
NetFPGA: Status, Uses, Developments, Challenges, and Evaluation.
1
Dixon Salcedo Morillo, 2César Guerrero Santander and 3Albeiro Cortés Cabezas

1Department of Computer Science and Electronics, Coast University, Barranquilla, Colombia

2Engineering and Organization Research Center, Autonomous University of Bucaramanga, Bucaramanga, Colombia
3Department of Electronic Engineering, Surcolombiana University, Neiva, Colombia

E-Mail: dsalcedo2@cuc.edu.co

ABSTRACT

The constant growth of the Internet, driven by the demand for timely access to data center networks; has meant
that the technological platforms necessary to achieve this purpose are outside the current budgets. In this order to make and
validate relevant, timely and relevant contributions; it is necessary that a wider community, access to evaluation,
experimentation and demonstration environments with specifications that can be compared with existing networking
solutions. This article introduces the NetFPGA, which is a platform to develop network hardware for reconfigurable and
rapid prototyping. It’s introduces the application areas in high-performance networks, advantages for traffic analysis,
packet flow, hardware acceleration, power consumption and parallel processing in real time. Likewise, it presents the
advantages of the platform for research, education, innovation, and future trends of this platform. Finally, we present a
performance evaluation of the tool called OSNT (Open-Source Network Tester) and shows that OSNT has 95% accuracy
of timestamp with resolution of 10ns for the generation of TCP traffic, and 90% efficiency capturing packets at 10Gbps of
full line-rate.

Keywords: NetFPGA-SUME; OSNT; Open-source hardware; Open-source software; Traffics analysis.

INTRODUCTION

Embedded system development platforms, to
create specialized hardware, have been evolving since the
80s. Since of first system based on microcontrollers to the
most advanced called Systems on a Chip (SoC). Currently
the development of these systems focuses on reducing the
development time of complex systems, as well as material
costs and energy consumption (Dagher, 2019), (Reddy,
2018) and (K.M. Gayathri, 2018). In this field, FPGAs
(Field Programmable Gate Arrays) have a differentiating
adds value; they can be reprogrammed using their
interconnected logic blocks, which favorably impacts the
hardware development cycle, allowing rapid design,
modeling, debugging and optimization of any type of
custom hardware required (Henkel, Wolf, & Chakradhar,
2004), (Forconesi, Sutter, Lopez-Buedo, Vergara, &
Aracil, 2014). The Hardware Descriptor Language
approach is used to describe and design, being Verilog and
VHDL. The current hardware is development under
control of two platforms trends, Xilinx® and Altera®.

Likewise, among the best-known network

hardware development platforms are SoNIC
(Software-defined Network Interface Card) (Lee, Wang,
& Weatherspoon, 2013), which allows through software,
access and control in real time to the physical layer of the
network adapter; achieving rates of up to 10Gbps. Another
platform is called Labkit (MIT, 2007), developed by the
Massachusetts Institute of Technology (MIT), which
allows the development of complex, high-performance
projects, including applications for audio and video
processing, among others.

Finally, Stanford University, Stanford, CA,
developed the platform, known as NetFPGA
(NetFPGA.org, 2017), from which its reference designs
such as reference_router, reference_nic, reference_switch,
and accept_test. Important applications have also been
developed, including Packet generator (Covington, Gibb,
Lockwood, & McKeown, 2009), OpenFlow (McKeown, y
otros, 2008), SCONE (NetFPGA, 2013), Blueswitch (Han,
y otros, 2015). The three platforms described above are of
the open-source type, which allows the reuse of code.

Table 1 describes the most important
characteristics of configurable hardware development
platforms for computer networks, which allow verifying
that the NetFPGA platform is the most active, due to the
number of high-impact projects developed and enabled by
research centers and educational institutions. These
institutions maintain the NetFPGA in constant growth,
validity and leadership in the area of open source
hardware design.

Table-1. Platforms for development of configurable
network hardware

Platforms Ref.
designs

Active
Projects

High-speed
ports

Associated
Institutions

Released
Versions

SoNIC 2 2 4 1 1

Labkit 1 4 4 1 1

NetFPGA 6 32 4 +150 4

Additionally, a review of the literature to

publications on NetFPGA; allowed to find that since the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Digital CUC

https://core.ac.uk/display/288166741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dsalcedo2@cuc.edu.co

beginning of the platform (Watson, McKeown, &
Casado., 2006), (Lockwood, y otros, 2007), it is evolution
and new technological developments, most have been
produced by institutions or universities in North America
and Europe; evidencing little development by Latin
American institutions.

On the other hand, an ideal development platform

requires being scalable, flexible, and useful for a wide
range of applications in general-purpose or specific
devices. For example, a network device can be used in two
ways, like a network element or final host adapter. Also,
open source hardware has reached maturity, although in
process adoption and used on a large scale and active
community that stimulates the constant growth of a library
of repositories that includes reference designs, hardware
designs and software (Zilberman N. , Audzevich,
Kalogeridou, Manihatty-Bojan, Zhang, & Moore, 2015).

Regarding the precise generation and monitoring

of traffic in high-speed computer networks and real-time
applications, the NetFPGA-SUME provides a high-speed
platform, which is useful for novel data-center
interconnection architectures, block host construction and
100 Gbps switches, for basic networking research, and as
a platform for exploring completely new protocol
architectures and interconnection equipment, beyond the
current restrictions of PCIe devices.

This study presents two main aspects. First, includes a
review of the NetFPGA platform and its applications.
Second, shows the evaluation of the performance of the
OSNT tool, with respect to the precision to generate and
timestamping of data packets. The remainder of this paper
is structured as follows. In section II the authors briefly
summarize the NetFPGA projects, its components,
architecture, and characteristics of the cards that compose
it. Then, in section III, an introduction to the
developments of NetFPGA and its most representative
applications is made. After, in section IV, the paper
presents the impact of using the NetFPGA platform on
education, research, and innovation. In addition, in section
IV, the authors present the impact of the use of the
NetFPGA platform on education, research, and
innovation. In Section V you can find a discussion about
the use of NetFPGA in new trends in the area of computer
networks and related. Then, in Section VI you can see the
evaluation of the performance of the precision and
efficiency of the OSNT tool. Finally, the study draws the
main conclusions and discusses future work in Section
VII.

NETFPGA PLATFORM

Initially, it is important to point out that several

projects at the end precede the NetFPGA platform, in the
revised literature two stands out. The first, called Click

(Kohler, Morris, Chen, Jannotti, & Kaashoek, 2000), is a
software architecture to build flexible and configurable
routers. The second, called XORP (eXtensible Open
Router Platform) (Handley, Hodson, & Kohler, 2003), is a
stable platform for research that allows building,
improving and strengthening a router, prioritizing the
configuration of parameters that frequently present
conflicts. Additionally, the NetFPGA project created at
ends of 2001 by Stanford University, as an effort of
researchers for the teaching of computer networks, under
the open-source philosophy, and the first version was used
in 2003, to developing a class project at the graduate level
at Stanford University (Watson, McKeown, & Casado.,
2006).

NetFPGA platforms components

The NetFPGA is a hardware expansion device. In
other words, a multipurpose card, that at level of computer
networks allows to develop in little time and to low cost,
functional prototypes of devices of interconnection
networks, that can operate between 1.0 and 10 Gbps of
speed. Similarly, NetFPGA is an open hardware and
software platform, because it integrates four different
elements, which appear below (Blott, Ellithorpe,
McKeown, Vissers, & Zeng, 2010):

(i) The open hardware represented on the
programmable card, with its own processor and four
10Gbps high-speed network ports each,

(ii) Development tools and reference designs,
which facilitate the creation of new devices, taking these
standard designs as a starting point,

(iii) Developed projects, whose code is available
for reuse, and

(iv) An academic research network, present in
more than 150 institutions around the world, which is
actively developing projects and documenting the
platform.

Figure-1. NetFPGA-SUME Card.

According to the versions of NetFPGA released

to date are in chronological order, NetFPGA-1G
(Discontinued), NetFPGA-1G-CML, NetFPGA-10G and
NetFPGA-SUME (NetFPGA.org, 2017), (Zilberman.,
2014); of which the last three are actively supported. The
NetFPGA-1G-CML, which replaced the original
NetFPGA-1G card, was designed for low-bandwidth
applications (up to 1.0 Gbps), and specially adapted for

network security applications (Moran Edgar, 2017). Then
introduced in 2010, the NetFPGA-10G, which has
multiple 10 Gbps interfaces, and supports a large number
of open source community projects (e.g., OSNT (Antichi,
y otros, OSNT: Open Source Network Tester, 2014) and
BlueSwitch. Finally, NetFPGA-SUME released in 2014,
and it has enabled four I/O ports to operate up to 100 Gbps
as a computer network device, and to function as a
stand-alone computing unit or for testing and
measurement. Each card has very important features. The
NetFPGA-SUME card, see Fig. 1, is a PCIe-(x8-Gen3)
card, which incorporates a Xilinx Virtex-7 690T FPGA,
with I/O capabilities to operate at rates between 10 Gbps
and 100 Gbps. Additionally, we can use this card as NIC,
multi-port switch, firewall, test/measurement
environment, among other applications. Table 2 expands
the features of the current platform versions.

NetFPGA architecture

The NetFPGA structured in blocks, you can see it

in Fig. 2. It has two different components. The first one
refers to the host that has the hardware and software
resources of the PC that contains the card, including the
network software. The second is the card itself, which
behaves as a hardware accelerator that integrates an
FPGA, handling network ports of 1/10Gbps.

In relation to the above, and placing the block

diagram in a real context. For example, in a router, the
host-side components are a general-purpose computer that
executes high-demand processing tasks; this represents the
Control-Plane. On the other hand, there is the NetFPGA,
which is high-speed hardware for transmitting packets
through the management of network ports by an FPGA,
and corresponds to the Data-Plane (Cao, Zheng, Sun, &
Jin, 2015).

On the other hand, when performing a more

detailed analysis of the internal structure of the NetFPGA,
and we find that it has a modular design. Consequently,
each project designed for NetFPGA inherits this same
structure. Therefore, it is important to know the behavior
of the basic data flow (Data_path) between the modules.
Finally, the entire module structure is called Reference
Pipeline, and you can see it in Fig. 3 (Covington, Gibb,
Naous, Lockwood, & McKeown, 2009).

Figure-2. NetFPGA card block diagram.

The Pipeline connected to the host PCIe bus at

one end of the NetFPGA; and has several Rx queues that
receive packets from the I/O ports (Ethernet or PCI).
These ports connected to the User_Data_Path, which
contains the processing steps. Similarly, within the
User_Data_Path, there is the Input_Arbiter, which is the
first module that a data packet passes through when it
arrives at the NetFPGA. Likewise, the Input_Arbiter
decides which Rx queue it serves, and then takes the
packet from that queue and delivers it to the next module
in the pipeline. That module is the Output_Port_Lookup,
which decides which port the data packets are sent
through. Then, the data packet is delivered to the next
module called Output_Queues, which stores the packet in
the queues that correspond to the output port until the Tx
queue accepts the data packet for transmission. Finally,
each of the modules described above has a set of registers
that provide information about the status, access, and
adjustment control signals of the NetFPGA (Antichi,
Giordano, Miller, & Moore, 2012).

Table-2. Features of NetFPGA cards

Features NetFPGA 10G NetFPGA 1G CML NetFPGA-SUME

CPU &
FPGA

-Virtex-5
- 240K celdas

lógicas y 11,664

Kbit de BRAM.

-Kintex-7
- 326,080 celdas

lógicas y 16,020

Kbit de BRAM.

-Virtex-7 690T
- 693,120 celdas

lógicas y 52,920

Kbit BRAM.

RAM

4 x36 RLDRAM-II,

400MHz, de

288MB.

DDR3 x8,

800MHz, de

512MB.

DDR3-SoDIMM,

933MHz, de 8 GB

(escalable a 32GB).

Net Ports
4 x 10Gbps.

4 x 1Gbps. 4 x 10Gbps. SFP+

PCI Ports

PCIe x8, de 4

líneas de 5Gbps.

PCIe x4, de 8

líneas de 2.5

Gbps.

- PCIe de 3ª. Gen.

8 líneas de 8Gbps.

Ext.
Storage

2 flash Cards, de

256Mb

1 SD-Flash de

1Gb.

2, Micro-SD slot,

512Mb hasta 1Gb

Regarding I/O interfaces, the NetFPGA-SUME

platform has a new industry standard called AMBA-AXI
architecture. Similarly, Xilinx uses AXI4 as the
transmission protocol for the Data-Plane interface, while
Control-Plane uses AXI-Lite (Cao, Zheng, Sun, & Jin,
2015).

DEVELOPMENTS ON NETFPGA

The growth of the NetFPGA community has
equally driven the quantity, quality, and relevance of
developments in two tracks. On the one hand, the
reference designs, which serve as a basis for new
developments. On the other hand, developments those are
completely new, and address solutions unpublished or

http://www.xilinx.com/support.html#Virtex-II%20Pro
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/

based on existing products, making them tools accessible
to all users. Therefore, the following is a summary of the
most important developments of the platform.

Traffic generation and analysis

NetFPGA traffic generators stand out for being more
accurate than those executed from the application layer
are. Packet Generator (Antichi, Giordano, Miller, &
Moore, 2012), can play a PCAP file and capture packets at
1Gbps, allowing you to change the speed of queues, the
delay between packets and the number of iterations to
which PCAP files are passed. On the other hand, the
Precise Traffic Generator (PTG) (Salmon, Ghobadi,
Ganjali, Labrecque, & Steffan, 2009) sends host generated
packets at highly accurate transmission times between
extremes, and designed to integrate with existing software
traffic generators and network emulators. Another tool is
OSNT (Zilberman N. , Audzevich, Kalogeridou,
Manihatty-Bojan, Zhang, & Moore, 2015) that can
generate and receive packets on the 10 GbE (Giga bit
Ethernet) interfaces, and incorporates time stamps to each
outbound packet, allowing end-to-end packet delay and
packet loss to be calculated. Finally, the Automatic Test
Packet Generation (ATPG) (Zeng, Kazemian, Varghese,
& McKeown, 2012)can evaluate protocol rules for
complex networks using a small number of test packets.
For example, sending 4000 test packets, 10 times per
second, consumes less than 1% of the evaluated link
capacity.

Figure-3. NetFPGA standard reference Pipeline.

In relation to traffic analyzers, in (Keinänen,
Jokela, & Slavov, 2009) zFilter is a tool that eliminates the
forwarding of the traditional IP address of a data packet
and replaces it with Bloom's filtering technique for
making packet forwarding decisions. As a result, ZFilter is
faster than the IP protocol, because it reaches a forwarding
delay between packets of up to 3μs. On the other hand,
Dynamic Packet-filtering (Engelmann, Lukaseder, Erb,
Heijden, & Kargl, 2014), uses the method of extracting
signatures in header fields, this is done by processing
packets in parallel in NetFPGA 10G, and reaches
transmission speeds of 9.5 Gbps. We found that
HyPaFilter tool (Fiessler, Hager, Scheuermann, & Moore,

2016) is a packet-classification hybrid system, based on
circuits adapted to an FPGA, therefore, when evaluating
HyPaFilter shows a performance 30 times higher than that
executed in software. Finally, other tools that have been
developed parallel to the traffic analysis on the
NetFPGA-10G, are the Network Intrusion Detection
Systems (NIDS), one of them is called SNORT
Accelerating (Al-Dalky, Salah, Otrok, & Al-Qutayri,
2014), and other protection of Denial of Distributed
Services (DDoS) (Pham-Quoc, Tran-Thanh, Tuan, &
Thinh, 2016).

Routing and switching

Initially we found that one of the most significant
contributions made to the networking area by the
NetFPGA platform, has been for the treatment of packet
flow; in this aspect, there are developments, among which
the following stand out.

OpenFlow is a communications protocol that

gives access to the packet-forwarding plane of a switch or
router over the network, and based on an Ethernet switch,
with an internal flow table and a standardized interface to
add and remove packet flow entries. On the other hand,
we find Blueswitch that supports a transaction
configuration mechanism, and provides a stable packet
configuration; that is, all packets that pass through the
Data_path will find the old configuration or the new one,
and never an inconsistent mix of the two (Han, y otros,
2015). Similarly, we find the Quagga Routing Suite tool
(Jakma & Lamparter, 2014), which provides
implementations of various routing protocols distributed
through multiple communication processes through a
technique called Inter-Process Communication (IPC). This
technique is a functional prototype of a high-speed switch,
which performs a transmission on the network
communication model via socket, supported on the
high-speed switching and transmission offered by
NetFPGA-SUME (Su, You, Wang, & Hou, 2016).

Hardware acceleration and power consumption

In relation to the high performance in packet
processing offered by the NetFPGA architecture,
researchers have taken advantage of these advantages to
increase the performance of the software they use. For
example, RISC Based (Han, Zilberman, Zeeb, Fiessler, &
Moore, 2016)shows that when a network application
requires computationally intensive, it increases the
number of cores in order to achieve better computing
performance, and when an application requires
computationally intensive network data, the single-core
implementation provides resources between (70% - 80%).
Another development, known as PacketShader (Han, Jang,
Park, & Moon, 2010), implements IPv4 and IPv6
forwarding, with OpenFlow, switching, and IPsec to
demonstrate flexibility and performance; where evaluation

results show that the Graphical Processing Unit (GPU)
performs better in CPU implementation.

Regarding the power consumption of the network

hardware, there are works that present an adequate power
management policy, take into account the user restrictions
regarding Quality of Service (QoS), and change the clock
frequency of the NetFPGA according to the input bit rate
to decrease the power consumed by approximately 12%
(Lombardo, Panarello, Reforgiato, & Schembra., 2012).
Another work that uses the NetFPGA, proposes an
adaptive frequency control mechanism based on traffic to
reduce power consumption. This mechanism calculates
the volume of traffic in real time so that the network
device can adjust its operating frequency. Consequently,
the results show that the router that incorporates this
mechanism can reduce power consumption by more than
20% (Zhou, Li, Liu, & Wang, 2014).

Finally, another aspect that favors the growth of

this area and the increase in the performance of
developments over the NetFPGA, are the studies on
technologies and techniques to reduce latency in storage
and forwarding of data packets, among which are related
works in (Ruiz, Ramos, Sutter, Vergara, Lopez-Buedo, &
Aracil, 2016), (Nakamura, Hayashi, & Matsutani, 2016),
and (Jeyakumar, Alizadeh, Geng, Kim, & Maziéres.,
2014).

NETFPGA APPLICATIONS

The NetFPGA platform is useful in other contexts
such as education, research, and innovation. Below is a
summary of project progress in these areas.

Education

Initially, it is important to note that the NetFPGA
project minimizes the lack of open (non-proprietary) tools
for teaching computer network systems at the
undergraduate and graduate levels. In addition, professors
from Stanford University observed that students only
gained practical experience in creating networks from
layer three and above (routing protocols, transport
protocols, etc.). Likewise, students' access to the Physical
and Link layer was limited to theoretical classes, and they
were unable to build network systems. These and other
reasons generated a need to build a platform that students
can use to design, model functional network devices in
real environments (NICs, switches, routers) (Watson,
McKeown, & Casado., 2006).

The creation of an "Open-source hardware"

platform is very different from open-source software
projects, because of this; they created a new process to
provide new designs. Therefore, in order for a contributed

design to be included in the NetFPGA repository, it must
be completely specified through a set of tests that must
pass successfully. Currently the active repository is
located at github.com/NetFPGA.

Similarly, the platform has grown with the

creation of courses such as CS344 by Stanford University,
which allowed the development of reference designs and
component libraries of the NetFPGA (Gibb, Lockwood,
Naous, Hartke, & McKeown, 2008). We can also find
books such as "High Speed NetFPGA Router" (Khalid,
High Speed NetFPGA Router: A Step by Step Guide on
Developing a High Speed Router on NetFPGA Board,
2012), which explains in detail how to implement routing
algorithms such as IPv4 and OSPF over NetFPGA, and
covers basic routing concepts to understand
reference_router.

In addition, as a strategy for introducing,

updating and perfecting knowledge about the NetFPGA
platform, universities such as Stanford and now
Cambridge have developed and positioned since 2007
events that are an inherent part of the community, such as
Seminars, Camps, Developer's Workshops and Tutorials
(McKeown, Lockwood, Naous, Gibb, & Covington,
2007), (Zilberman., 2014), and (NetFPGA.org, 2017).

On the other hand, when in the processes of

formation and the number of students is high. NetFPGA
cards may not be sufficient for all students to access the
development of practices at the same time, making the
learning process difficult. Consequently, this limitation
allowed the development of the Open Network Laboratory
(ONL) tool (Wiseman, Turner, DeHart, Parwatikar,
Wong, & Zar, 2009), which is a network testbed
accessible from the Internet, and allows the use of
numerous heterogeneous network resources for research
and education activities, with 20 routers, 100 PCs and 6
NetFPGAs. Another remote laboratory tool is FPGA
e-Lab (Hashemian & Riddley, 2007), but focuses on
teaching Digital Design using FPGAs, which is a basic
knowledge to use the maximum performance to the
NetFPGA. In addition, e-Lab is composed of hardware
and a Laboratory Protocol that gives access to students.

Finally, it is important to note that the NetFPGA

platform has a high degree of learning difficulty for those
who do not have basic training in knowledge of digital
circuit design or ends. One answer to this is EMU (Galea,
y otros, 2016), which uses a compiler called Kiwi (Singh
& Greaves, 2008), and programs FPGAs using .NET code.
Furthermore, Emu provides an implementation for
network functionalities written in C#.

Research and innovation

Being flexible and allowing rapid prototyping

makes the NetFPGA platform the ideal tool for students

and researchers of any level, because it offers multiple
solutions to them. Therefore, below we introduce the most
important projects. For example, (McKeown, y otros,
2008)shows that NetFPGA provides reference projects or
other inputs, which provide a complete implementation
and an executable application. For example (Han, y otros,
2015), an SDN researcher interested in the control plane
and lacking any hardware knowledge can use the
BlueSwitch or OpenFlow project. Additionally, the
NetFPGA community developed a tool called Mininet
(Lantz, Heller, & McKeown, 2010), which is a system for
rapidly prototyping large networks, over the limited
resources of a single computer; this is because it uses the
lightweight approach to virtualization features at the OS
level, including processes (Zilberman N. , Audzevich,
Kalogeridou, Manihatty-Bojan, Zhang, & Moore, 2015).

Regarding the obstacles faced by researchers to

develop NetFPGA projects that include innovation, we
can relate the cost and development time, the skills
required for hardware development. Consequently, several
solutions were developed. For example, (Forconesi,
Sutter, Lopez-Buedo, Vergara, & Aracil, 2014) compares
the two approaches to hardware development called the
Hardware Description Language (HDL), and the new,
High-Level Language (HLL). Also, this work perform a
practical implementation of packet processing, which
allows to demonstrate that using HLL reduces the coding
time, maintaining high speed, low latency and accuracy of
timestamping of packets in the hardware architecture,
which ratifies that using coding in C++ with Vivado-HLS,
can smooth the gap between software development and
hardware for network applications.

In connection with the above, tools such as

Program-hosted Directability (PhD) (Sultana, y otros,
2017)were developed, which helps researchers to quickly
develop prototypes of network hardware because it
interprets Direction commands at runtime, allowing
debugging, monitoring, and profiling that are normally set
at compile time for hardware development. Indeed, the
tool offers significant flexibility with low impact on
hardware utilization and optimal performance.

On the other hand, researchers in the area of

computer networks that focus on monitoring traffic and
evaluating network protocols, the NetFPGA offers several
tools for experimentation, because its flexibility allows
you to modify and customize existing designs (Yaser M.
Abid, 2018), (Wira Firdaus Yaakob, 2018). Of these tools,
we present two that are the most representative. The first
one is a module developed in hardware to monitor
high-speed networks (Antichi, Miller, & Giordano, An
open-source hardware module for high-speed network
monitoring on netfpga, 2010), which allows filtering
customized data packets. The second is a traffic generator
for 10 Gbps Ethernet links, configurable from software
(Groléat, y otros, 2013), and executed on platforms such

as INVEA-TECH or NetFPGA-10G. Additionally, it can
transmit packets as small as the Ethernet protocol allows,
and is capable of delivering up to 20 Gbps, whether each
transmission block is linked to the traffic generator, thus
configuring two data streams of 10Gbps each.

Another important aspect that benefits from the

features of the NetFPGA is innovation. Likewise, we
consider that innovation is not present in every research
process. Similarly, the chances of producing an impact are
very low. Therefore, this low probability of success is the
cause of the low availability of equipment, protocols and
traffic in real scenarios (McKeown, y otros, 2008).

As a result, there have been two major

developments for the NetFPGA platform. The first, known
as OpenFlow, offers a way for researchers to run
experimental protocols on heterogeneous switches
uniformly across computer networks. Second, called
OSNT, it is available to the research community through
the NetFPGA project. Therefore, anyone who owns a
NetFPGA card can use and manage it without additional
hardware expense. Finally, OSNT is a project that allows
modifications and customizations to solve specific needs.

Finally, the use of the NetFPGA facilitates the

possibilities of improvement and innovation oriented to
high-speed interconnection devices, specifically switches.
For example, in (Su, You, Wang, & Hou, 2016) tested the
data rate performance of the reference_switch over the
NetFPGA-SUME. Additionally, can switch and
retransmit a 1.09 GB video file in 14 seconds and run it
successfully at an actual transmission rate of 631 Mbps;
this generates a number of opportunities to create novel
solutions based on open hardware and software.

CHALLENGES OF NETFPGA vs. NETWORKING
TRENDS

The constant growth of the demand for Internet

services, leads to grow at the same rate in resources,
transmission bandwidth, CPU processing power,
interconnections to Datacenter. Consequently, this has
stimulated the need for high-speed network solutions, for
research and the real world, in areas such as Web load
balancing, DDos, and for IDS at 100 Gbps or higher, with
minimum packets length, and test and capture challenges
(Cao, Zheng, Sun, & Jin, 2015). Accordingly,
NetFPGA-SUME provides a high-speed platform for
novel data center interconnect architectures, host block
construction, and 100Gbps switch, for basic research, and
as a platform for exploring completely new host
architectures beyond current PCIe constraints.

Another challenge, which involves the use of the

NetFPGA platform, is the difficulty of programming the
hardware in the FPGA. In (Rothman & Chang, 2012), we
present the tool P4FPGA, which reduces the barrier to

start working with the powerful tool. Similarly, P4FPGA
provides a P4 to FPGA compiler that supports multiple
architectures, generating code that can run on FPGAs
from manufacturers such as Xilinx or Altera. Likewise, we
find two technologies that are oriented to follow in the
future of networking. One such technology is Network
Function Virtualization (NFV) (Joshi & Benson, 2016),
which makes use of basic hardware resources as the basic
platform for performing specialized network functions, as
opposed to specialized network hardware devices. In this
area, NetFPGA has great potential because, by integrating
all its potential, with the flexibility of NFV based on
General Purpose Processors (GPP). FPGA-based NFV can
be useful for improving the performance of hardware
resources on network devices (Kachris, Sirakoulis, &
Soudris., 2014). On the other hand, we found a technology
called Software Defined Networks (SDN), which has
became the complexity of the network forwarding
network elements (switches/routers) to a centralized
controller; being OpenFlow its main development on
NetFPGA. In order to, this has allowed a great space for
new ideas and challenges to appear in front of the
development needs in networking; for example, Internet of
Things technology integration (Azeem Mohammad Abdul,
2016), (Wira Firdaus Yaakob, 2018), (A. Murali, 2016).

NETFPGA EVALUATION: AN OSNT CASE STUDY

As described in the previous sections, the
NetFPGA platform has many application areas, including
high-speed computer networks. This section focus on
evaluating one of the most important tools for testing
high-speed network protocols developed on this platform,
called OSNT.

OSNT architecture

The OSNT architecture is a response to the
limitations of previous solutions:
proprietary/closed-source solutions, high costs, lack of
flexibility and the omission of important features such as
time stamping and precise packet transmission.

OSNT NetFPGA-SUME (OSNT-SUME) can

generate and capture packets of any size; additionally it
can manipulate the transmission rate on all four card ports
simultaneously. On the other hand, the OSNT-SUME
implementation provides methods to scale and coordinate
multiple systems for generating and capturing traffic, and
configured with a timestamping resolution of 6.4ns.

OSNT has two tools that constitute themselves as

the most important of its system. The first one, called
Traffic Generator (OSNT-Generator): capable of
generating and receiving packets in four 10GbE

interfaces; by incorporating time stamps in each sent
packet, it allows calculating information about delay and
loss in an end-to-end network. The second, Traffic
Monitor (OSNT-Monitor): capable of capturing packets
that arrive through four 10 GbE network interfaces, which
are transferred to the host software for analysis and further
processing.

Network testbed and experiments

To perform the OSNT evaluation, we install a

NetFPGA-SUME on each host. Similarly, on each of the
hosts (called A and B) the OSNT-SUME tool was
configured. Likewise, on host A, the Traffic Generator is
executed, and on host B, the Traffic Monitor. Therefore,
these tools are directly interconnected using nf0 (host A)
and nf1 (host B) by optical means. Finally, both hosts have
Linux CentOS 7 installed as operating system, see Fig. 4a
and 4b.

Fig. 4a. Network
testbed.

Fig. Hosts A and B Interconnected

On the other hand, we set up experiments to

evaluate the measurement of timestamping accuracy and
OSNT packet capture efficiency. Therefore, we created
two large transmission rate scenarios of 1.0 Gps and
10Gps. Therefore, for each scenario, three delay values of
6.4ns (minimum defined OSNT), 10ns and 100ns were
evaluated. Similarly, the number of packets sent per burst
in each experiment was 10, 100, 1000, 10000, and
1000000 packets, with sizes of 64B and 1500B.
Additionally, for each scenario with speeds of 1.0 GbE
and 10 GbE, we performed 10 tests per burst, per delay
and per packet size; that is, (2 scenarios x 10 repetitions x
5 bursts x 2 delays x 2 packet sizes), allowing us to
perform a total of 400 tests.

After executing the experiments, the traces
captured from the bursts of packets received by
OSNT-Monitor were stored in a pcap files for later
analysis.

Results

Table-3. Lost packets at 1.0 GbE rate
Packets

size
(Bytes)

Burst
packets

Delay Lost packets (%)

6,4ns 10ns 100ns

64 10 0% 0% 0%

64 100 0% 0% 0%

64 1000 75% 0% 0%

64 10000 96% 0% 2%

64 100000 99% 3% 7%

1500 10 0% 0% 0%

1500 100 60% 0% 5%

1500 1000 92% 0% 0%

1500 10000 80% 0% 2%

1500 100000 80% 3% 6%

Therefore, Tables 3 and 4 show the average

percentage of packets lost for transmission speeds of
1GbE and 10GbE, the packet loss is high reaching up to
99% with delays of 6.4ns, which indicates that the packets
are received by the adapter, but not captured by the kernel,
i.e., they never get received by the operating system
protocol stack. However, when the delay is 10ns and
100ns the packet loss is minimal, because it is minimal, if
compared to the size of the burst sent.

On the other hand, in relation to the transmission

speed of 10 GbE, the performance is very similar to that of
1.0 GbE, except that at 100ns of delay there is a loss of
packets that reaches 6%, representing 6000 packets of the
10000 sent in the burst.

Regarding the timestamping accuracy with the

different packet delays evaluated, we found different
results that represent the average relative error for bursts
between 10 and 100000 packets. Table 5 shows that for 1
GbE and 10 GbE of speed, the highest relative error found
is 5%, for delays of 6.4ns and 10ns.

Finally, Table 6 shows that in general OSNT,

executed on the NetFPGA platform, is very efficient and
accurate, when it comes to evaluating network protocols at

high speeds (optical networks), which range from 10 to
100 GbE. Although it is, correct to say that OSNT, due to
the scalability characteristics of the NetFPGA platform,
can support tests in networks with speeds up to 400 GbE.

Table-4. Lost packets at 10 GbE rate

Packet
s size

(Bytes)
Burst

packets

Delay Lost packets (%)

6,4ns 10ns 100ns

64 10 0% 0% 0%

64 100 0% 0% 0%

64 1000 66% 0% 0%

64 10000 87% 0% 7%

64 100000 88% 4% 8%

1500 10 0% 0% 0%

1500 100 0% 0% 0%

1500 1000 68% 0% 0%

1500 10000 85% 0% 0%

1500 100000 89% 3% 0%

Table-5. Timestamping relative error at 1.0 GbE

Packets
size

(Bytes)

Average Relative Delay Error (%)

6,4ns Error 10ns Error 100n
s

Error

64 6,48 1% 9,48 5% 102 2%

1500 6,34 1% 8,73 3% 103,4 3%

Table-6. Timestamping relative error at 10 GbE

Packets
size

(Bytes)

Average Relative Delay Error (%)

6,4ns Error 6,4ns Error 6,4ns Error

64 6,4 0% 9,7 3% 102,2 2%

1500 6,7 5% 10,2 2% 100,6 1%

CLUSIONS

Initially, the current and future use of the tool
with respect to new networking technologies was
analyzed. Likewise, the measure that the use of FPGAs is
gradually being used in high-performance systems, for
large storage systems, in energy-efficient systems.
Similarly, programmable SoC’s are combined with highly
efficient algorithms, to support flexible services, ranging
from the distribution of stored content to the analysis of

large volumes of data; and for services in sensory
networks in the area of the Internet of Things (IoT).
Finally, in relation to the above features, we consider that
the NetFPGA will become an important platform for
high-speed next-generation network research, playing a
role in the development of interconnection hardware in the
networks of the future.

Finally, OSNT's evaluation showed that it is a

tool with high precision to mark the time of sending data
packets at high transmission speeds. Additionally, at high
transmission speeds OSNT's packet capture tool has low
packet loss, and offers many advantages for research and
development of new solutions in the area of network
traffic analysis and monitoring, which are useful for the
management of current and future telecommunications
infrastructures.

ACKNOWLEDGEMENTS

Author Dixon Salcedo thanks COLCIENCIAS

and the Universidad de la Costa for the financial resources
to carry out this research. He also thanks the Autonomous
University of Bucaramanga, which provided the
laboratories for the development of the research. Finally,
to Pontificial Bolivarian University where I studied my
doctorate in engineering.

REFERENCIAS

A. Murali, K. H. (2016). Integrating FPGAs with Trigger
Circuitry Core System Insertions for Observability in
Debugging Process. Journal of Engineering and Applied
Sciences , 2643-2650.

Al-Dalky, R., Salah, K., Otrok, H., & Al-Qutayri, M.
(2014). Accelerating snort NIDS using NetFPGA-based
Bloom filter. 2014 International Wireless
Communications and Mobile Computing Conference
(IWCMC), (págs. 869-874).

Antichi, G., Giordano, S., Miller, D., & Moore, A. (2012).
Enabling Open-source High Speed Network Monitoring
on NetFPGA. Network Operations and Management
Symposium (NOMS), 2012 IEEE, (págs. 1029-1035).

Antichi, G., Miller, D., & Giordano, S. (2010). An
open-source hardware module for high-speed network
monitoring on netfpga. European NetFPGA Developers
Workshop.

Azeem Mohammad Abdul, B. M. (2016). IOT Based
Home Automation Using FPGA. Journal of Engineering
and Applied Sciences , 1931-1937.

Blott, M., Ellithorpe, J., McKeown, N., Vissers, K., &
Zeng, H. (2010). FPGA Research Design Platform Fuels
Network Advances. Xilinx Xcell Journal , Fourth Quarter,
27.

Cao, J., Zheng, X., Sun, L., & Jin, J. (2015). The
Development Status and Trend of NetFPGA. Network and
Information Systems for Computers (ICNISC), 2015
International Conference on, (págs. 101-105).

Covington, A., Gibb, G., Lockwood, J., & McKeown, N.
(2009). A Packet Generator on the NetFPGA Platform. En
K. L. Pocek, & D. A. Buell (Ed.), FCCM (págs. 235-238).
IEEE Computer Society.

Covington, A., Gibb, G., Naous, J., Lockwood, J., &
McKeown, N. (2009). Encouraging Reusable Network
Hardware Design. Microelectronic Systems Education,
2009. MSE '09. IEEE International Conference on, (págs.
29-32).

Dagher, K. E. (2019). Real-Time Adaptive Intelligent
FPGA-based Back-Stepping Control Law Design for a
Nonlinear Magnetic Ball Levitation System. Journal of
Engineering and Applied Sciences , 6912-6929.

Engelmann, F., Lukaseder, T., Erb, B., Heijden, R., &
Kargl, F. (2014). Dynamic packet-filtering in high-speed
networks using NetFPGAs. Future Generation
Communication Technology (FGCT), 2014 Third
International Conference on, (págs. 55-59).

Fiessler, A., Hager, S., Scheuermann, B., & Moore, A. W.
(2016). HyPaFilter: A Versatile Hybrid FPGA Packet
Filter. Proceedings of the 2016 Symposium on
Architectures for Networking and Communications
Systems (págs. 25-36). New York, NY, USA: ACM.

Forconesi, M., Sutter, G., Lopez-Buedo, S., Vergara, J. E.,
& Aracil, J. (2014). Bridging the gap between hardware
and software open source network developments. IEEE
Network , 28, 13-19.

Galea, S., Sultana, N., Bressana, P., Greaves, D., Soulé,
R., Moore, A. W., y otros. (2016). Emu: Rapid FPGA
Prototyping of Network Services in C.

Gibb, G., Lockwood, J. W., Naous, J., Hartke, P., &
McKeown, N. (2008). NetFPGA - An Open Platform for
Teaching How to Build Gigabit-Rate Network Switches
and Routers. IEEE Transactions on Education , 51,
364-369.

Groléat, Tristan, Arzel, Matthieu, Vaton, Sandrine, y
otros. (2013). Flexible, extensible, open-source and
affordable FPGA-based traffic generator. Proceedings of
the first edition workshop on High performance and
programmable networking, (págs. 23-30).

Han, J. H., Mundkur, P., Rotsos, C., Antichi, G., Dave, N.
H., Moore, A. W., y otros. (2015). Blueswitch: Enabling
Provably Consistent Configuration of Network Switches.
Proceedings of the Eleventh ANCS-15, (págs. 17-27).
Washington: IEEE Computer Society.

Han, J. H., Zilberman, N., Zeeb, B. A., Fiessler, A., &
Moore, A. W. (2016). Prototyping RISC Based,
Reconfigurable Networking Applications in Open Source.
CoRR , abs/1612.05547.

Han, S., Jang, K., Park, K., & Moon, S. (2010).
PacketShader: A GPU-accelerated Software Router.
SIGCOMM Comput. Commun. Rev. , 40, 195-206.

Handley, M., Hodson, O., & Kohler, E. (2003). XORP:
An Open Platform for Network Research. SIGCOMM
Comput. Commun. Rev. , 33, 53-57.

Hashemian, R., & Riddley, J. (2007). FPGA e-Lab, a
technique to remote access a laboratory to design and test.
Microelectronic Systems Education, 2007. MSE'07. IEEE
International Conference on, (págs. 139-140).

Henkel, J., Wolf, W., & Chakradhar, S. (2004). On-chip
networks: a scalable, communication-centric embedded
system design paradigm. 17th International Conference
on VLSI Design. Proceedings., (págs. 845-851).

Jakma, P., & Lamparter, D. (2014). Introduction to the
quagga routing suite. IEEE Network , 28, 42-48.

Jeyakumar, V., Alizadeh, M., Geng, Y., Kim, C., &
Maziéres., D. (2014). Millions of Little Minions: Using
Packets for Low Latency Network Programming and
Visibility. CoRR , abs/1405.7143, 16.

Joshi, K., & Benson, T. (2016). Network Function
Virtualization. IEEE Internet Computing , 20, 7-9.

K.M. Gayathri, S. B. (2018). Hardware Implementation
and Testing of PAPR Reduction Using Order Bit Selector
and Trellis Structure. Journal of Engineering and Applied
Sciences , 5027-5036.

Kachris, C., Sirakoulis, G., & Soudris., D. (2014).
Network Function Virtualization based on FPGAs: A

Framework for all-Programmable network Devices. CoRR
, abs/1406.0309, 5.

Keinänen, J., Jokela, P., & Slavov, K. (2009).
Implementing zFilter based forwarding node on a
NetFPGA. Proc. of NetFPGA Developers Workshop.

Khalid, A. (2012). High Speed NetFPGA Router: A Step
by Step Guide on Developing a High Speed Router on
NetFPGA Board. Lap Lambert Academic Publishing
GmbH KG.

Kohler, E., Morris, R., Chen, B., Jannotti, J., & Kaashoek,
M. F. (2000). The Click Modular Router. ACM Trans.
Comput. Syst. , 18, 263-297.

Lantz, B., Heller, B., & McKeown, N. (2010). A Network
in a Laptop: Rapid Prototyping for Software-defined
Networks. Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks (págs. 19:1--19:6).
New York, NY, USA: ACM.

Lee, K., Wang, H., & Weatherspoon, H. (2013). SoNIC:
Precise Realtime Software Access and Control of Wired
Networks. NSDI, (págs. 213-225).

Lockwood, J., McKeown, N., Watson, G., Gibb, G.,
Hartke, P., Naous, J., y otros. (2007). NetFPGA--An Open
Platform for Gigabit-Rate Network Switching and
Routing. Microelectronic Systems Education, 2007. MSE
'07. IEEE International Conference on, (págs. 160-161).

Lombardo, A., Panarello, C., Reforgiato, D., &
Schembra., G. (2012). Power Control and Management in
the NetFPGA Gigabit Router. Future Network Mobile
Summit (FutureNetw), 2012, (págs. 1-8).

Maral Faghani, M. B. (2015). Integration of Sigma-Delta
ADC with Sinc Filter on FPGA. Journal of Engineering
and Applied Sciences , 16-21.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar,
G., Peterson, L., Rexford, J., y otros. (2008). OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM
Comput. Commun. Rev. , 38, 69-74.

McKeown, N., Lockwood, J. W., Naous, J., Gibb, G., &
Covington, A. (2007). Hands-on with the NetFPGA to
build a Gigabit-rate Router. High-Performance
Interconnects, 2007. HOTI 2007. 15th Annual IEEE
Symposium on, (págs. 7-10).

MITIntroduction to Digital Systems: Labkit
Documentation

Moran Edgar, S. P. (2017). Hardware Firewall Bypass
(HWFWBYPASS) Attack on pfSense. Journal of
Engineering and Applied Sciences, , 7154-7158.

Nakamura, K., Hayashi, A., & Matsutani, H. (2016). An
FPGA-Based Low-Latency Network Processing for Spark
Streaming. Proceedings of the Workshop on Real-Time
and Stream Analytics in Big Data (IEEE BigData 2016
Workshop).

NetFPGA. (1 de 2013). SCONE (Software Component Of
NetFPGA). Obtenido de
https://github.com/NetFPGA/netfpga/wiki/SCONEWalkth
rough

NetFPGA.org2017NetFPGA Platform

OSNT: Open Source Network Tester2014IEEE Network
286-12

Pham-Quoc, C., Tran-Thanh, B., Tuan, N. Q., & Thinh, T.
N. (2016). A DDOS PROTECTION SYSTEM WITH
MULTIPLE DEFENSE MECHANISMS USING
RECONFIGURABLE HARDWARE. International
Journal of Computer Engineering and Applications , X,
75-85.

Reddy, S. B. (2018). Review on FPGA Implementation of
3D Distributed Arithmetic based DWT Architecture for
Image Processing Applications. Journal of Engineering
and Applied Sciences , 9177-9183.

Rothman, J., & Chang, C. (2012). BEE technology
overview. 2012 International Conference on Embedded
Computer Systems (SAMOS), (págs. 277-277).

Ruiz, M., Ramos, J., Sutter, G., Vergara, J. E.,
Lopez-Buedo, S., & Aracil, J. (2016). Accurate and
affordable packet-train testing systems for
multi-gigabit-per-second networks. IEEE Communications
Magazine , 54, 80-87.

Salmon, G., Ghobadi, M., Ganjali, Y., Labrecque, M., &
Steffan, J. (2009). NetFPGA-Based Precise Traffic
Generation. in Proc. of NetFPGA Developers
Workshop09.

Singh, S., & Greaves, D. J. (2008). Kiwi: Synthesis of
FPGA circuits from parallel programs.

Field-Programmable Custom Computing Machines, 2008.
FCCM'08. 16th International Symposium on, (págs. 3-12).

Su, T., You, L., Wang, Q., & Hou, C. (2016). The high
speed switching experiment based on NetFPGA SUME.
Computer Science & Education (ICCSE), 2016 11th
International Conference on, (págs. 652-657).

Sultana, N., Galea, S., Greaves, D., Wojcik, M.,
Zilberman, N., Clegg, R., y otros. (2017). Extending
programs with debug-related features, with application to
hardware development. arXiv preprint arXiv:1705.09902 .

Watson, G., McKeown, N., & Casado., M. (2006).
NetFPGA: A Tool for Network Research and Education.
2nd workshop on Architectural Research using FPGA
Platforms (WARFP), 3.

Wira Firdaus Yaakob, H. A. (2018). A Comparative Study
of Smart Card Design with Memory Ciphering System on
Arm-Based FPGA. Journal of Engineering and Applied
Sciences , 2638-2646.

Wiseman, C., Turner, J., DeHart, J., Parwatikar, J., Wong,
K., & Zar, D. (2009). Using the netfpga in the open
network laboratory. Proceedings of the 1st NetFPGA
DevelopersWorkshop .

Yaser M. Abid, A. H. (2018). Supervised Feed Forward
Neural Networks for Smart Chessboard Based on FPGA.
Journal of Engineering and Applied Sciences , 4093-4098.

Zeng, H., Kazemian, P., Varghese, G., & McKeown, N.
N. (2012). Automatic Test Packet Generation.
Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies
(págs. 241-252). New York, NY, USA: ACM.

Zhou, L., Li, L., Liu, X., & Wang, X. (2014). A low
power consumption frequency adaptation mechanism
based on the traffic and implementation on NetFPGA.
International Journal of Future Generation
Communication and Networking , 7, 141-154.

Zilberman, N., Audzevich, Y., Kalogeridou, G.,
Manihatty-Bojan, N., Zhang, J., & Moore, A. (2015).
NetFPGA: Rapid Prototyping of Networking Devices in
Open Source. ACM SIGCOMM Computer Communication
Review, 45, págs. 363-364.

Zilberman., N. (2014). The Flexible Open-Source
Networking Platform. Tech. rep., University of
Cambridge.

