62 research outputs found

    Pseudorandomness via the discrete Fourier transform

    Full text link
    We present a new approach to constructing unconditional pseudorandom generators against classes of functions that involve computing a linear function of the inputs. We give an explicit construction of a pseudorandom generator that fools the discrete Fourier transforms of linear functions with seed-length that is nearly logarithmic (up to polyloglog factors) in the input size and the desired error parameter. Our result gives a single pseudorandom generator that fools several important classes of tests computable in logspace that have been considered in the literature, including halfspaces (over general domains), modular tests and combinatorial shapes. For all these classes, our generator is the first that achieves near logarithmic seed-length in both the input length and the error parameter. Getting such a seed-length is a natural challenge in its own right, which needs to be overcome in order to derandomize RL - a central question in complexity theory. Our construction combines ideas from a large body of prior work, ranging from a classical construction of [NN93] to the recent gradually increasing independence paradigm of [KMN11, CRSW13, GMRTV12], while also introducing some novel analytic machinery which might find other applications

    A Search for Good Pseudo-random Number Generators : Survey and Empirical Studies

    Full text link
    In today's world, several applications demand numbers which appear random but are generated by a background algorithm; that is, pseudo-random numbers. Since late 19th19^{th} century, researchers have been working on pseudo-random number generators (PRNGs). Several PRNGs continue to develop, each one demanding to be better than the previous ones. In this scenario, this paper targets to verify the claim of so-called good generators and rank the existing generators based on strong empirical tests in same platforms. To do this, the genre of PRNGs developed so far has been explored and classified into three groups -- linear congruential generator based, linear feedback shift register based and cellular automata based. From each group, well-known generators have been chosen for empirical testing. Two types of empirical testing has been done on each PRNG -- blind statistical tests with Diehard battery of tests, TestU01 library and NIST statistical test-suite and graphical tests (lattice test and space-time diagram test). Finally, the selected 2929 PRNGs are divided into 2424 groups and are ranked according to their overall performance in all empirical tests

    Fourier Growth of Regular Branching Programs

    Get PDF
    We analyze the Fourier growth, i.e. the L? Fourier weight at level k (denoted L_{1,k}), of read-once regular branching programs. We prove that every read-once regular branching program B of width w ? [1,?] with s accepting states on n-bit inputs must have its L_{1,k} bounded by min{Pr[B(U_n) = 1](w-1)^k, s ? O((n log n)/k)^{(k-1)/2}}. For any constant k, our result is tight up to constant factors for the AND function on w-1 bits, and is tight up to polylogarithmic factors for unbounded width programs. In particular, for k = 1 we have L_{1,1}(B) ? s, with no dependence on the width w of the program. Our result gives new bounds on the coin problem and new pseudorandom generators (PRGs). Furthermore, we obtain an explicit generator for unordered permutation branching programs of unbounded width with a constant factor stretch, where no PRG was previously known. Applying a composition theorem of B?asiok, Ivanov, Jin, Lee, Servedio and Viola (RANDOM 2021), we extend our results to "generalized group products," a generalization of modular sums and product tests

    NP-hardness of minimum circuit size problem for OR-AND-MOD circuits

    Get PDF
    The Minimum Circuit Size Problem (MCSP) asks for the size of the smallest boolean circuit that computes a given truth table. It is a prominent problem in NP that is believed to be hard, but for which no proof of NP-hardness has been found. A significant number of works have demonstrated the central role of this problem and its variations in diverse areas such as cryptography, derandomization, proof complexity, learning theory, and circuit lower bounds. The NP-hardness of computing the minimum numbers of terms in a DNF formula consistent with a given truth table was proved by W. Masek [31] in 1979. In this work, we make the first progress in showing NP-hardness for more expressive classes of circuits, and establish an analogous result for the MCSP problem for depth-3 circuits of the form OR-AND-MOD2. Our techniques extend to an NP-hardness result for MODm gates at the bottom layer under inputs from (Z/mZ)n

    Improved Bounds for Quantified Derandomization of Constant-Depth Circuits and Polynomials

    Get PDF
    This work studies the question of quantified derandomization, which was introduced by Goldreich and Wigderson (STOC 2014). The generic quantified derandomization problem is the following: For a circuit class cal{C} and a parameter B=B(n), given a circuit C in cal{C} with n input bits, decide whether C rejects all of its inputs, or accepts all but B(n) of its inputs. In the current work we consider three settings for this question. In each setting, we bring closer the parameter setting for which we can unconditionally construct relatively fast quantified derandomization algorithms, and the "threshold" values (for the parameters) for which any quantified derandomization algorithm implies a similar algorithm for standard derandomization. For constant-depth circuits, we construct an algorithm for quantified derandomization that works for a parameter B(n) that is only slightly smaller than a "threshold" parameter, and is significantly faster than the best currently-known algorithms for standard derandomization. On the way to this result we establish a new derandomization of the switching lemma, which significantly improves on previous results when the width of the formula is small. For constant-depth circuits with parity gates, we lower a "threshold" of Goldreich and Wigderson from depth five to depth four, and construct algorithms for quantified derandomization of a remaining type of layered depth-3 circuit that they left as an open problem. We also consider the question of constructing hitting-set generators for multivariate polynomials over large fields that vanish rarely, and prove two lower bounds on the seed length of such generators. Several of our proofs rely on an interesting technique, which we call the randomized tests technique. Intuitively, a standard technique to deterministically find a "good" object is to construct a simple deterministic test that decides the set of good objects, and then "fool" that test using a pseudorandom generator. We show that a similar approach works also if the simple deterministic test is replaced with a distribution over simple tests, and demonstrate the benefits in using a distribution instead of a single test

    Randomized Search of Graphs in Log Space and Probabilistic Computation

    Full text link
    Reingold has shown that L = SL, that s-t connectivity in a poly-mixing digraph is complete for promise-RL, and that s-t connectivity for a poly-mixing out-regular digraph with known stationary distribution is in L. Several properties that bound the mixing times of random walks on digraphs have been identified, including the digraph conductance and the digraph spectral expansion. However, rapidly mixing digraphs can still have exponential cover time, thus it is important to specifically identify structural properties of digraphs that effect cover times. We examine the complexity of random walks on a basic parameterized family of unbalanced digraphs called Strong Chains (which model weakly symmetric logspace computations), and a special family of Strong Chains called Harps. We show that the worst case hitting times of Strong Chain families vary smoothly with the number of asymmetric vertices and identify the necessary condition for non-polynomial cover time. This analysis also yields bounds on the cover times of general digraphs. Next we relate random walks on graphs to the random walks that arise in Monte Carlo methods applied to optimization problems. We introduce the notion of the asymmetric states of Markov chains and use this definition to obtain some results about Markov chains. We also obtain some results on the mixing times for Markov Chain Monte Carlo Methods. Finally, we consider the question of whether a single long random walk or many short walks is a better strategy for exploration. These are walks which reset to the start after a fixed number of steps. We exhibit digraph families for which a few short walks are far superior to a single long walk. We introduce an iterative deepening random search. We use this strategy estimate the cover time for poly-mixing subgraphs. Finally we discuss complexity theoretic implications and future work
    • 

    corecore