , X r, 2 ) . 

3. m ∗ $ ← M , α∗
1 , α

∗
2 

$ ← Z ∗p , η∗ ∈ { 0 , 1 } τm + log p , C ∗ = (c ∗
1 , c 

∗
2 , c 

∗
3 , c 

∗
4 ) where c ∗

1 = g α
∗
1 , c ∗

2 = g α
∗
2 , c ∗

3 = H 1 ( ̂  e (X r, 1 , X t ) 
α∗

2 ) ·
H 2 (m ∗) x s + α

∗
1 , and c ∗

4 = η∗
� (m ∗‖ α∗

1 ) . L 3 ← L 3 ∪ { (c ∗
1 , c 

∗
2 , c 

∗
3 , X 

α∗
2 

r, 2 , η
∗) } . 

4. m ′ ← A 
O H 2 , O H 3 , O S , O U (C ∗) , where O H 2 works in the same way as in Game G 0 and the other oracles work in the same way 

as in Game G 1 in proving Theorem 3.1 . 
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Due to the idealness of random oracle, we have 

Pr [ E 1 ] = Pr [ E 0 ] (14) 

We next modify the simulation in an indistinguishable manner. 

Game G 2 : 

1. x s , x r, 1 , x r, 2 
$ ← Z ∗p , X s = g x s , X r, 1 = g x r, 1 , X r, 2 = g x r, 2 , L 3 = ∅ . 

2. (x t 
$ ← Z ∗p , X t = g x t ) ← A 

O H 2 , O H 3 , O S , O U (X s , X r, 1 , X r, 2 ) . 

3. m ∗ $ ← M , α∗
1 , α

∗
2 

$ ← Z ∗p , η∗ ∈ { 0 , 1 } τm + log p , C ∗ = (c ∗
1 , c 

∗
2 , c 

∗
3 , c 

∗
4 ) where c ∗

1 = g α
∗
1 , c ∗

2 = g α
∗
2 , c ∗

3 = H 1 ( ̂  e (X r, 1 , X t ) 
α∗

2 ) ·
H 2 (m ∗) x s + α

∗
1 , and c ∗

4 = η∗. L 3 ← L 3 ∪ { (c ∗
1 , c 

∗
2 , c 

∗
3 , X 

α∗
2 

r, 2 , η
∗

� (m ∗‖ α∗
1 )) } . 

4. m ′ ← A 
O H 2 , O H 3 , O S , O U (C ∗) , where O H 2 works in the same way as in Game G 1 and the other oracles work in the same way 

as in Game G 2 in proving Theorem 3.1 . 

Since c ∗4 is a random value in both games of G 1 and G 2 , the challenge ciphertext C ∗ generated in Game G 2 is identically 

distributed as in Game G 1 . Thus, if event F 1 does not occur, then G 2 is identical to G 1 . According to Lemma 3.1 , we have 

| Pr [ E 2 ] − Pr [ E 1 ] | ≤ Pr [ F 1 ] (15) 

Also, in a way similar to Lemma 3.2 , we can prove: 

Pr [ F 1 ] ≤ Adv CDH + 
q U 

2 τm p 
(16) 

We modify the simulation in an indistinguishable manner. 

Game G 3 : 

1. x s , x r, 1 , x r, 2 
$ ← Z ∗p , X s = g x s , X r, 1 = g x r, 1 , X r, 2 = g x r, 2 , L 2 = ∅ , L 3 = ∅ . 

2. (x t 
$ ← Z ∗p , X t = g x t ) ← A 

O H 2 , O H 3 , O S , O U (X s , X r, 1 , X r, 2 ) . 

3. m ∗ $ ← M , h ∗ $ ← G, α∗
1 , α

∗
2 

$ ← Z ∗p , η∗ ∈ { 0 , 1 } τm + log p , C ∗ = (c ∗
1 , c 

∗
2 , c 

∗
3 , c 

∗
4 ) 

where c ∗1 = g α
∗
1 , c ∗2 = g α

∗
2 , c ∗3 = H 1 ( ̂  e (X r, 1 , X t ) 

α∗
2 ) · (h ∗) x s + α

∗
1 , and c ∗4 = η∗. L 2 ← L 2 ∪ { (m ∗, h ∗) } , L 3 ← L 3 ∪ 

{ (c ∗1 , c 
∗
2 , c 

∗
3 , X 

α∗
2 

r, 2 , η
∗

� (m ∗‖ α∗
1 )) } . 

4. m ′ ← A 
O H 2 , O H 3 , O S , O U (C ∗) , where the oracles work in the same way as in Game G 2 , except for O H 2 . 

• H 2 oracle query: For an input message m ∈ M , if there exists (m, h ) ∈ L 2 , then O H 2 returns h ; otherwise, O H 2 ran- 

domly picks h $ ← G, inserts L 2 ← L 2 ∪ { (m, h ) } , and returns h . 

Due to the idealness of random oracle, we have 

Pr [ E 3 ] = Pr [ E 2 ] (17) 

We then change Game G 3 in letting the adversary output the H 2 hash value of challenge message. 

Game G 4 : 

1. x s , x r, 1 , x r, 2 
$ ← Z ∗p , X s = g x s , X r, 1 = g x r, 1 , X r, 2 = g x r, 2 , L 2 = ∅ , L 3 = ∅ . 

2. (x t 
$ ← Z ∗p , X t = g x t ) ← A 

O H 2 , O H 3 , O S , O U (X s , X r, 1 , X r, 2 ) . 

3. m ∗ $ ← M , h ∗ $ ← G, α∗
1 , α

∗
2 

$ ← Z ∗p , η∗ ∈ { 0 , 1 } τm + log p , C ∗ = (c ∗
1 , c 

∗
2 , c 

∗
3 , c 

∗
4 ) where c ∗

1 = g α
∗
1 , c ∗

2 = g α
∗
2 , c ∗

3 = H 1 ( ̂  e (X r, 1 , X t ) 
α∗

2 ) ·
(h ∗) x s + α

∗
1 , and c ∗4 = η∗. L 2 ← L 2 ∪ { (m ∗, h ∗) } , L 3 ← L 3 ∪ { (c ∗1 , c 

∗
2 , c 

∗
3 , X 

α∗
2 

r, 2 , η
∗

� (m ∗‖ α∗
1 )) } . 

4. h ′ ← A 
O H 2 , O H 3 , O S , O U (C ∗) , where the oracles work in the same way as in Game G 3 . 

Let E 4 be the event that h ′ = H 2 (m ∗) in Game G 4 . Therefore, we have 

Lemma 3.4. Pr [ E 3 ] = Pr [ E 4 ] . 

We continue to define the following game, where the signcryption and unsigncryption oracles deal with elements in 

group G . 

Game G 5 : 

1. x s , x r, 1 , x r, 2 
$ ← Z ∗p , X s = g x s , X r, 1 = g x r, 1 , X r, 2 = g x r, 2 , L 3 = ∅ . 

2. (x t 
$ ← Z ∗p , X t = g x t ) ← A 

O H 3 , O S , O U (X s , X r, 1 , X r, 2 ) , where H 3 : G 4 → { 0 , 1 } τG + log p . Here τG denotes the element size of group 

G . 

3. h ∗ $ ← G, α∗
1 , α

∗
2 

$ ← Z ∗p , η∗ ∈ { 0 , 1 } τG + log p , C ∗ = (c ∗1 , c 
∗
2 , c 

∗
3 , c 

∗
4 ) where c ∗1 = g α

∗
1 , c ∗2 = g α

∗
2 , c ∗3 = H 1 ( ̂  e (X r, 1 , X t ) 

α∗
2 ) · (h ∗) x s + α

∗
1 , c ∗4 = 

η∗. L 3 ← L 3 ∪ { (c ∗
1 , c 

∗
2 , c 

∗
3 , X 

α∗
2 

r, 2 , η
∗

� (h ∗‖ α∗
1 )) } . 

4. h ′ ← A 
O H 3 , O S , O U (C ∗) , where the oracles work in the same way as in Game G 4 . 
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Let E 5 be the event that h ′ = h ∗ in Game G 5 . The messages in Game G 5 can be seen as O H 2 outputs defined in G 4 . The 

change to the output length of H 3 does not affect its idealness. Thus, we have 

Lemma 3.5. Pr [ E 4 ] = Pr [ E 5 ] . 

Next, we show that event E 5 can only happen with negligible probability. 

Lemma 3.6. Pr [ E 5 ] ≤ Adv CDH . 

Proof. Suppose that event E 5 happens with non-negligible probability. We construct a PPT algorithm I to break the CDH 

assumption. Given a tuple ( g, g a , m a ) ∈ G 3 , where r ∈ R Z 
∗
p and m ∈ R G ∗, the goal of algorithm I is to calculate m . 

Algorithm I randomly picks x s , x r, 1 , x r, 2 
$ ← Z ∗p and computes the public parameters X s = g x s , X r, 1 = g x r, 1 , X r, 2 = g x r, 2 . Also, 

algorithm I randomly selects α∗
2 

$ ← Z ∗p and η∗ ∈ { 0 , 1 } τG + log p . It then generates the challenge ciphertext C ∗ = (c ∗
1 , c 

∗
2 , c 

∗
3 , c 

∗
4 ) 

as follows: c ∗1 = g a /X s , c ∗2 = g α
∗
2 , c ∗3 = H 1 ( ̂  e (X r, 1 , X t ) 

α∗
2 ) · m a , c ∗4 = η∗. Algorithm I adds { (c ∗1 , c 

∗
2 , c 

∗
3 , X 

α∗
2 

r, 2 , � ) } to list L 3 , where 

� denotes an ‘unknown’ value. It invokes adversary E on input ( X s , X r ,1 , X r ,2 ) and C ∗, and simulates the game as described 

in Game G 5 . Eventually, algorithm I outputs whatever E outputs. Therefore, Lemma 3.6 follows. �

Combining the above results for games G i , we have 

Adv ow - cca2 �, A ≤ Pr [ E 2 ] + Pr [ F 1 ] 

≤ Pr [ E 2 ] + Adv CDH + 
q U 

2 τm p 

= Pr [ E 5 ] + Adv CDH + 
q U 

2 τm p 

≤ 2 Adv CDH + 
q U 

2 τm p 

This concludes Theorem 3.2 . �

Theorem 3.3. The above PKS-DET construction is EU-CMA secure against Type-3 adversary in the random oracle model assuming 

that the CDH assumption holds. 

The proof for Theorem 3.3 follows the standard framework established in [4] . 

Proof. Suppose that there is a PPT adversary A who can break the proposed PKS-DET scheme with non-negligible probabil- 

ity ε. Suppose A issues at most q S signcryption queries, at most q U unsigncryption queries and at most q H 2 hash queries of 

H 2 (here, q S , q U and q H 2 are positive). We show how to construct an algorithm I to solve the CDH problem in a similar way 

as [4] by manipulating H 2 as a random oracle. 

At first, algorithm I is given a CDH instance ( g, g a , h ). The goal of I is to compute h a . Algorithm I simulates challenger 

of the PKS-DET scheme and interacts with adversary A as follows. 

Setup : Algorithm I randomly picks x r, 1 , x r, 2 
$ ← Z ∗p , computes X r, 1 = g x r, 1 and X r, 2 = g x r, 2 and sets X s = g a which implies 

x s = a . Adversary A randomly picks x t 
$ ← Z ∗p and computes X t = g x t . 

Queries : Adversary A can adaptively submit the following queries. 

• O H 2 : For such queries with input message m i , I maintains a list L 2 = { (m i , μi , νi , ζi ) } and responds as follows. If there is 

an entry (m i , μi , νi , ζi ) ∈ L 2 , I returns ζ i ; if not, I picks a random coin μi 
$ ← { 0 , 1 } such that Pr [ μi = 0] = 1 

q S +1 , picks a 

random value νi 
$ ← Z ∗p , computes ζi = h 1 −μi g νi ∈ G, returns ζ i and appends ( m i , μi , ν i , ζ i ) to L 2 . 

• O S : For each queried message m i , algorithm I randomly picks αi, 1 , αi, 2 
$ ← Z ∗p and returns a ciphertext C i = 

(c i, 1 , c i, 2 , c i, 3 , c i, 4 ) which is generated as follows. It computes c i, 1 = g αi, 1 and c i, 2 = g αi, 2 , and runs the algorithm in O H 2 for 

a H 2 query on m i . Let ( m i , μi , ν i , ζ i ) be the corresponding entry in list L 2 . If μi = 0 , then I reports failure and aborts the 

game. Otherwise, algorithm I computes c i, 3 = H 1 ( ̂  e (X r, 1 , X t ) 
αi, 2 ) · (g αi, 1 · X s ) νi , where H 2 (m i ) = g νi ∈ G . It then computes 

c 4 = H 3 (c i, 1 ‖ c i, 2 ‖ c i, 3 ‖ X αi, 2 
r, 2 ) � (m i ‖ αi, 1 ) . Note that the ciphertexts are perfectly simulated in adversary A ’s view when the 

abortion case does not occur. 

• O U : For each queried ciphertext C i = (c i, 1 , c i, 2 , c i, 3 , c i, 4 ) , algorithm I performs the following steps: Compute m i ‖ αi, 1 ← 

c i, 4 � H 3 (c i, 1 ‖ c i, 2 ‖ c i, 3 ‖ c x r, 2 i, 2 ) , and run the algorithm in O H 2 for a H 2 query on m i . Let ζi = H 2 (m i ) . If both c i, 1 = g αi, 1 and 

ˆ e (c i, 3 /H 1 ( ̂  e (X t , c i, 2 ) 
x r, 1 ) , g) = ˆ e (ζi , c i, 1 · X s ) are satisfied, then m i is returned, otherwise, ⊥ is returned. 

Output : Eventually, adversary A outputs a tuple (m ∗, C ∗ = (c ∗1 , c 
∗
2 , c 

∗
3 , c 

∗
4 )) such that m ∗ has not been queried to O S . As- 

sume C ∗ is a valid forged ciphertext of m ∗; otherwise, I reports failure and aborts the game. In the random oracle model, 

m ∗ should have been queried to O H 2 . 

Algorithm I retrieves the tuple ( m ∗, μ∗, ν∗, ζ ∗) from the list L 2 . If μ
∗ = 1 , then I reports failure and aborts the game. 

Otherwise, i.e., μ∗ = 0 , we know H 2 (m ∗) = ζ ∗ = h · g ν
∗ ∈ G . Therefore, c ∗

3 = H 1 ( ̂  e (c ∗
2 , X t ) 

x r, 1 ) · (h a · h α
∗
1 · X ν

∗
s · (c ∗

1 ) 
ν∗

) . Next, al- 

gorithm I runs the Unsigncrypt procedure on C ∗ to obtain α∗
1 and computes h a = c ∗

3 / (H 1 ( ̂  e (c ∗
2 , X t ) 

x r, 1 ) · h α
∗
1 · X ν

∗
s · (c ∗

1 ) 
ν∗

) . 

To analyze the probability of solving the given CDH instance, we define three events: 
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• Let E 1 be the event that algorithm I does not abort in responding to signcryption queries. 

• Let E 2 be the event that C ∗ is a valid forged ciphertext of m ∗. 

• Let E 3 be the event that μ∗ = 1 . 

As discussed in [4] , 

Pr [ E 1 ] = 

(
1 − 1 

q S + 1 

)q S 
≥ 1 

e 
, Pr [ E 2 | E 1 ] ≥ ε, Pr [ E 3 | E 2 ∩ E 1 ] = 

1 

q S + 1 

where e denotes the base of the natural logarithm. Therefore, algorithm I can correctly solve the given CDH problem with 

the following probability: 

Pr [ I success ] = Pr [ E 1 ∩ E 2 ∩ E 3 ] = Pr [ E 1 ] · Pr [ E 2 | E 1 ] · Pr [ E 3 | E 2 ∩ E 1 ] ≥ ε 

e (q S + 1) 

This completes the proof of Theorem 3.3 . �

4. Extension, comparison and analysis 

In this section, we extend our basic PKS-DET construction in Section 3 to support other message domains and to allow 

more flexible delegation on ciphertext equality test. We also compare our basic PKS-DET construction and its extensions 

with existing schemes. 

4.1. Extension to other message domains 

Our basic PKS-DET construction in Section 3 works for message domains M such that |M| = | G | . We now extend the 

construction to work with longer and shorter messages. 

Case 1 . For signcrypting long messages such that |M| > | G | , our construction can be modified with the technique in [50 , 

Section 4]. In the following, we only describe the parts which are different from the basic PKS-DET construction. 

Setup : A pseudo-random bit generator PRG : { 0 , 1 } τseed → { 0 , 1 } τprg is chosen, where τ seed < τ prg . Also, two collision re- 

sistant hash functions H 2 : M → G and H 3 : G 4 → { 0 , 1 } τseed are chosen. They are included in the global parameter gp . Let 

[ x ] l denote that a substring with length l is taken from string x . 

Signcrypt : Given a message m ∈ M , the fourth component in ciphertext C = (c 1 , c 2 , c 3 , c 4 ) is changed to 

c 4 = 
[
PRG (H 3 (c 1 ‖ c 2 ‖ c 3 ‖ X 

α2 
r, 2 )) 

]τm + log p 
� (m ‖ α1 ) 

Unsigncrypt : Given a ciphertext C = (c 1 , c 2 , c 3 , c 4 ) , the recipient computes 

m ‖ α1 = c 4 �
[
PRG (H 3 (c 1 ‖ c 2 ‖ c 3 ‖ c 

x r, 2 
2 )) 

]τm + log p 

and verifies Eqs. (1) and (2) . If both conditions are met, the recipient outputs m . 

Regarding the soundness of the above modified construction, conditions 3 and 5 in Definition 2.1 are bounded by the 

collision probability of H 2 . Similar to Theorems 3.1 –3.3 , we have the following security results. 

Theorem 4.1. The above modified PKS-DET construction is IND-CCA2 secure against Type-1 adversary in the random oracle model 

assuming that the CDH and BDH assumptions hold and PRG is a secure pseudo-random bit generator. 

Theorem 4.2. The above modified PKS-DET construction is OW-CCA2 secure against Type-2 adversary in the random oracle model 

assuming that the CDH assumption holds and PRG is a secure pseudo-random bit generator. 

Theorem 4.3. The above modified PKS-DET construction is EU-CMA secure against Type-3 adversary in the random oracle model 

assuming that the CDH assumption holds and PRG is a secure pseudo-random bit generator. 

Case 2 . For the case where M is a small message domain (i.e., |M| < | G | ), for example, M may contain boolean values, 

we modify our basic construction by concatenating every message with a random string. That is, in the Signcrypt procedure, 

the sender picks a random number z ∈ R and concatenate it to m as m̄ = m ‖ z ∈ M̄ 
de f = M × R . Accordingly, the other pro- 

cedures Unsigncrypt , PCMatch and EqTest will work on m̄ rather than m . In this case, the EqTest procedure can only check 

whether two ciphertexts signcrypt the same concatenated message m̄ rather than m . 

In the basic PKS-DET construction, the designated tester is able to verify whether a surrendered message m matches C 

by running the PCMatch procedure. However, there is no mechanism to prevent the designated tester from matching some 

other randomly chosen plaintext against ciphertexts, which is referred to as offline message recovery attack in [32,43] and 

is unavoidable in PKEET related schemes including our basic PKS-DET construction. Interestingly, our modified construction 

is not vulnerable to offline message recovery attack, though the functionality of its EqTest procedure is degraded. 

In the following, we highlight how the modified construction differs from the basic PKS-DET construction. We let R 
de f = 

{ 0 , 1 } log p−τm , which means M̄ = Z p . 



Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 490 (2019) 146–165 161 

Signcrypt : Given a message m ∈ M , a number z $ ← R is randomly chosen, and the last two elements in ciphertext 

C = (c 1 , c 2 , c 3 , c 4 ) are changed to 

c 3 = H 1 ( ̂  e (X r, 1 , X t ) 
α2 ) · H 2 ( m̄ ) α1 + x s c 4 = H 3 (c 1 ‖ c 2 ‖ c 3 ‖ X 

α2 
r, 2 ) � ( m̄ ‖ α1 ) 

Unsigncrypt : Given a ciphertext C = (c 1 , c 2 , c 3 , c 4 ) , compute m̄ ‖ α1 ← c 4 � H 3 (c 1 ‖ c 2 ‖ c 3 ‖ c x r, 2 2 ) , verify Eq. (1) and 

ˆ e 

(
c 3 

H 1 ( ̂  e (X t , c 2 ) x r, 1 ) 
, g 

)
? = ˆ e (H 2 ( m̄ ) , c 1 · X s ) (18) 

If both conditions are met, output m̄ . 

PCMatch : Check whether C signcrypts m̄ ′ as follows: 

ˆ e 

(
c 3 

H 1 ( ̂  e (X r, 1 , c 2 ) x t ) 
, g 

)
? = ˆ e (H 2 ( m̄ ′ ) , c 1 · X s ) (19) 

If the condition is met, output 1; otherwise output 0. 

EqTest : Check whether ciphertexts C and C ′ signcrypt the same concatenated message (i.e., m̄ = m̄ ′ ) in the same way as 

shown in Eq. (4) . If the condition is met, output 1; otherwise output 0. 

For the soundness requirement formulated in Definition 2.1 , all the conditions apply to the concatenated message m̄ 

instead of m . In particular, the third and fifth conditions are changed as follows: 

3’. For any m̄ 
 = m̄ ′ ∈ M̄ such that C ← Signcrypt ( gp , pk r , pk t , sk s , m ) , Pr [ PCMatch ( gp , sk t , ( pk s , pk r , C) , m̄ ′ ) = 1] ≤ ε(λ) , where 

ε( ·) is a negligible function and z ∈ R R is used in Signcrypt to construct m̄ . 

5’. For any m̄ 
 = m̄ ′ ∈ M̄ such that C ← Signcrypt ( gp , pk r , pk t , sk s , m ) and C ′ ← Signcrypt ( gp , pk ′ r , pk t , sk 
′ 
s , m ′ ) , 

Pr [ EqTest ( gp , sk t , ( pk s , pk r , C) , ( pk ′ s , pk ′ r , C ′ )) = 1] ≤ ε(λ) where ε( ·) is a negligible function and z, z ′ ∈ R R are used 

in Signcrypt to construct m̄ and m̄ ′ . 

Similar to Theorems 3.1 –3.3 , we have the following security results. 

Theorem 4.4. The above modified PKS-DET construction is IND-CCA2 secure against Type-1 adversary in the random oracle model 

assuming that the CDH and BDH assumptions hold. 

Theorem 4.5. The above modified PKS-DET construction is OW-CCA2 secure against Type-2 adversary in the random oracle model 

assuming that the CDH assumption holds. 

Theorem 4.6. The above modified PKS-DET construction is EU-CMA secure against Type-3 adversary in the random oracle model 

assuming that the CDH assumption holds. 

4.2. Extension to flexible delegation 

In this section, we show that the basic PKS-DET construction can also be extended to allow a recipient or tester to 

further delegate to some other party the capability of running the PCMatch and EqTest procedures. This extension is 

applicable to the scenario where a resource-constrained tester would like to delegate to a well-equipped party to run those 

two procedures. The delegation mechanism is similar to that in PKEET related schemes [25,26,30–32,42,43,46] , where a 

recipient generates a token to enable a third party to perform equality test on his ciphertexts. 

Let PKE = ( KGen , Enc , Dec ) be a CCA-secure public key encryption scheme, where the message space is G . Suppose that 

a party A holds a pair of public/secret keys ( pk a , sk a ) ← PKE . KGen (λ) . A recipient is able to generate an encrypted token 

as 

̂ token ← PKE . Enc ( pk a , X 
x r, 1 
t ) 

Similarly, a tester can also encrypt the same token as follows 

̂ token ← PKE . Enc ( pk a , X 
x t 
r, 1 ) 

Party A can recover the token by performing the following decryption procedure: 

token = g x t x r, 1 ← PKE . Dec ( sk a , ̂ token ) 

As an example, PKE can be instantiated using Kiltz’s key encapsulation mechanism [22] , which was proved to be CCA- 

secure under the Gap Hashed Diffie-Hellman assumption. 

With the token , party A is able to perform the following PCMatch and EqTest procedures. 

PCMatch a : Given a ciphertext C = (c 1 , c 2 , c 3 , c 4 ) , party A checks whether C signcrypts m ′ with the token as follows: 
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Table 3 
Performance comparison with existing encryption schemes supporting equality test on ciphertexts in symmetric bilinear 
groups. 

Scheme Ciphertext size Computation cost 

Signcryption Unsigncryption Equality PCMatch 
or Encryption or Decryption test 

Yang et al. [50] 3 τG + τZ 3 πG 3 πG 2 π ˆ e 2 π ˆ e 
Tang [43] 3 τG + τZ + τm + λ 5 πG 2 πG 4 πG 2 πG 
Lee et al. [25] 3 τG + τZ 4 πG 3 πG 2 πG + 2 π ˆ e πG + 2 π ˆ e 
Lee et al. [27] (2 λ + 15) τG + τZ 14 πG + π ˆ e 11 πG + 9 π ˆ e 10 πG + 6 π ˆ e 24 πG + 7 π ˆ e 
Ma et al. [31] 5 τG + τZ 6 πG 5 πG 2 πG + 2 π ˆ e πG + 2 π ˆ e 
Ma [30] 5 τG + τZ 6 πG + 2 π ˆ e 2 πG + 2 π ˆ e 4 π ˆ e 3 π ˆ e 
Wang and Pang [46] 5 τG + τZ 8 πG + π ˆ e 3 πG + 4 π ˆ e 2 πG + 4 π ˆ e 10 πG + 5 π ˆ e 
Slamanig et al. [40] 4 τG 1 + 3 τZ 6 πG 1 5 πG 1 2 π ˆ ae 2 π ˆ ae 
Pang and Ding [35] 7 τG + τG T 7 πG + π ˆ e – 2 πG + 5 π ˆ e –

PKS-DET Section 3 3 τG + 2 τZ + τm 4 πG + πG T + π ˆ e 2 πG + πG T + 3 π ˆ e 2 πG T + 4 π ˆ e πG T + 3 π ˆ e 
Section 4.1 (1) 3 τG + 2 τZ + τm 4 πG + πG T + π ˆ e 2 πG + πG T + 3 π ˆ e 2 πG T + 4 π ˆ e πG T + 3 π ˆ e 
Section 4.1 (2) 3 τG + 2 τZ + τm 4 πG + πG T + π ˆ e 2 πG + πG T + 3 π ˆ e 2 πG T + 4 π ˆ e πG T + 3 π ˆ e 
Section 4.2 3 τG + 2 τZ + τm 4 πG + πG T + π ˆ e 2 πG + πG T + 3 π ˆ e 4 π ˆ e 3 π ˆ e 

ˆ e 

(
c 3 

H 1 ( ̂  e ( token , c 2 )) 
, g 

)
? = ˆ e (H 2 (m ′ ) , c 1 · X s ) (20) 

EqTest a : Given ciphertexts C = (c 1 , c 2 , c 3 , c 4 ) and C ′ = (c ′ 1 , c ′ 2 , c ′ 3 , c ′ 4 ) associated with (sender, recipient, tester) and 

(sender ′ , recipient ′ , tester ′ ), respectively, and given token = g x t x r, 1 and token ′ = g 
x ′ t x ′ r, 1 , party A checks whether C and C ′ sign- 

crypt the same message (i.e., m = m ′ ) as follows: 

ˆ e 

(
c 3 

H 1 ( ̂  e ( token , c 2 )) 
, c ′ 1 · X ′ s 

)
? = ˆ e 

(
c ′ 3 

H 1 ( ̂  e ( token ′ , c ′ 
2 )) 

, c 1 · X s 

)
(21) 

The correctness of procedures PCMatch a and EqTest a are straightforward and omitted here. 

4.3. Comparison 

We now analyze the costs of our PKS-DET construction and its extensions, and compare them in Table 3 with ex- 

isting schemes supporting equality test on ciphertexts in terms of ciphertext sizes and computation costs of signcryp- 

tion/encryption, unsigncryption/decryption, matching and equality test. We focus on resource-intensive computations such 

as exponentiation and bilinear mapping, while lightweight computations including addition, hash evaluation and pseudo- 

random bit generation are omitted. The cost of the PCMatch procedure is one ciphertext matching for a given surrendered 

message, and the cost of the EqTest procedure includes the computation in comparing two ciphertexts. 

In Table 3 , for a symmetric bilinear map ˆ e : G × G → G T , we use τG to denote the element size in G , and πG and π ˆ e to 

represent the costs of evaluating an exponentiation in G and a symmetric bilinear mapping ˆ e (·, ·) , respectively. We use τ Z 
and τG T to represent the element sizes in Z p and G T , respectively, in symmetric bilinear maps. We also use πG T to denote 

the cost of an exponentiation on G T . For Tang’s schemes [41,43] , τG denotes the element size in an ordinary multiplicative 

cyclic group G , λ denotes the security parameter, πG represents the evaluation cost of an exponentiation in G . τm denotes 

the message size in domain M in [41,43] and our PKS-DET constructions; while λ represents the security parameter in [27] . 

Although the public key schemes in [25,27,30–32,40,41,43,46,47,50] do not include an explicit PCMatch procedure, the 

(authorized/delegated) tester may match ciphertexts against surrendered messages as follows. Given a surrendered message 

m , the tester in Yang et al.’s scheme [50] checks ˆ e (c 1 , m ) 
? = ˆ e (c 2 , g) for every ciphertext C = (c 1 , c 2 , c 3 ) , and concludes that 

C encrypts m if the condition holds. In Tang’s scheme [43] , suppose the tester has already received a user U i ’s token i , then 

the tester verifies c 4 
? = g H 2 ((c 2 ) 

token i )+ m for every ciphertext C = (c 1 , c 2 , c 3 , c 4 , c 5 ) . In Lee et al.’s scheme [25] that enhanced 

the security of [19] , the authorized tester checks ˆ e (c 1 , m ) 
? = ˆ e (c 2 /H 1 ((c 1 ) 

α) , g) for every ciphertext C = (c 1 , c 2 , c 3 ) , where α
denotes the secret key of the recipient that serves as a token in the user’s warrant. 

For the user level authorization scheme in [31] , the tester will obtain a user token token i from recipient U i , which is in 

fact the secret key of U i . With token i , the tester computes m̈ r 1 ‖ ( ̈m · Y ) r 1 ← c 3 � H 1 ((c 2 ) 
token i ) and verifies ˆ e ( ̈m r 1 , g) 

? = ˆ e (c 1 , m ) 

for every ciphertext C = (c 1 , c 2 , c 3 , c 4 ) . If so, then m̈ = m, which means C encrypts m . In Ma’s scheme [30] , upon obtaining 

a token token ID from a recipient ID , the tester checks if ˆ e (c 3 /H 2 ( ̂  e ( token ID , c 2 )) , g) 
? = ˆ e (c 1 , m ) holds for every ciphertext C = 

(c 1 , c 2 , c 3 , c 4 , c 5 ) . Ma et al.’s scheme [32] allows a delegated tester to verify ˆ e (g 1 , c 3 /H 1 ( token , c 2 )) 
? = ˆ e (c 1 , m ) . Note that in 

[32] , the token is encrypted using the ElGamal encryption technique. Thus the tester has to perform 2 and 1 exponentiations 

in G 1 to recover user token(s) in the EqTest and PCMatch procedures, respectively; however, these recovering steps are 

performed only once for all ciphertexs in the two procedures. 
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Fig. 3. Performance of Signcrypt and Unsigncrypt . 

Fig. 4. Performance of PCMatch and EqTest . 

The schemes proposed by Slamanig et al. [40] only allow the authorized tester to compare ciphertexts generated by the 

same user. In their construction based on ElGamal encryption in asymmetric bilinear groups, the token consists of two ele- 

ments token 1 and token 2 , which enables the tester to verify ˆ e (c 2 /m, token 1 ) 
? = ˆ e (c 1 , token 2 ) for every ciphertext C = (c 1 , c 2 ) . 

The scheme presented by Wang et al. [47] has the same implicit PCMatch procedure as [40] . However, in other schemes 

presented in [27,41,46] , to enable a PCMatch procedure on some message m , the tester should sequentially run the Enc and 

EqTest procedures, that is, he first encrypts m to get C and then matches C against the outsourced ciphertexts. Since Pang 

and Ding’s scheme [35] is designed in the secret key setting, there is no PCMatch procedure on messages for the tester, 

except when some ciphertext instead of surrendered message is provided. 

4.4. Experimental analysis 

We conducted the experiments of our PKS-DET construction using the Pairing Based Cryptography Library (PBC, http:// 

crypto.stanford.edu/pbc/ ). All procedures are executed on a system with Intel(R) Core(TM) i5-5200U CPU at 2.20GHz, 8.00GB 

RAM and running Windows 7. The elliptic curve is of Type A ( y 2 = x 3 + x ) such that p is a 160-bit prime and τG = 256 . We 

obtained the benchmark where each pairing takes roughly 2.4 ms, and an exponentiation in G, G T and Z p take roughly 

2.7 ms, 0.6 ms and 0.03 ms, respectively. With this benchmark, it is easy to estimate the rough running time of every 

procedure of the schemes compared in Table 3 . 

The performance of the signcryption procedure and unsigncryption procedure are shown in Fig. 3 , where several cases 

with different number of inputs to Signcrypt and Unsigncrypt are considered, that is, Signcrypt is run to signcrypt 10, 20, 30, 

40 and 50 messages, whereas Unsigncrypt is run to unsigncrypt 10, 20, 30, 40 and 50 ciphertexts. The experiment shows 

that the average execution time of signcrypting (resp. unsigncrypting) a single message (resp. ciphertext) is roughly 17 msec 

(resp. 19 msec). Fig. 3 also demonstrates that the performance of Signcrypt and Unsigncrypt are linearly determined by the 

number of the input elements to be signcrypted or unsigncrypted. 

Fig. 4 plots the performance of the plaintext-ciphertext matching procedure and equality test procedure, where several 

cases with different number of inputs to PCMatch and EqTest are considered, that is, PCMatch is run to match a given mes- 

http://crypto.stanford.edu/pbc/
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sage with 10, 20, 30, 40 and 50 ciphertexts, whereas EqTest is run to compare 10, 20, 30, 40 and 50 pairs of ciphertexts. The 

figure shows that the average execution time of matching a message with a ciphertext is roughly 12 msec, and performing 

equality test on two ciphertexts needs about 18 msec. Similar to Fig. 3 , Fig. 4 also indicates that the cost of PCMatch and 

EqTest is linear to the number of the input pairs to be matched or tested. 

5. Conclusion 

Motivated by the problem of simultaneous authentication and monitoring on encrypted data in a secure messaging sys- 

tem, we proposed the notion of public key signcryption with designated equality test on ciphertexts (PKS-DET). We formu- 

lated the PKS-DET framework and security model with respect to three types of adversaries, two for data confidentiality 

and one for data integrity. We then presented a concrete PKS-DET construction in bilinear groups which allows a sender 

to designate a third-party tester to perform equality test in ciphertexts without any additional explicit authorization. We 

formally proved the security of our construction in the security model. We also showed how to extend our basic PKS-DET 

construction to support long and short message domains, and to allow the designated tester to further delegate the equality 

test functionalities to other parties. Detailed comparison with related schemes showed that our basic PKS-DET construc- 

tion and its extensions enjoy rich functionalities with reasonable efficiency, and an experimental analysis demonstrated the 

practicality of our construction. 
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