521 research outputs found

    NetFPGA: status, uses, developments, challenges, and evaluation

    Get PDF
    The constant growth of the Internet, driven by the demand for timely access to data center networks; has meant that the technological platforms necessary to achieve this purpose are outside the current budgets. In this order to make and validate relevant, timely and relevant contributions; it is necessary that a wider community, access to evaluation, experimentation and demonstration environments with specifications that can be compared with existing networking solutions. This article introduces the NetFPGA, which is a platform to develop network hardware for reconfigurable and rapid prototyping. It’s introduces the application areas in high-performance networks, advantages for traffic analysis, packet flow, hardware acceleration, power consumption and parallel processing in real time. Likewise, it presents the advantages of the platform for research, education, innovation, and future trends of this platform. Finally, we present a performance evaluation of the tool called OSNT (Open-Source Network Tester) and shows that OSNT has 95% accuracy of timestamp with resolution of 10ns for the generation of TCP traffic, and 90% efficiency capturing packets at 10Gbps of full line-rate

    Cognitive Radio Programming: Existing Solutions and Open Issues

    Get PDF
    Software defined radio (sdr) technology has evolved rapidly and is now reaching market maturity, providing solutions for cognitive radio applications. Still, a lot of issues have yet to be studied. In this paper, we highlight the constraints imposed by recent radio protocols and we present current architectures and solutions for programming sdr. We also list the challenges to overcome in order to reach mastery of future cognitive radios systems.La radio logicielle a évolué rapidement pour atteindre la maturité nécessaire pour être mise sur le marché, offrant de nouvelles solutions pour les applications de radio cognitive. Cependant, beaucoup de problèmes restent à étudier. Dans ce papier, nous présentons les contraintes imposées par les nouveaux protocoles radios, les architectures matérielles existantes ainsi que les solutions pour les programmer. De plus, nous listons les difficultés à surmonter pour maitriser les futurs systèmes de radio cognitive

    NetFPGA SUME: Toward 100 Gbps as research commodity

    Get PDF
    The demand-led growth of datacenter networks has meant that many constituent technologies are beyond the budget of the research community. In order to make and validate timely and relevant research contributions, the wider research community requires accessible evaluation, experimentation and demonstration environments with specification comparable to the subsystems of the most massive datacenter networks. We present NetFPGA SUME, an FPGA-based PCIe board with I/O capabilities for 100Gb/s operation as NIC, multiport switch, firewall, or test/measurement environment. As a powerful new NetFPGA platform, SUME provides an accessible development environment that both reuses existing codebases and enables new designs.This work was jointly supported by EPSRC INTERNET Project EP/H040536/1, National Science Foundation under Grant No. CNS-0855268, and Defense Advanced Research Projects Agency (DARPA) and Air Force Research Laboratory (AFRL), under contract FA8750-11-C-0249.This is the author accepted manuscript. The final version is available from IEEE at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6866035&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A5210076%29

    Programmable logic devices in sensor networks: a survey

    Get PDF
    This paper presents a survey about the use of reconfigurable hardware technologies in sensor networks, considering proposals published in two of the leading conferences of Programmable Logic Devices: FPL and SPL. These proposals cover different applications such as wireless communications, different networks topics and sensors. Some of the papers considered in this survey are directly related with WSN, such as reconfigurable nodes or lowpower hardware platforms intended for sensor networks. Other papers are not directly related to WSN, but they present results and concepts that may be of interest in the field of the WSNs.Sociedad Argentina de Informática e Investigación Operativ

    SpaceCube: A NASA Family of Reconfigurable Hybrid On-Board Science Data Processors

    Get PDF
    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science-data processing systems developed at NASA Goddard Space Flight Center. This presentation provides an overview to the Future In-Space Operations Telecon Working Group

    Using System-on-a-Programmable-Chip Technology to Design Embedded Systems

    Get PDF
    This paper describes the tools, techniques, and devices used to design embedded products with system–on-a-chip (SoC) type solutions using a large Field Programmable Gate Array (FPGA) with an internal processor core. This new FPGA-based approach is called system-on-a-programmable-chip (SoPC ). The performance tradeoffs present in SoPC systems is compared to more traditional design approaches. Commercial devices, processor cores, and CAD tool flows are described. The issues in SoPC hardware/software design tradeoffs are examined and three example SoPC designs are presented as case studies

    A review on various types of Software Defined Radios (SDRs) in radio communication

    Get PDF
    Software Defined Radio (SDR) promises to deliver a cost effective and flexible solution by implementing a wide variety of wireless protocols in software. The SDR became more popular in recent years because of its abilities to realize many applications without a lot of efforts in the integration of different component. This software based radio device allows engineers to add more features to the communication system and implement any number of different signal processing elements or protocols without changing the original system hardware and its architecture. It provides a customizable and portable communications platform for many applications, including the prototyping and realization of wireless protocols and their performances. It is also able to interface with a separate hardware module to communicate over a real channel. In this article we described and compared the various SDRs that currently has been using by the researchers to study the performance of wireless protocol. Among the SDRs that we focused in this article are USRP, SORA, Air blue, SODA, and WARP

    NASA SpaceCube Intelligent Multi-Purpose System for Enabling Remote Sensing, Communication, and Navigation in Mission Architectures

    Get PDF
    New, innovative CubeSat mission concepts demand modern capabilities such as artificial intelligence and autonomy, constellation coordination, fault mitigation, and robotic servicing – all of which require vastly more processing resources than legacy systems are capable of providing. Enabling these domains within a scalable, configurable processing architecture is advantageous because it also allows for the flexibility to address varying mission roles, such as a command and data-handling system, a high-performance application processor extension, a guidance and navigation solution, or an instrument/sensor interface. This paper describes the NASA SpaceCube Intelligent Multi-Purpose System (IMPS), which allows mission developers to mix-and-match 1U (10 cm × 10 cm) CubeSat payloads configured for mission-specific needs. The central enabling component of the system architecture to address these concerns is the SpaceCube v3.0 Mini Processor. This single-board computer features the 20nm Xilinx Kintex UltraScale FPGA combined with a radiation-hardened FPGA monitor, and extensive IO to integrate and interconnect varying cards within the system. To unify the re-usable designs within this architecture, the CubeSat Card Standard was developed to guide design of 1U cards. This standard defines pinout configurations, mechanical, and electrical specifications for 1U CubeSat cards, allowing the backplane and mechanical enclosure to be easily extended. NASA has developed several cards adhering to the standard (System-on-Chip, power card, etc.), which allows the flexibility to configure a payload from a common catalog of cards
    corecore