2,819 research outputs found

    RPAS AND TLS TECNIQUES FOR ARCHAEOLOGICAL SURVEY: THE CASE STUDY OF THE ARCHAEOLOGICAL SITE OF ERACLEA MINOA (ITALY)

    Get PDF
    Digital documentation and 3D modelling of archaeological sites are important for understanding, definition and recognition of the values of the sites and of the archaeological finds. The most part of archaeological sites are outdoor location, but a cover to preserve the ruins protects often parts of the sites. The possibility to acquire data with different techniques and merge them by using a single reference system allows creating multi-parties models in which 3D representations of the individual objects can be inserted. The paper presents the results of a recent study carried out by Geomatics Laboratory of University of Palermo for the digital documentation and 3D modelling of Eraclea Minoa archaeological site. This site is located near Agrigento, in the south of Sicily (Italy) and is one of the most famous ancient Greek colonies of Sicily. The paper presents the results of the integration of different data source to survey the Eraclea Minoa archaeological site. The application of two highly versatile recording systems, the TLS (Terrestrial Laser Scanning) and the RPAS (Remotely Piloted Aircraft System), allowed the Eraclea Minoa site to be documented in high resolution and with high accuracy. The integration of the two techniques has demonstrated the possibility to obtain high quality and accurate 3D models in archaeological survey

    Supporting the workflow of archaeo-related sciences by providing storage, sharing, analysis, and retrieval methods

    Get PDF
    The recovery and analysis of material culture is the main focus of archaeo-related work. The corpus of findings like rest of buildings, artifacts, human burial remains, or faunal remains is excavated, described, categorized, and analyzed in projects all over the world. A huge amount of archaeo-related data is the basis for many analyses. The results of analyzing collected data make us learn about the past. All disciplines of archaeo-related sciences deal with similar challenges. The workflow of the disciplines is similar, however there are still differences in the nature of the data. These circumstances result in questions how to store, share, retrieve, and analyze these heterogeneous and distributed data. The contribution of this thesis is to support archaeologists and bioarchaeologists in their work by providing methods following the archaeo-related workflow which is split in five main parts. Therefore, the first part of this thesis describes the xBook framework that has been developed to gather and store archaeological data. It allows creating several database applications to provide necessary features for the archaeo-related context. The second part deals with methods to share information, collaborate with colleagues, and retrieve distributed data of cohesive archaeological contexts to bring together archaeo-related data. The third part addresses a dynamic framework for data analyses which features a flexible and easy to be used tool to support archaeologists and bioarchaeologists executing analyses on their data without any programming skills and without the necessity to get familiar with external technologies. The fourth part introduces an interactive tool to compare the temporal position of archaeological findings in form of a Harris Matrix with their spatial position as 2D and 3D site plan sketches by using the introduced data retrieval methods. Finally, the fifth part specifies an architecture for an information system which allows distributed and interdisciplinary data to be searched by using dynamic joins of results from heterogeneous data formats. This novel way of information retrieval enables scientists to cross-connect archaeological information with domain-extrinsic knowledge. However, the concept of this information system is not limited to the archaeo-related context. Other sciences could also benefit from this architecture.Die Wiederherstellung und Analyse von materieller Kultur ist der Schwerpunkt archäologischer Arbeit. Das Material von Funden wie Gebäudereste, Artefakte, menschliche Überreste aus Bestattungen oder tierische Reste wird in Projekten auf der ganzen Welt ausgegraben, beschrieben, kategorisiert und analysiert. Die große Anzahl an archäologischen Daten bildet die Grundlage für viele Analysen. Die Ergebnisse der Auswertung der gesammelten Daten gibt uns Aufschluss über die Vergangenheit. Alle Disziplinen der archäologischen Wissenschaften setzen sich mit ähnlichen Herausforderungen auseinander. Der Arbeitsablauf ist in den einzelnen Disziplinen ähnlich, jedoch gibt es aufgrund der Art der Daten Unterschiede. Das führt zu Fragestellungen, wie heterogene und verteilte Daten erfasst, geteilt, abgerufen und analysiert werden können. Diese Dissertation beschäftigt sich mit der Unterstützung von Archäologen und Bioarchäologen bei ihrer Arbeit, indem unterstützende Methoden bereitgestellt werden, die dem archäologischen Arbeitsablauf , der in fünf Schritte unterteilt ist, folgt. Der erste Teil dieser Arbeit beschreibt das xBook Framework, welches entwickelt wurde, um archäologische Daten zu erfassen und zu speichern. Es ermöglicht die Erstellung zahlreicher Datenbankanwendungen, um notwendige Funktionen für den archäologischen Kontext bereitzustellen. Der zweite Teil beschäftigt sich mit der Zusammentragung von archäologischen Daten und setzt sich mit Methoden zum Teilen von Informationen, Methoden zur Zusammenarbeit zwischen Kollegen und Methoden zum Abruf von verteilten, aber zusammenhängenden archäologischen Daten auseinander. Der dritte Teil stellt ein dynamisches Framework für Datenanalysen vor, welches ein flexibles und leicht zu bedienendes Tool bereitstellt, das Archäologen und Bioarchäologen in der Ausführung von Analysen ihrer Daten unterstützt, so dass weder Programmierkenntnisse noch die Einarbeitung in externe Technologien benötigt werden. Der vierte Teil führt ein interaktives Tool ein, mit dem – unter Verwendung der zuvor beschriebenen Methoden zur Datenabfrage – die zeitliche Position von archäologischen Funden in Form einer Harris Matrix mit ihrer räumlichen Position als 2D- und 3D-Lageplan verglichen werden kann. Abschließend spezifiziert der fünfte Teil eine Architektur für ein Informationssystem, das die Durchsuchung von verteilten und interdisziplinären Daten durch dynamische Joins von Suchergebnissen aus heterogenen Datenformaten ermöglicht. Diese neue Art an Informationsabfrage erlaubt Wissenschaftlern eine Querverbindung von archäologischen Informationen mit fachfremdem Wissen. Das Konzept für dieses Informationssystem ist jedoch nicht auf den archäologischen Kontext begrenzt. Auch andere wissenschaftliche Bereiche können von dieser Architektur profitieren

    Putting the past in place : a conceptual data model for a 4D archaeological GIS

    Get PDF

    Documenting Bronze Age Akrotiri on Thera using laser scanning, image-based modelling and geophysical prospection

    Get PDF
    The excavated architecture of the exceptional prehistoric site of Akrotiri on the Greek island of Thera/Santorini is endangered by gradual decay, damage due to accidents, and seismic shocks, being located on an active volcano in an earthquake-prone area. Therefore, in 2013 and 2014 a digital documentation project has been conducted with support of the National Geographic Society in order to generate a detailed digital model of Akrotiri’s architecture using terrestrial laser scanning and image-based modeling. Additionally, non-invasive geophysical prospection has been tested in order to investigate its potential to explore and map yet buried archaeological remains. This article describes the project and the generated results

    Batch-based Model Registration for Fast 3D Sherd Reconstruction

    Full text link
    3D reconstruction techniques have widely been used for digital documentation of archaeological fragments. However, efficient digital capture of fragments remains as a challenge. In this work, we aim to develop a portable, high-throughput, and accurate reconstruction system for efficient digitization of fragments excavated in archaeological sites. To realize high-throughput digitization of large numbers of objects, an effective strategy is to perform scanning and reconstruction in batches. However, effective batch-based scanning and reconstruction face two key challenges: 1) how to correlate partial scans of the same object from multiple batch scans, and 2) how to register and reconstruct complete models from partial scans that exhibit only small overlaps. To tackle these two challenges, we develop a new batch-based matching algorithm that pairs the front and back sides of the fragments, and a new Bilateral Boundary ICP algorithm that can register partial scans sharing very narrow overlapping regions. Extensive validation in labs and testing in excavation sites demonstrate that these designs enable efficient batch-based scanning for fragments. We show that such a batch-based scanning and reconstruction pipeline can have immediate applications on digitizing sherds in archaeological excavations. Our project page: https://jiepengwang.github.io/FIRES/.Comment: Project page: https://jiepengwang.github.io/FIRES

    3D Digital Surveying and Modelling of Cave Geometry: Application to Paleolithic Rock Art

    Get PDF
    3D digital surveying and modelling of cave geometry represents a relevant approach for research, management and preservation of our cultural and geological legacy. In this paper, a multi-sensor approach based on a terrestrial laser scanner, a high-resolution digital camera and a total station is presented. Two emblematic caves of Paleolithic human occupation and situated in northern Spain, “Las Caldas” and “Peña de Candamo”, have been chosen to put in practise this approach. As a result, an integral and multi-scalable 3D model is generated which may allow other scientists, pre-historians, geologists…, to work on two different levels, integrating different Paleolithic Art datasets: (1) a basic level based on the accurate and metric support provided by the laser scanner; and (2) a advanced level using the range and image-based modelling

    An online platform to unify and synchronise heritage architecture information

    Get PDF
    [EN] Traditionally, in heritage architecture, each discipline works independently, generating dispersed data. Heritage Building Information Modelling (HBIM) can provide benefits in managing heritage projects. However, the modelling task is laborious, BIM software tends to be complex, and historical databases are not synchronised with HBIM models. The aim of this research is to create an online work platform where interdisciplinary stakeholders can synchronise heritage information. Design Science Research (DSR) was the methodological approach adopted, consisting of designing an artefact and evaluating it iteratively. As a result, an innovative in-cloud system named BlMlegacy that connects the intrinsic HBIM database with heritage documentary databases was designed. BlMlegacy was used to manage a complete heritage registration project in a case study. The results were validated through a focus group with external professionals. The theoretical definition of the BlMlegacy platform structure is a contribution to knowledge as it could be used as a basis to develop new systems. BlMlegacy allows non-technical heritage stakeholders to collaborate effectively, which is a notable practical contribution.The authors would like to acknowledge the members of the research project entitled: The Design of a Database, Management Model for the Information and Knowledge of Architectural Heritage; HAR2013-41614-R; and the members of the UPV and the University of Huddersfield that have collaborated within the research.Jordán Palomar, I.; G-Valldecabres, J.; Tzortzopoulos, P.; Pellicer, E. (2020). An online platform to unify and synchronise heritage architecture information. Automation in Construction. 110:1-17. https://doi.org/10.1016/j.autcon.2019.103008S117110Migilinskas, D., Popov, V., Juocevicius, V., & Ustinovichius, L. (2013). The Benefits, Obstacles and Problems of Practical Bim Implementation. Procedia Engineering, 57, 767-774. doi:10.1016/j.proeng.2013.04.097Teo, M. M. M., & Loosemore, M. (2001). A theory of waste behaviour in the construction industry. Construction Management and Economics, 19(7), 741-751. doi:10.1080/01446190110067037Kempton, J. (2006). Can lean thinking apply to the repair and refurbishment of properties in the registered social landlord sector? Structural Survey, 24(3), 201-211. doi:10.1108/02630800610678850Murphy, M., McGovern, E., & Pavia, S. (2009). Historic building information modelling (HBIM). Structural Survey, 27(4), 311-327. doi:10.1108/02630800910985108Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing buildings — Literature review and future needs. Automation in Construction, 38, 109-127. doi:10.1016/j.autcon.2013.10.023Quattrini, R., Malinverni, E. S., Clini, P., Nespeca, R., & Orlietti, E. (2015). FROM TLS TO HBIM. HIGH QUALITY SEMANTICALLY-AWARE 3D MODELING OF COMPLEX ARCHITECTURE. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W4, 367-374. doi:10.5194/isprsarchives-xl-5-w4-367-2015Oreni, D., Brumana, R., Della Torre, S., Banfi, F., Barazzetti, L., & Previtali, M. (2014). Survey turned into HBIM: the restoration and the work involved concerning the Basilica di Collemaggio after the earthquake (L’Aquila). ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5, 267-273. doi:10.5194/isprsannals-ii-5-267-2014Barazzetti, L., Banfi, F., Brumana, R., Gusmeroli, G., Previtali, M., & Schiantarelli, G. (2015). Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simulation Modelling Practice and Theory, 57, 71-87. doi:10.1016/j.simpat.2015.06.004Green, A., & Dixon, J. (2016). Standing buildings and built heritage. Post-Medieval Archaeology, 50(1), 121-133. doi:10.1080/00794236.2016.1169492Ilter, D., & Ergen, E. (2015). BIM for building refurbishment and maintenance: current status and research directions. Structural Survey, 33(3), 228-256. doi:10.1108/ss-02-2015-0008Megahed, N. (2015). Towards a Theoretical Framework for HBIM Approach in Historic Preservation and Management. International Journal of Architectural Research: ArchNet-IJAR, 9(3), 130. doi:10.26687/archnet-ijar.v9i3.737Perng, Y.-H., Hsia, Y.-P., & Lu, H.-J. (2007). A Service Quality Improvement Dynamic Decision Support System for Refurbishment Contractors. Total Quality Management & Business Excellence, 18(7), 731-749. doi:10.1080/14783360701349716Du, J., Zou, Z., Shi, Y., & Zhao, D. (2018). Zero latency: Real-time synchronization of BIM data in virtual reality for collaborative decision-making. Automation in Construction, 85, 51-64. doi:10.1016/j.autcon.2017.10.009Li, C. Z., Xue, F., Li, X., Hong, J., & Shen, G. Q. (2018). An Internet of Things-enabled BIM platform for on-site assembly services in prefabricated construction. Automation in Construction, 89, 146-161. doi:10.1016/j.autcon.2018.01.001Grilo, A., & Jardim-Goncalves, R. (2010). Value proposition on interoperability of BIM and collaborative working environments. Automation in Construction, 19(5), 522-530. doi:10.1016/j.autcon.2009.11.003Grover, R., & Froese, T. M. (2016). Knowledge Management in Construction Using a SocioBIM Platform: A Case Study of AYO Smart Home Project. Procedia Engineering, 145, 1283-1290. doi:10.1016/j.proeng.2016.04.165Howell, S., Rezgui, Y., & Beach, T. (2017). Integrating building and urban semantics to empower smart water solutions. Automation in Construction, 81, 434-448. doi:10.1016/j.autcon.2017.02.004Jeong, W., Chang, S., Son, J., & Yi, J.-S. (2016). BIM-Integrated Construction Operation Simulation for Just-In-Time Production Management. Sustainability, 8(11), 1106. doi:10.3390/su8111106Lee, J., Park, Y.-J., Choi, C.-H., & Han, C.-H. (2017). BIM-assisted labor productivity measurement method for structural formwork. Automation in Construction, 84, 121-132. doi:10.1016/j.autcon.2017.08.009Holmström, J., Ketokivi, M., & Hameri, A.-P. (2009). Bridging Practice and Theory: A Design Science Approach. Decision Sciences, 40(1), 65-87. doi:10.1111/j.1540-5915.2008.00221.xPeffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science Research Methodology for Information Systems Research. Journal of Management Information Systems, 24(3), 45-77. doi:10.2753/mis0742-1222240302Inyim, P., Rivera, J., & Zhu, Y. (2015). Integration of Building Information Modeling and Economic and Environmental Impact Analysis to Support Sustainable Building Design. Journal of Management in Engineering, 31(1). doi:10.1061/(asce)me.1943-5479.0000308Zhao, D., McCoy, A. P., Bulbul, T., Fiori, C., & Nikkhoo, P. (2015). Building Collaborative Construction Skills through BIM-integrated Learning Environment. International Journal of Construction Education and Research, 11(2), 97-120. doi:10.1080/15578771.2014.986251Gurevich, U., Sacks, R., & Shrestha, P. (2017). BIM adoption by public facility agencies: impacts on occupant value. Building Research & Information, 45(6), 610-630. doi:10.1080/09613218.2017.1289029Dainty, A., Leiringer, R., Fernie, S., & Harty, C. (2017). BIM and the small construction firm: a critical perspective. Building Research & Information, 45(6), 696-709. doi:10.1080/09613218.2017.129394

    An e-science infrastructure for collecting, sharing, retrieving, and analyzing heterogeneous scientific data

    Get PDF
    The process of collecting, sharing, retrieving, and analyzing data is common in many areas of scientific work. While each field has its own workflows and best practices, the general process can be aided by an e-Science infrastructure. The contribution of this thesis is to support the workflow of the scientists which can be split in four parts: In the first part, we introduce xBook, a framework which aids the creation of database application to collect, back-up, and share data. In the second part, we describe the synchronization which is a vital part of the xBook framework that, with the use of timestamps, allows data to be entered offline. The data then can be shared with coworkers for analyses or further processing. It also can be used as a backup system to avoid data loss. Third, we present an architecture allowing data from distributed data sources to be retrieved without a central managing instance. This is achieved with the use of minimal search parameters which are guaranteed to exist in all connected data sources. This architecture is based on the concept of mediators, but gives data owners full control over their data sources as opposed to the traditional mediator where the connected data sources are managed by a central administrator. Fourth we describe an embeddable analysis tool which can be integrated into a base application where the data is gathered. With the aid of simple modules, called ``Workers'', this tool empowers domain experts to easily create analyses particularly designed for their area of work in a familiar working environment. Additionally, we present another tool which allows the graphical display of temporal and spatial information of archaeological excavations. This tool uses an interactive Harris Matrix to order findings temporally and allows the comparison with their spatial location.Viele wissenschaftliche Bereiche haben gemeinsame Vorgänge, wie die Erfassung, das Teilen, das Abrufen und das Analysieren von Daten. Jeder Bereich hat zwar seine eigenen Vorgänge und bewährte Verfahren, jedoch kann der allgemeine Prozess durch eine e-Science Infrastruktur unterstützt werden. Der Beitrag dieser Dissertation ist die Unterstützung des typischen wissenschaftlichen Arbeitsablaufes, der in vier Teile unterteilt werden kann: Im ersten Teil stellen wir xBook vor, ein Framework zur Erstellung von Datenbankanwendungen, das Wissenschaftler dabei unterstützt, Daten zu erfassen, zu sichern und zu teilen. Im zweiten Teil beschreiben wir die Synchronisation, die ein wichtiger Teil des xBook Frameworks ist. Diese erlaubt, dass Daten offline bearbeitet werden können, indem Änderungen über Zeitstempel protokolliert werden. Diese Daten können dann mit Kollegen für Analysen oder weitere Eingaben geteilt werden. Die Synchronisation kann zusätzlich als Sicherungssystem verwendet werden, um Datenverlust zu verhindern. Im dritten Teil präsentieren wir eine Architektur, um Daten aus verteilten Datenquellen ohne ein zentrales Verwaltungssystem abrufen zu können. Dies wird mit Hilfe eines minimalen Suchparameters, der in allen angeschlossenen Datenquellen existieren muss, ermöglicht. Diese Architektur basiert auf dem Konzept des Mediators, benötigt aber im Gegensatz zum traditionellen Mediator keinen zentralen Administrator zur Verwaltung der Datenquellen und gibt deren Besitzern volle Kontrolle über ihre Daten. Abschließend, im vierten Teil, beschreiben wir ein einbettbares Analyse Tool, das in eine Hauptanwendung integriert werden kann, in der Daten erfasst werden. Dieses Tool ermöglicht Fachexperten auf einfache Weise, mit Hilfe von speziellen Modulen, Analysen in einer vertrauten Arbeitsumgebung zu erstellen, die genau für ihr Fachgebiet benötigt werden. Zusätzlich stellen wir ein weiteres Tool vor, das die zeitlichen und räumlichen Informationen archäologischer Ausgrabungen visualisiert. Dieses Tool verwendet eine interaktive Harris Matrix, um Funde zeitlich zu ordnen und erlaubt den Vergleich ihrer räumlichen Position
    • …
    corecore