We present a new approach to constructing unconditional pseudorandom
generators against classes of functions that involve computing a linear
function of the inputs. We give an explicit construction of a pseudorandom
generator that fools the discrete Fourier transforms of linear functions with
seed-length that is nearly logarithmic (up to polyloglog factors) in the input
size and the desired error parameter. Our result gives a single pseudorandom
generator that fools several important classes of tests computable in logspace
that have been considered in the literature, including halfspaces (over general
domains), modular tests and combinatorial shapes. For all these classes, our
generator is the first that achieves near logarithmic seed-length in both the
input length and the error parameter. Getting such a seed-length is a natural
challenge in its own right, which needs to be overcome in order to derandomize
RL - a central question in complexity theory.
Our construction combines ideas from a large body of prior work, ranging from
a classical construction of [NN93] to the recent gradually increasing
independence paradigm of [KMN11, CRSW13, GMRTV12], while also introducing some
novel analytic machinery which might find other applications