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ABSTRACT 
 

The constant growth of the Internet, driven by the demand for timely access to data center networks; has meant                   
that the technological platforms necessary to achieve this purpose are outside the current budgets. In this order to make and                    
validate relevant, timely and relevant contributions; it is necessary that a wider community, access to evaluation,                
experimentation and demonstration environments with specifications that can be compared with existing networking             
solutions. This article introduces the NetFPGA, which is a platform to develop network hardware for reconfigurable and                 
rapid prototyping. It’s introduces the application areas in high-performance networks, advantages for traffic analysis,              
packet flow, hardware acceleration, power consumption and parallel processing in real time. Likewise, it presents the                
advantages of the platform for research, education, innovation, and future trends of this platform. Finally, we present a                  
performance evaluation of the tool called OSNT (Open-Source Network Tester) and shows that OSNT has 95% accuracy                 
of timestamp with resolution of 10ns for the generation of TCP traffic, and 90% efficiency capturing packets at 10Gbps of                    
full line-rate. 
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INTRODUCTION 
 

Embedded system development platforms, to     
create specialized hardware, have been evolving since the        
80s. Since of first system based on microcontrollers to the          
most advanced called Systems on a Chip (SoC). Currently         
the development of these systems focuses on reducing the         
development time of complex systems, as well as material         
costs and energy consumption (Dagher, 2019), (Reddy,       
2018) and (K.M. Gayathri, 2018). In this field, FPGAs         
(Field Programmable Gate Arrays) have a differentiating       
adds value; they can be reprogrammed using their        
interconnected logic blocks, which favorably impacts the       
hardware development cycle, allowing rapid design,      
modeling, debugging and optimization of any type of        
custom hardware required (Henkel, Wolf, & Chakradhar,       
2004), (Forconesi, Sutter, Lopez-Buedo, Vergara, &      
Aracil, 2014). The Hardware Descriptor Language      
approach is used to describe and design, being Verilog and          
VHDL. The current hardware is development under       
control of two platforms trends, Xilinx® and Altera®. 

 
Likewise, among the best-known network     

hardware development platforms are SoNIC     
(Software-defined Network Interface Card) (Lee, Wang,      
& Weatherspoon, 2013), which allows through software,       
access and control in real time to the physical layer of the            
network adapter; achieving rates of up to 10Gbps. Another         
platform is called Labkit (MIT, 2007), developed by the         
Massachusetts Institute of Technology (MIT), which      
allows the development of complex, high-performance      
projects, including applications for audio and video       
processing, among others.  

 

Finally, Stanford University, Stanford, CA,     
developed the platform, known as NetFPGA      
(NetFPGA.org, 2017), from which its reference designs       
such as reference_router, reference_nic, reference_switch,     
and accept_test. Important applications have also been       
developed, including Packet generator (Covington, Gibb,      
Lockwood, & McKeown, 2009), OpenFlow (McKeown, y       
otros, 2008), SCONE (NetFPGA, 2013), Blueswitch (Han,       
y otros, 2015). The three platforms described above are of          
the open-source type, which allows the reuse of code. 

Table 1 describes the most important      
characteristics of configurable hardware development     
platforms for computer networks, which allow verifying       
that the NetFPGA platform is the most active, due to the           
number of high-impact projects developed and enabled by        
research centers and educational institutions. These      
institutions maintain the NetFPGA in constant growth,       
validity and leadership in the area of open source         
hardware design. 

 

Table-1. Platforms for development of configurable 
network hardware 

Platforms Ref. 
designs 

Active 
Projects 

High-speed 
ports 

Associated 
Institutions 

Released 
Versions 

SoNIC  2 2 4 1 1 

Labkit  1 4 4 1 1 

NetFPGA 6 32 4 +150 4 

 
Additionally, a review of the literature to       

publications on NetFPGA; allowed to find that since the         
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beginning of the platform (Watson, McKeown, &       
Casado., 2006), (Lockwood, y otros, 2007), it is evolution         
and new technological developments, most have been       
produced by institutions or universities in North America        
and Europe; evidencing little development by Latin       
American institutions. 

 
On the other hand, an ideal development platform        

requires being scalable, flexible, and useful for a wide         
range of applications in general-purpose or specific       
devices. For example, a network device can be used in two           
ways, like a network element or final host adapter. Also,          
open source hardware has reached maturity, although in        
process adoption and used on a large scale and active          
community that stimulates the constant growth of a library         
of repositories that includes reference designs, hardware       
designs and software (Zilberman N. , Audzevich,       
Kalogeridou, Manihatty-Bojan, Zhang, & Moore, 2015). 

 
Regarding the precise generation and monitoring      

of traffic in high-speed computer networks and real-time        
applications, the NetFPGA-SUME provides a high-speed      
platform, which is useful for novel data-center       
interconnection architectures, block host construction and      
100 Gbps switches, for basic networking research, and as         
a platform for exploring completely new protocol       
architectures and interconnection equipment, beyond the      
current restrictions of PCIe devices. 
 
This study presents two main aspects. First, includes a         
review of the NetFPGA platform and its applications.        
Second, shows the evaluation of the performance of the         
OSNT tool, with respect to the precision to generate and          
timestamping of data packets. The remainder of this paper         
is structured as follows. In section II the authors briefly          
summarize the NetFPGA projects, its components,      
architecture, and characteristics of the cards that compose        
it. Then, in section III, an introduction to the         
developments of NetFPGA and its most representative       
applications is made. After, in section IV, the paper         
presents the impact of using the NetFPGA platform on         
education, research, and innovation. In addition, in section        
IV, the authors present the impact of the use of the           
NetFPGA platform on education, research, and      
innovation. In Section V you can find a discussion about          
the use of NetFPGA in new trends in the area of computer            
networks and related. Then, in Section VI you can see the           
evaluation of the performance of the precision and        
efficiency of the OSNT tool. Finally, the study draws the          
main conclusions and discusses future work in Section        
VII. 
 
NETFPGA PLATFORM 

 
Initially, it is important to point out that several         

projects at the end precede the NetFPGA platform, in the          
revised literature two stands out. The first, called Click         

(Kohler, Morris, Chen, Jannotti, & Kaashoek, 2000), is a         
software architecture to build flexible and configurable       
routers. The second, called XORP (eXtensible Open       
Router Platform) (Handley, Hodson, & Kohler, 2003), is a         
stable platform for research that allows building,       
improving and strengthening a router, prioritizing the       
configuration of parameters that frequently present      
conflicts. Additionally, the NetFPGA project created at       
ends of 2001 by Stanford University, as an effort of          
researchers for the teaching of computer networks, under        
the open-source philosophy, and the first version was used         
in 2003, to developing a class project at the graduate level           
at Stanford University (Watson, McKeown, & Casado.,       
2006). 

 
NetFPGA platforms components 

The NetFPGA is a hardware expansion device. In        
other words, a multipurpose card, that at level of computer          
networks allows to develop in little time and to low cost,           
functional prototypes of devices of interconnection      
networks, that can operate between 1.0 and 10 Gbps of          
speed. Similarly, NetFPGA is an open hardware and        
software platform, because it integrates four different       
elements, which appear below (Blott, Ellithorpe,      
McKeown, Vissers, & Zeng, 2010): 

(i) The open hardware represented on the       
programmable card, with its own processor and four        
10Gbps high-speed network ports each, 

(ii) Development tools and reference designs,      
which facilitate the creation of new devices, taking these         
standard designs as a starting point, 

(iii) Developed projects, whose code is available       
for reuse, and 

(iv) An academic research network, present in       
more than 150 institutions around the world, which is         
actively developing projects and documenting the      
platform. 

 

 
Figure-1. NetFPGA-SUME Card. 

 
According to the versions of NetFPGA released       

to date are in chronological order, NetFPGA-1G       
(Discontinued), NetFPGA-1G-CML, NetFPGA-10G and    
NetFPGA-SUME (NetFPGA.org, 2017), (Zilberman.,    
2014); of which the last three are actively supported. The          
NetFPGA-1G-CML, which replaced the original     
NetFPGA-1G card, was designed for low-bandwidth      
applications (up to 1.0 Gbps), and specially adapted for         



network security applications (Moran Edgar, 2017). Then       
introduced in 2010, the NetFPGA-10G, which has       
multiple 10 Gbps interfaces, and supports a large number         
of open source community projects (e.g., OSNT (Antichi,        
y otros, OSNT: Open Source Network Tester, 2014) and         
BlueSwitch. Finally, NetFPGA-SUME released in 2014,      
and it has enabled four I/O ports to operate up to 100 Gbps             
as a computer network device, and to function as a          
stand-alone computing unit or for testing and       
measurement. Each card has very important features. The        
NetFPGA-SUME card, see Fig. 1, is a PCIe-(x8-Gen3)        
card, which incorporates a Xilinx Virtex-7 690T FPGA,        
with I/O capabilities to operate at rates between 10 Gbps          
and 100 Gbps. Additionally, we can use this card as NIC,           
multi-port switch, firewall, test/measurement    
environment, among other applications. Table 2 expands       
the features of the current platform versions. 

 
NetFPGA architecture 

 
The NetFPGA structured in blocks, you can see it         

in Fig. 2. It has two different components. The first one           
refers to the host that has the hardware and software          
resources of the PC that contains the card, including the          
network software. The second is the card itself, which         
behaves as a hardware accelerator that integrates an        
FPGA, handling network ports of 1/10Gbps. 

 
In relation to the above, and placing the block         

diagram in a real context. For example, in a router, the           
host-side components are a general-purpose computer that       
executes high-demand processing tasks; this represents the       
Control-Plane. On the other hand, there is the NetFPGA,         
which is high-speed hardware for transmitting packets       
through the management of network ports by an FPGA,         
and corresponds to the Data-Plane (Cao, Zheng, Sun, &         
Jin, 2015).  

 
On the other hand, when performing a more        

detailed analysis of the internal structure of the NetFPGA,         
and we find that it has a modular design. Consequently,          
each project designed for NetFPGA inherits this same        
structure. Therefore, it is important to know the behavior         
of the basic data flow (Data_path) between the modules.         
Finally, the entire module structure is called Reference        
Pipeline, and you can see it in Fig. 3 (Covington, Gibb,           
Naous, Lockwood, & McKeown, 2009).  

 
Figure-2. NetFPGA card block diagram. 
 
The Pipeline connected to the host PCIe bus at         

one end of the NetFPGA; and has several Rx queues that           
receive packets from the I/O ports (Ethernet or PCI).         
These ports connected to the User_Data_Path, which       
contains the processing steps. Similarly, within the       
User_Data_Path, there is the Input_Arbiter, which is the        
first module that a data packet passes through when it          
arrives at the NetFPGA. Likewise, the Input_Arbiter       
decides which Rx queue it serves, and then takes the          
packet from that queue and delivers it to the next module           
in the pipeline. That module is the Output_Port_Lookup,        
which decides which port the data packets are sent         
through. Then, the data packet is delivered to the next          
module called Output_Queues, which stores the packet in        
the queues that correspond to the output port until the Tx           
queue accepts the data packet for transmission. Finally,        
each of the modules described above has a set of registers           
that provide information about the status, access, and        
adjustment control signals of the NetFPGA (Antichi,       
Giordano, Miller, & Moore, 2012). 

 
Table-2. Features of NetFPGA cards 

Features NetFPGA 10G NetFPGA 1G CML NetFPGA-SUME 

CPU & 
FPGA 

-Virtex-5 
- 240K celdas 

lógicas y 11,664 

Kbit de BRAM. 

-Kintex-7  
- 326,080 celdas 

lógicas y 16,020 

Kbit de BRAM. 

-Virtex-7 690T 
- 693,120 celdas 

lógicas y 52,920 

Kbit BRAM. 

RAM 

4 x36 RLDRAM-II, 

400MHz, de 

288MB. 

DDR3 x8, 

800MHz, de 

512MB. 

DDR3-SoDIMM, 

933MHz, de 8 GB    

(escalable a 32GB). 

Net Ports 
4 x 10Gbps. 

4 x 1Gbps. 4 x 10Gbps. SFP+ 

PCI Ports 

PCIe x8, de 4 

líneas de 5Gbps. 

PCIe x4, de 8 

líneas de 2.5 

Gbps. 

- PCIe de 3ª. Gen. 

8 líneas de 8Gbps. 

Ext. 
Storage 

2 flash Cards, de 

256Mb 

1 SD-Flash de 

1Gb. 

2, Micro-SD slot, 

512Mb hasta 1Gb 

 
Regarding I/O interfaces, the NetFPGA-SUME     

platform has a new industry standard called AMBA-AXI        
architecture. Similarly, Xilinx uses AXI4 as the       
transmission protocol for the Data-Plane interface, while       
Control-Plane uses AXI-Lite (Cao, Zheng, Sun, & Jin,        
2015). 
 
DEVELOPMENTS ON NETFPGA 
 

The growth of the NetFPGA community has       
equally driven the quantity, quality, and relevance of        
developments in two tracks. On the one hand, the         
reference designs, which serve as a basis for new         
developments. On the other hand, developments those are        
completely new, and address solutions unpublished or       
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based on existing products, making them tools accessible        
to all users. Therefore, the following is a summary of the           
most important developments of the platform. 
 
Traffic generation and analysis 
 
NetFPGA traffic generators stand out for being more        
accurate than those executed from the application layer        
are. Packet Generator (Antichi, Giordano, Miller, &       
Moore, 2012), can play a PCAP file and capture packets at           
1Gbps, allowing you to change the speed of queues, the          
delay between packets and the number of iterations to         
which PCAP files are passed. On the other hand, the          
Precise Traffic Generator (PTG) (Salmon, Ghobadi,      
Ganjali, Labrecque, & Steffan, 2009) sends host generated        
packets at highly accurate transmission times between       
extremes, and designed to integrate with existing software        
traffic generators and network emulators. Another tool is        
OSNT (Zilberman N. , Audzevich, Kalogeridou,      
Manihatty-Bojan, Zhang, & Moore, 2015) that can       
generate and receive packets on the 10 GbE (Giga bit          
Ethernet) interfaces, and incorporates time stamps to each        
outbound packet, allowing end-to-end packet delay and       
packet loss to be calculated. Finally, the Automatic Test         
Packet Generation (ATPG) (Zeng, Kazemian, Varghese,      
& McKeown, 2012)can evaluate protocol rules for       
complex networks using a small number of test packets.         
For example, sending 4000 test packets, 10 times per         
second, consumes less than 1% of the evaluated link         
capacity. 
 

 

Figure-3. NetFPGA standard reference Pipeline. 

In relation to traffic analyzers, in (Keinänen,       
Jokela, & Slavov, 2009) zFilter is a tool that eliminates the           
forwarding of the traditional IP address of a data packet          
and replaces it with Bloom's filtering technique for        
making packet forwarding decisions. As a result, ZFilter is         
faster than the IP protocol, because it reaches a forwarding          
delay between packets of up to 3μs. On the other hand,           
Dynamic Packet-filtering (Engelmann, Lukaseder, Erb,     
Heijden, & Kargl, 2014), uses the method of extracting         
signatures in header fields, this is done by processing         
packets in parallel in NetFPGA 10G, and reaches        
transmission speeds of 9.5 Gbps. We found that        
HyPaFilter tool (Fiessler, Hager, Scheuermann, & Moore,       

2016) is a packet-classification hybrid system, based on        
circuits adapted to an FPGA, therefore, when evaluating        
HyPaFilter shows a performance 30 times higher than that         
executed in software. Finally, other tools that have been         
developed parallel to the traffic analysis on the        
NetFPGA-10G, are the Network Intrusion Detection      
Systems (NIDS), one of them is called SNORT        
Accelerating (Al-Dalky, Salah, Otrok, & Al-Qutayri,      
2014), and other protection of Denial of Distributed        
Services (DDoS) (Pham-Quoc, Tran-Thanh, Tuan, &      
Thinh, 2016). 

 
Routing and switching 
 

Initially we found that one of the most significant         
contributions made to the networking area by the        
NetFPGA platform, has been for the treatment of packet         
flow; in this aspect, there are developments, among which         
the following stand out. 

 
OpenFlow is a communications protocol that      

gives access to the packet-forwarding plane of a switch or          
router over the network, and based on an Ethernet switch,          
with an internal flow table and a standardized interface to          
add and remove packet flow entries. On the other hand,          
we find Blueswitch that supports a transaction       
configuration mechanism, and provides a stable packet       
configuration; that is, all packets that pass through the         
Data_path will find the old configuration or the new one,          
and never an inconsistent mix of the two (Han, y otros,           
2015). Similarly, we find the Quagga Routing Suite tool         
(Jakma & Lamparter, 2014), which provides      
implementations of various routing protocols distributed      
through multiple communication processes through a      
technique called Inter-Process Communication (IPC). This      
technique is a functional prototype of a high-speed switch,         
which performs a transmission on the network       
communication model via socket, supported on the       
high-speed switching and transmission offered by      
NetFPGA-SUME (Su, You, Wang, & Hou, 2016). 

 
Hardware acceleration and power consumption 
 

In relation to the high performance in packet        
processing offered by the NetFPGA architecture,      
researchers have taken advantage of these advantages to        
increase the performance of the software they use. For         
example, RISC Based (Han, Zilberman, Zeeb, Fiessler, &        
Moore, 2016)shows that when a network application       
requires computationally intensive, it increases the      
number of cores in order to achieve better computing         
performance, and when an application requires      
computationally intensive network data, the single-core      
implementation provides resources between (70% - 80%).       
Another development, known as PacketShader (Han, Jang,       
Park, & Moon, 2010), implements IPv4 and IPv6        
forwarding, with OpenFlow, switching, and IPsec to       
demonstrate flexibility and performance; where evaluation      



results show that the Graphical Processing Unit (GPU)        
performs better in CPU implementation. 

 
Regarding the power consumption of the network       

hardware, there are works that present an adequate power         
management policy, take into account the user restrictions        
regarding Quality of Service (QoS), and change the clock         
frequency of the NetFPGA according to the input bit rate          
to decrease the power consumed by approximately 12%        
(Lombardo, Panarello, Reforgiato, & Schembra., 2012).      
Another work that uses the NetFPGA, proposes an        
adaptive frequency control mechanism based on traffic to        
reduce power consumption. This mechanism calculates      
the volume of traffic in real time so that the network           
device can adjust its operating frequency. Consequently,       
the results show that the router that incorporates this         
mechanism can reduce power consumption by more than        
20% (Zhou, Li, Liu, & Wang, 2014). 

 
Finally, another aspect that favors the growth of        

this area and the increase in the performance of         
developments over the NetFPGA, are the studies on        
technologies and techniques to reduce latency in storage        
and forwarding of data packets, among which are related         
works in (Ruiz, Ramos, Sutter, Vergara, Lopez-Buedo, &        
Aracil, 2016), (Nakamura, Hayashi, & Matsutani, 2016),       
and (Jeyakumar, Alizadeh, Geng, Kim, & Maziéres.,       
2014). 

 
 
 

NETFPGA APPLICATIONS 
 

The NetFPGA platform is useful in other contexts        
such as education, research, and innovation. Below is a         
summary of project progress in these areas. 

 
Education 
 

Initially, it is important to note that the NetFPGA         
project minimizes the lack of open (non-proprietary) tools        
for teaching computer network systems at the       
undergraduate and graduate levels. In addition, professors       
from Stanford University observed that students only       
gained practical experience in creating networks from       
layer three and above (routing protocols, transport       
protocols, etc.). Likewise, students' access to the Physical        
and Link layer was limited to theoretical classes, and they          
were unable to build network systems. These and other         
reasons generated a need to build a platform that students          
can use to design, model functional network devices in         
real environments (NICs, switches, routers) (Watson,      
McKeown, & Casado., 2006). 

 
The creation of an "Open-source hardware"      

platform is very different from open-source software       
projects, because of this; they created a new process to          
provide new designs. Therefore, in order for a contributed         

design to be included in the NetFPGA repository, it must          
be completely specified through a set of tests that must          
pass successfully. Currently the active repository is       
located at github.com/NetFPGA. 

 
Similarly, the platform has grown with the       

creation of courses such as CS344 by Stanford University,         
which allowed the development of reference designs and        
component libraries of the NetFPGA (Gibb, Lockwood,       
Naous, Hartke, & McKeown, 2008). We can also find         
books such as "High Speed NetFPGA Router" (Khalid,        
High Speed NetFPGA Router: A Step by Step Guide on          
Developing a High Speed Router on NetFPGA Board,        
2012), which explains in detail how to implement routing         
algorithms such as IPv4 and OSPF over NetFPGA, and         
covers basic routing concepts to understand      
reference_router.  

 
In addition, as a strategy for introducing,       

updating and perfecting knowledge about the NetFPGA       
platform, universities such as Stanford and now       
Cambridge have developed and positioned since 2007       
events that are an inherent part of the community, such as           
Seminars, Camps, Developer's Workshops and Tutorials      
(McKeown, Lockwood, Naous, Gibb, & Covington,      
2007), (Zilberman., 2014), and (NetFPGA.org, 2017). 

 
On the other hand, when in the processes of         

formation and the number of students is high. NetFPGA         
cards may not be sufficient for all students to access the           
development of practices at the same time, making the         
learning process difficult. Consequently, this limitation      
allowed the development of the Open Network Laboratory        
(ONL) tool (Wiseman, Turner, DeHart, Parwatikar,      
Wong, & Zar, 2009), which is a network testbed         
accessible from the Internet, and allows the use of         
numerous heterogeneous network resources for research      
and education activities, with 20 routers, 100 PCs and 6          
NetFPGAs. Another remote laboratory tool is FPGA       
e-Lab (Hashemian & Riddley, 2007), but focuses on        
teaching Digital Design using FPGAs, which is a basic         
knowledge to use the maximum performance to the        
NetFPGA. In addition, e-Lab is composed of hardware        
and a Laboratory Protocol that gives access to students. 

 
Finally, it is important to note that the NetFPGA         

platform has a high degree of learning difficulty for those          
who do not have basic training in knowledge of digital          
circuit design or ends. One answer to this is EMU (Galea,           
y otros, 2016), which uses a compiler called Kiwi (Singh          
& Greaves, 2008), and programs FPGAs using .NET code.         
Furthermore, Emu provides an implementation for      
network functionalities written in C#. 

 
Research and innovation 

 
Being flexible and allowing rapid prototyping      

makes the NetFPGA platform the ideal tool for students         



and researchers of any level, because it offers multiple         
solutions to them. Therefore, below we introduce the most         
important projects. For example, (McKeown, y otros,       
2008)shows that NetFPGA provides reference projects or       
other inputs, which provide a complete implementation       
and an executable application. For example (Han, y otros,         
2015), an SDN researcher interested in the control plane         
and lacking any hardware knowledge can use the        
BlueSwitch or OpenFlow project. Additionally, the      
NetFPGA community developed a tool called Mininet       
(Lantz, Heller, & McKeown, 2010), which is a system for          
rapidly prototyping large networks, over the limited       
resources of a single computer; this is because it uses the           
lightweight approach to virtualization features at the OS        
level, including processes (Zilberman N. , Audzevich,       
Kalogeridou, Manihatty-Bojan, Zhang, & Moore, 2015). 

 
Regarding the obstacles faced by researchers to       

develop NetFPGA projects that include innovation, we       
can relate the cost and development time, the skills         
required for hardware development. Consequently, several      
solutions were developed. For example, (Forconesi,      
Sutter, Lopez-Buedo, Vergara, & Aracil, 2014) compares       
the two approaches to hardware development called the        
Hardware Description Language (HDL), and the new,       
High-Level Language (HLL). Also, this work perform a        
practical implementation of packet processing, which      
allows to demonstrate that using HLL reduces the coding         
time, maintaining high speed, low latency and accuracy of         
timestamping of packets in the hardware architecture,       
which ratifies that using coding in C++ with Vivado-HLS,         
can smooth the gap between software development and        
hardware for network applications. 

 
In connection with the above, tools such as        

Program-hosted Directability (PhD) (Sultana, y otros,      
2017)were developed, which helps researchers to quickly       
develop prototypes of network hardware because it       
interprets Direction commands at runtime, allowing      
debugging, monitoring, and profiling that are normally set        
at compile time for hardware development. Indeed, the        
tool offers significant flexibility with low impact on        
hardware utilization and optimal performance. 

 
On the other hand, researchers in the area of         

computer networks that focus on monitoring traffic and        
evaluating network protocols, the NetFPGA offers several       
tools for experimentation, because its flexibility allows       
you to modify and customize existing designs (Yaser M.         
Abid, 2018), (Wira Firdaus Yaakob, 2018). Of these tools,         
we present two that are the most representative. The first          
one is a module developed in hardware to monitor         
high-speed networks (Antichi, Miller, & Giordano, An       
open-source hardware module for high-speed network      
monitoring on netfpga, 2010), which allows filtering       
customized data packets. The second is a traffic generator         
for 10 Gbps Ethernet links, configurable from software        
(Groléat, y otros, 2013), and executed on platforms such         

as INVEA-TECH or NetFPGA-10G. Additionally, it can       
transmit packets as small as the Ethernet protocol allows,         
and is capable of delivering up to 20 Gbps, whether each           
transmission block is linked to the traffic generator, thus         
configuring two data streams of 10Gbps each. 

 
Another important aspect that benefits from the       

features of the NetFPGA is innovation. Likewise, we        
consider that innovation is not present in every research         
process. Similarly, the chances of producing an impact are         
very low. Therefore, this low probability of success is the          
cause of the low availability of equipment, protocols and         
traffic in real scenarios (McKeown, y otros, 2008). 

 
As a result, there have been two major        

developments for the NetFPGA platform. The first, known        
as OpenFlow, offers a way for researchers to run         
experimental protocols on heterogeneous switches     
uniformly across computer networks. Second, called      
OSNT, it is available to the research community through         
the NetFPGA project. Therefore, anyone who owns a        
NetFPGA card can use and manage it without additional         
hardware expense. Finally, OSNT is a project that allows         
modifications and customizations to solve specific needs. 

 
Finally, the use of the NetFPGA facilitates the        

possibilities of improvement and innovation oriented to       
high-speed interconnection devices, specifically switches.     
For example, in (Su, You, Wang, & Hou, 2016) tested the           
data rate performance of the reference_switch over the        
NetFPGA-SUME. Additionally, can switch and     
retransmit a 1.09 GB video file in 14 seconds and run it            
successfully at an actual transmission rate of 631 Mbps;         
this generates a number of opportunities to create novel         
solutions based on open hardware and software. 

 
CHALLENGES OF NETFPGA vs. NETWORKING 
TRENDS 

 
The constant growth of the demand for Internet        

services, leads to grow at the same rate in resources,          
transmission bandwidth, CPU processing power,     
interconnections to Datacenter. Consequently, this has      
stimulated the need for high-speed network solutions, for        
research and the real world, in areas such as Web load           
balancing, DDos, and for IDS at 100 Gbps or higher, with           
minimum packets length, and test and capture challenges        
(Cao, Zheng, Sun, & Jin, 2015). Accordingly,       
NetFPGA-SUME provides a high-speed platform for      
novel data center interconnect architectures, host block       
construction, and 100Gbps switch, for basic research, and        
as a platform for exploring completely new host        
architectures beyond current PCIe constraints. 

 
Another challenge, which involves the use of the        

NetFPGA platform, is the difficulty of programming the        
hardware in the FPGA. In (Rothman & Chang, 2012), we          
present the tool P4FPGA, which reduces the barrier to         



start working with the powerful tool. Similarly, P4FPGA        
provides a P4 to FPGA compiler that supports multiple         
architectures, generating code that can run on FPGAs        
from manufacturers such as Xilinx or Altera. Likewise, we         
find two technologies that are oriented to follow in the          
future of networking. One such technology is Network        
Function Virtualization (NFV) (Joshi & Benson, 2016),       
which makes use of basic hardware resources as the basic          
platform for performing specialized network functions, as       
opposed to specialized network hardware devices. In this        
area, NetFPGA has great potential because, by integrating        
all its potential, with the flexibility of NFV based on          
General Purpose Processors (GPP). FPGA-based NFV can       
be useful for improving the performance of hardware        
resources on network devices (Kachris, Sirakoulis, &       
Soudris., 2014). On the other hand, we found a technology          
called Software Defined Networks (SDN), which has       
became the complexity of the network forwarding       
network elements (switches/routers) to a centralized      
controller; being OpenFlow its main development on       
NetFPGA. In order to, this has allowed a great space for           
new ideas and challenges to appear in front of the          
development needs in networking; for example, Internet of        
Things technology integration (Azeem Mohammad Abdul,      
2016), (Wira Firdaus Yaakob, 2018), (A. Murali, 2016). 

 
NETFPGA EVALUATION: AN OSNT CASE STUDY 
 

As described in the previous sections, the       
NetFPGA platform has many application areas, including       
high-speed computer networks. This section focus on       
evaluating one of the most important tools for testing         
high-speed network protocols developed on this platform,       
called OSNT. 

 
 
 
 

OSNT architecture 
 

The OSNT architecture is a response to the        
limitations of previous solutions:    
proprietary/closed-source solutions, high costs, lack of      
flexibility and the omission of important features such as         
time stamping and precise packet transmission. 

 
OSNT NetFPGA-SUME (OSNT-SUME) can    

generate and capture packets of any size; additionally it         
can manipulate the transmission rate on all four card ports          
simultaneously. On the other hand, the OSNT-SUME       
implementation provides methods to scale and coordinate       
multiple systems for generating and capturing traffic, and        
configured with a timestamping resolution of 6.4ns.  

 
OSNT has two tools that constitute themselves as        

the most important of its system. The first one, called          
Traffic Generator (OSNT-Generator): capable of     
generating and receiving packets in four 10GbE       

interfaces; by incorporating time stamps in each sent        
packet, it allows calculating information about delay and        
loss in an end-to-end network. The second, Traffic        
Monitor (OSNT-Monitor): capable of capturing packets      
that arrive through four 10 GbE network interfaces, which         
are transferred to the host software for analysis and further          
processing. 
 
Network testbed and experiments 

 
To perform the OSNT evaluation, we install a        

NetFPGA-SUME on each host. Similarly, on each of the         
hosts (called A and B) the OSNT-SUME tool was         
configured. Likewise, on host A, the Traffic Generator is         
executed, and on host B, the Traffic Monitor. Therefore,         
these tools are directly interconnected using nf0 (host A)         
and nf1 (host B) by optical means. Finally, both hosts have           
Linux CentOS 7 installed as operating system, see Fig. 4a          
and 4b. 

 
 

Fig. 4a. Network 
testbed. 

 

Fig. Hosts A and B Interconnected 
 
On the other hand, we set up experiments to         

evaluate the measurement of timestamping accuracy and       
OSNT packet capture efficiency. Therefore, we created       
two large transmission rate scenarios of 1.0 Gps and         
10Gps. Therefore, for each scenario, three delay values of         
6.4ns (minimum defined OSNT), 10ns and 100ns were        
evaluated. Similarly, the number of packets sent per burst         
in each experiment was 10, 100, 1000, 10000, and         
1000000 packets, with sizes of 64B and 1500B.        
Additionally, for each scenario with speeds of 1.0 GbE         
and 10 GbE, we performed 10 tests per burst, per delay           
and per packet size; that is, (2 scenarios x 10 repetitions x            
5 bursts x 2 delays x 2 packet sizes), allowing us to            
perform a total of 400 tests.  



After executing the experiments, the traces      
captured from the bursts of packets received by        
OSNT-Monitor were stored in a pcap files for later         
analysis. 

 
Results 
 

Table-3. Lost packets at 1.0 GbE rate 
Packets 

size 
(Bytes) 

Burst 
packets 

Delay Lost packets (%) 

6,4ns 10ns 100ns 

64 10 0% 0% 0% 

64 100 0% 0% 0% 

64 1000 75% 0% 0% 

64 10000 96% 0% 2% 

64 100000 99% 3% 7% 

1500 10 0% 0% 0% 

1500 100 60% 0% 5% 

1500 1000 92% 0% 0% 

1500 10000 80% 0% 2% 

1500 100000 80% 3% 6% 

 
Therefore, Tables 3 and 4 show the average        

percentage of packets lost for transmission speeds of        
1GbE and 10GbE, the packet loss is high reaching up to           
99% with delays of 6.4ns, which indicates that the packets          
are received by the adapter, but not captured by the kernel,           
i.e., they never get received by the operating system         
protocol stack. However, when the delay is 10ns and         
100ns the packet loss is minimal, because it is minimal, if           
compared to the size of the burst sent. 

 
On the other hand, in relation to the transmission         

speed of 10 GbE, the performance is very similar to that of            
1.0 GbE, except that at 100ns of delay there is a loss of             
packets that reaches 6%, representing 6000 packets of the         
10000 sent in the burst. 

 
Regarding the timestamping accuracy with the      

different packet delays evaluated, we found different       
results that represent the average relative error for bursts         
between 10 and 100000 packets. Table 5 shows that for 1           
GbE and 10 GbE of speed, the highest relative error found           
is 5%, for delays of 6.4ns and 10ns. 

 
Finally, Table 6 shows that in general OSNT,        

executed on the NetFPGA platform, is very efficient and         
accurate, when it comes to evaluating network protocols at         

high speeds (optical networks), which range from 10 to         
100 GbE. Although it is, correct to say that OSNT, due to            
the scalability characteristics of the NetFPGA platform,       
can support tests in networks with speeds up to 400 GbE. 

 
Table-4. Lost packets at 10 GbE rate 

Packet
s size 

(Bytes) 
Burst 

packets 

Delay Lost packets (%) 

6,4ns 10ns 100ns 

64 10 0% 0% 0% 

64 100 0% 0% 0% 

64 1000 66% 0% 0% 

64 10000 87% 0% 7% 

64 100000 88% 4% 8% 

1500 10 0% 0% 0% 

1500 100 0% 0% 0% 

1500 1000 68% 0% 0% 

1500 10000 85% 0% 0% 

1500 100000 89% 3% 0% 

Table-5. Timestamping relative error at 1.0 GbE 

Packets 
size 

(Bytes) 

Average Relative Delay Error (%) 

6,4ns Error 10ns Error 100n
s 

Error 

64 6,48 1% 9,48 5% 102 2% 

1500 6,34 1% 8,73 3% 103,4 3% 

 
Table-6. Timestamping relative error at 10 GbE 

Packets 
size 

(Bytes) 

Average Relative Delay Error (%) 

6,4ns Error 6,4ns Error 6,4ns Error 

64 6,4 0% 9,7 3% 102,2 2% 

1500 6,7 5% 10,2 2% 100,6 1% 

CLUSIONS 
 

Initially, the current and future use of the tool         
with respect to new networking technologies was       
analyzed. Likewise, the measure that the use of FPGAs is          
gradually being used in high-performance systems, for       
large storage systems, in energy-efficient systems.      
Similarly, programmable SoC’s are combined with highly       
efficient algorithms, to support flexible services, ranging       
from the distribution of stored content to the analysis of          



large volumes of data; and for services in sensory         
networks in the area of the Internet of Things (IoT).          
Finally, in relation to the above features, we consider that          
the NetFPGA will become an important platform for        
high-speed next-generation network research, playing a      
role in the development of interconnection hardware in the         
networks of the future. 

 
Finally, OSNT's evaluation showed that it is a        

tool with high precision to mark the time of sending data           
packets at high transmission speeds. Additionally, at high        
transmission speeds OSNT's packet capture tool has low        
packet loss, and offers many advantages for research and         
development of new solutions in the area of network         
traffic analysis and monitoring, which are useful for the         
management of current and future telecommunications      
infrastructures. 
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