
NP-hardness of Minimum Circuit Size Problem for
OR-AND-MOD Circuits
Shuichi Hirahara1

Department of Computer Science, The University of Tokyo
Tokyo, Japan
hirahara@is.s.u-tokyo.ac.jp

Igor C. Oliveira
Department of Computer Science, University of Oxford
Oxford, United Kingdom
igor.carboni.oliveira@cs.ox.ac.uk

Rahul Santhanam
Department of Computer Science, University of Oxford
Oxford, United Kingdom
rahul.santhanam@cs.ox.ac.uk

Abstract
The Minimum Circuit Size Problem (MCSP) asks for the size of the smallest boolean circuit
that computes a given truth table. It is a prominent problem in NP that is believed to be
hard, but for which no proof of NP-hardness has been found. A significant number of works
have demonstrated the central role of this problem and its variations in diverse areas such as
cryptography, derandomization, proof complexity, learning theory, and circuit lower bounds.

The NP-hardness of computing the minimum numbers of terms in a DNF formula consistent
with a given truth table was proved by W. Masek [31] in 1979. In this work, we make the
first progress in showing NP-hardness for more expressive classes of circuits, and establish an
analogous result for the MCSP problem for depth-3 circuits of the form OR-AND-MOD2. Our
techniques extend to an NP-hardness result for MODm gates at the bottom layer under inputs
from (Z/mZ)n.
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1 Introduction

1.1 The Minimum Circuit Size Problem
In the Minimum Circuit Size Problem (MCSP), we are given the truth table of a Boolean
function as input together with a positive integer s, and the question is whether a circuit of
size at most s exists for the function represented by this truth table. It is easy to see that
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5:2 NP-hardness of MCSP for OR-AND-MOD Circuits

MCSP is in NP: simply guess a circuit C of size at most s, and check that C computes each
entry of the truth table correctly.

When solving MCSP deterministically, though, it is unclear how to avoid exhaustive search
over the space of circuits of size at most s. A natural question arises: is MCSP NP-complete?
The answer to this problem remains far from clear. MCSP is one of the very few natural
problems in NP for which we have no strong evidence for or against NP-completeness. This
is despite the fact that MCSP has long been recognized as a fundamental problem since
the earliest research on complexity theory in the Soviet Union in the 1950s [41]. Indeed,
it is reported in [8] that Levin delayed the publication of his NP-completeness results for
Satisfiability because he was hoping to show similar results for MCSP.

The difficulty of showing MCSP to be NP-hard was explicitly addressed in the work of
Kabanets and Cai [27]. Roughly speaking, suppose we have a polynomial-time reduction f
from Satisfiability to MCSP that is “‘natural”, in the sense that the output length and output
parameter depend only on the input length, and the input length is polynomially bounded
in the output length – this is a property that all standard reductions have. Kabanets and
Cai argued that by applying f to a trivial family of unsatisfiable formulas, we can show that
the class E of problems solvable in linear exponential time requires superpolynomial circuit
size. Given that the question of proving super-polynomial circuit lower bounds for explicit
functions is a longstanding open question in complexity theory, this provides a significant
obstacle to showing NP-hardness of MCSP via natural reductions. Note, though, that the
Kabanets-Cai result does not give any evidence against NP-hardness of MCSP – it only
suggests that NP-hardness might be hard to establish. There has been a long sequence of
works [7, 32, 24, 23, 6] building on this result to give further evidence of the difficulty of
showing NP-hardness of MCSP.

One way around the Kabanets-Cai obstacle is to study the complexity of MCSP for
circuit classes for which strong circuit lower bounds are already known. Given a class C of
circuits, let C-MCSP be the problem where, given a truth table and a number s, we wish to
know if there is a C-circuit of size s computing the given truth table.

Studying C-MCSP for restricted classes C of circuits is independently motivated by
algorithmic applications in circuit minimization, proof complexity [30, Chapter 30], learning
theory (cf. [38, 5, 18, 11]), and cryptography and lower bounds [39] (see also [10]). It was
shown already in 1979 by Masek [31] that DNF-MCSP is NP-hard.2 There have been
different proofs of this result [15, 5], and extensions to hardness of approximation [5, 18, 29].
Nevertheless, almost four decades after Masek’s result, and despite the significant attention
that the MCSP problem has received (see also [2, 3, 4, 36]), NP-hardness of C-MCSP is
still not known for any natural class C of circuits more expressive than DNFs. To quote
Allender et al. [5], “Thus an important open question is to resolve the NP-hardness of both
learnability results as well as function minimization results above for classes that are stronger
than DNF.”

1.2 Our Result
The main contribution in this work is the first NP-hardness result for C-MCSP for a class
C of depth–3 circuits, namely the class of (unbounded fan-in) OR ◦ AND ◦MODm circuits,
where m is any integer.

2 For a self-contained presentation of a proof of NP-hardness of DNF-MCSP, see [5].
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I Theorem 1 (Main Result). For every m ≥ 2, given the truth table of a function f : Znm →
{0, 1}, where Zm = Z/mZ = {0, 1, . . . ,m− 1}, it is NP-hard under polynomial-time determ-
inistic many-one reductions to determine the size of the smallest OR ◦ AND ◦MODm circuit
C that computes f , where circuit size is measured as the top fan-in of C.3

A few comments are in order. First, we elaborate on our computational model and
complexity measure. We work with circuits which have an OR gate at the top, AND gates
at the middle level, and MODm gates at the bottom level. We refer to such circuits as
OR-AND-MOD circuits, or equivalently, DNF-MOD circuits. Such circuits operate in a
natural way on inputs from Znm. We allow arbitrary constants from Zm to feed in to gates
at the bottom layer, and insist that inputs to the middle AND layer are Boolean. In other
words, a MODm gate outputs 1 if and only if its corresponding linear equation over Zm is
satisfied, and the computations beyond the first layer are all Boolean. For m = 2, this is
precisely the traditional model of DNF of Parities (cf. [14], [25], [26, Section 11.9], [1]).

The complexity measure we use is the top fan-in of the circuit, i.e., fan-in to the top
OR gate. The main reason we work with this measure is naturalness and convenience. As
argued in [14], top fan-in is the preferred measure for OR-AND-MOD2 circuits because: (i)
it measures the number of affine subspaces required to cover the 1s of the function, and thus
has a nice combinatorial meaning; (ii) the number of MOD2 gates feeding in to any middle
layer AND gate can be assumed to be at most n without loss of generality, by using basic
linear algebra, and thus the top fan-in approximates the total number of gates to within a
factor of n; and (iii) the size of a DNF is often measured by the number of terms in it, and
analogously it makes sense to measure the size of a DNF of Parities by the top fan-in of the
circuit.

Our results are not however critically dependent on the complexity measure we use, and
admit different extensions. Indeed, we demonstrate the robustness of our techniques by
adapting them to show a hardness result for computing the number of gates in OR-AND-
MODp formulas, where p is prime (Appendix B). Moreover, we mention that our approach
can be modified to show a hardness of approximation result (Appendix C).

The strategy for the proof of Theorem 1 is explained in Section 1.3. In short, we
reduce from a variant of the well-known set cover problem [28]. The reduction consists of
two stages, and it is initially presented as a randomized reduction. As one ingredient in
the derandomization of our approach, we show the existence of near-optimal (seed length
O(logn + log 1/ε)) pseudorandom generators against AND ◦ MODm circuits over Znm of
arbitrary size. This result might be of independent interest, and we refer to the discussion in
Section 1.3 for more details.

Before further exploring the ideas of our proof, we give some perspective on the result and
the possibility of extending it to more expressive circuit classes. Using the Kabanets-Cai [27]
connection between NP-hardness and circuit lower bounds mentioned before, it is not hard
to show that our reduction yields a 2Ω(n) lower bound on the size of DNF-MOD2 circuits for
a function in E = DTIME[2O(n)]. Such strong exponential lower bounds for explicit functions
have long been known for the model we consider (see e.g. [22], and also [13, 12]). On the
other hand, extending the NP-hardness result even to slightly different classes such as depth-3
AC0 circuits might be a challenge. It is still unknown if E requires depth-3 AC0 circuits of
size 2Ω(n), and using the Kabanets-Cai connection, natural approaches to an NP-hardness
result would imply such a lower bound.

3 As stated, Theorem 1 refers to the complexity of the optimization problem of finding the smallest circuit
size for a given truth table, rather than the MCSP decision problem as defined. Note however that
these two computational problems are easily seen to be polynomial-time equivalent to each other.
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5:4 NP-hardness of MCSP for OR-AND-MOD Circuits

What might be more feasible though is showing NP-hardness of C-MCSP for other related
classes C of circuits, and under weaker kinds of reductions, such as quasi-polynomial time
reductions or non-uniform reductions. For instance, it might be possible to extend our
techniques to classes such as THR ◦ AND ◦MOD and depth-3 AC0 circuits of small bottom
fan-in. In these cases, exponential lower bounds of the form 2Ω(n) have been obtained (cf. [22],
[37]).

More broadly, we believe that showing NP-hardness of MCSP for more expressive classes
C is an important direction in better understanding circuit classes from the perspective of
meta-complexity, i.e., complexity questions about computational problems involving circuits
and algorithms. There are various criteria for measuring our understanding of a circuit class,
for example, (i) Can we design non-trivial satisfiability algorithms for circuits in the class?
(ii) Can we unconditionally construct pseudo-random generators secure against circuits in the
class? (iii) Can we learn the class using membership queries under the uniform distribution?
(iv) Can we prove lower bounds against proof systems whose lines are encoded by circuits in
the class? We suggest that the NP-hardness of C-MCSP is another strong indication that we
understand a circuit class C well.

1.3 Overview of the Proof of Theorem 1

The rest of the paper is dedicated to the proof of Theorem 1, which will be completed in
Section 4. Here we provide a high-level description of the reduction. For simplicity, our
exposition mostly focuses on the case m = 2. After that, we explain the main difficulties in
extending the result to general m, and how these are addressed in our proof.

As mentioned above, Masek [31] was the first to establish the NP-hardness of DNF
minimization, and Theorem 1 can be interpreted as an extension of Masek’s result to the
more expressive DNF-MOD circuits. The structure of our argument follows however a
two-step reduction introduced by Gimpel (cf. Allender et al. [5]), brought to our attention
thanks to an alternative proof of Masek’s result from [5]. More precisely, their work presents
a new proof of the first stage of Gimpel’s reduction, and provides a self-contained exposition
of the entire argument.

Our NP-hardness proof for DNF-MOD circuits heavily builds on ideas of Gimpel and
[5], but the extension to depth-3 requires new ideas and makes the argument much more
involved. Let (DNF ◦ XOR)-MCSP be the computational problem described in Theorem 1
when m = 2, and let (DNF ◦ XOR)-MCSP∗ be its natural generalization to partial boolean
functions. In other words, an input to (DNF ◦ XOR)-MCSP∗ encodes the truth table of a
function f : {0, 1}n → {0, 1, ∗}, and we are interested in the size of the minimum (DNF◦XOR)-
circuit that agrees with f on f−1({0, 1}). Let r ∈ N be a large enough constant. Our proof
reduces from the NP-complete problem r-Bounded Set Cover (cf. [19]): Given a set system
S ⊆

(
n
≤r
)
that covers [n], determine the minimum number ` of sets S1, . . . , S` ∈ S such that⋃`

i=1 Si = [n]. (We refer to Section 2.2 for a precise formulation of these computational
problems.)

In a bit more detail, we present a randomized (2-approximate) reduction from r-Bounded
Set Cover to (DNF◦XOR)-MCSP∗, and a randomized reduction from (DNF◦XOR)-MCSP∗ to
(DNF◦XOR)-MCSP. These reductions are then efficiently derandomized using an appropriate
pseudorandom generator. As opposed to previous works on the NP-hardness of DNF
minimization, our proof crucially explores the fact that r-Bounded Set Cover is NP-hard
even to approximate (by roughly a ln r-factor), a result from [17, 42] (see Theorem 5, Section
2.2).
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We discuss each reduction in more detail now. Common to both of them is a convenient
characterization of the sets C−1(1) ⊆ {0, 1}n of inputs that can be accepted by non-trivial
AND ◦ XOR circuits C. If m is prime, it is not hard to show that this is precisely the class
of affine subspaces of {0, 1}n. Consequently, for a non-trivial partial function f : {0, 1}n →
{0, 1, ∗}, its corresponding DNFXOR(f) complexity is exactly the minimum number t of affine
subspaces A1, . . . , At ⊆ {0, 1}n such that f−1(1) ⊆

⋃t
i=1Ai and

⋃t
i=1Ai ⊆ f−1({1, ∗}) (see

Section 2.1). The analysis of our polynomial-time reductions, which will not be covered in
this section, relies on this characterization in fundamental ways.

Step 1. A randomized reduction from r-Bounded Set Cover to (DNF ◦ XOR)-MCSP∗ (Sec-
tion 3.1).

Given a set-system S ⊆
(
n
≤r
)
, we define a partial boolean function f : {0, 1}t → {0, 1, ∗},

where t = O(r logn). This function is probabilistically constructed as follows. First, we
associate to each i ∈ [n] a random vector vi ∈ {0, 1}t. For S ∈ S, let vS = {vi | i ∈ S}.
Then, we let f be 1 on each input vi, 0 on inputs that are not in the linear span of vS for
every S ∈ S, and ∗ elsewhere.

Using this construction, we are able to show by a delicate analysis that if t is suffi-
ciently large, the following holds with high probability: if S admits a cover of size K, then
DNFXOR(f) ≤ K; moreover, if DNFXOR(f) ≤ K, then S admits a cover of size ≤ 2K. (We
discuss the intuition for this claim in Section 3.1.) This construction and the hardness of
approximation result for r-Bounded Set Cover imply that (DNF ◦ XOR)-MCSP∗ is NP-hard
under many-one randomized reductions.

Step 2. A randomized reduction from (DNF ◦ XOR)-MCSP∗ to (DNF ◦ XOR)-MCSP (Sec-
tion 3.2).

Let f : {0, 1}t → {0, 1, ∗} be an instance of (DNF ◦ XOR)-MCSP∗. We probabilistically
construct from f a related total function g : {0, 1}t × {0, 1}s → {0, 1}, where r = t + 2
and s = O(r + t). In more detail, we encode for each x ∈ {0, 1}t its corresponding value
f(x) ∈ {0, 1, ∗} as a boolean function gx on a hypercube {0, 1}s. For an input x such that
f(x) ∈ {0, 1}, we let g(x0s) = gx(0s) = f(x), where gx(·) = 0 elsewhere. On the other hand,
if f(x) = ∗, we pick a random linear subspace Lx ⊆ {0, 1}s of dimension r, and we encode
f(x) as the characteristic function of Lx.

Again, a careful argument allows us to establish the following connection between the
partial function f and the total function g: with high probability over the choice of the
random linear subspaces (Lx)x∈f−1(∗), DNFXOR(g) = DNFXOR(f) + |f−1(∗)|. (We discuss the
intuition for this claim in Section 3.2.) Consequently, it follows from this and the previous
reduction that (DNF ◦ XOR)-MCSP is NP-hard under many-one randomized reductions.

Step 3. Efficient derandomization of the reductions (Section 4.1).
It is possible to prove that the first reduction is always correct provided that the collection

of random vectors vi is nice with respect to the set-system S (Definition 12). Similarly, we
can prove that the second reduction is correct whenever the collection (Lx)x∈f−1(∗) of linear
subspaces is scattered (Definition 18). It turns out that both conditions can be checked in
polynomial time. This implies that the previously discussed reductions are in fact zero-error
reductions. Consequently, if we can efficiently construct nice vectors and scattered families
of linear subspaces, the reductions can be made deterministic.

In order to achieve this, we use in both cases a subtle derandomization argument that relies
on (polynomial-time computable) ε-biased distributions [33]. Recall that such distributions
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5:6 NP-hardness of MCSP for OR-AND-MOD Circuits

can fool arbitrary linear tests. By a more careful analysis, it is also known that they fool
AND ◦ XOR circuits. We do not describe an AND ◦ XOR circuit to check if a collection of
vectors is nice, or to check if a collection of linear subspaces is scattered. Still, we are able
to show that if ε < 2−s then some scattered collection of linear subspaces is encoded by a
string in the support of an ε-biased distribution, and that the same holds with respect to a
nice collection of vectors if ε < 2−t. In particular, trying all possible seeds of an ε-biased
generator produces the combinatorial and algebraic objects that are sufficient to derandomize
our reductions. (We refer to Section 4.1 for more details.)

Overall, combining the (derandomized) reductions and using the hardness of approxima-
tion result for r-Bounded Set Cover mentioned above, it follows that (DNF ◦ XOR)-MCSP is
NP-hard under many-one deterministic polynomial-time reductions.

The argument for arbitrary m ≥ 2. Let (DNF◦MODm)-MCSP and (DNF◦MODm)-MCSP∗

be the corresponding computational problems with respect to an arbitrary m ≥ 2. (Recall
that the input boolean functions in this case are defined over Znm.) As we explain next,
additional difficulties are present for general m.

An immediate challenge is that it is no longer clear if the analogous characterization (via
affine subspaces) of the class of subsets of Znm accepted by non-trivial AND ◦MODm circuits
holds, and this is crucially exploited when m = 2. The main issue is that, while in the latter
case the result can be established by elementary techniques using that Zn2 is a vector space
over Z2, for an arbitrary m the underlying structure might be just a module. Without a
basis, the result is less clear.

Nevertheless, it is possible to prove that the analogous result for AND ◦MODm circuits
holds (cf. Lemma 2). The alternative and more general argument relies on a property of
double orthogonal complements in Znm (Appendix A), and we refer to Section 2.1 for more
details. Armed with this characterization, the reductions discussed before can be adapted
to arbitrary m. Finding the right generalization of each definition requires some work, but
after that, the randomized reductions for m = 2 and arbitrary m ≥ 2 can be presented in a
unified and transparent way.

In order to conclude the proof of Theorem 1, we need to derandomize the new reductions.
For m = 2, the argument was based on an efficient construction of ε-biased distributions
supported over {0, 1}n, and the fact that such distributions are also able to fool AND ◦ XOR
circuits over {0, 1}n. Without going into further details, we mention that for arbitrary m
it is sufficient to use a pseudorandom generator that fools AND ◦MODm circuits over Znm.
However, a generator with near-optimal dependency on n and ε is needed if we are hoping to
obtain a polynomial-time reduction. We were not able to find such a result in the literature.4

We show in Section 4.2 that, for every m ≥ 2, there is an efficient pseudorandom generator
Gn : {0, 1}O(logn+log 1/ε) → Znm that ε-fools AND ◦ MODm circuits of arbitrary size. Our
construction relies on the efficient ε-biased generators for Znm from [9], together with a
proof of the following result: If G is an ε-biased generator against Znm, then G (mε)-fools
AND ◦ MODm circuits. Again, we cannot rely on a adaptation of the similar claim for
m = 2, which requires a basis. Our proof proceeds instead by a careful analysis of certain
exponential sums encoding the behaviour of the circuit, and that can be used to connect the
distinguishing probability to the guarantees offered by the ε-biased generator. We refer to
Section 4.2 for more details.

4 Existing generators seem to generate bits only, or are restricted to prime modulus, or can handle larger
classes of functions but are not efficient enough for our purposes. We refer to [21] and the references
therein for related results.
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2 Preliminaries

Notation. For an integer n ≥ 1, let [n] denote {1, . . . , n}.

Some notions from group theory. Let m ≥ 2 be a constant. Let Zm := Z/mZ denote the
integers modulo m, where all operations on elements in Zm = 〈+, {0, 1, . . . ,m−1}〉 are taken
mod m. For any integer t ≥ 1, we regard Ztm as an additive group with component-wise
addition. A non-empty subset H ⊆ Ztm is called a linear subspace if H is a subgroup,
that is, 0 ∈ H and x + y ∈ H for any x, y ∈ H. A subset A ⊆ Ztm is called an affine
subspace if A is a coset, that is, there exist a ∈ Ztm and a linear subspace H ⊆ Ztm such that
A = H + a := {h+ a | h ∈ H }.

We stress that Ztm gives rise to a module and not to a vector space when m is a composite
number; however, we borrow some standard notation; for example, for a scalar c ∈ Zm and a
“vector” v ∈ Ztm, let cv denote the scalar multiplication. Let 〈x, y〉 :=

∑t
i=1 xiyi (∈ Zm ) for

any x, y ∈ Ztm and t ∈ N.

2.1 Circuit Size Measure and Its Characterization
For any integer m ≥ 2, an OR ◦ AND ◦MODm ( = DNF ◦MODm ) circuit is a DNF formula
whose terms are AND ◦MODm circuits. Here, the MODm gate is a Boolean function such
that MODm(x) = 1 if and only if

∑n
i=1 xi mod m = 0 on input x ∈ {0, 1}n. We allow

multiple input wires and access to constant input bits in the circuit. Note that this allows
for more general equations to be computed by a bottom-layer modular gate.

The size of a circuit is usually defined as the number of gates. However, for us it is
important to define the size of a DNF ◦MODm circuit as the top fan-in of the circuit, or
equivalently, its number of AND ◦MODm terms. (Note that the same size measure was used
in [14] in the case m = 2.) For a Boolean function f : {0, 1}t → {0, 1}, define DNFMODm

(f)
as the minimum number of terms of a DNF ◦MODm circuit computing f , i.e., the fan-in of
its OR gate.

In order to present our results in a unified way for any integer m ≥ 2, we extend the
input {0, 1}t of a DNF ◦MODm circuit to the larger domain Ztm in a natural way: that is,
we regard the bottom MODm gate as a function MODm : Z∗m → {0, 1} that outputs 1 if and
only if the sum of its input elements is congruent to 0 mod m. Again, more general equations
can be obtained using multiple input wires and access to constants in Zm.

An AND ◦MODm circuit C accepts the set X ⊆ Ztm if for any x ∈ Ztm, x ∈ X if and only
if C outputs 1 on x. There is a nice combinatorial characterization of the set of inputs that
such circuits can accept.

I Lemma 2 (Characterization of the power of AND ◦ MODm circuits). Let X ⊆ Ztm be a
nonempty set. Then, an AND◦MODm circuit accepts X if and only if X is an affine subspace
of Ztm.

This is a standard fact when m is a prime (cf. [14] for m = 2), in which case Ztm is a vector
space. However, the same characterization holds when m ≥ 2 is an arbitrary composite
number, as established below. The proof relies on the following fact about orthogonal
complements in the more general context of modules.

I Fact 3 (Double orthogonal complement). Let H ⊆ Ztm be a linear subspace, and let
H⊥ := {x ∈ Ztm |

∑t
i=1 xiyi = 0 for any y ∈ H } be its orthogonal complement. Then,

(H⊥)⊥ = H.
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5:8 NP-hardness of MCSP for OR-AND-MOD Circuits

For completeness, we include a proof of this result in Appendix A. Assuming Fact 3, we
proceed to a proof of Lemma 2.

Proof of Lemma 2. Let x := (x1, . . . , xt) ∈ Ztm denote the input to the circuit.
Suppose that an AND ◦MODm circuit

∧K
k=1 Ck accepts X, where each Ck is a MODm

gate. Each MODm gate Ck in the circuit defines a linear equation over (x1, . . . , xt). That is,
there are coefficients a1

k, . . . , a
t
k ∈ Zm and an element bk ∈ Zm such that

∑t
i=1 a

i
kxi = bk if

and only if Ck accepts the input x. Therefore, the circuit
∧K
k=1 Ck accepts the intersection

of such linear equations over Zm. Specifically, for a matrix A := (aik)k∈[K],i∈[t] and a
vector b := (bk)k∈[K], the circuit accepts all inputs x ∈ Ztm such that Ax = b; namely,
X = {x ∈ Ztm | Ax = b }. Since X is nonempty, we can take some element x0 ∈ X. Now, we
can rewrite X as

X = {x ∈ Ztm | A(x− x0) = 0 } = { y ∈ Ztm | Ay = 0 }+ x0,

which is an affine subspace of Ztm.
For the converse direction, we use the notion of orthogonal complement. Suppose that

X ⊆ Ztm is an affine subspace. By definition, we can decompose X into a linear subspace
H ⊆ Ztm and a shift a ∈ Ztm so that X = H + a.

We first claim that H can be accepted by some AND ◦MODm circuit. To prove this, it is
sufficient to show the existence of some matrix A ∈ ZK×tm such that H = {x ∈ Ztm | Ax = 0 }.
Since H is a linear subspace, by Fact 3, for any x ∈ Ztm,

x ∈ H if and only if
t∑
i=1

xi · yi = 0 for every y ∈ H⊥.

That is, we can define a matrix A ∈ Z|H
⊥|×t

m as (yi)y∈H⊥,i∈[t]. (In other words, for each
y ∈ H⊥, we add a MODm gate that checks if

∑t
i=1 xi · yi = 0, where each coefficient yi is

simulated using multiple input wires.)
To accept X, we just need to shift H by a. Indeed, for a vector b := Aa, we have

X = H + a = {x ∈ Ztm | Ax = b }; thus we can construct an AND ◦MODm circuit accepting
X by simulating the condition Ax = b. J

As a consequence of Lemma 2, for a function f : Ztm → {0, 1}, the minimum size of
a DNF ◦ MODm circuit computing f equals the minimum number S of affine subspaces
T1, . . . , TS ⊆ Ztm such that

⋃S
i=1 Ti = f−1(1).

2.2 Computational Problems
The starting point of our NP-hardness results is the set cover problem on instances where
each set has size at most r.

I Definition 4 (r-Bounded Set Cover Problem). For an integer r ∈ N, the r-Bounded Set
Cover Problem is defined as follows:

Input. An integer n ∈ N and a collection S ⊆ 2[n] of nonempty subsets of the universe
[n] such that |S| ≤ r for each S ∈ S, and

⋃
S∈S S = [n].

Output. The minimum number ` of subsets S1, . . . , S` ∈ S such that
⋃`
i=1 Si = [n].

For this problem, a tight inapproximability result based on NP-hardness is known.
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I Theorem 5 (Feige [17], Trevisan [42]). Let r be a sufficiently large constant. It is NP-hard
(under polynomial-time many-one reductions) to approximate the solution of the r-bounded
set cover problem within a factor of ln r−O(ln ln r). That is, for any language L ∈ NP, there
exists a polynomial-time machine that, on input x, outputs a threshold θ and an instance S
of the r-bounded set cover problem such that if x ∈ L then S has a cover of size at most θ,
and if x 6∈ L then S does not have a cover of size at most θ · (ln r −O(ln ln r)).

We stress that the inapproximability result is essential for us; we will present a reduction from
a 2-factor approximation of the r-bounded set cover problem to the minimum DNF ◦MODm

circuit minimization problem.

I Definition 6 (Minimum Circuit Size Problem for DNF ◦MODm). For an integer m ≥ 2, the
Minimum Circuit Size Problem for DNF ◦MODm, abbreviated as (DNF ◦MODm)-MCSP, is
defined as follows:

Input. A Boolean function f : Ztm → {0, 1}, represented as a truth table of length mt.
Output. DNFMODm(f).

While our final theorem confirms that (DNF ◦ MODm)-MCSP is NP-hard, we will first
prove NP-hardness of the circuit minimization problem on instances of a partial function
f : Ztm → {0, 1, ∗}. That is, we regard any input x ∈ f−1(∗) as “undefined.” For a partial
function f : Ztm → {0, 1, ∗}, we say that a circuit C computes f if C(x) = f(x) for any
x ∈ f−1({0, 1}). We extend the definition of DNFMODm(f) to the size of the minimum
DNF ◦ MODm circuit computing the partial function f : Ztm → {0, 1, ∗}. The following
problem is concerned with the circuit size of partial functions, and we distinguish it from the
problem above by adding a superscript ∗.

I Definition 7 (Minimum Circuit Size Problem for Partial Functions). For an integer m ≥ 2,
the Minimum Circuit Size Problem∗ for DNF◦MODm, abbreviated as (DNF◦MODm)-MCSP∗,
is defined as follows:

Input. A Boolean function f : Ztm → {0, 1, ∗}, represented as a string of length mt over
the alphabet {0, 1, ∗}.
Output. DNFMODm

(f).

3 Hardness of (DNF ◦ MODm)-MCSP Under Randomized Reductions

3.1 Reduction from r-Bounded Set Cover to (DNF ◦ MODm)-MCSP∗

This subsection is devoted to proving the following theorem.

I Theorem 8. (DNF◦MODm)-MCSP∗ is NP-hard under (zero-error) randomized polynomial-
time many-one reductions.

Let r be a large enough constant so that the approximation factor of ln r −O(ln ln r) in
Theorem 5 is larger than 2. We present a reduction from a 2-factor approximation of the
r-bounded set cover problem to (DNF ◦MODm)-MCSP∗.

Let us prepare some notation. Let S be an instance of the r-bounded set cover problem
over the universe [n] (in particular,

⋃
S∈S S = [n]). Let t ∈ N be a parameter chosen later.

For each i ∈ [n], pick vi ∈R Ztm independently and uniformly at random. For any S ⊆ [n],
let vS denote { vi | i ∈ S }. Let span(vS) := {

∑
i∈S ci · vi | ci ∈ Zm for any i ∈ S } denote

the linear span of vS . (Note that span(vS) is a linear subspace of Ztm whenever S 6= ∅.) In
our reduction, an element i ∈ [n] is mapped to a random point vi of Ztm, and a set S ∈ S
corresponds to a linear subspace span(vS).
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For any set cover instance S, we define a function f : Ztm → {0, 1, ∗} as

f(x) :=


1 (if x = vi for some i ∈ [n])
0 (if x 6∈

⋃
S∈S span(vS))

∗ (otherwise)

for any x ∈ Ztm. The truth table of f is the output of our reduction.
It is not hard to see that DNFMODm(f) is at most the minimum set cover size for S (Claim

9 below). Of course, the difficulty is in proving a circuit lower bound for f (Claim 10 below).
The idea is as follows: For simplicity of the exposition, let us focus on the case of m = 2,

and moreover let us first consider the case of a DNF ◦MOD2 circuit C for f that accepts a
union of linear subspaces (instead of affine subspaces). More precisely, let C−1(1) be a union
of linear subspaces {Tk}k∈[K]. Then Tk is a subset of C−1(1) ⊆ f−1({1, ∗}) =

⋃
S∈S span(vS);

furthermore, each span(vS) is a random linear subspace of small dimension r; therefore, it is
possible to show that, with high probability, the set { i ∈ [n] | vi ∈ Tk } of points covered by
Tk is contained in some legal set S ∈ S of the set cover instance; hence the circuit size K is
at least the minimum set cover size.

In the case that a circuit C accepts the union of affine subspaces, it is no longer true
that, for any affine subspace T such that T ⊆

⋃
S∈S span(vS), the set { i ∈ [n] | vi ∈

T } is covered by some legal set S ∈ S; indeed, for any two points vi and vj , the set
{vi, vj}

(
= vi ⊕ {0, vi ⊕ vj}

)
is an affine subspace of Zt2, whereas {i, j} is not necessarily

legal in the set cover instance S. Nonetheless, we can still prove that, with high probability, the
set { i ∈ [n] | vi ∈ T } is covered by two legal sets S1, S2 ∈ S. As a consequence, the minimum
number of affine subspaces needed to cover v1, . . . , vn gives us a 2-factor approximation of
the minimum set cover size for S. By Theorem 5, it follows that (DNF ◦ XOR)-MCSP∗ is
NP-hard under randomized reductions. Details follow.

I Claim 9 (Easy part). Suppose that S has a set cover of size K. Then DNFMODm
(f) ≤ K.

Proof. Let C ⊆ S be a set cover of size K. For each S ∈ C, by Lemma 2, there exists an
AND ◦ MODm circuit CS such that CS accepts span(vS). Define a DNF ◦ MODm circuit
C :=

∨
S∈C CS . It is easy to see that C computes f . J

Conversely, we prove the following:

I Claim 10 (Hard part). For some parameter t such that mt = (nm)O(r), the following holds
with probability at least 1

2 (over the choice of (vi)i∈[n]):
Let K := DNFMODm

(f). Then S has a set cover of size 2K.

The two claims above imply that 2DNFMODm
(f) is a 2-factor approximation for the set cover

problem: indeed, let s be the minimum set cover size for S; then we have s ≤ 2DNFMODm
(f) ≤

2s. It thus remains to prove Claim 10.
To prove Claim 10, let us clarify the desired condition that random objects (vi)i∈[n]

should satisfy. For any I ⊆ [n], define the affine span of vI as

affine-span(vI) :=
{∑
i∈I

civ
i | ci ∈ Zm for i ∈ I and

∑
i∈I

ci = 1
}
.

The important property of the affine span is that, if an affine subspace A covers the set vI of
points in I ⊆ [n], then its affine span must also be covered by A.
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I Claim 11 (Property of the affine span). For any affine subspace A of Ztm and any I ⊆ [n],
if vI ⊆ A then affine-span(vI) ⊆ A.

Proof. Let us write A = H + a for some linear space H ⊆ Ztm and vector a ∈ Ztm. Since
vi ∈ vI ⊆ A for each i ∈ I, there exists some vector hi ∈ H such that vi = hi + a. Take any
coefficients (ci)i∈I such that ci ∈ Zm and

∑
i∈I ci = 1. Then,∑

i∈I
civ

i =
∑
i∈I

ci(hi + a) =
∑
i∈I

cih
i + a ∈ H + a. J

By Lemma 2, the circuit size of f equals the minimum number of affine subspaces
A1, . . . , AK ⊆ f−1({1, ∗}) such that

⋃K
i=1Ai ⊇ f−1(1). Intuitively, we would like to require

that, if the set vI
(
⊆ f−1(1)

)
of points is covered by some affine subspace A ⊆ f−1({1, ∗}),

then there exist two legal sets S1, S2 of the set cover instance S such that I ⊆ S1 ∪ S2. In
fact, one of these sets can be taken as a singleton:

I Definition 12. We say that (vi)i∈[n] is nice (with respect to S) if, for any I ⊆ [n],

affine-span(vI) ⊆
⋃
S∈S

span(vS) =⇒ I ⊆ SI ∪ {iI} (1)

for some SI ∈ S and iI ∈ [n].

We will prove that (vi)i∈[n] is nice with probability at least 1
2 , and that for any nice (vi)i∈[n],

the minimum size of DNF ◦MODm is a 2-factor approximation of the minimum set cover
size. We prove the latter first:

I Claim 13. Let (vi)i∈[n] be nice, and K := DNFMODm
(f). Then S has a set cover of size

2K.

Proof. Let C =
∨K
k=1 Ck be a DNF ◦MODm circuit computing f , where each Ck ∈ AND ◦

MODm is nontrivial. By Lemma 2, C−1
k (1) is an affine subspace of Ztm. For each Ck, we will

choose 2 sets from S so that the union of all these sets cover the universe [n].
Fix any Ck and let Ik := { i ∈ [n] | Ck(vi) = 1 } be the set of all points covered by

Ck. Since C−1
k (1) is an affine subspace of Ztm and vIk ⊆ C−1

k (1), we have affine-span(vIk ) ⊆
C−1
k (1) by Claim 11. Since the circuit C computes f , C−1

k (1) ⊆ C−1(1) ⊆ f−1({1, ∗}) =⋃
S∈S span(vS). Thus we have affine-span(vIk ) ⊆

⋃
S∈S span(vS), which means that the

hypothesis of niceness (1) is satisfied; hence there exist some subset Sk1 ∈ S and some
element ik ∈ [n] such that Ik ⊆ Sk1 ∪ {ik}. Take any set Sk2 ∈ S such that ik ∈ Sk2 (such a
set Sk2 must exist because we assumed

⋃
S∈S S = [n]). Then Ik ⊆ Sk1 ∪ Sk2.

Now we claim that
⋃K
k=1 Sk1 ∪ Sk2 = [n] (and hence the set cover instance S has a cover

of size 2K). Indeed, for any i ∈ [n], we have f(vi) = 1 and hence C(vi) = 1, which means
that there exists some subcircuit Ck such that Ck(vi) = 1. Thus i ∈ Ik ⊆ Sk1 ∪ Sk2 for some
k ∈ [K]. J

It remains to show that a random choice of (vi)i∈[n] is nice with high probability:

I Claim 14. For each i ∈ [n], pick vi ∈R Ztm uniformly at random and independently. If
t ≥ r + ((r + 2) logn+ log |S|+ 1)/ logm, then (vi)i∈[n] is nice with probability at least 1

2 .

To prove Claim 14, we will use a union bound over all relevant subsets I ⊆ [n]; however,
the definition of niceness (1) appears to suggest that we need to take a union bound over
exponentially many subsets I. The next claim shows that this is in fact not the case.
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I Claim 15 (Characterization of niceness). (vi)i∈[n] is not nice (with respect to S) if and only
if there exists some subset I ⊆ [n] such that all the following conditions hold:

1. |I| ≤ r + 2,

2. I 6⊆ S ∪ {i} for any S ∈ S and i ∈ [n], and

3. affine-span(vI) ⊆
⋃
S∈S span(vS).

In particular, there are at most nr+2 subsets I ⊆ [n] over which we need to take a union
bound.

Proof. By the definition of niceness, (vi)i∈[n] is not nice if and only if there exists some
subset I ⊆ [n] such that affine-span(vI) ⊆

⋃
S∈S span(vS) whereas I 6⊆ S ∪ {i} for any S ∈ S

and i ∈ [n]. Therefore, it is clear that the three conditions imply that (vi)i∈[n] is not nice;
we prove below the converse direction (the “only if” part of Claim 15).

A crucial observation is that, for any subset I ⊆ [n] of size at least r + 2, the second
condition always holds: Indeed, recall that S is an instance of the r-bounded set cover
instance; that is, |S| ≤ r for any S ∈ S. Hence, for any S ∈ S and i ∈ [n], we have
|S ∪ {i}| ≤ r + 1; thus I cannot be a subset of S ∪ {i} simply because |I| ≥ r + 2.

Now suppose that there exists some subset I ⊆ [n] satisfying the second and third
conditions, but not the first one, that is, |I| > r + 2. Take any subset I ′ ⊆ I such that
|I ′| = r + 2. We claim that I ′ satisfies all three conditions: The first condition (|I ′| ≤ r + 2)
is obvious. The second condition holds because of the observation above. To see the third
condition, by assumption, we have affine-span(vI) ⊆

⋃
S∈S span(vS); hence, we also have

affine-span(vI′) ⊆ affine-span(vI) ⊆
⋃
S∈S span(vS). J

Now let us proceed to a proof of Claim 14.

Proof of Claim 14. We will bound the probability that a random (vi)i∈[n] is not nice, by
using the union bound over all the subsets I ⊆ [n] such that the first and second conditions
in Claim 15 hold. To this end, fix any subset I ⊆ [n] such that |I| ≤ r+ 2 and I 6⊆ S ∪{i} for
any S ∈ S and i ∈ [n] (in particular, I is not empty). We would like to bound the probability
that the affine subspace of vI is a subset of

⋃
S∈S span(vS).

Take an arbitrary (e.g. the smallest) element i0 ∈ I. Define coefficients (ci)i∈I as follows:
ci := 1 ∈ Zm for any i ∈ I \ i0 and ci0 := (2 − |I|) mod m ∈ Zm. By this definition, we
have

∑
i∈I ci = 1; hence,

∑
i∈I civ

i ∈ affine-span(vI). Therefore,

Pr
v1,...,vn

[
affine-span(vI) ⊆

⋃
S∈S

span(vS)
]
≤ Pr

[∑
i∈I

civ
i ∈

⋃
S∈S

span(vS)
]

≤
∑
S∈S

Pr
[∑
i∈I

civ
i ∈ span(vS)

]
.

By the assumption on I, we have I 6⊆ S ∪ {i0} for any S ∈ S; that is, there exists some
index jS ∈ I \{i0}\S. Note that cjS

= 1 because jS ∈ I \{i0}. Therefore, the last probability
is
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∑
S∈S

Pr
[∑
i∈I

civ
i ∈ span(vS)

]
=
∑
S∈S

Pr

vjS ∈ span(vS)−
∑

i∈I\{jS}

civ
i


=
∑
S∈S

Pr

vjS =
∑
i∈S

div
i −

∑
i∈I\{jS}

civ
i for some (di)i∈S


=
∑
S∈S

∑
(di)i∈S

Pr

vjS =
∑
i∈S

div
i −

∑
i∈I\{jS}

civ
i


≤ |S| ·mr ·m−t,

where the last inequality holds because the random vector vjS does not appear in the right
summations.

Finally, by taking the union bound over all I such that |I| ≤ r + 2 (and I 6⊆ S ∪ {i} for
any S ∈ S and i ∈ [n]), the probability that (vi)i∈[n] is not nice is bounded from above by
nr+2 · |S| ·mr−t ≤ 1

2 . J

Given these claims above, it is immediate to complete the whole proof.

Proof of Claim 10. We may assume without loss of generality that |S| ≤ nr since S is an
instance of the r-bounded set cover problem. We set t ∈ N to be the smallest integer such
that t ≥ r + ((r + 2) logn+ log |S|+ 1)/ logm; then t = O(r log(nm)/ logm). (Here the O
notation hides only a universal constant.) Combining Claims 13 and 14, we immediately
obtain Claim 10. J

Proof of Theorem 8. The encoding of the function f : Ztm → {0, 1, ∗} is of size O(mt) =
(nm)O(r), which is a polynomial in the input size poly(n, |S|).

Moreover, it is possible to make the reduction zero-error: Indeed, the condition of the
niceness can be checked in polynomial time, by using the characterization of Claim 15.

Finally, recall that the r-bounded set cover problem is NP-hard to approximate within
a factor of 2 by Theorem 5 for a sufficiently large constant r ∈ N. Hence, NP-hardness of
(DNF ◦MODm)-MCSP∗ follows from Claims 9 and 10. J

3.2 Reduction from (DNF ◦ MODm)-MCSP∗ to (DNF ◦ MODm)-MCSP
Next, we present a reduction for the minimum circuit size problem for partial functions to
that for total functions:

I Theorem 16. There is a (zero-error) randomized polynomial-time many-one reduction
from (DNF ◦MODm)-MCSP∗ to (DNF ◦MODm)-MCSP.

Let f : Ztm → {0, 1, ∗} be an instance of (DNF ◦ MODm)-MCSP∗. Let r := t + 2 and
s := d(2r + 2t) logm+ 2e = d4(t+ 1) logm+ 2e. We encode each value f(x) ∈ {0, 1, ∗} of
the partial function f as a function on a “hypercube” Zsm: namely, we construct a new total
function g : Ztm × Zsm → {0, 1} such that f(x) corresponds to (g(x, y))y∈Zs

m
. Specifically,

if f(x) 6= ∗, then f(x) is encoded as a hypercube whose origin5 0s is assigned f(x) and

5 0s denotes the zero of Zs
m for any s ∈ N.
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other points are assigned 0; if f(x) = ∗, then we pick a random linear subspace Lx ⊆ Zsm of
dimension r and we encode f(x) as the characteristic function of Lx.

Formally, for each x ∈ f−1(∗), we pick v1
x, . . . , v

r
x ∈R Zsm uniformly and independently

at random, and define a random linear subspace Lx := span(v1
x, . . . , v

r
x). Then the output

g : Ztm × Zsm → {0, 1} of our reduction is defined as

g(x, y) :=


f(x) (if f(x) ∈ {0, 1} and y = 0s)
1 (if f(x) = ∗ and y ∈ Lx)
0 (otherwise)

for any (x, y) ∈ Ztm × Zsm.
The idea is as follows: Let us imagine how a minimum DNF ◦MODm circuit C computing

g looks like. We need to cover g−1(1) by as few affine subspaces as possible. Note that g−1(1)
consists of two parts: {(x, 0s)} for each x ∈ f−1(1), and {x} × Lx for each x ∈ f−1(∗). In
order to cover the latter one, it is likely that we need to use the affine subspace {x} × Lx
itself for each x ∈ f−1(∗); indeed, since each Lx is a random linear subspace, under our
constraints with high probability there is no affine subspace which simultaneously covers (a
large fraction of) two random affine subspaces {x} × Lx and {x′} × Lx′ for x 6= x′ ∈ f−1(∗)
(Claim 21 below). Therefore, the minimum circuit C should contain a subcircuit which
accepts {x}×Lx for each x ∈ f−1(∗). Now it remains to cover {(x, 0s)} for each x ∈ f−1(1),
but here we can optionally cover {(x, 0s)} for each x ∈ f−1(∗) (which has been already
covered by {x} × Lx). This is exactly the same situation as (DNF ◦MODm)-MCSP∗; thus
with high probability we have DNFMODm

(g) = DNFMODm
(f) + |f−1(∗)|. Details follow.

I Claim 17. DNFMODm
(g) ≤ DNFMODm

(f) + |f−1(∗)|.

Proof. Suppose that a DNF◦MODm circuit C =
∨K
k=1 Ck computes f . For each x∗ ∈ f−1(∗),

take an AND ◦MODm formula Cx∗ such that C−1
x∗ (1) = {x∗} × Lx∗ (by Lemma 2). Define

C ′(x, y) :=
∨K
k=1(Ck(x) ∧ (y1 = 0) ∧ · · · ∧ (ys = 0)) ∨

∨
x∗∈f−1(∗) Cx∗(x, y). It is easy to see

that C ′(x, y) = g(x, y) for any (x, y) ∈ Ztm × Zsm. J

In order to prove the other direction, let us clarify the desired condition for random
linear spaces. We require that (Lx)x∈f−1(∗) is pairwise “disjoint” and that each Lx is
nondegenerated.

I Definition 18. We say that (Lx)x∈f−1(∗) is scattered if |Lx| = mr and Lx ∩ Lx′ = {0s}
for any distinct x, x′ ∈ f−1(∗).

It is easy to prove that the collection of random linear spaces satisfies the condition above.

I Claim 19. (Lx)x∈f−1(∗) is scattered with probability at least 1
2 , provided that s ≥ (2r +

2t) logm+ 2.

Proof. We first bound the probability that (Lx)x∈f−1(∗) is not pairwise disjoint.

Pr
[
Lx ∩ Lx′ 6= {0s} for some distinct x, x′ ∈ f−1(∗)

]
≤

∑
x6=x′∈f−1(∗)

Pr [Lx ∩ Lx′ 6= {0s}]

≤
∑

x6=x′∈f−1(∗)

Pr
[

r∑
i=1

civ
i
x =

r∑
i=1

div
i
x′ for some nonzero (ci)i∈[r], (di)i∈[r]

]

< m2t ·m2r · 2−s ≤ 1
4 ,
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where, in the last line, we used the fact that the probability that
∑r
i=1 civ

i
x =

∑r
i=1 div

i
x′ is

at most 2−s for nonzero (i.e. ci 6= 0, dj 6= 0 for some i, j ∈ [r]) coefficients (ci)i∈[r], (di)i∈[r].6
Next, we bound the probability that |Lx| < mr. Indeed,

Pr
[
|Lx| < mr for some x ∈ f−1(∗)

]
≤

∑
x∈f−1(∗)

Pr
[

r∑
i=1

civ
i
x = 0s for some nonzero (ci)i∈[r]

]

≤ mt ·mr · 2−s ≤ 1
4 .

Overall, the probability that (Lx)x∈f−1(∗) is not scattered is less than 1
4 + 1

4 = 1
2 . J

Note that the condition of being scattered can be checked in polynomial time. Indeed, for
each x ∈ f−1(∗), one can enumerate all the elements of Lx, which are at most polynomially
many in the input size mO(t). Thus, our zero-error randomized reduction picks random linear
subspaces (Lx)x∈f−1(∗) until we obtain a scattered collection of linear subspaces.

In the rest of the proof, we can thus assume that (Lx)x∈f−1(∗) is scattered. The next
claim gives the reverse inequality of Claim 17.

I Claim 20. DNFMODm
(g) ≥ DNFMODm

(f) + |f−1(∗)| if (Lx)x∈f−1(∗) is scattered.

Let C =
∨K
k=1 Ck be a minimum DNF ◦ MODm circuit computing g. (In particular,

K = DNFMODm
(g) ≤ DNFMODm

(f) + |f−1(∗)| ≤ mt+1.) For each x ∈ f−1(∗), we first
extract a subcircuit Cl(x) that covers (a large fraction of) the random linear subspace Lx.
Let l(x) ∈ [K] be one of the indices such that |C−1

l(x)(1) ∩ ({x} × Lx)| is maximized. That
is, Cl(x) covers the largest fraction of the affine subspace {x} × Lx; in particular, since⋃
k∈[K] C

−1
k (1) ⊇ {x} × Lx, there are at least |Lx|/K

(
= mr/K ≥ mr−t−1 ≥ 2

)
points in

the set C−1
l(x)(1) ∩ ({x} × Lx). Intuitively, the subcircuits {Cl(x) | x ∈ f−1(∗) } are supposed

to cover random linear subspaces, and the rest of the subcircuits computes f .
To make the intuition formal, we will prove the following two claims. The first asserts

that, under our constraints, no affine subspace can cover a large fraction of two distinct
random linear subspaces.

I Claim 21. l : f−1(∗)→ [K] is injective.

The second claim asserts that, if an affine subspace C−1
l(x′)(1) covers a large fraction of

{x′} × Lx′ , then it cannot cover a point (x, 0s) such that f(x) = 1.

I Claim 22. Cl(x′)(x, 0s) = 0 for any x ∈ f−1(1) and x′ ∈ f−1(∗).

Assuming these two claims, it is easy to prove Claim 20.

Proof of Claim 20. For each k ∈ [K], define an AND ◦ MODm circuit C ′k as C ′k(x) :=
Ck(x, 0s) on input x ∈ Ztm. Define a DNF ◦MODm circuit C ′ :=

∨
k∈ [K] \ { l(x)|f(x)=∗ } C

′
k.

By Claim 21, the number of subcircuits in C ′ is K − |f−1(∗)|.
We claim that C ′ computes f . Indeed, for any x ∈ f−1(1), we have C(x, 0s) = g(x, 0s) =

f(x) = 1; hence, there is some k ∈ [K] such that Ck(x, 0s) = 1, which implies that C ′k(x) = 1
by the definition of C ′k. Claim 22 implies k 6∈ { l(x′) | f(x′) = ∗ }; thus C ′(x) = 1. On the
other hand, for any x ∈ f−1(0), we have C(x, 0s) = g(x, 0s) = f(x) = 0; in particular, for
any k ∈ [K], Ck(x, 0s) = 0. Thus C ′k(x) = 0 for any k ∈ [K], which implies C ′(x) = 0. J

6 Note that any equation ax = b (mod m) with a 6= 0 is satisfied with probability ≤ 1/2 over a random
choice of x.
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It remains to prove Claims 21 and 22. We prove the latter fist.

Proof of Claim 22. Assume, by way of a contradiction, that Cl(x′)(x, 0s) = 1 for some
x ∈ f−1(1) and x′ ∈ f−1(∗). By the definition of l(x′), there are at least 2 distinct points
(x′, a) and (x′, b) in C−1

l(x′)(1) ∩ ({x′} × Lx′). Since C−1
l(x′)(1) is an affine subspace, we have

(x′, a)− (x′, b) + (x, 0s) = (x, a− b) ∈ C−1
l(x′)(1) (as in the proof of Claim 11). It follows that

C(x, a− b) = 1. Since C computes g, we also have g(x, a− b) = 1, which contradicts the fact
that a− b 6= 0s and the definition of g. J

Proof of Claim 21. Assume that l(x1) = l(x2) =: k for distinct inputs x1, x2 ∈ f−1(∗).
Take any 2 distinct points (x1, a) and (x1, b) from C−1

k (1) ∩ ({x1} × Lx1) and any point
(x2, c) from C−1

k (1) ∩ ({x2} × Lx2). Since C−1
k (1) is an affine subspace, we have (x1, a) −

(x1, b) + (x2, c) = (x2, a− b+ c) ∈ C−1
k (1). We also have (x2, a− b+ c) ∈ {x2} × Lx2 , since

C−1
k (1) ∩ ({x2} × Zsm) ⊆ g−1(1) ∩ ({x2} × Zsm) = {x2} × Lx2 . Therefore, a − b + c ∈ Lx2 .

Since c ∈ Lx2 and this is a linear subspace, it follows that a− b ∈ Lx2 . On the other hand,
by the definition of a and b, we have 0s 6= a − b ∈ Lx1 . However, this is a contradiction
because 0s 6= a− b ∈ Lx1 ∩ Lx2 = {0s}. J

Proof of Theorem 16. By Claims 17 and 20, we obtain DNFMODm(g) = DNFMODm(f) +
|f−1(∗)| for a scattered collection (Lx)x∈f−1(∗). Since s = O(t logm), the truth table of g is
of length mt+s = mO(t logm), which is a polynomial in the input length for every constant
m ≥ 2. Finally, since it is possible to check whether (Lx)x∈f−1(∗) is scattered in polynomial
time, the reduction is zero-error. J

On our proof strategy and the restriction to functions over boolean inputs (m >

2). The linear-algebraic and probabilistic techniques employed here naturally suggest to
view a set of inputs for the input instance f as a subset of the algebraic structure Znm (a
vector space or module, depending on m). In order to establish a similar NP-hardness result
with respect to functions on the hypercube and AND-OR-MODm circuits, one is tempted
to encode elements from the structure Znm as binary strings, and to consider a bijection
ϕ : Znm ↔ Γ ⊆ {0, 1}∗ between vectors and binary strings. However, a binary encoding allows
a bottom-layer modular gate to access individual bits of this encoding, and as a consequence,
this gate might accept a set A ⊆ {0, 1}∗ that does not correspond under ϕ to the set of
solutions of a modular equation over Zm. When this is the case, our argument no longer
works.

Another natural approach would be to restrict the input function to boolean inputs, and
to directly view such inputs as elements in {0, 1}n ⊆ Znm. Here certain technical difficulties
are transferred to our probabilistic analysis involving affine subspaces of Znm, and it is not
immediately clear to us how to modify the argument in this case.

For these reasons, when m > 2 our techniques do not seem to be directly applicable
to functions defined over boolean inputs only, and a more complicated argument might be
necessary. Note however that this does not exclude the existence of different and potentially
simpler reductions among these and other intermediary problems.

4 Derandomization and Pseudorandom Generators for AND ◦MODm

In this section, we present a unified way of efficiently derandomizing the zero-error reductions
of Section 3. The crucial idea is that certain subconditions of being nice or scattered can be
checked by AND◦MODm circuits over Znm; hence, a pseudorandom generator for AND◦MODm

circuits can be used to derandomize the reductions.
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In order to achieve this, we show that there exists a quick pseudorandom generator with
logarithmic seed length that fools any AND ◦MODm circuit (regardless of its size), a result
that might be of independent interest.

I Theorem 23. For every ε = ε(n) > 0 and each m ≥ 2, there exists a quick pseudorandom
generator G = {Gn : [Γn]→ Znm}n∈N that ε-fools any AND ◦MODm circuit over Znm, where
Γn = poly(n, 1/ε,m) is a positive integer.

Here we say that, for ε > 0 and an integer m ≥ 2, a function Gn : [Γn] → Znm ε-fools
AND ◦MODm circuits if |Eγ∈R[Γn][C(Gn(γ))]− Ev∈RZn

m
[C(v)]| ≤ ε for every AND ◦MODm

circuit C; such a function Gn is called an ε-pseudorandom generator for AND ◦ MODm

circuits. We say that a family {Gn}n∈N of pseudorandom generators is quick if Gn can be
computed in poly(Γn) time. (Recall that [Γn] denotes the set {1, . . . ,Γn}, which means that
the seed-length of Gn is logarithmic in n, m, and 1/ε when its input elements are represented
as binary strings.)

4.1 Derandomizing the Reductions
We defer a proof of Theorem 23 to the next subsection, and present its applications first:
The pseudorandom generator implies polynomial-time derandomizations of the reductions
presented in Section 3.

I Theorem 24 (Restatement of Theorem 1). (DNF ◦ MODm)-MCSP is NP-hard under
polynomial-time many-one reductions.

Our basic strategy is as follows: Each reduction of Section 3 employs random variables
that take value on Zkm, for different choices of k. To derandomize the reductions, we simply
replace these random variables by the output of the pseudorandom generator of Theorem 23;
then we try all possible Γn seeds of Gn, and check whether the generated random variables
satisfy the desired condition (which can be done in polynomial time). Below we give details
for each reduction, starting with the second.

Derandomizing the second reduction. We start with the reduction from
(DNF ◦MODm)-MCSP∗ to (DNF ◦MODm)-MCSP. The reduction required a scattered collec-
tion of linear subspaces, which is provided by the probabilistic argument of Claim 19. Here
we present a deterministic construction of such a collection.

I Theorem 25. For any integer m ≥ 2, there exists a deterministic algorithm that, on
inputs t and r, outputs a scattered collection of r-dimensional linear subspaces (Lh)h∈[H] for
H := mt. Specifically,
1. Lh is a linear subspace of Zsm for s := d(2r + 2t) logm+ 2e,
2. |Lh| = mr, and
3. Lh ∩ Lh′ = {0s} for any distinct h, h′ ∈ [H].
The running time of the algorithm is mO((r+t) logm).

In the proof of Theorem 16, we picked random vectors v1
x, . . . , v

r
x ∈R Zsm and defined

Lx := span(v1
x, . . . , v

r
x) for each x ∈ f−1(∗) ⊆ Ztm. We take a similar approach, but instead

of generating vectors uniformly at random, we use the output of the pseudorandom generator
as the source of randomness. Specifically, let γ ∈ [ΓrsH ] be a seed of the pseudorandom
generator of GrsH ; define vectors (v1

h, . . . , v
r
h)h∈[H] := GrsH(γ) ∈ (Zrsm)H ; then, define

Lh := span(v1
h, . . . , v

r
h) for each h ∈ [H]. We show that the probabilistic argument of Claim

19 still works even if the randomness is replaced in this way:
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I Claim 26. Let GrsH be the pseudorandom generator of Theorem 23 with error parameter
ε = 2−s. Pick a seed γ ∈R [ΓrsH ] uniformly at random, and define a collection (Lh)h∈[H] of
linear subspaces as above. Then, (Lh)h∈[H] is scattered with nonzero probability.

Proof. Note that union bounds hold for any distribution; hence, by using the union bounds
as in Claim 19, the probability that (Lh)h∈[H] is not pairwise disjoint is

Pr [ Lh ∩ Lh′ 6= {0s} for some distinct h, h′ ∈ [H] ]

≤
∑

h6=h′∈[H]

∑
(ci),(di)

Pr
[

r∑
i=1

civ
i
h =

r∑
i=1

div
i
h′

]
, (2)

where the second sum is taken over all nonzero coefficient vectors (ci)i∈[r] and (di)i∈[r]
with entries ci, di ∈ Zm. If the random vectors (vih)h,i were uniformly distributed, the
probability in (2) could be bounded by 2−s as in Claim 19; Here the probability is taken
over a random seed γ ∈R [ΓrsH ] of the pseudorandom generator GrsH . The condition that∑r
i=1 civ

i
h =

∑r
i=1 div

i
h′ can be checked by some AND ◦MODm circuit that takes (vih)h,i as

input; thus the circuit is ε-fooled by the pseudorandom generator; as a consequence, the
probability (2) is strictly less than m2t ·m2r · (2−s + ε) ≤ 1

2 .
Similarly,

Pr [ |Lh| < mr for some h ∈ [H] ]

≤
∑
h∈[H]

∑
(ci)

·Pr
[

r∑
i=1

civ
i
h = 0s

]

< mt ·mr · (2−s + ε) ≤ 1
2 .

Overall, the probability that (Lh)h∈[H] is not scattered is strictly less than 1
2 + 1

2 = 1. J

Proof of Theorem 25. By Claim 26, there exists some seed γ ∈ [ΓrsH ] such that the
output GrsH(γ) defines a scattered collection (Lh)h∈[H] of linear subspaces. By exhaustively
searching all the seeds, one can enumerate all the outputs of GrsH in time poly(ΓrsH) =
poly(rsH, 2s,m). Moreover, one can check whether GrsH(γ) defines a scattered collection
for each γ ∈ [ΓrsH ] in time poly(H,ms). Overall, the running time of our construction is
poly(ms) = mO((r+t) logm). J

The randomized reduction of Theorem 16 can be now derandomized, using the determin-
istic construction of Theorem 25 for r := t+ 2.

I Corollary 27. There is a polynomial-time (mO(t logm) time on input length O(mt)) many-
one reduction from (DNF ◦MODm)-MCSP∗ to (DNF ◦MODm)-MCSP.

Derandomizing the first reduction. We now consider the reduction from the r-bounded
set cover problem to (DNF ◦MODm)-MCSP∗. Let [n] be the universe, and S ⊆

([n]
≤r
)
be an

input to the set cover problem. Derandomizing the reduction amounts to a deterministic
construction of a nice collection (vi)i∈[n] of vectors. We generate the random vectors using
the pseudorandom generator for AND ◦ MODm circuits, and show that the probabilistic
argument of Claim 14 still works.

I Claim 28 (Revised Claim 14). Let Gtn be the pseudorandom generator of Theorem 23
with error parameter ε < m−t. Pick a seed γ ∈R [Γtn] uniformly at random. Define
(v1, . . . , vn) := Gtn(γ) ∈ (Ztm)n. If t ≥ r + ((r + 2) logn+ log |S|+ 1)/ logm, then (vi)i∈[n]
is nice with nonzero probability.
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Proof. By using union bounds as in Claim 14, it is sufficient to prove

nr+2 · |S| ·mr · Pr

vjS =
∑
i∈S

div
i −

∑
i∈I\{jS}

civ
i

 < 1 (3)

for coefficients (ci)i∈I , (di)i∈S and jS ∈ I \ S, where the probability is taken over a random
seed γ.

The condition vjS =
∑
i∈S div

i −
∑
i∈I\{jS} civ

i can be checked by an AND ◦ MODm

circuit that takes (v1, . . . , vn) ∈ Ztnm as input. By Theorem 23, we get

Pr

vjS =
∑
i∈S

div
i −

∑
i∈I\{jS}

civ
i

 ≤ m−t + ε.

Consequently, due to our choice of t and using ε < m−t, the left-hand side of (3) is strictly
less than

nr+2 · |S| ·mr · 2m−t ≤ 1,

which completes the proof. J

In particular, there exists some seed γ ∈ [Γtn] such that (v1, . . . , vn) = Gtn(γ) is nice.
The number of seeds is at most Γtn = poly(tn, 1/ε,m) = poly(n,mt) = (nm)O(r), which is
a polynomial in the input length; hence, in polynomial time, one can try all possible seeds
and find a nice collection (vi)i∈[n] of vectors. Thus the reduction of Theorem 8 can be
derandomized:

I Corollary 29. (DNF ◦MODm)-MCSP∗ is NP-hard under polynomial-time many-one reduc-
tions.

Proof of Theorem 24. Immediate from Corollaries 29 and 27. J

4.2 Near-Optimal Pseudorandom Generators for AND ◦ MODm

This subsection contains a proof of Theorem 23. We assume basic familiarity with concepts
from analysis of boolean functions [35]. For simplicity, we first focus on the case of m = 2,
which admits a simpler proof.

Proof for m = 2. An ε-biased generator, introduced by Naor and Naor [34], is a pseudoran-
dom generator for XOR functions. That is, we say that a function G : {0, 1}s → {0, 1}n is an
ε-biased generator if |Ex∈R{0,1}n [χS(x)]− Es∈R{0,1}s [χS(G(s))]| ≤ ε for any S ⊆ [n], where
χS(x) :=

⊕
i∈S xi. While this definition only requires the generator to fool XOR functions,

it can be shown that any Boolean function with small `1 Fourier norm can be fooled by
ε-biased generators.

I Lemma 30 (see e.g., [16, Lemma 2.5]). Every function f : {0, 1}n → {0, 1} can be ε|̂|f |̂|1
fooled by any ε-biased generator. Here, |̂|f |̂|1 :=

∑
S⊆[n] |f̂(S)|.

Proof Sketch. Use the Fourier expansion f(x) =
∑
S⊆[n] f̂(S)χS(x), and apply the triangle

inequality. J

Moreover, it is known that any AND ◦ XOR circuit f has |̂|f |̂|1 = 1.
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I Lemma 31 (see e.g., [35, Proposition 3.12]). |̂|f |̂|1 = 1 for any Boolean function f : {0, 1}n
→ {0, 1} computable by a nontrivial AND ◦ XOR circuit.

Proof Sketch. Let H + a ⊆ {0, 1}n be the (nonempty) affine subspace accepted by f . Take
a basis of H⊥. Write a characteristic function of f using the basis, and expand it to obtain a
Fourier expansion of f . J

Combining these two lemmas, any ε-biased generator fools AND ◦ XOR circuits. Moreover,
Naor and Naor [34] gave an explicit construction of an ε-biased generator of seed length
O(logn+ log(1/ε)), from which Theorem 23 follows when m = 2.

In the proof sketched above, we exploited the fact that {0, 1}n = Zn2 is a vector space:
We took a basis of a linear subspace in the proof of Lemma 31. In order to generalize the
result to the case of m ≥ 2, we need a more direct proof which does not rely on a basis.

Proof for any m ≥ 2. Azar, Motwani and Naor [9] generalized the notion of ε-biased
generator on {0, 1}n to Znm for any integer m ≥ 2, and gave an explicit construction. We
review the generalized notion and their result below.

I Definition 32 ([9]). For a probability distribution D over Znm and a vector a ∈ Znm, biasD(a)
is defined as follows: for g := gcd(a1, . . . , an,m),

biasD(a) := 1
g

max
0≤k<m/g

∣∣∣ Pr
x∼D

[〈a, x〉 = kg]− g

m

∣∣∣ .
We say that a distribution D is ε-biased if biasD(a) ≤ ε for every a ∈ Znm. We say that a
function G : [Γ] → Znm is an ε-biased generator if the distribution G(γ) for a random seed
γ ∈R [Γ] is ε-biased.

I Theorem 33 ([9, Theorem 6.1]). For m(n) ≥ 2 and ε = ε(n) > 0, there exists a quick
ε-biased generator G = {Gn : [Γn]→ Znm}n∈N for some Γn = poly(n, 1/ε,m).

We use the same pseudorandom generator G as in Theorem 33. In what follows, we will
show that any ε-biased generator mε-fools AND ◦MODm circuits, which completes the proof
of Theorem 23.

Define em : Zm → C× as em(k) := exp(2π
√
−1 · k/m) for k ∈ Zm.

I Lemma 34. For any distribution D on Znm and any nonzero vector a ∈ Znm, we have∣∣∣ E
x∼D

[em (〈a, x〉)]
∣∣∣ ≤ m · biasD(a).

Proof. The proof follows the same approach of [9, Lemma 4.4]. Let g := gcd(a1, . . . , an,m).

∣∣∣ E
x∼D

[em (〈a, x〉)]
∣∣∣ =

∣∣∣∣∣∣
∑

0≤k<m/g

em(kg) Pr
x∼D

[〈a, x〉 = kg]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

0≤k<m/g

em(kg)
(

Pr
x∼D

[〈a, x〉 = kg]− g

m

)∣∣∣∣∣∣
≤

∑
0≤k<m/g

|em(kg)| ·
∣∣∣ Pr
x∼D

[〈a, x〉 = kg]− g

m

∣∣∣
≤ m

g
· 1 · g · biasD(a) = m · biasD(a),
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where the first equality follows from the fact that 〈a, x〉 is a multiple of g for any x ∈ Znm,
and in the second equality we used that

∑
0≤k<m/g em(kg) = 0 for g < m, which is true if

a 6= 0n. J

As a consequence of the previous lemma, we can prove that any affine function can be
“fooled”:

I Lemma 35. For any ε-biased probability distribution D on Znm, any vector a ∈ Znm, and
any scalar b ∈ Zm,∣∣∣∣ E

x∼D
[em (〈a, x〉+ b)]− E

x∈RZn
m

[em (〈a, x〉+ b)]
∣∣∣∣ ≤ mε.

Proof. When a = 0n, both expectations are constant, and hence the lemma follows. Other-
wise, we have Ex∈RZn

m
[em (〈a, x〉)] = 0, since this expression can be written as a product of

expectations, and one of them evaluates to zero. Using Lemma 34, we obtain∣∣∣∣ E
x∼D

[em (〈a, x〉+ b)]− E
x∈RZn

m

[em (〈a, x〉+ b)]
∣∣∣∣

= |em(b)| ·
∣∣∣∣ E
x∼D

[em (〈a, x〉)]− E
x∈RZn

m

[em (〈a, x〉)]
∣∣∣∣ = 1 ·

∣∣∣ E
x∼D

[em (〈a, x〉)]
∣∣∣

≤ m biasD(a) ≤ mε. J

I Theorem 36. For any ε-biased probability distribution D on Znm and any function f :
Znm → {0, 1} computable by some AND ◦MODm circuit,

∣∣∣∣ E
x∼D

[f(x)]− E
x∈RZn

m

[f(x)]
∣∣∣∣ ≤ mε

Proof. Suppose that an AND ◦MODm circuit computing f has K MODm gates, and, for
each k ∈ [K], let gk : Znm → Zm denote the affine function that corresponds to the kth
MODm gate. That is, gk(x) = 〈ak, x〉+ bk for some vector ak ∈ Znm and some scalar bk ∈ Zm;
moreover, for any input x ∈ Znm, f(x) = 1 if and only if gk(x) = 0 for all k ∈ [K].

We employ the following construction. Let p(z) be the polynomial over C defined as
follows.

p(z) := 1
m

∏
α∈Zm\{0}

(z − em(α)) (4)

= 1
m

zm − 1
z − 1 = 1

m

m−1∑
i=0

zi, (5)

where the second equality holds because the roots of the polynomial zm − 1 are { em(α) |
α ∈ Zm }. Useful properties of this polynomial are that, by (4), we have p(em(α)) = 0 for
any α ∈ Zm \ {0}, and that p(em(0)) = p(1) = 1 because of (5). Using the polynomial, we
can write f as follows:
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f(x) =
∧
k∈[K]

[gk(x) = 0]

=
∧
k∈[K]

[p(em(gk(x))) = 1]

=
∏
k∈[K]

p(em(gk(x)))

=
∏
k∈[K]

 1
m

m−1∑
j=0

em(j · gk(x))


= 1

mK

∏
k∈[K]

∑
αk∈Zm

em(αkgk(x))

= 1
mK

∑
α∈ZK

m

em

 ∑
k∈[K]

αkgk(x)

 .

Now, by using Lemma 35, we obtain∣∣∣∣ E
x∼D

[f(x)]− E
x∈RZn

m

[f(x)]
∣∣∣∣

≤ 1
mK

∑
α∈ZK

m

∣∣∣∣∣∣ E
x∼D

em
 ∑
k∈[K]

αkgk(x)

− E
x∈RZn

m

em
 ∑
k∈[K]

αkgk(x)

∣∣∣∣∣∣
≤ mε,

where in the last inequality we used the fact that
∑
k∈[K] αkgk(x) is an affine function. J

Proof of Theorem 23. The result is immediate from Theorems 33 and 36. J
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A Proof of Fact 3 – Double Orthogonal Complement in (Z/mZ)n

In this section we present the proof of Fact 3, which for convenience is reformulated as
Theorem 37 stated below. Our presentation follows the proof outlined in [20].

Recall the following concepts. We consider the Abelian group G := (Z/mZ)n equipped
with component-wise addition modulo m, and let 〈x, y〉 :=

∑
i∈[n] xiyi mod m, where

x, y ∈ G. For a subgroup V of G, define V ⊥ := {x ∈ G | 〈x, y〉 = 0 for all y ∈ V }, which is
again a subgroup of G.

I Theorem 37 (folklore). V ⊥⊥ = V for any subgroup V of G = (Z/mZ)n.

It is easy to see V ⊆ V ⊥⊥: indeed, for any x ∈ V , we have 〈x, y〉 = 0 for each y ∈ V ⊥ by
the definition of V ⊥; hence x ∈ V ⊥⊥. Therefore, it is sufficient to show that the size of V ⊥⊥
is equal to that of V . To this end, we prove the following claim.

I Claim 38. |V ⊥| = |G|/|V | for any subgroup V of G.

Note that, applying this claim twice, we obtain |V ⊥⊥| = |G|/|V ⊥| = |G|/(|G|/|V |) = |V |,
which completes the proof of Theorem 37. Claim 38 will be proved by combining the three
claims below.

Let H be any finite Abelian group. A character of the group H is a homomorphism
χ : H → C× Let Ĥ denote the dual group of H, that is, the group of all characters of H.
(See e.g. [35, Section 8.5] for more details.) It is known that the order of a group H and the
order of its dual group Ĥ are the same.
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I Claim 39 ([35, Corollary of Proposition 8.55 and Exercise 8.35]). |H| = |Ĥ| for any finite
Abelian group H.

For any subgroup V of G, define V ∗ := {χ ∈ Ĝ | χ(v) = 1 for every v ∈ V }.

I Claim 40. Ĝ/V ∼= V ∗ for any subgroup V of G.

Proof. We define an isomorphism ϕ : Ĝ/V → V ∗. Given χ ∈ Ĝ/V , we define ϕ(χ) : G→ C×
by ϕ(χ)(x) := χ(x+V ) for x ∈ G. We claim that ϕ(χ) is indeed in V ∗: First, ϕ(χ) : G→ C×
is a homomorphism since ϕ(χ)(x+y) = χ(x+y+V ) = χ((x+V )+(y+V )) = χ(x+V )χ(y+V )
for any x, y ∈ G. Second, ϕ(χ)(v) = χ(v + V ) = χ(V ) = 1 for any v ∈ V . (Here, we used
the fact that the homomorphism χ maps the identity 0 + V ∈ G/V to the identity 1 ∈ C×.)

We claim that ϕ is a homomorphism. Indeed, ϕ(χ1χ2)(x) = (χ1χ2)(x + V ) = χ1(x +
V )χ2(x + V ) = ϕ(χ1)(x)ϕ(χ2)(x) for any x ∈ G and any χ1, χ2 ∈ Ĝ/V ; hence ϕ(χ1χ2) =
ϕ(χ1)ϕ(χ2).

In order to prove that ϕ is a bijection, we construct an inverse map ψ : V ∗ → Ĝ/V . Given
χ ∈ V ∗, define ψ(χ)(a+ V ) := χ(a) for any coset a+ V ∈ G/V . Note that this map is well
defined since a + V = b + V implies a − b ∈ V , and thus 1 = χ(a − b) = χ(a)/χ(b). It is
straightforward to see that ψ = ϕ−1: indeed, ψ(ϕ(χ))(a + V ) = ϕ(χ)(a) = χ(a + V ) and
ϕ(ψ(χ))(a) = ψ(χ)(a+ V ) = χ(a) for any a ∈ G. Hence ϕ is both injective and surjective,
and consequently, an isomorphism. J

I Claim 41. V ∗ ∼= V ⊥ for any subgroup V of G = (Z/mZ)n.

Proof. We first prepare some notation: For any i ∈ [n], let ei ∈ G be the vector whose value
is 1 on the ith coordinate and is 0 on the other coordinates. Let ω := exp(2π

√
−1/m) ∈ C×

denote the mth root of unity.
We construct an isomorphism ϕ : V ⊥ → V ∗. Given x ∈ V ⊥, define ϕ(x) ∈ V ∗ as

ϕ(x)(y) := ω〈x,y〉 for any y ∈ G. Note that the image of ϕ is contained in V ∗: indeed, for
any v ∈ V ⊥, we have ϕ(x)(v) = ω〈x,v〉 = ω0 = 1.

We claim that ϕ is injective. It is easy to see that ϕ is a homomorphism; thus, it is
sufficient to prove that the kernel of ϕ is just 0 ∈ V ⊥. If ϕ(x) is the constant function 1,
then 〈x, y〉 = 0 for any y ∈ G; in particular, letting y ∈ {e1, . . . , en}, we obtain x = 0.

Finally, we claim that ϕ is surjective. For any χ ∈ V ∗ and any i ∈ [n], there is some
xi ∈ Z/mZ such that χ(ei) = ωxi : indeed, since 1 = χ(0) = χ(m · ei) = χ(ei)m, χ(ei) is
one of the mth roots of unity. Now we define x :=

∑n
i=1 xiei ∈ G. Then, for any y ∈ G,

ϕ(x)(y) = ω〈x,y〉 =
∏n
i=1 ω

xiyi =
∏n
i=1 χ(ei)yi =

∏n
i=1 χ(yiei) = χ(

∑n
i=1 yiei) = χ(y); hence

ϕ(x) = χ for some x ∈ G. Moreover, for any v ∈ V , we have χ(v) = ω〈x,v〉 = 1 since χ ∈ V ∗;
thus we have 〈x, v〉 = 0, which implies that x ∈ V ⊥. J

Combining these three claims, we obtain |V ⊥| = |V ∗| = |Ĝ/V | = |G/V | = |G|/|V |, which
completes the proof of Claim 38.

B On Different Complexity Measures for DNF ◦ MODp Circuits

In this section, we provide an example of the robustness of our arguments with respect to
variations of the complexity measure. Let p ≥ 2 be a fixed prime. We sketch the proof of a
hardness result for a variant of the (DNF ◦MODp)-MCSP∗ problem, described as follows. We
consider layered OR ◦ AND ◦MODp formulas7 over Znp , and measure complexity by the total

7 Recall that in a formula every non-input gate has fan-out one.



S. Hirahara, I.C. Oliveira, and R. Santhanam 5:27

number of (non-input) gates in the formula.8 A bit more precisely, we adapt the proof of
Theorem 8 from Section 3.1, and show that this problem is also NP-hard under randomized
reductions.

Since Ztp is a vector space over the field Zp, we can define the dimension of an affine
subspace: For a linear subspace H ⊆ Ztp, let dim(H) denote the dimension of H, and let
codim(H) := dim(H⊥) = t− dim(H); then, for any a ∈ Ztp, define the dimension of an affine
subspace H + a as dim(H + a) := dim(H), and codim(H + a) := dim(H). Observe that
this notion is well-defined. Using dimension, we can characterize the number of gates in
AND ◦MODp formulas.

I Lemma 42. Let A be an affine subspace of Ztp. Then, the minimum number of gates in
any layered AND ◦MODp formula accepting A is exactly 1 + codim(A).

Proof Sketch. As in the proof of Lemma 2, a layered AND◦MODp formula C with 1+s gates
accepts the set A = C−1(1) of solutions of s linear equations over MODp. Let B ∈ Zs×tp be
the matrix that defines these linear equations. Then, we have dim ker(B) = dim(A), and by
the rank-nullity theorem, we obtain codim(A) = t−dim(A) = t−dim ker(B) = rank(B) ≤ s.

Conversely, let A =: H+a for some linear subspace H and some a ∈ Ztp, and let γ1, . . . , γs
be a basis of H⊥, where s := codim(H). Then, using orthogonal complements, it is easy to
check that x ∈ A if and only if 〈γi, x〉 = 〈γi, a〉 for all i ∈ [s]. The latter condition can be
written as an AND ◦MODp layered formula with 1 + s gates. J

As a corollary, for any optimal layered (DNF ◦MODp)-formula C =
∨K
k=1 Ck for a function

f : Znp → {0, 1}, where Ck is an AND ◦MODp circuit for each k ∈ [K], the total number of
gates in the formula is precisely 1 +K +

∑K
k=1 codim(C−1

k (1)).
For convenience, given a function f : Ztp → {0, 1, ∗}, let size(f) denote the complexity of

f according to our size measure. Now let us revise the proof of Theorem 8. Given an instance
S ⊆

(
n
≤r
)
of the r-bounded set cover instance, we construct a function f : Ztp → {0, 1, ∗} in

exactly the same way. Below we adapt the corresponding claims from Section 3.1. Then we
employ the new claims to argue that the NP-hardness result still holds.

I Claim 43 (Adaptation of Claim 9). Assume that S has a set cover of size K. Then
size(f) ≤ (t+ 1)K + 1.

Proof. Let C ⊆ S be a set cover of size K. For each S ∈ C, let CS be an AND◦MODp circuit
over Ztp that accepts span(vS). Define a DNF◦MODp circuit C :=

∨
S∈C CS . Then the circuit

size of C is 1 +K +
∑K
i=1 codim(C−1

S (1)), which is obviously at most 1 +K(t+ 1). J

I Claim 44 (Adaptation of Claim 13). Let (vi)i∈[n] be nice, and s := size(f). Then S has a
set cover of size 2(s− 1)/(t− r − (log |S|/ log p) + 1).

Proof. Let C =
∨K
k=1 Ck be an optimal DNF ◦MODp layered formula of size s computing f .

Then, as discussed above, we have s = 1 +K +
∑K
k=1 codim(C−1

k (1)). On the other hand,
the same analysis from Claim 13 shows that S has a set cover of size ≤ 2K. It thus remains
to give an upper bound on K.

Since C computes f , we have C−1
k (1) ⊆ C−1(1) ⊆ f−1({1, ∗}) =

⋃
S∈S span(vS). By

counting the number of elements in C−1
k (1) and

⋃
S∈S span(vS), we obtain pdim(C−1

k
(1)) ≤

|S| · pr. Hence, we have codim(C−1
k (1)) ≥ t− r − log |S|/ log p; therefore,

8 Under our notion of layered formulas, an (AND ◦MODp)-circuit with a single MODp gate has size 2.
While this is convenient for the exposition, it is not particularly important for the result.
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s ≥ 1 +K +
K∑
k=1

codim(C−1
k (1)) ≥ 1 +K +K(t− r − log |S|/ log p),

which implies K ≤ (s− 1)/(t− r − (log |S|/ log p) + 1). J

Let K be the minimum size of a cover for S. By the claims above, we have size(f) . tK

and K . 2size(f)/t, because t can be taken large enough compared to the other relevant
parameters; hence size(f)/t roughly gives us a 2-factor approximation. More precisely, we
have size(f) ≤ (t+1)K+1 ≤ 2(t+1)K, and K ≤ 2(size(f)−1)/((t+1)/2) ≤ 4size(f)/(t+1)
for any t ≥ 2r + 2 log |S|/ log p− 1. That is, the set cover size K satisfies

size(f)
2(t+ 1) ≤ K ≤ 4size(f)

t+ 1 ,

which gives an 8-factor approximation of K. Since we can take r to be a sufficiently large
constant in Theorem 5, the result holds.

C A Hardness of Approximation Result for (DNF ◦ MODm)-MCSP

The reduction from (DNF ◦MODm)-MCSP∗ to (DNF ◦MODm)-MCSP presented in Section 3
is not approximation-preserving: given a partial function f : Ztm → {0, 1, ∗}, it produces a
total function g : ZO(t logm)

m → {0, 1} such that DNFMODm(g) = DNFMODm(f)+ |f−1(∗)|. The
reduction introduces an additive term |f−1(∗)|, and hence a (multiplicative) approximation
of DNFMODm

(g) does not give a good approximation of DNFMODm
(f). In order to fix this

situation, we give an approximation-preserving reduction. Our approach is inspired by a
reduction described in [5].

I Theorem 45 (Approximation-preserving version of Corollary 27). There is a polynomial-time
algorithm that, given the truth table of a partial function f : Ztm → {0, 1, ∗}, produces the
truth table of a total function g : Z2t+2s

m → {0, 1} such that

DNFMODm
(g) = |f−1(∗)| · (DNFMODm

(f) + 1),

where s := d(6t+ 4) logm+ 2e.

Proof. The idea of the proof is to amplify the circuit size for f ; that is, we would like to
force any circuit C computing g to also compute sub-functions corresponding to |f−1(∗)|
copies of f .

We can amplify the circuit size as follows. Let (Lx)x∈f−1(∗) be a scattered collection
of linear subspaces of Zsm. Define a function g′ by g′(x, z, w) := f(x) if z ∈ f−1(∗) and
w ∈ Lz; otherwise g′(x, z, w) := 0. Then, under an appropriate choice of parameters, it
can be shown that DNFMODm(g′) = |f−1(∗)| · DNFMODm(f). By combining an analogous
reduction and the idea behind the proof of Theorem 16, we can obtain a total function g
such that DNFMODm

(g) = DNFMODm
(g′) + |f−1(∗)| = |f−1(∗)| · (DNFMODm

(f) + 1).9 Details
follow.

9 A black-box application of Corollary 27 produces a function g such that DNFMODm
(g) = DNFMODm

(g′) +
|g′−1(∗)|, which is not sufficient for our purpose because |g′−1(∗)| is larger than |f−1(∗)|.
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We first obtain a scattered collection (Lx)x∈f−1(∗) of r-dimensional linear subspaces of
Zsm by using Theorem 25 for r := 2t+ 2. Then we define g : Z2t+2s

m → {0, 1} as

g(x, y, z, w) :=


f(x) (if f(x) ∈ {0, 1} and y = 0s and f(z) = ∗ and w ∈ Lz)
1 (if f(x) = ∗ and y ∈ Lx)
0 (otherwise)

for any ((x, y), (z, w)) ∈ (Zsm × Ztm)2.

I Claim 46 (Analogue of Claim 17). DNFMODm
(g) ≤ |f−1(∗)| · (DNFMODm

(f) + 1).

Proof. Suppose that a DNF◦MODm circuit C =
∨K
k=1 Ck computes f . For each x∗ ∈ f−1(∗),

take an AND ◦MODm circuit Cx∗ accepting {x∗} × Lx∗ (by Lemma 2). Define

C ′(x, y, z, w) :=
∨

z∗∈f−1(∗)

K∨
k=1

(Ck(x)∧y1 = 0∧· · ·∧ys = 0∧Cz∗(z, w))∨
∨

x∗∈f−1(∗)

Cx∗(x, y).

It is easy to see that C ′ computes g. J

The rest of the proof is devoted to the reverse direction.

I Claim 47 (Analogue of Claim 20). DNFMODm
(g) ≥ |f−1(∗)| · (DNFMODm

(f) + 1).

Let C =
∨K
k=1 Ck be a minimum DNF ◦ MODm circuit computing g. In particular,

K = DNFMODm(g) ≤ |f−1(∗)| · (DNFMODm(f) + 1) ≤ m2t+1. For each x ∈ f−1(∗), let
l(x) ∈ [K] be one of the indices such that |C−1

l(x)(1)∩ ({x} ×Lx ×Zt+sm )| is maximized. Since⋃
k∈[K] C

−1
k (1) ⊇ {x} × Lx × Zt+sm , there are at least |Lx| ·mt+s/K ≥ mr+t+s/m2t+1 ≥ 2

points in the set C−1
l(x)(1) ∩ ({x} × Lx × Zt+sm ).

Define T0 := {Cl(x) | f(x) = ∗ }. For each z ∈ f−1(∗), let Tz be the set of all Ck such that
k ∈ [K] and Ck accepts at least 2 elements from {(x, 0s, z)}×Lz for some x ∈ f−1(1). We will
show that the sets T0, {Tz}z∈f−1(∗) are pairwise disjoint, and hence K ≥ |T0|+

∑
z∈f−1(∗) |Tz|.

We will also prove that |T0| = |f−1(∗)| and |Tz| ≥ DNFMODm
(f), which completes the proof.

I Claim 48. l : f−1(∗)→ [K] is injective (hence |T0| = |f−1(∗)|).

I Claim 49. T0 ∩ Tz = ∅ for any z ∈ f−1(∗).

Since the proofs of these claims are essentially the same as in Claims 21 and 22, respectively
(except that we have extra coordinates taking values in Ztm × Zsm), we omit them.

I Claim 50. Tz1 ∩ Tz2 = ∅ for any distinct elements z1, z2 ∈ f−1(∗).

Proof. The proof is basically the argument from Claim 21. For completeness, we briefly
repeat it here. Towards a contradiction, assume that there exists a circuit Ck in Tz1 ∩Tz2 . By
the definition of Tz1 and Tz2 , there exist elements x1, x2 ∈ f−1(1), a 6= b ∈ Lz1 , and c ∈ Lz2

such that Ck(x1, 0s, z1, a) = Ck(x1, 0s, z1, b) = Ck(x2, 0s, z2, c) = 1. Since C−1
k (1) is an affine

subspace, we have (x1, 0s, z1, a)−(x1, 0s, z1, b)+(x2, 0s, z2, c) = (x2, 0s, z2, a−b+c) ∈ C−1
k (1).

Since C−1
k (1) ∩ ({(x2, 0s, z2)} × Zsm) ⊆ {(x2, 0s, z2)} × Lz2 , we get a− b+ c ∈ Lz2 . However,

given that c ∈ Lz2 , we obtain 0s 6= a− b ∈ Lz1 ∩Lz2 , which contradicts Lz1 ∩Lz2 = {0s}. J

Fix any z ∈ f−1(∗). For each Ck ∈ Tz, define an AND ◦ MODm circuit C ′k so that
C ′−1
k (1) = {x ∈ Ztm | Ck(x, 0s, z, w) = 1 for some w ∈ Zsm }. (Note that a projection of an

affine subspace C−1
k (1) is again an affine subpace because a projection is a homomorphism.)

Now define Cz :=
∨
Ck∈Tz

C ′k.
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I Claim 51. Cz computes f for any z ∈ f−1(∗). (In particular, |Tz| ≥ DNFMODm
(f).)

Proof. Fix any x ∈ f−1(1). Since {(x, 0s, z)} × Lz is covered by
⋃
k∈[K] C

−1
k (1), and

|Lz| = mr, K ≤ m2t+1, and r = 2t+ 2, there exists k ∈ [K] such that there are at least 2
elements in ({(x, 0s, z)} × Lz) ∩ C−1

k (1); hence, by the definition of Tz, we have Ck ∈ Tz.
Moreover, C ′k(x) = 1 by the definition of C ′k; thus Cz(x) =

∨
Ck∈Tz

C ′k(x) = 1.
Now fix any x ∈ f−1(0). Since g(x, 0s, z, w) = 0 for every w ∈ Zsm, we get Ck(x, 0s, z, w) =

0 for any Ck ∈ Tz; thus C ′k(x) = 0, which implies that Cz(x) = 0. J

Combining the claims above, we obtain

DNFMODm
(g) = K ≥ |T0|+

∑
z∈f−1(∗)

|Tz| ≥ |f−1(∗)| · (DNFMODm
(f) + 1).

This completes the proof of Theorem 45. J

We can then establish a hardness of approximation result for computing DNFMODm
(f).

For a function f : Ztm → {0, 1}, define |f | := mt, which is the number of entries in the truth
table of a function f .

I Theorem 52. There exists a constant c > 0 such that if there is a quasipolynomial-
time algorithm which approximates DNFMODm(f) to within a factor of c log log |f |, then
NP ⊆ DTIME(2(logn)O(1)).

Proof. As noted by Trevisan [42], by choosing the parameters of Feige’s reduction [17], one
can obtain hardness of approximation results for the r-bounded set cover problem. While
Trevisan only analyzed the case when r is constant (cf. Theorem 5), a similar analysis10
shows that it is NP-hard (under quasipolynomial-time many-one reductions) to approximate
the r(n)-bounded set cover problem on n points within a factor of γ log r(n) ( = γ log logn )
for r(n) := logn and some small constant γ > 0.

Suppose that DNFMODm
(g) can be approximated to within a factor of (γ/6) log log |g| by

an algorithm A, where g : Ztm → {0, 1} is a total function. We show below that if A runs in
quasipolynomial time, then NP ⊆ DTIME(2(logn)O(1)).

First, note that in order to conclude this it is enough to describe a quasipolynomial-time
algorithm B that approximates r-Bounded Set Cover to within a factor of γ log r(n) for
r(n) = logn. Let ([n],S) be an instance of the r-Bounded Set Cover Problem. Algorithm
B applies the deterministic nO(r(n))-time reduction provided by Corollary 29 to produce a
partial Boolean function f : ZO(r logn)

m → {0, 1, ∗}. It then invokes the deterministic reduction
from Theorem 45 to construct from f a total function g : ZO(r logn)

m → {0, 1}. Finally, B uses
the approximation algorithm A to compute a (γ/6) log log |g| approximation to DNFMODm(g).
Let g̃ ∈ N be the value output by A. Algorithm B outputs K̃ := 2g̃/|f−1(∗)|.

Note that B runs in quasipolynomial time under our assumptions. It remains to show that
it approximates the solution of the original set cover problem within a factor of γ log logn.
Let K be the cost of an optimal solution to the initial set cover instance. Recall that

10 Specifically, for the parameters and notation in [17], given a 3CNF-5 formula on n variables, let k be a
sufficiently large constant, m :=

√
log n, and ` := c log log m for a large constant c. Then the output

of Feige’s reduction is an instance of the set cover problem on N
(

:= m(5n)`
)
points such that each

set is of size at most m2O(`) ≤ r(N) = log N , and the gap between yes instances and no instances is
(1− 4

k ) ln m = Ω(log log N).



S. Hirahara, I.C. Oliveira, and R. Santhanam 5:31

2DNFMODm(f) is a 2-factor approximation for K; that is, K ≤ 2 · DNFMODm(f) ≤ 2K. On
the other hand, the guarantees of the algorithm A imply that

DNFMODm
(g) ≤ g̃ ≤ DNFMODm

(g) · (γ/6) log log |g|.

Since DNFMODm
(g) = |f−1(∗)| · (DNFMODm

(f) + 1), we get

K ≤ 2g̃
|f−1(∗)| ≤ (γ/6) log log |g| · (K + 1)

Therefore, for large enough n and on non-trivial instances (i.e. K ≥ 1), the value K̃ output
by B approximates K to within a factor of 2 · (γ/6) log log |g| ≤ (γ/3) · (log r(n) + log logn+
O(1)) ≤ (γ/3) · 3 log logn. J

Finally, we note that when m is prime, it is possible to design a quasipolynomial-time
approximation algorithm for DNFMODm(f) with an approximation factor of O(log |f |).

I Theorem 53. Let p be a prime number. There is a quasipolynomial-time algorithm which
approximates DNFMODp(f) to within a factor of ln |f |.

Proof. Let |f | = pt be the number of entries in the truth table of f , the input function.
By the results of Section 2.1, computing DNFMODp(f) is equivalent to solving a set cover
instance. Recall that set cover admits a polynomial-time approximation algorithm that
achieves an approximation factor of lnN on instances over a universe of size N (cf. [40]).
Consequently, in order to prove the result it is enough to verify that computing DNFMODp(f)
reduces to a set cover instance with domain size Nf := |f−1(1)| ≤ |f | and of size at most
quasipolynomial in |f |.

Indeed, for a non-zero function f : Ztp → {0, 1}, DNFMODp
(f) is exactly the minimum

number of affine subspaces that cover f−1(1). Therefore, by relabelling elements, computing
DNFMODp

(f) reduces to a set cover instance ([Nf ],Sf ), where a set S ∈ Sf if and only if S
viewed as a subset of Ztp is an affine subspace contained in f−1(1). Each such affine subspace
has dimension at most t, and can be explicitly described by a basis v1, . . . , v` ∈ Ztp, where
` ≤ t, and a vector b ∈ Ztp. Hence there are at most pO(t2) such spaces, and consequently,
|Sf | ≤ pO(t2). In other words, we get a set cover instance over a ground set of size ≤ |f |, and
this instance contains at most |f |O(log |f |) sets.

Finally, since the sets in Sf can be generated in time at most |f |O(log |f |), and the set cover
approximation algorithm runs in time polynomial in its input length, the result holds. J
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