
An e-Science Infrastructure
for Collecting, Sharing,

Retrieving, and Analyzing
Heterogeneous Scientific Data

Dissertation zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

vorgelegt von

Johannes-Y. Lohrer

München, den 19.02.2018

Tag der Einreichung: 19.02.2018

Erstgutachter: Prof. Dr. Peer Kröger
Ludwig-Maximilians-Universität München
Institut für Informatik
Lehrstuhl für Datenbanksysteme und Data Mining

Zweitgutachter: Prof. Dr. Stefan Conrad
Heinrich Heine Universität Düsseldorf
Institut für Informatik
Datenbanken und Informationssysteme

Drittgutachter: Prof. Dr. Reinhard Förtsch
Universität zu Köln
Philosophische Fakultät
Archäologisches Institut

Vorsitz: Prof. Dr. Heinrich Hußmann
Ludwig-Maximilians-Universität München
Institut für Informatik
Arbeitsgruppen Medieninformatik und Mensch-Maschine-Interaktion

Tag der Disputation: 02.05.2018

Eidesstattliche Versicherung
(siehe Promotionsordnung vom 12.07.2011, § 8, Abs. 2 Pkt. 5)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig, ohne uner-
laubte Beihilfe angefertigt ist.

München, den 19.02.2018

Johannes-Y. Lohrer

CONTENTS v

Contents

Abstract ix

Zusammenfassung xi

1 Introduction 1
1.1 Overview . 3
1.2 Attribution . 4

2 Data Collection: Development of the xBook Framework 7
2.1 Introduction . 8
2.2 Origin of OssoBook . 9

2.2.1 First OssoBook Version in dBASE 9
2.2.2 Conversion to Java . 10
2.2.3 First Implementation of a Synchronization 12
2.2.4 Redevelopment of the Application 12

2.3 From the Application OssoBook to the xBook Framework 13
2.3.1 Input Fields and Input Mask . 15
2.3.2 Update Procedure . 15
2.3.3 Plug-in Interface . 16
2.3.4 Database Identification . 17
2.3.5 Registration . 18
2.3.6 Server-Client Architecture . 18
2.3.7 Launcher . 22

2.4 Features of the xBook Framework . 27
2.4.1 Synchronization . 27
2.4.2 Graphical User Interface . 29
2.4.3 Multiple and Crossed-Linked Input Masks 30
2.4.4 Listing and Export . 32

2.5 Applications Using the xBook Framework 32

vi CONTENTS

3 Sharing Data: A Timestamp-Based Synchronization Process 35
3.1 Introduction . 36
3.2 Problem Formulation . 39
3.3 Evaluation of Existing Synchronization Methods 40
3.4 Synchronization . 43

3.4.1 Realization in the Database . 44
3.4.2 Realization in the Application . 46

3.5 Synchronization in the Graphical User Interface 52
3.5.1 Manual Data Synchronization . 53
3.5.2 Automatic Data Synchronization 54
3.5.3 Code Table Update . 54
3.5.4 Conflict Management . 54

3.6 Discussion . 56

4 Retrieving Data: Introducing the Reverse-Mediated Information System 59
4.1 Introduction . 60
4.2 Problem Formulation . 64
4.3 Requirements . 66
4.4 Reverse-Mediated Information System . 67

4.4.1 Initialization . 68
4.4.2 Registration . 69
4.4.3 Search . 72
4.4.4 Rights . 73
4.4.5 Configuration of the Connector Application 75

4.5 Related Work and Comparison . 76
4.6 Case Study: Retrieving Archaeo-Related Information 81

CONTENTS vii

4.7 ReMIS Cloud . 83
4.7.1 Structure . 84
4.7.2 Data Retrieval . 84
4.7.3 Use Case: Scientific Example (Archaeology) 86
4.7.4 Use Case: eLearning Example . 87

4.8 Conclusion and Discussion . 90

5 Analyzing Data: Tools for the Scientific Field of Application 93
5.1 An Embeddable Analysis Tool . 94

5.1.1 Requirements . 95
5.1.2 Existing methods . 97
5.1.3 Realization . 98
5.1.4 Integration . 102
5.1.5 Definition of Custom Workers . 104
5.1.6 Example of Provided Basic Workers 106
5.1.7 Workflow . 109
5.1.8 Discussion . 113

5.2 A Visual Analytics Application for Temporal and Spatial Data 115
5.2.1 Terminology . 116
5.2.2 Background and Related Work . 117
5.2.3 Illustration of the Spatial and Temporal Distribution of Findings . . 119
5.2.4 Case Study: Distribution of Faunal Remains 127
5.2.5 Conclusion and Discussion . 130

6 Conclusion and Discussion 133

References 137

Own Publications 147

List of Figures 151

List of Tables 155

List of Algorithms 157

viii CONTENTS

ABSTRACT ix

Abstract

The process of collecting, sharing, retrieving, and analyzing data is common in many
areas of scientific work. While each field has its own workflows and best practices, the
general process can be aided by an e-Science infrastructure. The contribution of this
thesis is to support the workflow of the scientists which can be split in four parts:

In the first part, we introduce xBook, a framework which aids the creation of database
application to collect, back-up, and share data.

In the second part, we describe the synchronization which is a vital part of the xBook
framework that, with the use of timestamps, allows data to be entered offline. The data
then can be shared with coworkers for analyses or further processing. It also can be used
as a backup system to avoid data loss.

Third, we present an architecture allowing data from distributed data sources to be
retrieved without a central managing instance. This is achieved with the use of minimal
search parameters which are guaranteed to exist in all connected data sources. This
architecture is based on the concept of mediators, but gives data owners full control
over their data sources as opposed to the traditional mediator where the connected data
sources are managed by a central administrator.

Fourth we describe an embeddable analysis tool which can be integrated into a base
application where the data is gathered. With the aid of simple modules, called “Wor-
kers”, this tool empowers domain experts to easily create analyses particularly desig-
ned for their area of work in a familiar working environment. Additionally, we present
another tool which allows the graphical display of temporal and spatial information of
archaeological excavations. This tool uses an interactive Harris Matrix to order findings
temporally and allows the comparison with their spatial location.

x ABSTRACT

ZUSAMMENFASSUNG xi

Zusammenfassung

Viele wissenschaftliche Bereiche haben gemeinsame Vorgänge, wie die Erfassung, das
Teilen, das Abrufen und das Analysieren von Daten. Jeder Bereich hat zwar seine
eigenen Vorgänge und bewährte Verfahren, jedoch kann der allgemeine Prozess durch
eine e-Science Infrastruktur unterstützt werden. Der Beitrag dieser Dissertation ist die
Unterstützung des typischen wissenschaftlichen Arbeitsablaufes, der in vier Teile unter-
teilt werden kann:

Im ersten Teil stellen wir xBook vor, ein Framework zur Erstellung von Datenbank-
anwendungen, das Wissenschaftler dabei unterstützt, Daten zu erfassen, zu sichern und
zu teilen.

Im zweiten Teil beschreiben wir die Synchronisation, die ein wichtiger Teil des xBook
Frameworks ist. Diese erlaubt, dass Daten offline bearbeitet werden können, indem
Änderungen über Zeitstempel protokolliert werden. Diese Daten können dann mit Kol-
legen für Analysen oder weitere Eingaben geteilt werden. Die Synchronisation kann
zusätzlich als Sicherungssystem verwendet werden, um Datenverlust zu verhindern.

Im dritten Teil präsentieren wir eine Architektur, um Daten aus verteilten Datenquel-
len ohne ein zentrales Verwaltungssystem abrufen zu können. Dies wird mit Hilfe eines
minimalen Suchparameters, der in allen angeschlossenen Datenquellen existieren muss,
ermöglicht. Diese Architektur basiert auf dem Konzept des Mediators, benötigt aber im
Gegensatz zum traditionellen Mediator keinen zentralen Administrator zur Verwaltung
der Datenquellen und gibt deren Besitzern volle Kontrolle über ihre Daten.

Abschließend, im vierten Teil, beschreiben wir ein einbettbares Analyse Tool, das in
eine Hauptanwendung integriert werden kann, in der Daten erfasst werden. Dieses Tool
ermöglicht Fachexperten auf einfache Weise, mit Hilfe von speziellen Modulen, Analysen
in einer vertrauten Arbeitsumgebung zu erstellen, die genau für ihr Fachgebiet benötigt
werden. Zusätzlich stellen wir ein weiteres Tool vor, das die zeitlichen und räumlichen
Informationen archäologischer Ausgrabungen visualisiert. Dieses Tool verwendet eine
interaktive Harris Matrix, um Funde zeitlich zu ordnen und erlaubt den Vergleich ihrer
räumlichen Position.

xii ZUSAMMENFASSUNG

1

Chapter 1

Introduction

Attribution

This chapter does not use any material from previous publications.

In many scientific disciplines the gathering and recording of data of different mate-
rial and immaterial objects is an integral part of the daily work. Examples range from
archaeology and bioarchaeology, where human or animal remains are determined and
the results saved, to biology, where for example data of birds is collected, to medicine,
where information of patients are collected. All these disciplines rely on data they gather
to make analyses which improve the understanding of the past, presence, and the future
and help to understand the nature of things.

Each discipline uses the collected information to answer different scientific questions.
However, they all have in common that the basic workflow is similar in the different
domains and sub-domains. At the very first, the data is always collected and stored
preferably in a relational database, e.g. in field work, in a lab, or in a clinic. For this the
data is collected as exact and detailed as possible and usually standardized. Then, this
data serves as the basis for later scientific analyses. Often a collaboration is useful and
necessary to split workload or to separate different subfields during the data collection.
Then, the data can be shared with coworkers to allow different scientists to carry out
different analyses or use a broader basis of information for their analyses. This requires to
consider privacy information, so that not everybody is allowed to see all data and also not
everybody who has access to the data can edit it. Additionally, it might be interesting for
scientists to take into account data which has a specific attribute in common. Therefore,
they search for data from other available data sources which they can consider in their
analyses. Each of these work steps contributes to the data analyses which usually are
the purpose of scientific work. A sketch of the workflow of scientific work can be seen in
Figure 1.1.

2 1. Introduction

Figure 1.1: A visualization of the workflow of scientific work.

Many different domains could benefit from a digital infrastructure. Especially seaso-
ned scientists still use analog methods or basic tools like spreadsheet applications to store
their information. But, not only habits are an obstacle for digital applications. Often the
lack of funds or technical know-how also hinder the development of tools which support
the scientists in their work. This makes sharing, retrieving, and analyzing data difficult
and time-consuming.

However, the digitization is becoming more and more important. Asked about the
requirements of a database for archaeological and bioarchaeological excavations, the
participants of the workshop “Digitale Grabungsdokumentation – objektiv und nachhal-
tig”1 of the Verband der Landesarchäologen2 stated that data security, working in parallel,
and available plausibility and error checks are the most important topics [Gö18]. While
data security is a big challenge for a digital infrastructure, plausibility and error checks
are not possible if working analogously.

In biology, the demand to compare a larger amount of biological specimens was iden-
tified. The digitization “boost[s] the impact of collections to research and society through
improved access” [BC12].

In other areas the digitization is also becoming a priority. For the “Masterplan Bayern
Digital” [Sta14], the Bayerische Staatsregierung3 plans to invest additional three billion
Euros for the digitization until the end of 2022. While in this case, the government
support is aimed for security, traffic, environmental protection, and education, it still
underscores the importance of the topic and that it will play an even more important
role in future.

Additionally, the digital collection of data also provides new research possibilities, e.g.
the nature conservation research benefits from the collection of tracking data digitally
Cuckoos are equipped with satellite transmitters which track the position information
of the birds during their whole annual cycle. This method is applied for a few years to

1http://www.landesarchaeologen.de/verband/kommissionen/archaeologie-und-

informationssysteme/projektearbeitsgruppen/workshop-digitale-grabungsdokumentation
2http://www.landesarchaeologen.de
3http://www.bayern.de

http://www.landesarchaeologen.de/verband/kommissionen/archaeologie-und-informationssysteme/projektearbeitsgruppen/workshop-digitale-grabungsdokumentation/
http://www.landesarchaeologen.de/verband/kommissionen/archaeologie-und-informationssysteme/projektearbeitsgruppen/workshop-digitale-grabungsdokumentation/
http://www.landesarchaeologen.de
http://www.bayern.de

1.1 Overview 3

research the reasons of the population decline of cuckoos in Bavaria and Belarus and to
develop conservation measures after having obtained the knowledge about the migration
threats. [Her14] Therefore, areas in which the digitization is not common yet should
feel encouraged to start using methods to digitally collect data, to be able to increase the
research possibilities.

An e-Science infrastructure which is adapted to the needs of the specific field could
greatly improve the willingness to start working with digital methods. It also increases
the possibility that new and improved analyses are carried out which are faster and
more meaningful. Additionally, the infrastructure can help to reduce entering incorrect
data during the collection. A general framework would provide an option to allow the
creation of the required tools with minimal financial expenditure. We hope to contribute
to support different scientific disciplines with the methods provided in this thesis.

1.1 Overview

In this thesis proposes a scientific infrastructure which aids scientist in different scientific
domains in collecting, sharing, retrieving, and analyzing their data. The remainder of
this thesis is structured as follows:

In Chapter 2, we give a short overview of the historic development of XBOOK, a
framework which enables the creation of databases for the gathering and sharing of
scientific data sets. XBOOK offers a variety of input elements that can easily be arranged
in order to provide a graphical user interface that the user can use to enter data in a user-
friendly way. Possible manifestations of an entry can be entered with predefined values,
reducing risks of incorrect data input. XBOOK also offers a rights management which
allows users to exactly specify to which users specific data sets shall be made accessible.

Then, in Chapter 3, we explain the synchronization, a vital part of the XBOOK fra-
mework in more detail. The synchronization allows the sharing of data sets with other
scientists as well as the possibility to back-up the data. Using timestamps the synchroni-
zation keeps track on changes done to the data sets while also providing a way to detect
conflicts that can occur if several scientists change the same data set at the same time.

Third in Chapter 4, we introduce a new architecture called Reverse-Mediated Infor-
mation System (REMIS) which allows the retrieval of distributed data sets from ano-
nymous data sources. This architecture is built upon the idea of the Mediator concept.
A mapping is created for each data source to allow the retrieval of data for predefined
search parameters. But instead of using one central managing instance, this architecture
hands the control of the data sources to the data owners, allowing them to freely connect
and disconnect from the network and to choose the data sets they are willing to share.

Then, in Chapter 5, we describe an ANALYSIS TOOL, that can be embedded into a

4 1. Introduction

base application. The tool aims to be used inside a familiar working environment of the
scientists to encourage them not only to use their default analyses, but also to create new
analyses which might lead to new knowledge. The tool allows the creation of complex
analyses with the use of simple independent modules which can result in a variety of vi-
sual representations displaying the results. The ANALYSIS TOOL also allows the creation
and integration of new modules which might be necessary for field specific analyses that
cannot be carried out with the modules available by default. We also present TARDIS, an
individual analysis which is aimed for archaeological excavations to graphically visualize
both the spatial and the temporal history of different layers of an excavation considering
the findings information within them. TARDIS uses a Harris Matrix to display the tem-
poral order of different layers and also allows to filter for different attributes of findings
inside these layers.

Finally, in Chapter 6, we discuss the current state of the infrastructure and how the
infrastructure can benefit from future research.

1.2 Attribution

This chapter gives an overview of the previously published papers that are included in
this thesis (in order of appearance in this work) and clarifies the contributions of the
author of this thesis.

Chapter 2 is based on the publication The Historic Development of the Zooarchaeo-
logical Database OssoBook and the xBook framework [KL18] by Daniel Kaltenthaler and
Johannes-Y. Lohrer, which describes the development of the database OSSOBOOK and the
framework XBOOK. The concept, implementation, and design of the XBOOK framework
was solely realized by Johannes-Y. Lohrer and Daniel Kaltenthaler, including the techni-
cal and collaborative infrastructure, the software development, and the draft and imple-
mentation of the included features. The mentioned applications OSSOBOOK [KLK+18a]
(since the new development from version 4.0), EXCABOOK [KLK+18e], ANTHRODEPOT

[KLK+18b], and PALAEODEPOT [KLK+18f] are being developed exclusively by Johannes-
Y. Lohrer and Daniel Kaltenthaler. ARCHAEOBOOK [KLK+18d] was originally developed
by Johannes-Y. Lohrer and Daniel Kaltenthaler, and later Ciarán Harrington supported
the implementation. ANTHROBOOK [KLK+18g] was developed by Tatiana Sizova and
Anja Mösch on the basis of the XBOOK framework until 2016. Then Johannes-Y. Lohrer
and Daniel Kaltenthaler took over the development in 2017. INBOOK [KLK+18c] is being
developed by Ciarán Harrington. The database applications consider the valuable dom-
ain expertise of primarily Henriette Obermaier (OSSOBOOK and PALAEODEPOT), Christi-
aan van der Meijden (OSSOBOOK), Sonja Marzinzik, Erich Clas̈sen, and Heiner Schwarz-
berg (each ARCHAEOBOOK), Michaela Harbeck and Andrea Grigat (each ANTHRODEPOT

1.2 Attribution 5

and ANTHROBOOK), Anita Toncala (ANTHROBOOK), and Silke Jantos, Agnes Rahm, Ina
Sassen, Tilman Wanke, and Roland Wanninger (each EXCABOOK).

Chapter 3 is based on the publication A Generic Framework for Synchronized Dis-
tributed Data Management in Archaeological Related Disciplines [LKK+14] by Johannes-Y.
Lohrer, Daniel Kaltenthaler, Peer Kröger, Christiaan van der Meijden, and Henriette Ober-
maier, which describes a timestamp-based synchronization method to enable sharing of
data and collaboration with colleagues. The synchronization logic was primarily draf-
ted and implemented by Johannes-Y. Lohrer in cooperation with Daniel Kaltenthaler. A
follow-up publication of the same title [LKK+16b] by the same authors additionally ex-
plains the conflict management and the integration into the graphical user interface in
more detail, which was primarily drafted, designed, and implemented by Daniel Kaltent-
haler in cooperation with Johannes-Y. Lohrer. The work was developed under supervi-
sion of Peer Kröger and Christiaan van der Meijden. Henriette Obermaier contributed
domain-specific input for the two mentioned papers.

Chapter 4 is based on the publications Reverse-Mediated Information System: Web-
based Retrieval of Distributed, Anonymous Information [LKK+17] by Johannes-Y. Lohrer,
Daniel Kaltenthaler, Peer Kröger, and Christiaan van der Meijden and Retrieval of Hete-
rogeneous Data from Dynamic and Anonymous Sources [LKR+18] by Johannes-Y. Lohrer,
Daniel Kaltenthaler, Florian Richter, Tatiana Sizova, Peer Kröger, and Christiaan van der
Meijden, which describe an architecture to retrieve data from heterogeneous, distribu-
ted, and anonymous data sources. The architecture was primarily drafted by Johannes-Y.
Lohrer and implemented by Johannes-Y. Lohrer, Daniel Kaltenthaler, and Tatiana Sizova,
under supervision of Peer Kröger. Florian Richter attributed valuable input about the
usage of the system in other domains. Christiaan van der Meijden contributed with va-
luable discussions. Henriette Obermaier contributed domain-specific input.

Chapter 4.7 is based on the publications A Distributed Information Management Sy-
stem for Interdisciplinary Knowledge Linkage [KLRK17] and the extended publication In-
terdisciplinary Knowledge Cohesion through Distributed Information Management Systems
[KLRK18] by Daniel Kaltenthaler, Johannes-Y. Lohrer, Florian Richter, and Peer Kröger,
which describe an information system that enables the data retrieval from interdiscipli-
nary domains. The architecture was primarily drafted by Daniel Kaltenthaler in coopera-
tion with Johannes-Y. Lohrer under supervision of Peer Kröger. The implementation was
realized by Johannes-Y. Lohrer and Daniel Kaltenthaler. Florian Richter contributed the
use case for the eLearning context and the discussion about ethics.

The Chapter 5.1 is based on the publication Leveraging Data Analysis for Domain Ex-
perts: An Embeddable Framework for Basic Data Science Tasks [LKK16a] by Johannes-Y.
Lohrer, Daniel Kaltenthaler, and Peer Kröger, which describes an ANALYSIS TOOL that can
be embedded into other applications to enable data analyses without the need of pro-
gramming skills. The described logic of the tool was primarily drafted and implemented

6 1. Introduction

by Johannes-Y. Lohrer under supervision of Peer Kröger. Daniel Kaltenthaler attributed
valuable input towards the tool.

Chapter 5.2 is based on the publication TaRDIS, a Visual Analytics System for Spa-
tial and Temporal Data in Archaeo-related Disciplines [KLP+17] by Daniel Kaltenthaler,
Johannes-Y. Lohrer, Ptolemaios Paxinos, Daniel Hämmerle, Henriette Obermaier, and
Peer Kröger, which introduces a visual analysis application to put spatial information
in relation with temporal data from archaeological sites. The concept of the tool was
drafted by Johannes-Y. Lohrer and Daniel Kaltenthaler under supervision of Peer Kröger.
The implementation of the presented prototype was developed by Johannes-Y. Lohrer,
Daniel Kaltenthaler, and Daniel Hämmerle. Henriette Obermaier contributed domain-
specific input. The executed analysis was interpreted by the domain scientist Ptolemaios
Paxinos.

7

Chapter 2

Data Collection: Development of the
xBook Framework

Attribution
This chapter uses material from the following publication:

• Daniel Kaltenthaler and Johannes-Y. Lohrer. The Historic Development
of the Zooarchaeological Database OssoBook and the xBook Frame-
work for Scientific Databases. ArXiv e-prints: 1801.08052, January
2018 [KL18]

See Chapter 1.2 for a detailed overview of incorporated publications.

In many scientific domains, collecting of data is the very first step (c.f. Figure 2.1). It
builds the basis for future analyses and is especially important for long-term archiving.
Especially a detailed data collection is important for sciences that deal with material
things which are collected and stored in e.g. collections or museums. Most often, the
origin situation of the place where the object was found is destructed after the collection
and cannot be restored which makes a digital backup important. In other cases, it is in
the nature of things that the initial situation cannot be restored. For example, biological
observations of animal locations, medical information about patients, chemical samples
in laboratories, etc. All this data require to be accessible so that it can be used in analyses
in the future.

For all these cases, usually the gathering method and data that scientists gather is
similar in their field. Therefore, a standardized program to store the data could be
beneficial. In this chapter, we introduce XBOOK, a framework aimed to allow the creation
of database applications to support scientists to collect data, and additionally provide the
option to share the data.

8 2. Data Collection: Development of the xBook Framework

Figure 2.1: Data collection is usually the first step in any scientific workflow.

We first give an overview of the historic evolution from the zooarchaeological data-
base OSSOBOOK [KLK+18a] to the XBOOK framework and then introduce the different
features of XBOOK.

2.1 Introduction

In general, software and its possibilities are developing to an ever more advanced level.
The implementations are changing over time and new technologies need to be considered
and integrated. Different ideas and concepts of developers, and different expectations of
customers have to be taken into account when developing the application. Even though
these approaches may differ from expected realizations, especially in the range of data
gathering, the requirements are quite similar in several scientific areas.

It is often the case that different disciplines develop their own software solutions to
gather and manage own data specifically for their own need. However, this causes the
decisive disadvantage that new features which can be applied to several disciplines have
to be implemented multiple times for each of the individual solutions. This is not only a
huge temporal, but also a financial expenditure.

This situation became especially apparent during the development of OSSOBOOK, a
database for zooarchaeological findings. Other disciplines in the archaeological context
also gather data with similar methods. Of course, these differ content-related, but the re-
quirements on the basic features strongly overlap with the functionalities of OSSOBOOK.
It is not limited to the archaeological context but other scientific disciplines could also
benefit from similar solutions.

In other archaeo-related disciplines (like archaeology, anthropology, archaeobotany,
etc.) there is also a necessity of gathering data which consists of similar workflows like
in the zooarchaeological field. In consequence, the idea of the XBOOK framework deve-
loped out of this context. In the XBOOK framework features are developed centrally and
are provided to all applications that are instances of the framework. New features do
not have to be implemented individually, however, custom extensions are still possible.

2.2 Origin of OssoBook 9

In case of errors and bugs, it is not necessary to fix them in each application, they can be
fixed centrally. Thereby, it causes the creation of similar structures in the gathering and
analysis of data. As of now, the XBOOK framework enabled the development and usage of
a number of archaeo-related applications, like OSSOBOOK, ARCHAEOBOOK [KLK+18d],
ANTHROBOOK [KLK+18g], EXCABOOK [KLK+18e], PALAEODEPOT [KLK+18f], ANTHRO-
DEPOT [KLK+18b], and INBOOK [KLK+18c] (cf. Chapter 2.5). However, the XBOOK

framework is not limited to the requirements of the archaeo-related context. It can be
applied to many other scientific applications as well.

In this chapter we describe the development process of the OSSOBOOK application
and the XBOOK framework in the recent decades. We first describe the origins of OSSO-
BOOK in Chapter 2.2 and explain the further development of the application and the
extraction of the XBOOK framework in Chapter 2.3. Finally we show the basic, most
important features of XBOOK in Chapter 2.4.

2.2 Origin of OssoBook

Below, we describe the original development of the OSSOBOOK application since 1990.

2.2.1 First OssoBook Version in dBASE

The first version of OSSOBOOK was originally released in 1990 by Jörg Schibler and Die-
ter Kubli of the University of Basel, Switzerland. The technical basis was dBASE4, a file
based database application for computer systems running the operating system DOS. The
exclusively in German language published OSSOBOOK database enabled the recording of
zooarchaeological data. Five input fields for archaeological information, eleven input
fields for zooarchaeological data, and for each skeleton element eight further input fields
for the recording of measurements were provided (cf. Figure 2.2).

Besides the data input, the early version of the application already provided the pos-
sibility to implement simple data analyses. Three analyses were available for skeleton
element representations: One for the age of long bones (cf. Figure 2.3), one set of
analyses for bone parts, and one last analysis for measurements of bones. The results
of these analyses could be saved to extern files which could be viewed and edited with
spreadsheet like Microsoft Excel or Open Office Calc (today: LibreOffice Calc).

Besides the database itself, this version also provided an editor called OSSOINST

which allowed defining custom numerical codes for different data inputs, e.g. the map-
ping of a species ID to a species name. This offered the advantage that each database

4dBASE’s underlying file format, the .dbf file, is widely used in applications needing a simple format to
store structured data.

10 2. Data Collection: Development of the xBook Framework

Figure 2.2: The input mask in OSSOBOOK 1.0. [Loh12, Kal12]

could be used with individual data, and each user could easily extend the list of available
species.

The archaeological data and the corresponding mappings were saved as ASCII files
on the local hard disc drive of a computer, or on floppy disks. This made the sharing of
data complicated and difficult, and therefore was rarely practiced. Nevertheless, OSSO-
BOOK already allowed the translation of specific texts of input values to other languages
by using OSSOINST. First partial translations (especially to English and French) were
already possible and done. [Sch98]

2.2.2 Conversion to Java

At the latest with the release of Microsoft Windows XP in 2001, the operation system DOS
fades into the background. The technique of the dBASE database became increasingly
obsolete. Even though the application is still running on modern operation systems (e.g.
in the command-line interface on Windows computers, or the system console in other
operation systems), the usability and optical presentation of OSSOBOOK was no longer
up-to-date. The disadvantage that data could only be saved on the local computers, also
contributes that a new, enhanced version of OSSOBOOK should be developed.

The new version of OSSOBOOK was initialized by Christiaan H. van der Meijden of the
Veterinary Faculty5, together with the Institut für Informatik, Lehrstuhl für Datenbanksys-

5http://www.vetmed.uni-muenchen.de

http://www.vetmed.uni-muenchen.de

2.2 Origin of OssoBook 11

Figure 2.3: The analysis of the age of long bones in OSSOBOOK 1.0. [Loh12, Kal12]

teme and Data Mining6 at the Ludwig-Maximilians-Universität München, Germany. The
application was converted to the object-oriented and platform-independent program-
ming language Java. On the servers of the university, there was installed a single, global
MySQL database which should be used by the employees at the Institute of Palaeoana-
tomy, Domestication Research and History of Veterinary Medicine7. They used the client
to connect to the server and directly work with the data of OSSOBOOK on the global
database. [Lam08]

In addition, the mapping of IDs to values for specific fields was adopted, but the
functionality to add or change them manually was removed. The users worked with
standardized, predefined values for the necessary input fields. This should improve the
comparability of the entries that were saved in the database. Today, these mappings are
called “Code Tables” in the application.

In combination with the port of the application to Java, OSSOBOOK got a graphical
user interface for the first time. As shown in Figure 2.4, the input fields were arranged
in four sections and offered first input assistances, e.g. by using selection boxes for
predefined values. Statistical information about the data sets and simple analyses were
displayed in several tabs, which also provided more space for further input possibilities.

Version 3.4 was the first Java version of OSSOBOOK and was released in 2007.

6http://www.dbs.ifi.lmu.de
7http://www.palaeo.vetmed.uni-muenchen.de

http://www.dbs.ifi.lmu.de
http://www.palaeo.vetmed.uni-muenchen.de

12 2. Data Collection: Development of the xBook Framework

Figure 2.4: The input mask in OSSOBOOK 3.4. [Loh12, Kal12]

2.2.3 First Implementation of a Synchronization

Until this date, the users of OSSOBOOK could only connect and work directly on the
global database on the servers. Originally this was only possible with connections within
the network of the university, later a tunnel enabled the connection from other places.

In 2008, the first implementation of a synchronization in OSSOBOOK allowed the
entry of data in a local database of the clients. The users could enter their data remotely
without any connection to the network and later synchronize it to the global database.

The implementation and the full development of the synchronization is described in
detail in Chapter 2.4.1.

2.2.4 Redevelopment of the Application

At this time, we were tasked with the further development of OSSOBOOK and became the
new development team for the upcoming years. However, this Java version of OSSOBOOK

2.3 From the Application OssoBook to the xBook Framework 13

caused big problems for the development and usage. One could see that the application
was only a port and did not use the potential of the object-orientated programming
language Java. Most of the input fields were not very intuitive because of working with
numerical codes in general, which meaning had to be looked-up in external spreadsheet
or PDF files. In addition, the application included a lot of errors and bugs which were not
displayed in the graphical user interface of the application. In some cases these problems
made the data input impossible and let the application crash.

From the point of view of the development team it was nearly impossible to imple-
ment the requests of the zooarchaeologists and to add new features. The first tries to
integrate new elements into the application made already clear that it is more reasona-
ble to re-implement the application from scratch instead of trying to continue developing
for the current version. The main problem of a further development of the current ver-
sion was the very static program code elements that did not allow adding new input
elements to the input mask. This static design also made an object-oriented design using
inheritance impossible. Also the programming code was only sparsely commented and
Javadoc comments were missing for the most parts. In addition, the names of the met-
hods were not intuitive, so new developers would need a long familiarization to be able
to develop the application.

It was decided that the database scheme of OSSOBOOK and the OSSOBOOK client
should be newly developed considering the Model–View–Controller architecture [Loh11,
Kal11]. We put a lot of emphasis for future features being able to be fast and dyna-
mically integrated to the application to enable a simple and resource-efficient further
development. To avoid data loss and to be able to continue using the data of the previ-
ous OSSOBOOK version, we wrote a script that converts the old database scheme into the
new one.

In autumn 2011, version 4.1 of OSSOBOOK was released that included the same fea-
tures than the previous version of the database application at first, but was more flexible
in the usage for the users and developers. A screenshot of this version can be seen in
Figure 2.5.

2.3 From the Application OssoBook to the xBook
Framework

From this point of time, OSSOBOOK was ready for scholarly usage. At the same time,
it was assured that further development and future adjustments to the database are
possible.

Since the gathering of data is an essential task of the work in archaeo-related disci-
plines, other disciplines got also interested in the architecture of OSSOBOOK. While the

14 2. Data Collection: Development of the xBook Framework

Figure 2.5: The input mask in OSSOBOOK 4.1. [Loh12, Kal12]

workflow process is similar in all disciplines (archaeology, anthropology, zooarchaeology,
palaeobotany, palaeontology, etc.), the collected data is different in each special field. An
individual database solution based on the OSSOBOOK architecture would greatly support
the scientists in their work.

So we set the challenge to provide a generic solution for supporting the scientists in
all disciplines, this means that OSSOBOOK has to be as customizable as possible to allow
all required information about the specific data to be gathered. Therefore, we used the
basic architecture and features of OSSOBOOK and extracted XBOOK, a generic framework
including the common and basic features for a database for archaeo-related disciplines.

Below, we describe the most important functionalities that are features of the XBOOK

framework.

2.3 From the Application OssoBook to the xBook Framework 15

2.3.1 Input Fields and Input Mask

The input fields were strongly enhanced and extended. Previously, there had been only
four basic types of fields available: Text, numeric values, check boxes, and Code Tables.
Several new types of fields were integrated which can be reused for new input fields, e.g.
combo boxes for values and IDs, multi selection data, buttons to open panels for more
complex data inputs, date and time choosers, etc. Furthermore, several individual input
elements were added that have specifically been implemented for single data elements
of OSSOBOOK. Especially the input fields for species, skeleton elements, measurements,
wear stages, bone elements, and the gene bank number benefited from the individual
input possibilities.

Also the visual presentation of the input mask was updated, as shown in Figure 2.6.
Besides the arrangement of single elements inside an input element, they were wrap-
ped with a visible box that was able to be colorized dependent on different states. A
mandatory field that has to be filled before saving the entry is highlighted with a yellow
background color. If an input is not valid in a field, this is indicated with a red back-
ground color. Further enhancements in the graphical user interface were also added,
e.g. a box for temporarily displaying text like warnings and errors as a feedback for the
user.

2.3.2 Update Procedure

To enable a dynamic development of the application and the version-independent use
of the synchronization, it was necessary to keep the database and the program version
up-to-date. Only if the local and global database match the same database scheme,
the synchronization is able to exchange data correctly. So an update procedure was
integrated that consisted of three steps:

When the user logs in, the program version of the local client is checked if it is up-
to-date. If not, the OSSOBOOK UPDATER, a small helper application, was automatically
started which let the user update the program files by executing the update process.

Then the update process updated the database scheme and the data itself to the
current version, if necessary. In the program code it was defined which database version
is required for the current version. If the current, local database version did not match
with the database version in the program code, the necessary SQL queries are loaded
from the server and executed. This was done recursively until the database versions
matched.

The Code Tables were updated. To guarantee a consistent data structure, it was
also important that the mapping of the values to the corresponding IDs is the same on
each client and on the server. So the synchronization was extended with a method that

16 2. Data Collection: Development of the xBook Framework

Figure 2.6: The input mask in OSSOBOOK 4.1.14. [Loh12, Kal12]

updated the Code Tables in the local clients.

2.3.3 Plug-in Interface

At that time, OSSOBOOK provided an interface for plug-ins which was used for the in-
tegration of different sets of analyses that were developed by students of the Ludwig-
Maximilians-Universität München:

• a module for the analysis of age distribution [Kal12]

• a module for the cluster analysis of measurements [Loh12]

• a plug-in for similarity search on multi-instance objects [Dan10]

• a plug-in for the execution of sample data mining methods [Tsu10], and

2.3 From the Application OssoBook to the xBook Framework 17

• a module offering some analysis methods for zooarchaeological data [Neu12].

These plug-ins were able to be run directly in the application and used with the data
from the database. Each plug-in could be imported to the application by simple copying
the corresponding jar-file into the plug-in folder of OSSOBOOK.

2.3.4 Database Identification

For the synchronization and the possibility to work offline, it was essential to differentiate
data sets that were entered on different computers. The problem is that one single ID
for the data sets is not sufficient because the same ID could be assigned on different
computers several times which would cause errors in the synchronization process. This
was solved by the addition of a new column called Database ID for each entry.

Storing and handling of the Database ID required several iterations to prohibit errors
and problems with different aspects of user interaction:

The first iteration considered a file called OBINIT which was a short SQL script that
was generated during the registration process and sent to the user. The file included the
username and password and additionally assigned a unique Database ID to the local da-
tabase. The main issue of this solution was that the OBINIT file was necessary to initialize
the database, but if the users installed the application on two different computers and
used the same OBINIT file, the identical Database ID was used for both computers. Furt-
hermore, the users had to save the email and the OBINIT file because it was not possible
to recover the data once the information is lost. This solution also bound the password
to the OBINIT file which was also a reason for why the password was not editable.

The second iteration approached these main issues. The assignment of the Database
ID was realized by the server while initializing the database. So every time a new data-
base was installed and initialized on a different computer, the server was queried for a
new Database ID which was used for the local database. In theory, this approach solved
the problems with different computers, however some users created local backups of the
application folder which also includes the local database. So it occurred again that the
combination of identical entry IDs and database IDs were used when the users restored
the application from the backup.

The final iteration closes this gap by defining that the application could not be instal-
led on any folder anymore and additionally saving the database ID in the registry. Now
the XBOOK LAUNCHER (cf. Chapter 2.3.7) installs the application data and the database
in a folder which grants the logged-in user reading/writing access, e.g. in Windows we
use the AppData folder. When the application is started, the Database ID inside the da-
tabase is checked against the ID saved in the registry. If they do not match, or is not yet
available, a new Database ID is issued, which is then saved again in both, the database
and the registry.

18 2. Data Collection: Development of the xBook Framework

2.3.5 Registration

Originally, the users could register for an OSSOBOOK account at a password protected
homepage only. The users had to enter an email address and got an email including the
username, password, and the necessary OBINIT file (cf. Chapter 2.3.4). This information
was sufficient to work with the application, however, common mechanics like editing the
user name or email address, or change/recover the password were not supported.

Later we changed this system to a more modern approach. The registration was mo-
ved directly into the application. At the login screen we added a button to register, where
the users can enter some basic information: User name, first name, last name, email ad-
dress, and a password. Now, there is no user restriction anymore, everyone can register
and use the application. Once registered, the users can login to the application without
the need of a OBINIT file – due to the reasons described in Chapter 2.3.4. Furthermore,
OSSOBOOK was extended with profile settings where the users can manage their provi-
ded data. Especially the application was extended with a feature allowing the users to
change and to recover their passwords.

2.3.6 Server-Client Architecture

Having a reliable Server–Client infrastructure is an important requirement to be able
to synchronize and back-up data. This also helps to ensure no unauthorized changes
are done, e.g. by a hacked client. In our case the Server–Client architecture has to
handle different scenarios. The first one is the registration and login process. For this
it is necessary to connect with the server from anywhere. After the user logged in,
the server has to check if the client is up-to-date or first has to be updated. For this the
database scheme has to be sent to the client along with values of the code tables. After the
version check is completed, the main task of the server is to handle the synchronization
requests from the client. These use cases require the communication to handle a variety
of dynamic and versatile data. Additionally – since client and server are implemented in
different programming languages – built-in serialization tools like the Java Serialization
[GHK+15] cannot be used. In an environment where multiple users can create, edit, and
share their data, it is important to have a managed architecture that can be accessed and
used from everywhere without any restrictions.

2.3.6.1 Challenges

A Server–Client architecture faces many challenges. Many of these are common in every
Server–Client application, but some are very specific to the needs of the XBOOK frame-
work.

2.3 From the Application OssoBook to the xBook Framework 19

• Security:
Prevent unauthorized access. Users have only to be able to access the data they
have the rights to. Unauthorized access has to be prevented.

• Availability:
The server has to be available from everywhere. Using a Socket-based architecture
[Lib] generally requires the usage of ports which have to be manually opened by
an administrator in a firewall-protected secure environment. However, the opening
of a port is not possible in every working environment because of strict regulations
which forbids users to communicate with servers on other ports than 80 (HTTP)
or 443 (HTTPS), for example in offices of state authorities or some institutes. The-
refore, we had to find a solution how to make a connection from the client to the
server possible in spite of restrictive firewall policies and how to use the available
ports for the XBOOK server to accept requests.

• Scalability:
The server has to work for single and also multiple users at the same time. This is
true for most Server–Client architectures, still multiple users working on the same
server has to be able to work simultaneously and not having to wait for one request
to be completed until the next one is carried out.

• Flexibility:
The server should run independent of the BOOK (an application that inherits from
the XBOOK framework) without any knowledge of data scheme inside the server.
Therefore, the specifics of each individual BOOK should not be hard coded inside
the server application, but dynamically loaded from a configuration file or the da-
tabase.

2.3.6.2 Evolution

The first synchronization of the data in OSSOBOOK was handled by directly connecting
to the database on the server from the client application. This connection required a ma-
nually entered passphrase which was given out with the registration, but was identical
for all users. Additionally – apart from the client itself – no further checks for authori-
zation were made. To address these issues, a C++ server application was created with
the development of the XBOOK framework which now was the communication partner
of the client application. The server is connected to the database and analyzes incoming
requests if the user has the authorization. If this is the case, the server carries out the
command and sends a confirmation back to the client together with data which was re-
trieved by this request. Both, a Thread Pool [GS02, Goe] and a Connection Pool [Gol14]

20 2. Data Collection: Development of the xBook Framework

were used to allow multiple users to work simultaneously. The communication between
server and client was handled via sockets with a custom serialization of all objects that
were transmitted. While this architecture provided a fast, secure, scalable, and flexible
way to communicate with the server, it became clear that – due to the nature of sockets
– it could not be guaranteed that the connection can be established behind proxy ser-
vers that only allow certain ports. Therefore, the communication had to be moved to a
different type of protocol.

To solve the problem with proxies restricting certain ports, the communication had
to be done over ports which are not restricted by most proxies. These are usually port
80 (HTTP) and port 433 (HTTPS). Of course, the possibility remains that certain IP
addresses are blocked. However, it would really get into hacking to get around this. We
did not explore this possibility further. The server which is running the server application
is also running an Apache server. This is used to distribute the XBOOK LAUNCHER and to
download the files required to start the individual BOOKs. Besides the server hosts the
XBOOK Wiki8, a MediaWiki that provides helpful information. So it was not possible to
change the port to 80 or 433 the old C++ application was listening on.

A new server application was required that does not conflict with the Apache server,
but can run alongside it. Many different web applications would allow this, but PHP was
chosen as a scripting language, since it does not require additional server configuration.

2.3.6.3 Communication

In a traditional web service, the users would enter a URL in their browsers. The web ser-
ver would then analyze the request and return a website with the requested information.
Since in our case the client has to communicate directly with the server, the response
has not to be human readable, but interpretable by the client. Because the client was
already able to communicate with the old C++ server, the serialization on the client side
was already available and working. Still, it had to be modified that it would be able to
communicate with a PHP server. However, PHP is not designed to work with serialized
objects, but to load a script with some parameters, and then return and display results.

There are several possibilities to realize a cross-platform serialization. One is JSON
[JSOa, JSOb], a lightweight, text-based, language-independent data interchange format.
Since JSON uses a human readable format, it has the disadvantage of data overhead
[McA]. There are ways to optimize the transmission size, e.g. XFJSON [XFJ] transforms
the JSON format into a binary-hex form that is additionally encoded and decoded. Con-
sidering that there is no necessity to read the transmitted data and that we expect a huge
amount of data sets for single projects, we focus on bandwidth-efficient solutions. So
we need an alternative that is not human readable. However, a solution like FlatBuffers

8http://xbook.vetmed.uni-muenchen.de/wiki/

http://xbook.vetmed.uni-muenchen.de/wiki/

2.3 From the Application OssoBook to the xBook Framework 21

[Gooa] was not published at the time of the implementation of our serialization method.
Protocol Buffers [Goob] do not support PHP at all. BSON [BSO] in direct comparison
with Protocol Buffers can give an advantage in flexibility, but also a slight disadvantage
in space efficiency due to an overhead for field names within the serialized data. Howe-
ver, BSON is mainly used as a data storage and network transfer format in MongoDB9

databases. Therefore, we would have had to distribute all libraries for MongoDB which
seemed unreasonable, since there is no stand-alone implementation. Because no good
alternative for our serialization was available at the time of implementation, we had to
implement an own solution.

Since the communication with a PHP server is asymmetrical, requests and results do
not communicate the same way. Therefore, it was necessary to split the serialization in
two parts:

The first part consists of the data transmitted to the server. For this, the request is
serialized to a string which is then appended to the requested URL with the HTTP POST
method. This allows the PHP server to read the data and deserialize the string back to
the request which is then carried out.

After the server completed the request, the result is serialized again and the resulting
string is displayed as the content. This is read by the Java client and is returned deseria-
lized.

The communication is done with a message object. The message object holds the type
of the request, e.g. synchronization, login, register, and additionally a list of further data.
All classes that can be added as data are instance of the interface Serializable which
has methods to serialize and deserialize itself. For each request, the type and amount
of parameters of the data that is sent is predetermined. Of course, the data itself is not
known beforehand.

The serialization requires special classes that implement the Serializable interface
even for basic data types like String or Integer. Currently 16 different classes are used.
These are mostly required for the synchronization and the initialization of the database
scheme.

To secure the communication HTTPS is used. The server should hold no information
about the specific BOOK apart from necessary information of the corresponding database
so that the independence of the database can be ensured. Information about the tables
that have to be included in the synchronization, are saved in tables inside the database.
This allows those tables to be dynamically adjusted without the need to update the server.
If a request is carried out, those tables are checked whether and which columns can be
accessed.

9http://www.mongodb.com

http://www.mongodb.com

22 2. Data Collection: Development of the xBook Framework

2.3.7 Launcher

A very important part of the XBOOK databases is the XBOOK LAUNCHER. Over the years,
the application took on an increasingly important role. It developed from a simple upda-
ter application that was executed to check if a new OSSOBOOK update was available to
the central place where all Books can be installed, updated, and started independently.

2.3.7.1 OSSOBOOK UPDATER

The first idea of the OSSOBOOK UPDATER was born through the necessity to allow the
user to update the program. This was required because the latest version of OSSOBOOK

was ensured to be able to work in online mode and to communicate to the server, because
the local database scheme has to be identical with the global scheme on the server when
synchronizing data. So the update process is a frequent process that has to be executed
with each minor update of the application. A screenshot of the OSSOBOOK UPDATER can
be viewed in Figure 2.7.

We wanted to avoid that the users had to run and install the update process manually.
They should not have to go to the website, download the latest version, and install the
files in the appropriate directory. The OSSOBOOK UPDATER was automatically called
when it was detected that the local program version was out-of-date when the user tried
to connect to the global database. The OSSOBOOK UPDATER had a list of files that had
to be checked for updates and compared them to the files available at a specific website.
Since OSSOBOOK could be installed in an arbitrary directory, the OSSOBOOK UPDATER

had to use this directory to update the files. For this the updater was also in this directory
and was updated by OSSOBOOK before the updater was executed.

To prevent different instances being run on one single computer, we had to specify
the directory in which OSSOBOOK was located. This guarantees – together with the “Da-
tabase ID” (see Chapter 2.3.4) – that the instance on a single computer was both, unique
and could be identified uniquely. To avoid permission problems, a directory had to be
used where writing permissions are guaranteed for the users. For Windows environments
we chose the “AppData” directory. This allowed users to easily install OSSOBOOK on one
computer, synchronize their data, and continue to work on a different computer.

Instead of updating the files in the directory of the updater, the updater became a
independent file that from now on was called XBOOK LAUNCHER, since it also served as
the entry point for the application. So instead of directly starting OSSOBOOK, now the
users had to run the XBOOK LAUNCHER which then checked if all files were up-to-date
and then allowed the execution of OSSOBOOK.

2.3 From the Application OssoBook to the xBook Framework 23

Figure 2.7: The OSSOBOOK UPDATER allowed the user to update the OSSOBOOK application.
[Loh12, Kal12]

2.3.7.2 Development of the XBOOK LAUNCHER

With the development of more and more BOOKs for different areas of work, the require-
ments for the XBOOK LAUNCHER changed and – to avoid the need of several individual
launcher applications for several databases – had to be adjusted to support more than
one database. Therefore, the XBOOK LAUNCHER was extended with a BOOK selection.

Each supported BOOK was represented as an own row in the selection, displayed by
an application icon, the application name, a short description of the database, and the
supported languages. The user could select the desired database and execute it. Further-
more, the XBOOK LAUNCHER was extended with general settings that affects all BOOKs
(like the language selection and the selection of the automatic or manual synchroni-
zation) and a frame to output the messages of the development console. The update
functionality was still available which updates all BOOKs at the same time. A screenshot
of the version 1.0 of the XBOOK LAUNCHER can be viewed in Figure 2.8

24 2. Data Collection: Development of the xBook Framework

Figure 2.8: The first XBOOK LAUNCHER 1.0 with the selection of four different BOOKs based on the
XBOOK framework.

However, it became difficult to use one single launcher for all available BOOKs. Some
of the BOOKs are scientific databases which are publicly available, others are local da-
tabases for the inventory of findings in museums or state collections. So not all BOOKs
should be accessible in public. Furthermore, also the users do not need to have listed
all existing BOOKs in their launcher. The previous additionally required an own instance
of the XBOOK LAUNCHER for almost every BOOK, a roundabout way for the increasing
number of BOOKs. Furthermore, it became necessary that the different databases were
not hosted on the same server any longer. The individual BOOKs should be supported
to save their data on their own servers. So the structure of the XBOOK LAUNCHER was
renewed again.

Therefore, the XBOOK LAUNCHER was extended to enable adding single BOOKs dy-
namically to the list of BOOKs. The users can enter a valid URL where the configu-
ration file of the corresponding BOOK is saved – for example http://xbook.vetmed.uni-
muenchen.de/books/ossobook in the case of OSSOBOOK. The configuration file is defined
to be named “book.xml” which holds all necessary information for the corresponding
BOOK. This includes especially information that is used in the launcher to display the

2.3 From the Application OssoBook to the xBook Framework 25

information about the BOOK (like application name, application ID, multi-language des-
criptions, etc.). It also defines the file that should be executed when running the BOOK

and the location of the data that is required when installing or updating the application.
The structure of the configuration file is illustrated in Algorithm 1.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <book>

3 <displayName>OssoBook</displayName>

4 <id>ossobook</id>

5 <fileName>OssoBook.jar</fileName>

6 <author></author>

7 <bookColor>#624D47</bookColor>

8 <sidebarBackgroundColor>#D5CECA</sidebarBackgroundColor>

9 <defaultLanguage>en</defaultLanguage>

10 <downloadLocation>

11 http://xbook.vetmed.uni-muenchen.de/books/ossobook

12 </downloadLocation>

13 <languageFiles>

14 <entry>

15 <key>de</key>

16 <value>

17 <entry key="description" value="[...]" />

18 <entry key="descriptionShort"

19 value="[...]" />

20 <entry key="author" value="[...] "/>

21 </value>

22 </entry>

23 <entry>

24 [...]

25 </entry>

26 </languageFiles>

27 <languages>en</languages>

28 <languages>de</languages>

29 <languages>fr</languages>

30 <languages>es</languages>

31 <languages>de_ch</languages>

32 </book>

Algorithm 1: The (shortened) example structure of the book.xml file.

This way, the XBOOK LAUNCHER can be used as a central platform to manage all
available BOOKs, independent on their location. Especially the users benefit from this
architecture. They can configure their launcher as they wish and do not have to install or
integrate BOOKs they do not work with at all. Furthermore, the single BOOK applications
can now be developed and hosted completely separately. In the past, all BOOKs had
to use the same program version because they all depended on the same update files.
Now, every BOOK can be developed independently from other existing BOOKs and do

26 2. Data Collection: Development of the xBook Framework

Figure 2.9: The further developed version XBOOK LAUNCHER 4.3.

not necessarily have to be updated to the latest version of XBOOK. This became more
important with more and more different BOOKs being published by different institutions
and developers.

In addition, the XBOOK LAUNCHER was extended with two technical features. With
the increasing amount of users, more users required the usage of a proxy server in order
to be able to connect to the server. For this, the XBOOK LAUNCHER was extended with
a possibility to enter proxy information. Furthermore, it becomes apparent that a lot of
users work on computers with a limited amount of computer memory which was not suf-
ficient for using some of the features of XBOOK, like exporting the partial huge amounts
of data. To solve this problem, the XBOOK LAUNCHER was extended with advanced op-
tions where the users can allocate more RAM to Java applications, and therefore for
the BOOK. A screenshot of the current XBOOK LAUNCHER version 4.3 can be seen in
Figure 2.9.

2.4 Features of the xBook Framework 27

2.4 Features of the xBook Framework

There are many different areas in the archaeological field of science which struggles
with the same problems concerning the collection of data. OSSOBOOK is a database for
zooarchaeological findings, but similar databases were also demanded for other areas,
like anthropology and archaeology. Instead of individually implementing a completely
new database for each area, we decided to extract the features from OSSOBOOK into a
new framework called XBOOK.

This framework should provide all basic functionalities of the application and provide
them to all instances which are called “BOOKs”.

2.4.1 Synchronization

Because of the conversion of OSSOBOOK to Java, the collaboration with colleagues within
the Institute of Palaeoanatomy, Domestication Research and History of Veterinary Medi-
cine10 and other institutions in gathering and maintaining zooarchaeological data is an
important part of the concept. Initially, the data of the application was saved in one
global database on the server of the university (cf. Chapter 2.2.2). The employees of
the collaborating institutes could connect and work on this database. They could enter,
view, and edit the zooarchaeological data directly on the server. This made it possible
to work together on one project, enabled the exchange of data with other zooarchaeo-
logists, and fulfills the need to sustainably store data on the cultural heritage as claimed
by the UNESCO11. Later, a tunnel also enabled connections from other places as well.

But zooarchaeological data is often gathered in field work, i.e. at remote sites that do
not offer a convenient environment for IT services. Therefore, it is typically not possible
to enter the data into databases that have to be accessed via an Internet connection. A
synchronization process was required. A Server–Client architecture was implemented to
ensure working offline at remote places, but also storing data globally, where it can be
shared with other users. [LKK+14]

The first concept for the synchronization was drafted in 2008. “A client-server archi-
tecture ensures that each client [. . .] manages its own local database that is schema-
equivalent to the central database at the server. This way, each client can make its up-
dates locally, independently, and – most important – offline. At a given time, e.g. when
a network connection to the server is established, the client and the server synchronize,
i.e. the updates of the client are inserted into the central database at the server and the
update of the server” [KKO+09]. However, the direct connection to the database wit-
hout any synchronization would still be possible within the institutes. This architecture

10http://palaeo.vetmed.uni-muenchen.de
11http://www.unesco.org

http://palaeo.vetmed.uni-muenchen.de
http://www.unesco.org

28 2. Data Collection: Development of the xBook Framework

is drafted in Figure 2.10. The concept of the synchronization was initially implemented
by Jana Lamprecht in 2008 [Lam08].

Figure 2.10: The origin draft for the architecture for the OSSOBOOK synchronization. [KKO+09]

Since this implementation, the concept of the synchronization was updated in many
development cycles. The synchronization process itself was enhanced and was exten-
ded with new features. First of all, the clients do not directly connect to the database
anymore, but to a server application that handles the requests and data manipulations.
The server application also enables the feature to let the users manage their basic profile
information, especially to change and recover their password if needed – a feature that
was lacking before.

Additionally, the possibility to work on different computers with one account was ad-
ded for a single user. In the origin implementation, this was theoretically also possible,
but the technical implementation could cause the loss of data sets during the synchroni-
zation process.

The server application was originally written in C/C++, later it was replaced by a
PHP program to avoid problems with restrictive firewall settings that made a commu-
nication impossible through other ports than port 80 (HTTP) or 443 (HTTPS). Due to
security reasons, all the communication has to go through the server application. The-
refore, a direct connection to the central database is not supported anymore, not even
inside the institutes.

At the same time the logic of the synchronization was also improved and simplified.
Also the synchronization panel was extended. Now, it provides additional information
about each project, like the number of entries, the project owner, and how many entries
are not synchronized yet.

The detailed implementation of the synchronization is described in Chapter 3. A
screenshot of the latest panel of the synchronization in OSSOBOOK can be viewed in
Figure 2.11.

2.4 Features of the xBook Framework 29

Figure 2.11: The synchronization panel in OSSOBOOK 5.2.4. [LKK+16b]

2.4.2 Graphical User Interface

To enable a flexible graphical user interface for the framework and its applications, it
was necessary to modify the existing graphical user interface. All static elements had
to be replaced with dynamic elements that can be individually adjusted for each BOOK.
However, elements that are required for each BOOK have to be integrated to the graphical
user interface by default.

In the first step, we replaced the navigation. The old navigation bar was not designed
for elements being dynamically added or updated. It was composed of different images
for the normal, hovered, and selected states. The displayed texts on these elements were
part of the images which made translations difficult. For the XBOOK framework, the na-
vigation elements are now arranged side by side, are clarified with an individual icon
and a short text label. The elements which were displayed in the sub navigation bar be-
fore, can now be accessed by opening a pop-up menu. All required navigation elements
which are necessary to be accessed in every BOOK (like ‘Projects’, ‘Data Entry’, ‘Listing’,
‘Tools’, ‘Help’, and ‘Log-out’) are displayed by default. Individual main navigation ele-
ments can individually be added by each BOOK. Adding new elements to the pop-up
menu is supported.

30 2. Data Collection: Development of the xBook Framework

The functionality of the elements of the graphical user interface is fully implemented,
but the abstract classes provides methods that have to be overridden and implemented
by each BOOK. This way the elements can be customized by defining their contents and
configurations. As an example, the input fields – either the predefined or custom, new
ones – can be defined with their settings and information for the database individually
for each BOOK. The overridden classes define the individual input fields. The logic
for handling and displaying the data is defined in the implementation of the XBOOK

framework. So each BOOK can have different input fields in the input mask, like indicated
in Figure 2.12.

The individualization of other elements of the XBOOK framework is similar. The over-
ridden, abstract methods are used to define the information displayed in the project
overview screen. The location where to save settings, individual output for the export,
the general style of the BOOK (like the logo, the name of the BOOK, used colors), and
also the definition of the elements are displayed in the main and sub navigation.

2.4.3 Multiple and Crossed-Linked Input Masks

Before, each BOOK only had one single input mask with input fields where the users could
enter data. During the development of the XBOOK framework and its BOOKs it became
clear that different, separated input masks are required, especially to avoid redundancy
and inconsistency.

So we added the possibility that each BOOK may have an arbitrary number of input
masks with individual input fields. These input masks may be independent from each
other, but may also be cross-linked among each other.

As an example, many archaeological findings are often grouped in boxes or bags, but
the information about these boxes and bags should not be entered for each finding again.
An own input mask for the boxes or bags would be an advantage to avoid extra effort
when entering data. Also it is possible that the content of a box or bag changes, so it
is easier to select another box or bag instead of re-entering the data for each concerned
finding.

The realization of these cross-linked input masks does not need a complicated archi-
tecture of the tables in the database. But it requires some more complex SQL queries
and adjustments in the graphical user interface, especially for the display and selection
in the input mask, the representation in the listing and the export, and adjustments in
the synchronization process.

2.4 Features of the xBook Framework 31

Figure 2.12: The input mask of OSSOBOOK (top) and ARCHAEOBOOK (bottom). Both applicati-
ons are based on the XBOOK framework that provides a basic graphical user interface
and functions, but allows customization like e.g. individual input fields. [LKK+16b]

32 2. Data Collection: Development of the xBook Framework

2.4.4 Listing and Export

Besides the data recording, the listing of entered data is also important. The entered
data of all input fields has to be meaningfully displayed in the data listing, i.e. the values
should be human readable.

For most of the input fields the value can be directly displayed like simple text or
numeric values. Other more complex input fields had to be adjusted for the readability,
for example by displaying the corresponding text value instead of the corresponding ID,
or by displaying a readable date or time format instead of a timestamp. Input fields with
multi-inputs should also display all entered values, not only the IDs. For cross-linked
values of other input masks representative text for the cross-linked entry was necessary
as well.

The export of data is also an essential feature. Most of the archaeologists and bio-
archaeologists still do their analyses in extern tools or applications like Excel, or want
to print them for non-digital archiving. Therefore, XBOOK provides an export method
that saves the data in a file on the local system. There are two supported files systems to
export the data: Comma-separated values (CSV) and spreadsheet (XLS/XLSX) files.

Both, the listing and the export have full support for multiple input masks. In the
listing, a selection of the input mask is available where the user can select which data
has to be displayed. For the export, it is possible so select single input masks. If a BOOK

with multiple input masks is exported, the data of each mask will be saved in an own
CSV file, or in an own sheet of the XLS/XLSX file.

2.5 Applications Using the xBook Framework

In archaeo-related disciplines, there are many areas with the same or similar workflow.
XBOOK offers a framework in which all databases benefit from the provided features.
Currently, there are seven different instances of the XBOOK:

• OSSOBOOK, a database for zooarchaeological findings, used by Bavarian State Col-
lection for Anthropology and Palaeoanatomy Munich, section Palaeoanatomy12, Ar-
chaeoBioCenter13, Institute of Palaeoanatomy, Domestication Research and History of
Veterinary Medicine14, IPNA Basel15, and members of BioArch16 and Deutscher Ar-
chaeoZoologenVerband17:

12http://www.sapm.mwn.de
13http://www.archaeobiocenter.uni-muenchen.de
14http://www.palaeo.vetmed.uni-muenchen.de
15http://ipna.unibas.ch
16http://www.archeorient.mom.fr/recherche-et-activites/participation-a-des-reseaux/

GDRE-BIOARCH
17http://www.archaeozoologenverband.de

http://www.sapm.mwn.de
http://www.archaeobiocenter.uni-muenchen.de
http://www.palaeo.vetmed.uni-muenchen.de
http://ipna.unibas.ch
http://www.archeorient.mom.fr/recherche-et-activites/participation-a-des-reseaux/GDRE-BIOARCH
http://www.archeorient.mom.fr/recherche-et-activites/participation-a-des-reseaux/GDRE-BIOARCH
http://www.archaeozoologenverband.de

2.5 Applications Using the xBook Framework 33

• ARCHAEOBOOK, a database for archaeological findings, used by Bavarian State
Archaeological Collection Munich18.

• ANTHROBOOK, a database for anthropological findings, used by Bavarian State
Collection for Anthropology and Palaeoanatomy, section Anthropology19.

• EXCABOOK, a database for archaeological findings, used by Bavarian State Depart-
ment of Monuments and Sites20.

• PALAEODEPOT, a database for zooarchaeological findings, used by Bavarian State
Collection for Anthropology and Palaeoanatomy Munich, section Palaeoanatomy21.

• ANTHRODEPOT, a database for anthropological findings, used by Bavarian State
Collection for Anthropology and Palaeoanatomy Munich, section Anthropology22.

• INBOOK, a database for archaeological findings, used by Bavarian State Archaeo-
logical Collection Munich23.

Availability

The XBOOK framework is available from the URL:
http://xbook.vetmed.uni-muenchen.de/download/

18http://www.archaeologie-bayern.de
19http://www.sapm.mwn.de
20http://www.blfd.bayern.de
21http://www.sapm.mwn.de
22http://www.sapm.mwn.de
23http://www.archaeologie-bayern.de

http://xbook.vetmed.uni-muenchen.de/download/
http://www.archaeologie-bayern.de
http://www.sapm.mwn.de
http://www.blfd.bayern.de
http://www.sapm.mwn.de
http://www.sapm.mwn.de
http://www.archaeologie-bayern.de

34 2. Data Collection: Development of the xBook Framework

35

Chapter 3

Sharing Data: A Timestamp-Based
Synchronization Process

Attribution
This chapter uses material from the following publications:

• Johannes-Y. Lohrer, Daniel Kaltenthaler, Peer Kröger, Christiaan
van der Meijden, and Henriette Obermaier. A Generic Framework for
Synchronized Distributed Data Management in Archaeological Rela-
ted Disciplines. In 10th IEEE International Conference on e-Science, eS-
cience 2014, São Paulo, Brazil, October 20-24, 2014, pages 5–12, 2014
[LKK+14]

• Johannes-Y. Lohrer, Daniel Kaltenthaler, Peer Kröger, Christiaan
van der Meijden, and Henriette Obermaier. A generic framework for
synchronized distributed data management in archaeological related
disciplines. Future Generation Computer Systems, 56:558–570, 2016
[LKK+16b]

See Chapter 1.2 for a detailed overview of incorporated publications.

In Chapter 2, we built the basis to enable the collection of data for different scientific
areas. The next step on a scientific workflow is usually to share and back-up data (c.f.
Figure 3.1) Having a broad range of data can be vital for a successful and accepted
analysis. For this, it might be necessary to also rely on data that other scientists have
collected. Therefore, possibilities to exchange data with colleagues are required and
necessary. Also archiving the collected data and therefore backing up the data in case of
a system crash is necessary.

36 3. Sharing Data: A Timestamp-Based Synchronization Process

Figure 3.1: Sharing is usually the second step in any scientific workflow.

Different methods for sharing the data are possible, depending on the medium the
data is collected with. For documents written on paper, the data can be shared by scan-
ning the page and then mailing the image. Also the page can be copied and then the
copies can be sent per postal mail. This can be very time-consuming – of course, this
is way faster for digital data. If the data is entered into spreadsheet files, these can be
sent directly per email. If the data is stored in a database, the data can be exported in
to a spreadsheet file and then be shared. Still, there might be a high effort required to
separate the data if only parts of the data is supposed to be shared. The easiest solution
would be a synchronization process that is built into the application where data is col-
lected. Such a process could improve the speed and quality of data since all data is based
on the same data scheme.

The synchronization was already shortly mentioned in Chapter 2.4.1. In this chapter,
we introduce the synchronization process of the XBOOK framework and describe the
functionalities in more detail.

3.1 Introduction

Today database systems are a central component of software, websites, and data preser-
vation. The large amount of data could barely be administered without them. They offer
an efficient, consistent, and persistent way to save data flexibly in one central place, of-
fer mechanics for data security and control, and allow the simultaneous access of several
users to the data with transaction management.

Database systems have very far evolved to function flawlessly if the database is sto-
red in a central place, for example on a server. The users can connect via network or
Internet. This becomes more complicated on distributed architectures if data is entered
in different databases and tables, and this data has to be exchanged among them. In
this case synchronization is necessary that regards important features of the database
management systems like consistency, durability, and integrity.

Still, different use cases require different types of synchronization. For a company

3.1 Introduction 37

that has several servers with a database containing all necessary information, this da-
tabase has to be automatically and quickly synchronized between all servers. In the
modern world, where the users want to start writing e-mails at home on their tablet du-
ring breakfast, send the mail on their smartphones while commuting, and then receive
the reply at work on their laptops or personal computers, it is necessary to synchronize
the contacts, mails, and calendar between the different devices.

Not only the daily life, but also scientific data can benefit from a synchronization, by
providing the possibility to collect the data without an Internet connection. Archaeology
and bioarchaeology are an example where this is necessary. We will use this domain as
an example throughout this chapter, but the problems and requirements are also valid
for many other scientific areas.

In the archaeo-related disciplines, as in many other areas, a main part of the work
comprises in collecting, sharing, and analyzing data. Often many researchers from diffe-
rent institutions and even varying countries are involved in excavation projects. There-
fore, entering data directly into databases is required to easily access data from different
places and work simultaneously on recording as well as analyzing the data. Archaeo-
logical data is often gathered in field work, i.e. at remote sites that do not offer a con-
venient environment for IT services, it is typically not possible to enter the data into
databases that have to be accessed via an Internet connection. As a consequence, IT
services are hardly used in these projects. Rather, data is typically recorded on paper and
is (if at all) later processed electronically using proprietary and/or file-based data mana-
gement tools like Excel, etc. for doing simple descriptive statistics. This is significantly
inconsistent with the need to sustainably store data on the cultural heritage claimed by
the UNESCO24.

Obviously, researchers, like from archaeological domains, would significantly bene-
fit from a profound e-Science infrastructure that supports digital recording, implements
sustainable data management and storage as well as offering powerful analysis applica-
tion. The key limitation of such an IT service is the problem of multiple users that need
access to data recording and data analyses even if a permanent Internet connection can-
not be established. A synchronization process is required, implementing a client-server
architecture as visualized in Figure 3.2, to ensure working offline at remote places, but
also storing data globally, where it can be shared with other users is the solution.

Existing commercial solutions for this problem are typically integrated in a dedicated
database management system and/or cloud service. For license or financial reasons as
well as due to privacy concerns however, not all institutions can or want to resort to
these systems. Budgets for archaeological excavation projects are typically optimized in
terms of logistics and man-power. Reserving a considerable part for IT infrastructure is

24http://www.unesco.org

http://www.unesco.org

38 3. Sharing Data: A Timestamp-Based Synchronization Process

Figure 3.2: The local clients are connected to the global server. The synchronization allows data
exchange, so data can be recorded on the local machines, but can be backed-up and
shared via the server.

completely unrealistic. In addition, as long as the data is not yet analyzed and the results
are not yet published, the participating researchers are very wary about giving their data
into the hands of commercial cloud services.

In this chapter, we describe the synchronization, a vital component of the framework
XBOOK, a solution for the sketched problem that follows the architecture depicted in Fi-
gure 3.2 is directly included into the application and, thus, can be used independently of
the underlying database software. In particular, it can also be used with non-commercial
and open-source database management systems; in fact, XBOOK uses a MySQL database
by default. Since the synchronization uses only a JDBC connection, and limited changes
to the databases, which can be done in each relational database, it is possible to change
the underlying database management system.

In summary, the main contributions are as follows: We list a set of requirements that
should be addressed by e-Science infrastructures for a synchronized distributed data
management and data analyses in the archaeological sciences that have been extracted
from comprehensive discussions with domain experts, reflecting their typical working
procedures (cf. Chapter 3.2). We discuss existing solutions for synchronized distributed
data management and data analyses in Chapter 3.3. We describe the synchronization

3.2 Problem Formulation 39

process of XBOOK in more detail (cf. Chapter 3.4) that is independent of the data model
and could potentially be used in any application domain if needed. Finally we describe
the realization of the synchronization within the application (cf. Chapter 3.5)

3.2 Problem Formulation

In this chapter, we discuss the requirements of an e-Science infrastructure for (exempla-
rily) the archaeo-related sciences in more detail. By developing a database for zooarcha-
eologists, we have identified the following requirements of a synchronization that have
to be fulfilled so that working with the data is possible.

Let us note that depending on the use case of the application some requirements listed
below are obligatory and additional requirements might exist. However, the following
list has been extracted after extensive communication with domain scientists analyzing
their particular working procedures.

A synchronized distributed e-Science infrastructure for data management and data
analyses in the archaeo-related sciences should address the following issues (the order
of appearance is arbitrary and does not reflect priorities):

• Distinctability of entries: Two different entries have to be distinct from each
other, no matter on which local database they were created.

• Conflict Handling: Different users are able to work on the same data simultane-
ously on different local databases. If they change the same entry before synchro-
nizing a conflict can occur. The synchronization needs to recognize that a conflict
occurred and provide options to solve it.

• Time-delayed execution: It cannot be guaranteed that a user of the database can
always execute the synchronization process. This could be technical reasons like
temporary Internet disconnects, but also logistic reasons e.g. there is no Internet
connection available. It has to be possible to continue working offline and syn-
chronize the data at a later time when the computer is reconnected to an Internet
connection again.

• Interruptible: After a loss of connection or if the user interrupts the exchange of
data, the synchronization process has to be able to continue later and no data may
be lost or corrupted.

• Modularity: To avoid the transfer of unnecessary data, a selection of data is
required. In general, a particular users do not need or even are not allowed to
synchronize all entries that are saved in the global database with their local device

40 3. Sharing Data: A Timestamp-Based Synchronization Process

but only parts of it. The users should be able to select parts of data they want to
synchronize in order to save time and to reduce data overhead, so data should be
separated in modules (“projects”). Furthermore, the local database of the users
should not save any data sets, for which they have no reading rights.

• Currentness of look-up table data: The look-up table data that is saved on
the database of the global server needs to be updated many times. This concerns
regular as well as dynamic updates of this data. Administrators with the permission
to edit, have to be able to insert new entries and edit or delete existing ones. These
changes have to be passed to the users as soon as possible, to ensure that they can
work with current data.

• Rights management: Not every user needs to see all the data. The synchroniza-
tion has to check if the user, who has requested any data, has appropriate rights
before sending or committing specific data.

• Easy to use: The synchronization should be an automatic process that can be
run with few mouse clicks. The user is most likely not a skilled computer user, but
hast to be able to use the synchronization. Therefore, the synchronization process
should be carried out without any external data devices.

As discussed above, in addition to these specific requirements, an e-Science infra-
structure for the archaeological sciences should also be cost effective and ensure the
privacy of unpublished data.

3.3 Evaluation of Existing Synchronization Methods

In general, the basic idea of synchronization is not a new one. Both, scientific and
industrial databases often require functions to share data in any way, especially, if several
users should be able to work on the data simultaneously. Synchronization techniques
exist in most commonly used database systems worldwide. In the following, we discuss
the synchronization techniques of such systems, including Microsoft SQL Server, Oracle
and MySQL in the context of the requirements derived in Chapter 3.2.

• Snapshot Replication:
Snapshot Replication is an easy way to share data that is used in Microsoft SQL
Server and Oracle. It “distributes data exactly as it appears at a specific moment in
time and does not monitor for updates to the data” [Mic08, Types of Replication].
The entire snapshot is generated and sent to the receiver, a selection of data is not
possible. But especially if there is a lot of data saved in the database, it is necessary

3.3 Evaluation of Existing Synchronization Methods 41

to transmit all of this data - so the merge function allows several users to work on
different sets of data, but does not reduce the amount of data that has to be sent. At
least Oracle supports partial snapshots [Ora13a, Understanding Replication], but
synchronizing single data sets is not supported. Furthermore, Snapshot Replication
is laid out if data changes are infrequent. This is an unrealistic scenario in our
application.

• Transaction Replication:
Microsoft SQL Server supports a transaction replication that is not based on data
sets, but on transactions. “[D]ata changes and schema modifications made at the
Publisher are usually delivered to the Subscriber as they occur (in near real time).
The data changes are applied to the Subscriber in the same order and within the
same transaction boundaries as they occurred at the Publisher” [Mic08, Types of
Replication]. Therefore, a transactional consistency is guaranteed even on high
volume of insert, update and delete activities. But the transaction replication is de-
veloped for server environments. The clients have to have a permanent connection
with the global server. Working offline is not supported.

• Replication with Streams:
Using Oracle Streams it is possible to enable replication as well. “The stream can
propagate information [...] from one database to another. [...] you control what
information is put into a stream, how the stream flows or is routed from database to
database, what happens to messages in the stream as they flow into each database,
and how the stream terminates” [Ora13b, Understanding Streams Replication].
So Oracle Streams are powerful features that also support replications with the
help of three background processes: The capture-process to collect information,
the propagate-process to get the data out of the stream and the apply-process to
handle the local changes (for more details, see [Ora13c]).

However, a synchronization with the requirements of Chapter 3.2 is not possible
by using Oracle Streams. The communication cannot be managed by the global
server because all processes have to be defined by the local databases. To ensure
that no reading operations are executed on the global database, it is necessary that
the users are not administrators of their own local databases. The other way round
it means that the global server is responsible for the local databases as well - but
this is not possible in practice. [Lam08, p. 58]

• Merge Replication:
Another type of replication in Microsoft SQL Server is merge replication. “[D]ata
changes and schema modifications made at the Publisher and Subscribers are trac-
ked with triggers. The Subscriber synchronizes with the Publisher when connected

42 3. Sharing Data: A Timestamp-Based Synchronization Process

to the network and exchanges all rows that have changed between the Publisher
and Subscriber since the last time synchronization occurred” [Mic08, Types of Re-
plication]. The merge replication matches with the requirements pretty well, but
the complete data sets have to be in the database of the subscribers. Therefore,
it is not possible only to store or synchronize specific projects. This makes the
management of permissions for the synchronization also impossible.

• Master-Slave Replication System:
MySQL supports replication by using a master-slave system. It “enables data from
one MySQL database server (the master) to be copied to one or more MySQL da-
tabase servers (the slaves). Replication is asynchronous by default; slaves do not
need to be connected permanently to receive updates from the master” [MyS13].
Unfortunately, it is only possible to replicate all databases, selected databases or se-
lected tables within a database - the replication of single data sets is not supported.
Furthermore, MySQL does not include any conflict management.

• Third Party Synchronization Software:
Products like SQL Anywhere [Nov] and PervaSync [Per] allow the synchronization
of data from a central database to many connected clients. They also support with
restrictions entering and updating data while working offline. Also subsets of data
can be synchronize and therefore a right management can be implemented. Still
this subset has to be defined for each client, so the user can not synchronize specific
projects. Also they require licenses per user, so that in an open environment where
the program is distributed to arbitrary clients this is not applicable.

• Direct Working on the Global Database:
Even if it is not really a replication system, it is still a possibility that the users
directly connect to the server and work on the global database. It would be an easy
solution that fulfills almost all of the requirements of Chapter 3.2 - but of course a
permanent Internet connection is required.

• Clocks:
The Lamport Clock (also Lamport timestamp) [Lam78] keeps track of the order in
which events on distributed systems occurred. A logical clock ordering algorithm
allows to create a partial ordering of events and provides methods to determine
facts about the order of the events. This is achieved by Lamport introducing a
software mechanism that increments a counter maintained in each process. At the
same time it does not allow to retrieve the actual time of the changes. Therefore,
it is also not possible to only synchronize parts of the data. All entries have to
be synchronized in the order of their last time of the change on the distributed
systems.

3.4 Synchronization 43

Similar to the Lamport Clock, Vector Clocks [Fid88] [Mat89] keep track of the order
of the events. But additionally, a vector of counters for the individual processes is
sent together with each data set, so each process has its own clock. This allows
to meet the problem of the Lamport Clock to enable the synchronization of only
a subset of entries, but it increases the data overhead that has to be sent if many
clients edit the same data set.

Vector Clocks have been designed under the assumption of a fixed, well-known set
of participants. However, this is not the case in this very scenario – and also not
in our requirements. To counter this problem, Almeida et al. introduced Interval
Tree Clocks [ABF08], a clock mechanism that is usable in scenarios with a dynamic
number of users in which the identities and number of processes in the computa-
tion is not known in advance. The mechanism has a variable size representation
that adapts automatically to the number of existing entities, growing, or shrinking
appropriately. This approach appears to be over the top for our requirements, since
the creation of processes without global identifiers is not required for our applica-
tion. So, this makes the required data overhead not necessary.

• Timestamps:
Timestamps on data sets are used to keep track of the time when the data set was
last updated. These are saved within the data sets and are considered during the
data exchange. During the synchronization process, the entries can then be ordered
according to the timestamp. This way, the synchronization of subsets of data is
possible. However, it can lead to problems if the system times of the networked
clients are not synchronous, for example because of different time zones or a wrong
configured time setting.

While all of these methods are sufficient for many areas of application, none of them
cover all of the requirements stated above. Only few of the available solutions provide the
ability to work offline and none of them allow synchronization of single data sets, which
are two of the most important requirements for archaeologists and bioarchaeologists.
Therefore, we created a synchronization that fulfills all previously stated requirements, is
independent of the database management system and hence can be used for any database
system.

3.4 Synchronization

A simple way to create a database independent synchronization is to implement a type
of timestamp synchronization. Still there are many different approaches how to achieve

44 3. Sharing Data: A Timestamp-Based Synchronization Process

this. A basic synchronization can be implemented rather quickly, but often many chal-
lenges arise. A commonly used method, is to use triggers that locally track the last time
a data set was updated. During the synchronization in this approach the local time is
used to commit all changes that happened since the last synchronization locally and
send them to server. Then all changes on the server since the last synchronization are
pulled from the server. This method bears the problem, that when the connected local
databases have a different system time, the created timestamp is not correct and may
lead to problems during the synchronization process, by possibly omitting entries from
the synchronization. Our approach uses only the system time on the global database,
which removes the problem with asynchronous system times on clients. In the following
we describe the realization of our synchronization.

3.4.1 Realization in the Database

To achieve the synchronization we are aiming for, some necessary additions in the data-
base had to be made.

3.4.1.1 Database ID

One of the most important concepts is the Database ID. A column for this ID is added to
each table a user can insert data. In addition to the existing primary keys, this column
is marked as a primary key as well as to allow several distinct entries with the same ID
from various databases. The value of this number for this database itself is stored in a
separate table (in XBOOK we use “version”) and also as a property in the configuration
settings of the operation system. The Database ID is generated when the user connects
to the server the first time, or if the value of the ID in the database is different to the
value in the properties. This is to prevent errors when a user copies his database to a
different computer.

When the user enters a new entry in the database, the Database ID is automatically
filled in with the above defined value. If the entry is edited the Database ID will not be
changed.

Because we want to enable a modular approach with projects, all tables also have
to add the ID (“ProjectID”) and the Database ID (“ProjectDatabaseID”) of the project,
otherwise the entry cannot be assigned to a specific project (see Figure 3.3).

3.4.1.2 Status

To achieve conflict management as well as identification which of the entries have to be
updated, locally the column “Status” (cf. Figure 3.4) is added to each table. It stores
the time the entry was modified on the server. This value is modified only on the server

3.4 Synchronization 45

Figure 3.3: The table “inputunit” of the database of OSSOBOOK [KLK+18a] as an example for the
primary keys ID, DatabaseID, ProjectID and ProjectDatabaseID. These primary keys
are necessary in every data table of XBOOK.

via a trigger that updates the status as soon as the value is inserted or updated. Zero
is added to the current time to convert the format from “yyyy-MM-dd HH:mm:ss” to
“yyyyMMddHHmmss” to receive a sortable and numeric value. The trigger can be seen
in Algorithm 2.

1 SET NEW.Status = NOW() + 0;

Algorithm 2: Trigger to update the status column to the current time in entry tables.

If the entry on the client has a lower (older) status, it needs to be updated.
If the entry on the server has a higher (newer) status when committing data to the server,
a conflict occurred. This means that in the meantime someone else modified the entry.
Then this entry can be marked locally as a conflict.

In the archaeological context it is not a realistic scenario with more than one scien-
tist collecting data about the same objects (e.g. bones of an animal) simultaneously, so
conflicts will not occur frequently. However, conflicts may occur anytime, therefore a con-
flict management system is necessary. The one we implemented in XBOOK is described
in Chapter 3.4.2.7. Other working areas may need more complex conflict management
systems to avoid conflicts hampering the synchronization process.

3.4.1.3 Message ID

The next important addition is the column “MessageID” (cf. Figure 3.4). It stores the
current status of the entry (locally). The different states are:

• Synchronized (0):
Indicates that the entry is synchronized and no uncommitted changes were made.
This does not mean that the entry is up-to-date, it just means the entry has no local
changes and can be synchronized.

46 3. Sharing Data: A Timestamp-Based Synchronization Process

Figure 3.4: Three important system columns in the input tables: “Status”, “MessageID” and “Dele-
ted”. The entries with the message ID “–1” are conflicted.

• Changed (1):
Indicates that the entry was changed locally and has to be synchronized. This
prevents the entry being updated with data from the global database to prevent
overriding changes. In most cases, when the marked entry was to be updated
from the global database, this would also mean that a conflict occurs, but conflict
checking is already done when the entry is committed, so this is ignored. After
the entry is successfully committed to the server, the status is set to “synchronized”
again.

• Conflicted (–1):
Indicates that this entry is conflicted and therefore cannot be committed or updated
by the synchronization. A conflict occurs when an entry that is changed locally has
an older (lower) status than the entry on the server. This means that the changes
on the local entry were made on an older version of the entry, and if the entry
would be committed, there would be possible loss of data.

3.4.2 Realization in the Application

With the changes to the database a big step in achieving the requirements is completed.
Still the synchronization has yet to be executed and additional requirements have to be
met, which can only happen inside the application. Therefore, several changes had to be
implemented into the XBOOK framework as well.

3.4.2.1 Database Update

To allow constant updates to the application including changes in the database scheme,
we added a check for the version of the database. This number is stored in the “version”
table and is compared to the built-in number in the program. If the numbers do not
match, the server is queried for an update. This check is done after the connection to the
database is established, but before the user starts working with the data. If the user has

3.4 Synchronization 47

no Internet connection of course the update cannot be made, but since an upgrade could
not be made without an Internet connection, this should not be a problem.

3.4.2.2 Code Tables

The look-up tables which contain mappings for values in different languages e.g. the
name of the animals that are displayed in the graphical user interface are called “Code
Tables” in our synchronization. To be able to change or add values to the Code Tables
without having to distribute a new program version, all values are stored in the database.
To receive the newest version of the data only the database has to be updated. This can
also be done during the usage of the application. To find out which values are changed,
all tables have to have the column “Status”. Just like for entries, the value of the status
is the timestamp of the last global change and is updated with triggers on insert and
update (cf. Chapter 3.4.1.2) as seen in Algorithm 3.

1 SET NEW.Status = NOW() + 0;

Algorithm 3: Trigger that updates the status column to the current time for Code Tables.

Then only the values that have a higher status than the highest value in the local table
have to be updated or inserted. To avoid unnecessary update checks in each table if no
change was made, the last update can not only be found out by run through all tables,
but has to be saved directly in the “version” table. To ensure that this has always the
newest timestamp on the server, the trigger is extended by another command to set the
last update, so that the complete trigger now looks like in Algorithm 4.

1 SET NEW.Status = NOW() + 0;

2 UPDATE version

3 SET version.LastUpdate = NOW() + 0;

Algorithm 4: Trigger that also updates the status column in the version table.

The last update is set locally after all changes have been (successfully) made, and is
retrieved from the server before the update progress is started. Then only a check has to
be done if the local value is lower than the global value, and only when, the Code Tables
are out of date and therefore have to be updated. A example of a Code Table can be
found in Figure 3.5.

48 3. Sharing Data: A Timestamp-Based Synchronization Process

Figure 3.5: The Code Table “animal” in OSSOBOOK that defines the available values for species.
Adding the column “language” allows using terms in different languages: 0 for general
terms, 1 for German, 2 for English, etc.

3.4.2.3 Manager

To control the communication with the database from the client, we created manager
classes that have all the knowledge about the columns for the table they are “responsible”
for. The structure of the manager is as follows:

• Table Manager: The base class for all managers. It holds the connection object,
contains the basic methods like insert and update and sends SQL queries to the
database.

• Abstract Synchronization Manager: This manager holds all the important infor-
mation for the synchronization. It handles the insert and update of entries from the
server, retrieves uncommitted entries and sets data to synchronized or conflicted.
All managers that need to be synchronized have to extend this.

• Base Entry Manager: The base entry manager is responsible for getting the main
entry from the input unit (the main table for entries). It also calls the underlying
Extended Entry Managers to retrieve the data for the complete entry. This class also
manages the saving, loading and updating data for itself and forwards the call to
the underlying methods.

• Extended Entry Manager: A manager for entries that extend a base entry that is
needed for example if an entry can have more than one value of a specific type. So
the list of values would be stored in a different table.

3.4 Synchronization 49

• Base Project Manager: The base project manager is responsible for getting the
main entry for entries that are valid for the whole project (e.g. project information
itself). It also calls the underlying Extended Project Managers to retrieve the data
for the complete entry. This class also manages the saving, loading and updating
data for itself and forwards the call to the underlying methods.

• Extended Project Manager: This manager is for entries that extend a base project
entry. This manager is needed for example if an entry can have more than one value
of a specific type. So the list of values would be stored in a different table. Tables
represented by the Base and Extended Project Managers only have ”ProjectID” and
“ProjectDatabaseID” columns, no “ID” and “DatabaseID” columns.

3.4.2.4 Data Structure

To store the data and retrieve a complete entry we created some classes to easily load,
save and update the data (cf. Figure 3.6).

• DataColumn: The most basic data type is the DataColumn. In it only one value is
stored together with its column name.

• DataRow: Represents one row in the database. It is an ArrayList of DataColumn
containing all the data for this row.

• DataTable: Contains all DataRows for the current entry in the specific table. In
addition to the DataRow it only knows to which table it belongs.

• DataSet: Represents one entry. Therefore, it has all DataTables that define the
entry, and additionally hold the key of the entry and the key of the project the
entry belongs to.

3.4.2.5 Synchronization Process

The actual process of the synchronization consists of three different steps.

• Check if the user has the required rights to access the project and therefore is
allowed to synchronize it.

• All uncommitted, not conflicted entries in project and entry tables are retrieved,
one by one from the database and sent to the server. This is done by iterating over
all Base Project and Base Entry Managers. These call their belonging sub managers,
load all data belonging to the current entry and send their data to the server. If

50 3. Sharing Data: A Timestamp-Based Synchronization Process

Figure 3.6: UML visualization of the data types handling the data in XBOOK.

the entry already exists in the global database, then the server checks the sent
timestamp of the entry with timestamp that is saved in the global database. If the
global timestamp is newer than the local one there is a conflict and the client is
notified (cf. Chapter 3.4.2.7).

• The project and entry data is transmitted from the server to the client. For identi-
fying which entry has to be transmitted, the timestamp of the newest entry of the
current table, i.e. the last entry that was synchronized, is transmitted. To prevent
a loss of data after an incomplete synchronization, the first query requests entries
that have exactly the same timestamp as the highest timestamp locally. For all later
queries always the next data with a higher timestamp is retrieved. The entry is
then only updated if the corresponding value in the local database either does not
already exist or is not conflicted or changed (see Figure 3.7).

3.4.2.6 Deletion

Due to the fact that the Synchronization can only identify changes with the check of
the “Status” column, it is not easily possible to delete entries. Still, there needs to be
the option to delete an entry. To solve this problem, a column “Deleted” was added (cf.
Figure 3.4). It is an enumeration that has only two options: “Y” and “N” - with “N” as
default value. Instead of deleting an entry the value of the “Deleted” column is set to
“Y”. Then this change can be synchronized to the global server. From there it can also
be synchronized to other clients. When the client gets the information that an entry is
deleted, it can safely delete the entry locally. On the server however an entry is never

3.4 Synchronization 51

Figure 3.7: Simplified visualization of the synchronization, displaying the commit of changed en-
tries to the server and new data from the server.

52 3. Sharing Data: A Timestamp-Based Synchronization Process

deleted, because the information about the change has to always remain available for
the clients. The same logic is applied to Code Table entries with the exception that entry
tables are only synced to the clients.

Furthermore it is also possible to remove projects from the local databases. These are
only deleted on the local machines, but not on the server. So they can be loaded by using
the synchronization any time.

3.4.2.7 Conflict Management

If an entry was marked as conflicted during the synchronization process, the conflict has
to be solved before it can be merged with the entry in the global database. Therefore, the
application displays that the project contains conflicts that the user can solve manually
by using the Conflict Management Screen.

The Conflict Management Screen provides both the global and local entry and allows
the user to select the diverse values. To solve the conflict, the merged entry is saved to
the global database with the timestamp of the global entry. If the entry was updated
between the solving of the entry and committing the entry to the global database, this
ensures that this change will not be overridden, but a new conflict is generated. If no
new conflict was generated, the local entry is updated with the merged values, but the
local timestamp is not updated, and the entry is marked as synchronized. Then the entry
will be updated as usual when the synchronization process is executed.

Conflicts do not have to be solved immediately during or after the synchronization. It
is possible to continue working on the projects even if there are still existing any conflicts
in the project. This makes it also possible to inform the project owner about existing
conflicts if the users are not able to solve them on their own. However, conflicted entries
will not be synchronized to the global server until they are solved

Since the conflict management is a topic of its own, we only describe the solution that
was implemented in XBOOK. In general conflicts can be solved in many different ways.

3.5 Synchronization in the Graphical User Interface

As presented in Chapter 3.4 the synchronization consists of a powerful, but complex
architecture. However, the realization in the application has to consider that most of the
archaeologists are not used to work almost exclusively with a computer.

Therefore, it is absolutely necessary to hide the complexity of the synchronization
behind an intuitive user interface. We have to ensure that the synchronization can easily
be used and that for every user even if not technically skilled could execute it.

Here we describe how the synchronization is integrated into the graphical user inter-
face of XBOOK:

3.5 Synchronization in the Graphical User Interface 53

Figure 3.8: The synchronization panel in OSSOBOOK 5.2.4. [LKK+16b]

3.5.1 Manual Data Synchronization

To exchange project data there are three basic procedures that have to be possible in the
synchronization panel (cf. Figure 3.8).

• Global projects for which a user has read and/or write permission have to be do-
wnloadable from the server. Therefore, the corresponding projects can be selected
in the right project selection in the synchronization panel.

• Local projects that have not been synchronized with the server before have to be
able to be uploaded to the server. These projects can be selected in the left project
selection.

• Existing projects (as well local and global ones) have to be updateable. For this
purpose the corresponding projects have to be selected, like explained above. Ho-
wever, the application has to recognize if a project was selected on the server pro-
ject list that is also available on the local project list, and vice versa.

By pressing the “Synchronize” button, the procedures are executed. Depending on
the Internet speed and the number of projects and data sets, the synchronization may

54 3. Sharing Data: A Timestamp-Based Synchronization Process

take several hours. Thus, user feedback is displayed in message boxes and progress bars
(each one for general, project and data set layer).

When the procedures are running the user can continue to work with the application.
The synchronization is running in the background. It can also be interrupted by closing
the application and continued at a later time.

3.5.2 Automatic Data Synchronization

The automatic data synchronization can be activated in the application settings. Thereby,
the project information and data sets are synchronized with the server automatically in
the background. However, it is necessary to manually define once which projects shall be
downloaded from the server. This is important to avoid that all projects are downloaded
even if the user does not want to save them on the local database.

The automatic synchronization can be a big advantage when collaborating on one
project in a group. Due to the fact that the automatic data synchronization is updating
the data in the background, all members of the group have less unsynchronized data
sets scattered in several local databases. Every collaborator immediately gets the cur-
rent data and does not have to wait until the data from other collaborators is manually
synchronized.

Another advantage of the automatic data synchronization is the possibility to use
the synchronization as a backup method. In case of a hardware failure (in particular a
hard disc crash) every synchronized data set can be restored by reloading the data from
the server. When synchronizing the projects manually, there might be projects and/or
data sets left that were not synchronized before, and therefore may get lost because of
a hardware failure. Because the automatic data synchronization always commits data in
the background, the chances for a data loss are minimized.

Data sets that are conflicted will not be synchronized in general, thus the automatic
data synchronization will not commit them as well. Conflicts have to be solved manually
before the data is able to be synchronized to the global server.

3.5.3 Code Table Update

The code table update that was mentioned in Chapter 3.4 is run automatically by the
application after the login if it is necessary. However, the user can also reload all Code
Tables manually by using the option in the “Tools” navigation element.

3.5.4 Conflict Management

During the synchronization process data conflicts may occur. One simple scenario for
this case as an example: Two different users download data from the server by using

3.5 Synchronization in the Graphical User Interface 55

Figure 3.9: Top: The Conflict Management Screen that displays all conflicted entries of the loaded
project. Bottom: The Solve Conflict Screen allows the user to use the local or server
values for a specific conflicted entry.

56 3. Sharing Data: A Timestamp-Based Synchronization Process

the synchronization and update an identical data set. If user A uses the synchronization
first to upload the changes to the server there will be no problem. If user B submit his
changed data afterwards, it is not clear anymore whether the data of user A is the correct
one or the data of user B. A conflict occurs that has to be solved manually.

For this case XBOOK highlights conflicted projects in the project overview screen to
inform the user about current conflicts. Once the project is loaded the user can click the
conflict button in the footer bar to open the Conflict Management Screen (cf. Figure 3.9
top). The user gets displayed all current conflicts, sorted by the table of the conflicted
entry; e.g. on project information, entries, etc. Selecting a single conflict allows the user
to solve the conflict screen.

The Solve Conflict Screen (cf. Figure 3.9 bottom) lists all important information about
the conflicted entry in a diff table: Some values that are unique (like IDs and database
IDs) to allow correlating the specific entry, and the conflicted values of the entry. On the
left there are displayed the entry values that are currently saved in the local database,
on the right there are displayed the ones on the server. The user can select for every
conflicted value whether to use the one of server or the one of the local database. A click
on the “Solve Conflict” button saves the selection in the local database, that then can be
synchronized to the server as well.

In case that users do not know how to solve the conflict they can with a click on
the “Inform Project Owner” button let the project owner know about the conflict. The
project owner will receive an email about the conflicted entry and then can help the user
to solve the problem.

3.6 Discussion

In this chapter, we described a list of requirements that should be fulfilled by e-Science
infrastructures for a synchronized distributed data management and data analyses. We
discussed existing solutions for synchronized distributed data management in relation to
the previously listed requirements. We then took an in-depth look at the synchronization
process of XBOOK which is independent of the data model and could be used potentially
in any application domain, if needed.

While the synchronization has many benefits for the user and also someone that
wants to add tables to the synchronization, there are also some limitations that still need
to be addressed in the future:

• Data overhead: A big data overhead is generated due to the way the data is sent
and retrieved from the server. Some additional (and required) information like co-
lumn names is sent that increases the amount of data that needs to be transferred.

3.6 Discussion 57

It might be possible to use a better data type for the transfer that reduces the infor-
mation, like, if a series of entries is sent, the column names are only sent once. This
would decrease the size of data, but would require a check to prevent that entries
get saved in the wrong column due to a value not being sent or an additional value
being sent.

• Unnecessary data transfer: Additionally, because of the possibility of an incom-
plete synchronization, at the beginning of each synchronization process, the en-
tries, that have the same status as the local highest status have, to be sent again.
This could mean that many entries that are already in the local database, have to
be transferred. The amount of data to be transferred could be reduced by only
sending the key of the entries in question. Only if the corresponding entry does
not exist locally or has a different timestamp, the complete entry would have to be
resent.

• Detecting duplicate entries: Currently it is not possible to detect directly duplicate
entries due to the local databases that have to work in offline-mode, too. A helpful
addition could be to generate a list of similar entries from the global server within
the application. This could be used to identify possible duplicates. But since the
similarity of entries is context specific, a general best approach cannot be specified.

• Compression: Also, since for each entry the rights are checked and one entry
is sent at a time, the data is synchronized very slowly in comparison to directly
viewing the data in a SQL viewer. A possible speed increase could be achieved
by compressing the transmitted data. This should fasten up the transport a lot -
especially if large data packages are sent.

• Improvement of conflict detection: While the synchronization is able to detect
conflicts, it may detect false positives due to only comparing the timestamp and not
the actual value that was changed. To improve the detection of conflicts, and also
to provide an automatic merge, the synchronization could be enhanced to be able
to keep track of changes in tuples, so that each value has its own timestamp and
can then be checked for conflicts.

• Deletion of entries: Currently entries that are no longer valid cannot be deleted
from the database, but are only marked as deleted. So this change can be synchro-
nized to connected databases. This generates a data overhead in the database since
all columns of the entry are still occupied. A solution could be a designated table
containing only the key entries of deleted entries which are synchronized and then
used to delete the entries in the connected databases.

58 3. Sharing Data: A Timestamp-Based Synchronization Process

59

Chapter 4

Retrieving Data: Introducing the
Reverse-Mediated Information System

Attribution
This chapter uses material from the following publications:

• Johannes-Y. Lohrer, Daniel Kaltenthaler, Peer Kröger, Henriette Ober-
maier, and Christiaan van der Meijden. Reverse Mediated Information
System: Web-based Retrieval of Distributed, Anonymous Information.
In 16th International Conference on WWW/Internet 2017, Vilamoura,
Portugal, 2017, pages 63–70, 2017 [LKK+17]

• Daniel Kaltenthaler, Johannes-Y. Lohrer, Florian Richter, and Peer
Kröger. ReMIS Cloud: A Distributed Information Management System
for Interdisciplinary Knowledge Linkage. In 8th International Confe-
rence on Internet Technologies & Society 2017, Sydney, NSW, Australia,
2017, pages 107–114, 2017 [KLRK17]

• Johannes-Y. Lohrer, Daniel Kaltenthaler, Florian Richter, Tatiana Si-
zova, Peer Kröger, and Christiaan van der Meijden. Retrieval of He-
terogeneous Data from Dynamic and Anonymous Sources. In 8th IEEE
International Conference Confluence 2018 on Cloud Computing, Data
Science and Engineering, Noida, Uttar Pradesh, India, pages 592–597,
2018 [LKR+18]

See Chapter 1.2 for a detailed overview of incorporated publications.

In the previous chapters we discussed the collection of data (cf. Chapter 2) and
methods to share and archive data (cf. Chapter 3). These are necessary and useful if the

60 4. Retrieving Data: Introducing the Reverse-Mediated Information System

Figure 4.1: Retrieving data is usually the third step in any scientific workflow.

scientists work in the same working environment and/or use the same programs. The
next step is to retrieve data from different sources (c.f. Figure 4.1).

However, data from one scientific domain is often spread over different institutions,
organizations, companies, etc. Still, it might prove useful to, for example, analyze data
from an extensive area or to include information from similar domains in an analysis.
This data uses different programs and program structures, different database schemes,
data sources, data types etc. To consider all this might prove challenging.

Still, to limit the amount of data, and to specify which type of information is desired,
some parameters have to be specified which are generic enough so that they are valid for
different scientific areas. They need to be specific enough in order to allow to distinguish
desired data. These parameters also need to be commonly used so that the information
they provide actually is useful.

In this chapter, we introduce a new architecture called Reverse-Mediated Information
System (REMIS) that allows the provision of data from data sources by data owners
while still remaining control over which data sets to share. Then, we also expand the
idea of the architecture to allow a search in different fields to create powerful queries
which would otherwise require multiple queries.

4.1 Introduction

Most information is distributed very unstructured over a wide community in many areas.
Using crowd-sourcing technologies is a very common trend to utilize the knowledge of
many sources. If data is provided uniformly, it can be queried right away and data
mining techniques can be applied. In reality, these data sources are used locally and are
often very heterogeneous. The reasons are the lack of well-defined standards and the
peer-to-peer organized communities of the data suppliers. However, the combination of
information systems can yield beneficial insights. If we are able to overcome the variety
of data structures and retrieve data dynamically, we can access the knowledge contained
in many cross-connections.

4.1 Introduction 61

Figure 4.2: The basic flow of archaeological data: The data from the excavation is partly passed
from the offices to the specialized collections and specialists, who perform individual
analyses on the findings and save the results in their databases. The results of these
analyses are not accessible from the offices. In sum, neither the offices nor the speciali-
zed collections have all information about their findings.

For example, in archaeology and bioarchaeology the different offices, institutes, and
freelance researchers each have their individual databases with data from their specific
research area (i.e. zooarchaeology, anthropology, or archaeology) as sketched in Fi-
gure 4.2. Collating all available data provides versatile analyses. Results from different
excavation sites can be compared and set into a broader context, which is not limited to
the spatial proximity of the excavation or the field of interest of one research group.

In the medical sector, each clinic uses its own workflow and information system to
store patient treatment data. Integrating a state-of-the-art information system (SAP,
Oracle) of a medical center and low-tech spreadsheets of a suburban clinic is a complex
task. Especially legal and privacy issues can cause the data to become rather volatile.
Therefore, databases have to be added or removed dynamically. However, if one is able
to combine different medical data sources dynamically, diseases can be detected faster
and more accurate, which is worth the effort.

In addition to the research area, a system to embed databases without a centralized
manager can also be beneficial for economic purposes. In e-commerce, small busines-
ses often have problems to compete with middle-class businesses and large enterprises.
These can offer a wide product range and outperform the smaller players. Keeping the

62 4. Retrieving Data: Introducing the Reverse-Mediated Information System

available goods up-to-date in a central platform is time-consuming and error-prone. A
system without a managing instance enables a dynamic decentralized integration of pro-
duct databases, which offers a great opportunity for the small enterprises. They can
collaborate without much effort and compete with large companies.

As a final example, eLearning is a typical crowdsourcing application. Teachers, lec-
turers, and students have access to many exercises, exams, data sets, sources, and docu-
ments. Offering a dynamic system, which allows each person to register his unstructured
data into a large unmanaged information system is beneficial for every learner in the
community.

To the best of our knowledge, there is no architecture that supports this kind of de-
centralized connection system for information retrieval. The well-known Mediator-based
architecture [Wie92, Wie94, Wie13] supports only a centralized managed way of hete-
rogeneous databases, as sketched in Figure 4.3. This architecture depends strongly on
the knowledge of the data sources and their existence to access the contained informa-
tion. In an agile and dynamic environment like the mentioned cases above, this is a big
disadvantage, which we want to overcome with our approach.

Our novel approach, the Reverse-Mediated Information System (REMIS), is based on
the concept of Mediator architectures. As sketched in Figure 4.4, it enables the provision
of new data components without the need of a central administrator to manage the
connections manually. Thereby, the data owners keep control over the third-party data
access. It enables the users to search for more information about a specific context that
is spread through a diversity of databases. In summary, the main contributions are as
follows:

1. Modeling of an architecture (REMIS) to reverse-mediate a set of data sources

2. Decentralized and anonymous database registration as a server application

3. Client-side connector application to translate the user request depending on the
data source

The remaining chapter is organized as follows: First, we demonstrate the problem a
distributed architecture faces on the example of archaeology in more detail (cf. Chap-
ter 4.2). Then, we list a set of requirements that are extracted from these problems.
These should be addressed by an architecture for distributed data management of ano-
nymous data sources (cf. Chapter 4.3). Then, we describe the concept of the REMIS
architecture, including the process of the initialization, registration, and the user search
(cf. Chapter 4.4), and describe the concept of a compact rights management for the
data (cf. Chapter 4.4.4). Afterwards, we explain the necessary configuration for admi-
nistrators of data sources (cf. Chapter 4.4.5). Then, we compare existing solutions and

4.1 Introduction 63

Figure 4.3: Sketch of the well-known Mediator-based architecture. A central administrator is re-
quired to connect the data sources and to mediate the requests from the user. The
administrator has to know each data source to be able to connect them.

Figure 4.4: Sketch of the Reverse-Mediated Information System. The data owners can register their
databases to the system on their own. The necessary mediation setup is executed by a
wizard dialog. The architecture forwards the user request to the data sources where
the request is mediated.

64 4. Retrieving Data: Introducing the Reverse-Mediated Information System

approaches for systems for distributed data management with the requirements and the
REMIS architecture (cf. Chapter 4.5). Based on that, we introduce an extension called
REMIS CLOUD (cf. Chapter 4.7). REMIS CLOUD allows the combination of different
categories to allow querying information which is otherwise not trivial to achieve. We
present some use cases for the REMIS CLOUD to demonstrate the potential application
area for this architecture.

4.2 Problem Formulation

For many scientific analyses it is not only interesting to analyze data from a single sub-
domain or location. Considering the data from other sub-domains and other locations
would enable more complex and more comprehensive analyses than currently possible.

In principle, this data is often available, but spread over different databases that
are run by different institutions. While in some research areas like biology exist some
centralized platforms for sharing information like Global Biodiversity Information faci-
lity (GBIF)25, Atlas of Living Australia (ALA)26, Virtual Biodiversity Research and Access
Network for Taxonomy (ViBRANT)27, DataONE28, and the US Integrated Digitized Bio-
collections (iDigBio)29. However, these are not always suitable for everybody, as they
often have a limitation on scope.

Therefore, the problem of distributed databases also is valid in these areas. In
practice, data is not easily accessible for every scientist because of the following reasons.

• No direct access:
There is no direct external access available to data of most of the specialized data-
bases, as sketched in Figure 4.5. Data has mostly manually to be requested which
means the composition of this data occurs requesting a specific, usually generally
available attribute or set of attributes. Obviously, a more detailed data selection
with complex search parameters is difficult to apply without any direct access.

• Anonymous databases:
Data is spread over databases that – in some circumstances – are not known at all.
Scientific data is not always gathered by well-known institutes. There are also nu-
merous smaller institutions, clinics, collections, and freelancers that are gathering
data as well, but do not exchange their data with the state offices. Still, it would

25http://www.gbif.org
26http://www.ala.org.au
27http://www.vbrant.eu
28http://www.dataone.org
29http://www.idigbio.org

http://www.gbif.org
http://www.ala.org.au
http://www.vbrant.eu
http://www.dataone.org
http://www.idigbio.org

4.2 Problem Formulation 65

Figure 4.5: The digital data exchange is hindered. Institutes and specialized collections and speci-
alists each have no digital access to the detailed or individual data of other databases.

be interesting to be able to include this data in analyses, even if the archaeologist
does not know that there exists any data in these data sources.

• Individual database schemes:
The databases of the institutes, the specialized collections, and self-employed wor-
kers have their own architectures and individual database schemes. Although they
usually have identical basic information, these are saved in different ways and can-
not be standardized to a commonly used database scheme.

• No consistent way to exchange data:
As it is common practice, data is exchanged by using Excel or CSV files that have
to be formatted before being able to use them for analyses. This method can be
aggravating, time-consuming, and error-prone, but it is still common practice.

• Regional and individual approaches:
There are regional and individual approaches for the filing of findings. They do not
only vary in the way they are sampled, but also how and which data is recorded
in the databases. This differs from country to country and even from state to state
which is extremely frustrating for researchers that deal with cross-border research.
Furthermore, there are numerous individual solutions even on a local level.

66 4. Retrieving Data: Introducing the Reverse-Mediated Information System

Especially the consideration of geodata, if applicable, would enable users to ask much
more complex questions than it is currently possible. Therefore, we want to describe a
solution to bring spread data together again and to achieve this without the need of a
single central database, but by keeping the necessary system of distributed databases.

4.3 Requirements

We define a set of primary requirements that should be considered for our solution. This
is described below.

Our architecture hast to dynamically connect new data sources that are heterogene-
ously distributed. Each of them can have their own data scheme and contain different
types of data. Additionally, the physical location of the data is not known in advance,
neither by the users nor the responsible administrators of the architecture. Therefore,
it has to be possible to connect to data without having to update the information of the
central server.

We state these requirements as R1 and R2:

R1 Heterogeneous Data Sources.

R2 Anonymous Data Sources.

External data sources have to be dynamically connected and added to the architec-
ture. This process shall be performed individually by the owners of the data source.
Therefore, no central administrator should be required to connect a data source to the
existing information system. The access to the data by third-party users should be con-
trolled directly by the data owners – i.e. they should be able to connect, and disconnect
their data source at any time, and also control which data they provide.

We state this requirement as R3:

R3 No central administrator.
Administration directly by data owners.

The users have to be able to search through all connected data sources independently
of their underlying database scheme. The database scheme must not influence what the
users can search, but instead map the search parameters to the local database scheme.

We state this requirement as R4:

R4 Database Scheme Independent Search.

4.4 Reverse-Mediated Information System 67

Finally, data sources can contain sensitive information that is not intended for ever-
yone. Still, data sources may contain searchable data. Therefore, the architecture has to
provide the possibility to restrict the access to sensible information or data that shall not
be made public (yet).

We state this requirement as R5:

R5 Rights Management.

Let us add that the data of the distributed databases is not intended to be edited by
the users. This infrastructure is solely aimed for retrieving data.

In the following chapter, we describe our novel information retrieval system which
respects the defined requirements stated above.

4.4 Reverse-Mediated Information System

In this chapter, we want to describe the basic concept of the Reverse-Mediated Informa-
tion System to achieve a search through different, anonymous databases. Therefore, we
distinguish the three different layers of the architecture as sketched in Figure 4.6:

• User Layer:
The users who search for specific data and want to retrieve the information corre-
sponding to the entered parameters. This can be a web service, but also a search
mask embedded to an existing application.

• Server Layer:
Runs a stand-alone mediator-like Server Application which accepts requests from
the users and relays these to the connected databases. In addition, it receives
the result from the connected databases and sends them back to the users. New
databases can register themselves to the Server Application.

• Data Layer:
The server where the data sources, mostly databases, are saved. Each data source
runs an independent Connector Application that is configured for the database
it is connected to. This Connector Application accepts forwarded requests from
the Server Layer and translates the request to a query to fetch the data from the
data source. Once the data is fetched, it transforms the data to a uniformed data
structure which will be sent back to the Server Application of the Server Layer.

68 4. Retrieving Data: Introducing the Reverse-Mediated Information System

Figure 4.6: The three layers of the architecture: Data Layer, Server Layer, and User Layer.

In general, a Mediator provides data from a number of heterogeneous data sources
with other users. “The autonomy of the participants enables the overall system to grow,
since new sources [. . .] can be inserted.” [Wie94] Still, a central administrator is neces-
sary to manage the participating data sources. Therefore, an extern connection of a data
source is not possible without the integration work of the administrator.

The Reverse-Mediated Information System swaps this approach to achieve an open
system for shareable data. Data sources can be connected to the system to share data
with other users, independent of the actual data type.

The usage of the Reverse-Mediated Information System can be categorized in three
different steps to describe the workflow that are described in detail below.

4.4.1 Initialization

To be able to connect the data of a specific data source, an initialization process has to be
executed for the data source in the Data Layer. The administrator of the server, where the
data source is located, is guided by a setup assistant. In general, the required steps in the
initialization process can depend on the type of the connected data source. Hereinafter,
we use a relational database as an example for a data source. A sequence diagram of the

4.4 Reverse-Mediated Information System 69

Figure 4.7: Sequence diagram of the initialization process.

initialization process is shown in Figure 4.7.
First, it is necessary to connect the Connector Application to the database in order to

be able to access the data. Once this is done, the administrator can select the tables and
columns to define which data will be sharable in general. This step determines which
parts of the data are private and only visible within the database itself and which data
might be transmitted to the users later.

Optionally, individual rights can be defined that specify the visibility of the data for
the users. These are discussed in Chapter 4.4.4.

Finally, the administrator has to specify a set of contact information. That allows
either contacting the data owners for questions, or to request additional information of
entries that cannot be accessed due to rights settings.

4.4.2 Registration

To become a part of the Reverse-Mediated Information System, the initialized Connec-
tor Application has to be registered to the Server Application in the Server Layer. The
sequence diagram of the registration process is shown in Figure 4.8.

70 4. Retrieving Data: Introducing the Reverse-Mediated Information System

Figure 4.8: Sequence diagram of the registration process.

First, a “register” command is sent to the Server Application. The Server Application
then sends the “Minimal Search Parameter”, abbreviated with MSP, to the Connector
Application, a set of minimal information that are required. These are as minimal as pos-
sible and guarantee that every connected data source has saved any information about
each of the parameters. The Minimal Search Parameter also forms the options the user
can search for.

MSP = {p1, . . . , pn}, n = |MSP | (4.1)

In general, the parameters p of the Minimal Search Parameter are defined in the
Server Application which has access to all connected Connector Applications and their
databases. Each database D can have an individual database scheme with its own co-
lumns, but every parameter of the Minimal Search Parameter has to be mapped to a
specific column in the database. Each database consists of a set of columns c.

D =
mD⋃
i=1

{ci}, mD ≥ n (4.2)

4.4 Reverse-Mediated Information System 71

For the registration process, the parameters are sent to the corresponding Connector
Application. Then, the administrator has to map each of the parameters p of the Minimal
Search Parameter to the corresponding columns in the database. To describe this map-
ping, we define the injective function κD that stands for a projection of the parameters
of MSP to the corresponding columns in the database D.

κD :MSP → D (4.3)

We define r as the user search request. These may have different appearances, for
example tuples containing the parameters p and the corresponding values v of the user
inputs.

r = (r1, . . . , rk), rj = (pj, vj), j ≤ n (4.4)

Furthermore, we define κ̃D, a replacement function as canonical extension over the
query language, while all search parameters r ∈ MSP are mapped according to κD and
the remaining parts stay unchanged. Let ε = () the empty search request.

κ̃D(ε) := ε

κ̃D(r 6= ε) :=

κD(r1) ◦ κ̃D((r2, . . . , rk)),

r1 ∈MSP

r1 ◦ κ̃D((r2, . . . , rk)), r1 /∈MSP

(4.5)

Finally, rD is yield by applying κD as a replacement function to r:

rD = κ̃(r) (4.6)

As soon as the mapping of all Minimal Search Parameter values is complete, the Con-
nector Application informs the Server Application that it is ready to accept requests by
the user. To complete the registration process, the Server Application set the Connector
Application to be ready to be searched.

72 4. Retrieving Data: Introducing the Reverse-Mediated Information System

Figure 4.9: Sequence diagram of the process to fetch data from the single data sources.

4.4.3 Search

The existing federated systems are sufficient if the users need to query data from a fixed
set of (internal) databases, like sale statistics or customer information. But now, we want
to provide the users the option to search for information, they might not even know that
it exists.

For this, we define the Minimal Search Parameter being the set of information the
user can search for by default. All connected Connector Applications know how to handle
these information.

Certainly, the right settings set during the initialization process have also to be con-
sidered. Since the right management has to be configured according to the underlying
data structure and data, we do not discuss the implementation of the rights management
in detail in this thesis. The process of fetching data from the databases is figured in the
sequence diagram in Figure 4.9.

The search enables the retrieval of entries that include values which are defined as the
Minimal Search Parameter. Since this Minimal Search Parameter information is saved
on the Server Application, the Server Application is first queried to get the Minimal
Search Parameter MSP to be able to display its information in a search mask for users.
This is necessary to avoid input masks that are embedded to any applications getting
incompatible when the definition of the Minimal Search Parameter changes. The users

4.4 Reverse-Mediated Information System 73

enter the data and define which parameters MSP* they want to use for their search. For
these applies:

MSP* ⊆MSP (4.7)

The parameters MSP* and their inputs are sent to the Server Application that for-
wards the request to all N connected Connector Applications. Each Connector Appli-
cation translates the incoming parameters to the local scheme of their corresponding
databases, considering the given mapping κD. Each Connector Application queries the
database with the modified search request rD and checks if the search request of a user
(this means, the inputs of the parameters MSP*) matches with the corresponding co-
lumns. Let R(D, r) the result of this request.

R(D, r) = σκ̃D(r)(D) (4.8)

The entries that have been found in the database are then returned back to the Ser-
ver Application. Finally, the user gets the merged data σΣ

r from the Server Application
considering the search request r:

σΣ
r =

N⋃
i=1

R(Di, r) (4.9)

The responds from the single Connector Applications are not bundled within the Ser-
ver Application, but are sent directly to the users. This improved the necessary waiting
time for the users, especially if a database has a slow connectivity or currently no con-
nectivity at all.

4.4.4 Rights

We now have established the Reverse-Mediated Information System for users to be able
to query for data from databases they did not even know exists. This architecture was
explained in Chapter 4.4. Since we want to encourage database owners to provide their
data, we have to provide a right management for their data. Scientists want to be able
to manage the visibility of their data, not only because data of unpublished work often

74 4. Retrieving Data: Introducing the Reverse-Mediated Information System

should not be shared until the time of publication, but also because parts of the data
must not be shared at all, like sensitive data.

Therefore, we provide the possibility to limit the visibility of the data (or parts of it)
of their database. The first step for the right management was already defined during the
initialization process, as described in Chapter 4.4.1. The data owner defines which data
(tables and columns) is set private and is not accessible for the Connector Application at
all.

As well, the data owner can set individual rights that specifies the visibility and sear-
chability of the data for the users. Therefore, we distinguish five different types of right
that can be applied to the entries. These specify the level of detail of the returned values
that include the range from non-restricted at all to most restrictive.

• Full-Public:
The default right which is used if no restrictions were applied to the entry during
the initialization process. All columns of the entries are returned that are defined
in the initialization process.

• Partially-Public:
Limits the returned columns according to criteria specific to the data set. Still, all
columns can be searched by the user, but not all of them are returned as a result.
This can be achieved by excluding single columns from the visibility, but can also be
a more complex query, like checking if a specific value is set (or not) to a column.

• Numeric-Public:
Setting this right would effect that the entries are searchable, but only the count
of the found entries is returned. The details of the information about the entries is
not communicated with the users.

• Hidden:
To reduce the visibility even more, the entries can be hidden. A search request
would only return a boolean value whether any matching data was found, or not.
The details, how many data sets are found and any further information are hidden
from the users.

• Private:
No information about a data set is returned at all. All data from the database is
completely private and cannot be searched.

In general these rights can be set on single data sources like tables in databases. But
if the data source has saved right information within the data sets, these can also be used

4.4 Reverse-Mediated Information System 75

to define entry-specific rights. Therefore, the data of the result set can be put together
by considering different rights.

In any case, the data owner can be contacted by the user, e.g. for further questions
for the request to access more detailed information about the data set. This is especially
interesting for the numeric-public and hidden rights. Therefore, the contact information
is used that was defined during the initialization process.

4.4.5 Configuration of the Connector Application

Since the configuration of the Connector Application is the most important and respon-
sible task of the Reverse-Mediated Information System, we describe the practical confi-
guration process in more detail. Here, the owner of the data source defines the settings
for the data and the server, and for the basic privacy settings for the data. Therefore,
administrators are led by a wizard dialog to setup the application.

First, the data owner has to select the type of the data source. Currently MySQL
databases and Excel files are supported. The Connector Application can be extended by
other types to be supported in future. In the next step, the data owner has to establish
a connection to the data. This depends on the selected type of data source. In case of a
MySQL database, the administrator has to enter connection details to the database, like
database name, port, user, and password. Then the Connector Application connects to
the desired database and the available tables are shown in the setup dialog. In case of
Excel tables, the data owner has to select the desired files, where the data is stored, in a
file dialog.

Then, the Connector Application retrieves the Minimal Search Parameter from the
Server Application. Normally, the column names in the data sources are not identical to
the corresponding parameters of the Minimal Search Parameter – reasons for that might
be a varying naming of the columns or different languages. The data owner has to map
each parameter of the Minimal Search Parameter to a specific column in the database,
respectively the Excel file. A screenshot of this dialog is shown in Figure 4.10.

The mappings (“Minimal Search Parameter” → “table name” / “column name”) are
saved in a XML configuration file on the server. On an incoming search request, these
mappings are used to translate the Minimal Search Parameter to the corresponding co-
lumn information.

The next step in the dialog is a listing of all available columns, where the data owner
can select all those columns which data should be displayed to the users. This screen is
shown in Figure 4.11.

Only selected columns are considered when composing the result set. Though, the
data owner can use this screen to set specific parts of data to private which will be
communicated neither to any user nor to the Server Application.

76 4. Retrieving Data: Introducing the Reverse-Mediated Information System

Figure 4.10: Screenshot of the wizard dialog where administrators can map the specified para-
meters of the Minimal Search Parameter to the actual data of their database.

If data is not saved in one single table, e.g. by using IDs and value tables, it is
necessary to define dependencies between tables within one database. The data owner
should define foreign keys for each table. Multiple foreign keys are also allowed. The
screen of these dependencies is shown in Figure 4.12.

The settings for the result sets and the dependencies are both saved in the XML con-
figuration file together with the mapping information of the Minimal Search Parameter.

4.5 Related Work and Comparison

In the traditional database search, information is stored in single databases that are ma-
naged by Database Management Systems (DBMS) – but these do not meet our require-
ments R1, R2, R3, and R4. In general, the idea of merging data from numerous (physical
or virtual) databases, is not new. In the following, we recapitulate existing approaches
for such infrastructures in the context and compare them with our requirements derived
in Chapter 4.3.

4.5 Related Work and Comparison 77

Figure 4.11: Screenshot of the wizard dialog where administrators can determine the columns
from the connected data source which should be communicated and transferred to
the user.

• Data Warehouses:
Data is stored in different databases to be able to store more and bigger amounts of
data, or to separate logical information. Each database may hold different sets of
information. To make these heterogeneous databases searchable, the information
is merged in a Data Warehouse, a central repository that retrieves and updates
the integrated data from the diverse sources. The users only query the central
repository.

Data Warehouses do not require having to update existing databases to store new
types of information, but they produce a large stream of data to query and up-
date the central database if data is updated frequently in one of the heterogeneous
databases. [Inm05]

In regards to our specified requirements, Data Warehouses violate the requirements
R2 and R3.

78 4. Retrieving Data: Introducing the Reverse-Mediated Information System

Figure 4.12: Screenshot of the wizard dialog where administrators can define foreign keys to define
related columns in separated tables, e.g. for the use of IDs and value tables.

• Federated Information Systems (FIS) / Federated Database Management Sys-
tems (FDBMS):
These systems map multiple database systems into a single federated database.
There is no actual data integration in the consisting disparate databases as a result
of data federation. The virtual data of the FIS/FDBMS is queried directly by the
user. It decomposes the query into subqueries for each of the federated databases.
Finally, it composites the result sets of the subqueries. [SL90, HM85] Here again,
the requirements R2 and R3 are violated.

• Mediator:
An extension to the Federated Information Systems is the Mediator concept, “a
software module that exploits encoded knowledge about some sets or subsets of
data to create information for a higher layer of applications” [Wie92]. Mediators
allow the addition of new databases unknown to the user by adding a mediator
layer which is responsible to translate the queries to the designated database. While
the user can still query data without knowing the amount and structure of the

4.5 Related Work and Comparison 79

queried databases, the Mediator needs to know all connected databases. If a new
database is added, the Mediator is extended. [Wie94, Wie13]

The mapping of the mediation within these systems can basically be implemented
in two different ways [Lev00]:

– Global-as-View:
The global data scheme is the sum or union of the local schemes. For this
the schemes of all connected data sources are taken and a global scheme is
defined, either by using all entries in the scheme or by only using the entries
that are available in all data schemes.

However, this requires that the global scheme has to be updated as soon as
the data scheme of a local source changes. This approach is not suitable for
systems in which not all sources are known in advance, data sources can be
added or removed, or data schemes continuously evolve. Otherwise it can
pose a risk of asynchronicity and incoherence with the applications that are
using the platform, since it can not be guaranteed that the local scheme of the
data sources stays compatible to the global scheme.

– Local-as-View:
In the Local-as-View concept, the global scheme is defined independently of
the connected data sources. Instead, a mapping from the global to the local
schemes has to be defined. This method is preferred to the Global-as-View
approach since the global scheme is only defined once and only the mapping to
the corresponding source has to be updated if the scheme of the local sources
changes.

However, the Mediator concept needs a central administrator who connects existing
databases to the system which does not satisfy R3.

• Apache Hadoop:
A different approach (which is very commonly used to store large amount of data)
is Apache Hadoop. It is a framework that allows the usage of a network of many
computers to solve problems involving massive amounts of data and computations.
The default file system, called Hadoop Distributed File System (HDFS), is a distri-
buted, scalable, and portable file system. It usually stores large files in the range of
gigabytes to terabytes [Fou] across multiple machines.

Still, Apache Hadoop duplicates the data on multiple data sources and, at the same
time, all data sources are managed by a central instance. This means Apache Ha-
doop violates all of the our defined requirements stated above.

80 4. Retrieving Data: Introducing the Reverse-Mediated Information System

Different applications exist with different approaches to allow the retrieval of data sets
from distributed sources. In the following, we want to give an overview of some of the
applications and how they work.

• CLARIN:
The Common Language Resources and Technology Infrastructure (CLARIN) is an
infrastructure that “aims to provide easy and sustainable access for scholars in the
humanities and social sciences (HSS) to digital language data (in written, spoken,
video or multimodal form) and advanced tools to discover, explore, exploit, anno-
tate, analyze or combine them, independent of where they are located.” [KH14].
CLARIN uses data centers which are distributed all over Europe. These ‘CLARIN
centres’ store reference data sets – to be used for analyses – and also allow the
creation of new resources which have to be mapped to appropriate data formats
and be described with metadata. This approach allows querying (text) data in a
standardized way. However, this method violates the requirements R1, R3, and
also R4.

• SchizConnect:
SchizConnect [WAC+16] allows the querying of multiple data repositories for schi-
zophrenia neuroimaging studies with the help of mediators. New data sources can
be added, and with the help of mediators their model can be mapped to the global
SchizConnect domain model. This allows users to query data with the global terms.
The search is translated to the individual data schemes and the databases can be
queried concurrently. However, the connected databases have to be connected with
the SchizConnect Mediator (a central platform) for this approach. SchizConnect is
built upon XNAT [HHO+16], an open-source imaging informatics platform. Due
to using the mediator approach, requirements like and R1 and R4 are fulfilled,
however, SchizConnect violates requirement R3.

• Neuroscience Information Framework & NIF DISCO:
There are other solutions that provide a broad range of capabilities to store data in
distributed locations. As an example, in the neuroscience disciplines the Neuros-
cience Information Framework (NIF) [GAA+08] is available to handle data. The
extension NIF DISCO is a framework to facilitate the automated maintenance of
the connected data sources. Whenever “a resource changes the scope of its con-
tents, the resource developers can make corresponding changes to a local DISCO
file describing their resource. The information in this file is then “harvested” by
a central DISCO server on a regular basis and incorporated into the NIF Registry
entry describing the resource.” [MWSM10] The concept of the DISCO framework
helps data owners to describe and to update their scheme by updating a registry

4.6 Case Study: Retrieving Archaeo-Related Information 81

file. Therefore it fulfills most of our requirements. However, a rights management
system is missing, therefore requirement R5 is violated.

• The Australian Repositories for Diffraction Images:
The Australian Repositories for Diffraction Images (TARDIS) [ASB+08] was created
as a solution to store large X-ray diffraction images. It uses a federated approach
to distribute the uploaded images over several databases. The images can be uplo-
aded from a central website along with their standardized metadata. Later, users
can search through the databases for the metadata to get the desired information.
Other applications are also built upon the TARDIS data management system, like
the Online Ancient Genome Repository (OAGR) 30, an open access repository for
ancient human DNA data. However, since the data is collected from a central plat-
form, this violates several of our requirements like R1, R3, and also R4.

In contrast to these existing approaches, the Reverse-Mediated Information System ful-
fills all defined requirements from Chapter 4.3. REMIS connects heterogeneous data
sources (R1) whose physical location is not known beforehand (R2). There is no need
for a central administrator (R3) and the data sources can be searched independently on
the database scheme (R4). The provided user rights management allows the data source
owners to protect (maybe sensitive) information from unauthorized access (R5).

4.6 Case Study: Retrieving Archaeo-Related Information

For a case study, we use real data of three database applications in archaeo-
related sciences: OSSOBOOK [KLK+18a], EXCABOOK [KLK+18e], and ARCHAEOBOOK

[KLK+18d].
For each of these applications a Connector Application was configured to connect the

data sources to the REMIS architecture. For our case, we required the research field
“Archaeology” to be supported. The Server Application was initialized to require the
Minimal Find Sheet information as the values for the Minimal Search Parameter. These
are values that are always known in an excavation. They include the Feature Number of
the excavation (which is centrally assigned by the Bavarian State Office for Monuments
and Sites31), the Find Sheet Number, and location information (excavation place and
x-/y-coordinates of the excavation).

The interested user can use the REMIS web interface to request data from the con-
nected data sources, but they do not need to know that they exist. The web interface is
shown in Figure 4.13 (the search mask) and in Figure 4.14 (the result view).

30http://www.oagr.org.au
31http://www.blfd.bayern.de

http://www.oagr.org.au
http://www.blfd.bayern.de

82 4. Retrieving Data: Introducing the Reverse-Mediated Information System

Figure 4.13: Screenshot of the search mask of REMIS.

The search mask offers the opportunity to select the research field “Archaeology”.
Then the corresponding Minimal Search Parameter is loaded and can be entered which
actually consist of the values of the Minimal Find Sheet.

We want to retrieve information about the excavation “Marienplatz-Haltepunkt” in
Munich, Germany, of which we know the excavation number “M-2011-13-1”. We enter
this number into the corresponding input field of the web interface and click the “Retrieve
Data” button. In the background, the REMIS architecture will now query information
from all connected databases – this means the Server Application will send the user
request to the Connector Application of each of the registered databases. In our case, the
Connector Application of OSSOBOOK, EXCABOOK, and ARCHAEOBOOK will each receive
the user request and will then translate it to the local database scheme considering the
mapping of the configuration. Then the query with the translated mapping is executed,
and the retrieved information is sent back to the Server Application.

Then, the result is passed to the web interface which displays the information in
table form to the users. Due to the different data schemes of each data source, the
information from each data source is displayed in an own, collapsible block. In our
search, we received information from the databases OSSOBOOK and EXCABOOK which

4.7 ReMIS Cloud 83

Figure 4.14: Screenshot of the (shortened) retrieved result of REMIS.

is displayed to the users in the browser. However, there was no information stored in
ARCHAEOBOOK for the selected excavation number and therefore no data was returned
from its Connector Application– so it is not included in the result view.

In the result view, the users can now view and sort the results directly in the browser,
but can also export the data to XLS, XLSX, or CSV files for further analyses in spreadsheet
application or other tools.

4.7 ReMIS Cloud

Whilst the REMIS architecture allows the retrieval of distributed information from dif-
ferent data sources in one scientific domain, it is not or at least not easily possible to
combine data from different domains. An interdisciplinary information system requires
an architecture that cannot be achieved by the initial REMIS. The decentralize architec-
ture of REMIS provides a solid basis. The heterogeneous data sources remain in their
origin data sources. However, we provide a central architecture in which multiple REMIS
are embedded. We call this architecture the REMIS CLOUD which is described below. An
abstract overview of the REMIS CLOUD is sketched in Figure 4.15.

84 4. Retrieving Data: Introducing the Reverse-Mediated Information System

4.7.1 Structure

The basic functionality of the Server Applications in the REMIS is retained, but it should
now serve as a central possibility to categorize a specific field of data. Instead of distri-
buted Server Applications for separate topics, they are now managed on a central shared
server for the REMIS CLOUD technology. We want to provide a unified category system
which is considered by all connected data sources. This is essential because these catego-
ries form the basis for the search requests. To point this out, we use the term “Category”
as a synonym for a Server Application.

If needed, new Categories can be registered to the REMIS CLOUD and need to be
activated by a responsible person. Even if this is an additional step to be managed, the
REMIS CLOUD technology benefits from central managed categories to allow a better
quality control, like to avoid nonsensical and duplicated Categories. A Category basi-
cally consists of a name for the Category and the definition of the Category Information
Definition (CID). The CID, which is comparable with the Minimal Search Parameters,
guarantees that all connected data sources provide the defined parameters and there-
fore the information that is necessary for the corresponding Category. These are also the
parameters the users can search for. We would like to point out that each data source is
not limited to one single Category and specific columns of a data source can be mapped
to several Categories. If all parameters of all CIDs are mapped, any number of Categories
can be assigned.

Furthermore, the existing REMIS architecture is extended by a tagging system to pro-
vide further and more detailed filtering of data. This tagging system is integrated to the
Server Application and the Connector Application. The administrator of the Server Ap-
plication defines one or more appropriate tags which describe the general context of all
connected data sources. In the Connector Application, the data owners can define indivi-
dual and more detailed tags for their data during the initialization process. Additionally,
each data source also inherits the defined tags of the dedicated Server Applications.

4.7.2 Data Retrieval

The REMIS CLOUD provides a central website where search requests can be defined by
any users. Below, we describe the data retrieval that is split in three steps.

In the first step, the users can select from all available Categories that are registered to
the REMIS CLOUD. Once one is selected, all parameters of the CID of the Category are lo-
aded and displayed to an input mask. There, the users can enter their search parameters.
This is sufficient to already run the data retrieval. All databases that are connected to the
corresponding Category will now be queried to gather the data, dependent on the user
input.

4.7 ReMIS Cloud 85

Figure 4.15: An abstract sketch of the REMIS CLOUD architecture.

So far, the process is comparable with the origin REMIS, but now it also allows mul-
tiple Categories to be searched. Thereby, we have to differentiate between an OR search
and an AND search which the users decide. Using an OR search, data from the data
sources is retrieved once at least one value of the defined search request matches, inde-
pendent of the searched Category. Using an AND search, the architecture has to ensure
that all search parameters match independently on the number of Categories.

All values of the filled search parameters by a user are now merged into a list. Sorted
by the order of the selected Categories in the search, the Categories are now queried by
the Category Management in the Central Server. Since all data sources that are connected
to a specific Category are guaranteed to support the CIDs of the Category, the Category
has only to check if the data source was already searched. If this is not the case, the list is
passed to the Connector Application of the data source. There, all search parameters that
were filled by the user (also the ones of the other selected Categories) are mapped to the
local scheme of the data source which is then queried and returns the list of results.

The second step is basically optional, but provides the possibility to search for further
information about existing data sets, even if the information is spread through different
data sources. Here, the search mask provides a selection of Categories – without the de-
finition of any specific search parameters. This selection displays all available registered

86 4. Retrieving Data: Introducing the Reverse-Mediated Information System

Categories from the REMIS system. A preselection of the available Categories of the data
sources is not possible in advance without an additional search to determine them. Due
to the accessible data sources may be different for every new search requests, it is not
intended to execute several iterations for each search run. If the users select any number
of Categories, these will be considered to search for further information dependent on
the CID values.

The list of result, which was returned by each data source in the first step, is checked
for values of the Categories that were selected by the users for further information. These
values are now used to search for further information with the values of the result as
parameters. Thereby, a search request can be sent to the corresponding Category. The
values of the parameters of the CIDs are not defined manually by the users in this case,
but are read out from the data source. The results are sent back to the users. Finally, the
results from the first step and the additional information retrieved from the second step
are displayed.

In the third step, the users can filter the result for specific tags or data sources. While
retrieving the data, the returned search results are supplemented with the tag infor-
mation and the name of the data source. This enables a filtering for this information.
Therefore, the users get a selection of all available tags from the search result and names
of all data sources. A selection of the tags and data source names filters the data.

4.7.3 Use Case: Scientific Example (Archaeology)

Archaeo-related sciences deal with distributed data which is not commonly standardized.
There are countrywide and statewide, but also regional and individual approaches how
to gather and store archaeological data. This makes it hard to consider all available
data for large-area analyses. The distributed data sets can hardly be set in relationship
due to different data schemes and standards. In contrast to this, analyses of archaeo-
related disciplines would benefit strongly from considering scientific data from other
disciplines as well. But up to now, the retrieval of interdisciplinary data is cumbersome,
time-consuming, and error-prone.

The REMIS CLOUD supports the archaeologists and bioarchaeologists in their work
by providing an architecture that allows retrieving spread and interdisciplinary data.

As a vivid example, which is illustrated in Figure 4.16, we basically consider three da-
tabases with archaeological data. In Bavaria, Germany, the zooarchaeological database
OSSOBOOK and the archaeological database EXCABOOK follow the guidelines of the Ba-
varian State Office for Monument and Sites32. Therefore, these databases are connected
with the Category “Archaeology BY” (with the tag “Archaeo”) which requires that the
parameters of its CID are mapped to the databases, that means: The find sheet number

32http://www.blfd.bayern.de

http://www.blfd.bayern.de

4.7 ReMIS Cloud 87

and the excavation number. The database ADABweb33 is used in Baden-Württemberg
and Lower Saxony, Germany, and could be connected with the Category “Archaeology
BW/NI” (also with the tag “Archaeo”) of which the CID requires other parameters to be
mapped. Because all three databases have also saved x- and y-coordinates of the excava-
tion places, they could also be connected to the Category “Geographic Coordinates”.

Basically, archaeological and bioarchaeological scientists are interested in considering
all available findings of an excavation from all databases for their analyses. Using the ori-
gin REMIS architecture, it was already possible to gather all data of a specific excavation
number from the databases OSSOBOOK and EXCABOOK, but the corresponding findings
of the database ADABweb are not considered. With the REMIS CLOUD, the users could
now search for a specific excavation number in the search mask and define to search
for further information about the search results. By selecting the Category “Geographic
Coordinates” the system could retrieve all information with the same coordinate infor-
mation from all data sources that are connected to that Category. In our example, we
would retrieve matching information from the database ADABweb and also interdiscipli-
nary data, like climate and time information from a weather database. The scientists
could now filter the result for the tag “Archaeo” and they would only get displayed the
data from the archaeological databases with this tag. As a reminder, the data sources
inherits the tags of the connected Categories.

The scientists can also consider the interdisciplinary data from the result. If they filter
the result for the tag “Climate” in our example, they retrieve all available climate data
with the matching geographical information for the searched excavation number. This
could be very useful for large-area analyses of findings where climate conditions should
be considered. Of course, this is not limited to climate data. The possibilities depend on
the data sources that are connected to the REMIS CLOUD.

4.7.4 Use Case: eLearning Example

Imagine some students have to answer the following question: “The year 2017 marks
the 500th year after Martin Luther nailed his theses to the door of the Castle Church in
Wittenberg. We assume that he had access to a mobile audio device. What music would
he had listened to?” This question is not so trivial to answer by just using a query in the
search engine of one’s choice. The information is available, but it is not preassembled so-
mewhere. Using classic search strategies, one would try to use consecutive search queries
to refine the results and search in different sources. With our information management
system, this can be done in one step. We assume that we have the necessary data sources
registered in our system. As sketched in Figure 4.17, there is (A) a database containing

33http://www.adabweb.info

http://www.adabweb.info

88 4. Retrieving Data: Introducing the Reverse-Mediated Information System

Figure 4.16: A simplified sketch of the REMIS CLOUD architecture for archeo-related sciences.

historic events, corresponding persons and dates, and (B) a file system containing music
files.

First, we query “Luther” in the Category “Historic Events”. (A) contains the Category
“Historic Events” so this data source is examined for matches with “Luther”. The result
set could be stated as shown in Table 4.1.

Event Person Year

Birth in Eisleben Martin Luther 1483

Start studying in Erfurt Martin Luther 1501

Magister artium in Erfurt Martin Luther 1505

Travel to Rome Martin Luther 1510

Posting of theses Martin Luther 1517

Excommunication Martin Luther 1521

Marriage with Katharina Bora Martin Luther 1525

Translation of Bible Martin Luther 1534

Death in Eisleben Martin Luther 1555

.

Table 4.1: Extract of the result for the example query “Luther” in the Category “Historic Events”

Our tool allows to further inspect the set of data sources for links with the current
result data. So we can start the second step with one click. (A) also inherits the category
“Dates” and for (B) it is also very usual to do this as well. Music files contain metadata
like the publishing date in most cases. In a uniform database environment, we would
have two database tables and can join tables using the “year” attribute. Using heteroge-

4.7 ReMIS Cloud 89

Figure 4.17: A simplified sketch of the REMIS CLOUD architecture for the eLearning example.

Figure 4.18: Screenshot of the REMIS CLOUD Prototype displaying the result described in Chapter
4.7.4

neous data sources makes it harder to define join operations.

Our approach utilizes the Category here. Since the data owner had to define the
Categories during the registration of the source, the common semantics of “Dates” are
already embedded in the system. The system matches other sources’ data with the Cate-
gory “Dates” and especially with every date according to events in Martin Luther’s life.
This allows us to quickly find connected information between Martin Luther and music
composed in these times. The result can be seen in the screenshot of our prototype search
engine in Figure 4.18. Obviously, we need the data and a correct registration to obtain
such results. On the other hand, the individual domain knowledge can be acquired as
music repositories and event databases exist.

90 4. Retrieving Data: Introducing the Reverse-Mediated Information System

Availability

A prototype of the REMIS CLOUD architecture can be downloaded from
http://remis.dbs.ifi.lmu.de

4.8 Conclusion and Discussion

In this chapter, we introduced the concept of a new architecture, the Reverse-Mediated
Information System, motivated by the need to search distributed data together with furt-
her contexts from multiple heterogeneous and anonymous data sources. We described
the concept of the architecture that allows users to retrieve data without having to know
about the existence of specific data sources where the data is actually saved. Then, we
extended the architecture to allow multiple disciplines to connect their knowledge which
enables querying enriched information. This could not easily be aggregated otherwise.

While this architectures already has many benefits for the users to gather data from
distributed databases, there are also some improvements and extensions that can be
addressed in the future that would improve both, REMIS and REMIS CLOUD.

In the first approach of the concept, the search possibilities for data are limited to
the information of the Minimal Search Parameter. In future developments, different
and more complex search options are possible. The Server Application could request all
connected databases for their individual database schemes. The columns of this schemes
could be displayed in the user interface as own input fields. Therefore, the user has
more options and the possibility of a more detailed and individual search through the
connected databases.

Currently, it is only possible to search for exact matches of parameters. For certain
types like dates, numbers, or coordinates more flexibility would be gainful. For example,
range queries would improve the usability for the REMIS by considering matches with
locations in a spatial proximity or timestamps in a certain time interval.

Data can be saved in different formats, e.g. geodata can be stored by defining coor-
dinates or the name of the place, or different time or date formats. Currently, we imply
that data is entered in the same format, but this might not be the case in other wor-
king environments. Therefore, it is necessary to provide a possibility to translate these
different formats so that a uniform comparison is possible.

At present, the system is designed to be used for the clear excerpt of structure for
archaeo-related data where most of the data sources are trustworthy and known. In
future, the system should also be adaptable by extern scientists and institutes – maybe
also a full-public approach. Therefore, a verification should be considered to avoid wrong
configured Connector Applications and spam.

Currently, the architecture requires a Server Application which is necessary for the

http://remis.dbs.ifi.lmu.de

4.8 Conclusion and Discussion 91

communication between users and data sources. It could be considered to change the
system to a Peer-to-Peer environment in which the Connector Applications are commu-
nicating directly to each other.

The data sources might also include sensible data, like in diary information or in meta
information of pictures. However, this data could also contain interesting information for
scientists, but especially personalized data should not be shared in plain text. A way to
provide this data is using the concept of k-anonymity [Swe02] that could be implemented
for this data in the Connector Application.

Finally, a more complex rights management system could help sharing data selectively
to specific users who could create a user account for the Server Application. Administra-
tors of the data sources could authorize access to more detailed data that is set to more
restricted privacy settings. This would also be a possibility for administrators to pass data
to a user that was contacting him via the contact information (cf. Chapter 4.4.4).

However, different data owners have access to data of different quality levels. Even
wrong data can be inserted into the system. An extension to report untrustworthy data
sources or mark data sources as spam, so that they are not or less considered during the
data retrieval, might be useful.

One server might not be sufficient if the system would grow large enough, that many
search requests have to be handled. It might be necessary to apply the same or simi-
lar optimizations that are already common for traditional systems, like load balancing,
caching, etc.

Additionally, an issue that may be of concern in REMIS CLOUD is that if a data source,
which is frequently queried and used as an intermediate link between different Catego-
ries, is temporary offline, it might disrupt the information retrieval. The information
management system should be improved to cache often queried parameters and their
results. This could probably also improve the retrieval time.

92 4. Retrieving Data: Introducing the Reverse-Mediated Information System

93

Chapter 5

Analyzing Data: Tools for the Scientific
Field of Application

Attribution
This chapter uses material from the following publications:

• Johannes-Y. Lohrer, Daniel Kaltenthaler, and Peer Kröger. Leveraging
Data Analysis for Domain Experts: An Embeddable Framework for Ba-
sic Data Science Tasks. In 7th International Conference on Internet
Technologies & Society 2016, Melbourne, VIC, Australia, 2016, pages
51–58, 2016 [LKK16a]

• Daniel Kaltenthaler, Johannes-Y. Lohrer, Ptolemaios Paxinos, Daniel
Hämmerle, Henriette Obermaier, and Peer Kröger. TaRDIS, a Visual
Analytics System for Spatial and Temporal Data in Archaeo-related
Disciplines. In 13th IEEE International Conference on e-Science, eScience
2017, Auckland, New Zealand, October 24-27, 2017, pages 345–353,
2017 [KLP+17]

See Chapter 1.2 for a detailed overview of incorporated publications.

Analyzing data is usually the final and most important step in the workflow of scien-
tific work (c.f. Figure 5.1). The collecting, sharing, and retrieval methods that were
presented in the previous Chapters 2, 3, and 4 build the basis for analyses of data from
disciplinary and inter-disciplinary domains.

Now, with all the necessary data available for the scientists, the next step is to support
them with their analyses. Many scientists are experts in their area of expertise. However,
they often lack the technical know-how to create complex analyses. They would greatly

94 5. Analyzing Data: Tools for the Scientific Field of Application

Figure 5.1: Analyzing data is usually the final step in any scientific workflow.

benefit if they can, without insight to the structure of the database and the data, create
analyses and visualization of the data completely without programming or data querying
knowledge.

Therefore, it is important to offer scientists a set of modules which are integrated to
the program and are matched to the corresponding data scheme they are using to collect
the data. This allows them to easily carry out the analyses of their data.

In Chapter 5.1, we introduce an embeddable ANALYSIS TOOL which allows the cre-
ation of different analyses in a familiar working environment. The ANALYSIS TOOL also
aims to encourage scientists to try new analyses or slightly vary the default analyses to
enable the creation of new knowledge.

In Chapter 5.2, we describe a specialized analysis for the visualization of temporal
and spatial information of findings of an archaeological excavation. This tool allows
to order and visualize the layers both in their physical location as also the temporal
sequence in which the layers were created.

5.1 An Embeddable Analysis Tool

In a database application for scientific data, the accessibility to analyses of existing data
is as important as the easiness of correct input. Entering and analyzing data is the most
important part of scientific work, but often scientists require a high degree of time and
patience to learn, evaluate, and validate an external tool. This effort drains resource
from their research work. Scientists working in areas that are not related to IT techno-
logies often do not have the motivation and the resources to get familiar with external
applications. A built-in tool would provide the needed data analysis features relevant for
this scientific areas.

Therefore, exporting data into a spreadsheet (like Microsoft Excel, LibreOffice Calc,
etc.) or CSV file and importing this into a separate analysis application can in the worst
hinder them completely from analyzing the data since the process maybe too complex,
time-consuming, or error-prone. Also, generating the analysis in a spreadsheet directly

5.1 An Embeddable Analysis Tool 95

is not always possible since complex analyses might require additional functions that are
not provided by a generic spreadsheet application and cannot easily be added without
programming skills. Clearly, the process of the data analysis should be easier for the rese-
archer. The best case would be if the feature to analyze the data is already built into the
application where all data is stored and new entries can be added because the scientist
using the built-in application is already very accustomed to this working environment.

But even if the analysis tools are built into the application, a crucial problem still
remains: The scientists who are carrying out the analyses are often not responsible for
creating the analysis applications nor are they even involved in the process of creating
the tools. Not all variations of analyses can be known beforehand since there are often
tasks specifically dependent on the scientific work. So the domain experts have to be
able to create exactly the analyses they require.

To allow this, the application has to provide not only predefined analysis methods,
but also offer dynamic generation of analyses by chaining together different simple con-
figurable modules. However, some scientific tasks are so special that these modules are
not sufficient. Therefore, there has to be a way to add own, specific modules as well.

In this chapter, we provide a ANALYSIS TOOL for data analysis that can be embedded
and thus can be used in different applications. The framework has to be extendable,
easy to be integrated into an existing application, and provide multiple operations that
are necessary to analyze data. The ANALYSIS TOOL has to be flexible and easy to be used
by scientists who are not willing to get familiar with external technologies to support
them in their work.

In summary, the main contribution is as follows: We list a set of requirements that
should be addressed by an embeddable ANALYSIS TOOL for scientific data analysis (cf.
Chapter 5.1.1). We discuss methods of existing analysis applications in Chapter 5.1.2.
Then, we describe the data structure, the functionality of the modules, and the clas-
sification that describes the values in the database in Chapter 5.1.3. We describe the
integration of the framework to another base application (cf. Chapter 5.1.4) and the
definition of new, custom modules (cf. Chapter 5.1.5). Finally, we introduce some of
the most common modules as examples (cf. Chapter 5.1.6) and use them to present an
example of a workflow (cf. Chapter 5.1.7).

5.1.1 Requirements

Allowing the users to generate their own analyses out of arbitrary data offers a challenge
because neither the input nor the output is known. All steps in between are also up to
the users. Still, the users have to be able to work in a responsive environment which
allows them to carry out the steps they want and need. Additionally, not all operations
should be allowed or are possible at a given step of the analysis pipeline.

96 5. Analyzing Data: Tools for the Scientific Field of Application

As a consequence, we have defined several requirements that have to be met to allow
a dynamic generation of analyses.

• Dynamic data structure:
We need a data structure that allows data to be easily added, removed, merged,
and accessed, since the data has to be generated, transformed, searched in, and of
course also be displayed. This data structure has also to be usable in every part of
the analyses independent of the previous steps.

• Modular components:
Since the users have to define the operational steps, the order in which specific
tasks are run is not known beforehand. Therefore, we need modular components
that can be linked together and define a “workflow”. The components have to be
able to accept the data structure – no matter what components were used before,
but not all inputs have to be valid for the component. Therefore, it is possible
that none of the inputs can be used by the component, but still the data structure
itself has to be accepted. To make the component more dynamic, it also should
provide settings like which input to use or the order to sort. These settings should,
if applicable, dynamically change depending on the input.

• Classification:
All fields, for which the data can be retrieved for, have to be defined in a way that
each component can decide if or how the data for this field can be processed. For
example, a date value may have to be treated differently than a pure text value.
With this classification, a component can also decide if it is able to work with the
field or not.

• Extendability:
It has to be possible for everyone to extend the application with new components
that offer new, possibly very specific, functions. Since there are many special analy-
ses that cannot be put together with generic modules, it has to be possible to in-
clude these in the list of available workers.

• Open Source:
The area of application might be in an open source environment, therefore the
analysis has to be open source that it is possible to include it into the application.
Some other licenses might be applicable as well, but still this is a requirement that
is very important due to legal issues.

• Embeddability:
Since the analysis shall be done with the data the users might just momentarily

5.1 An Embeddable Analysis Tool 97

have entered, we require the analysis to run directly from the program without
first having to extract the data into spreadsheet, CSV files, or similar. This means
that the analysis has to be able to connect itself to another program and use the
structure defined inside the program for its analysis.

5.1.2 Existing methods

Now, we want to discuss if some of the most commonly used tools meet our requirements.
Since there are many different analysis applications, we cannot cover and evaluate all of
them. Therefore, we do not claim to offer an exhaustive comparison, but still think we
covered some of the most used tools that best fulfill our requirements. These can also be
found at kdnuggets.com [Jon16].

• Tableau Public:
As a commercial service, Tableau Public [Sof03] allows creating interactive data
for publications in the web that can also be used for analyses of any data. The
tool supports the analysis of text, numbers, dates, and coordinate values and offers
extensive visualization methods.

The free edition of the tool is provided on a limited scale. As a data source only
a few file formats are supported like Microsoft Excel, CSV files, or some files ty-
pes for statistical data. More data sources, like the connection to database systems
(MySQL, Oracle, Microsoft SQL, etc.), only come along with the professional edi-
tion which is fee-based. Tableau Public cannot be included directly into another
application. Files are always saved on the own profile and cannot be downloaded
or saved on the own computer in the free edition. Furthermore, it is not extendable.
The existing analysis methods cannot be extended with own, specific ones.

• KNIME:
A modular approach with graphical nodes that allows many different input met-
hods including tables, comma-separated values files, and even images is used by
KNIME. It enables the combination of “simple text files, databases, documents,
images, networks, and [...] Hadoop based data” [KNI06] and integrates the use
of modules for data blending, transformations, math and statistical functions, and
predictive algorithms. The extension of new modules is supported with an API.
But still, the application is an external one that cannot be included into another
application.

• RapidMiner:
Just like KNIME, RapidMiner [Rap06] also uses graphical nodes for the represen-
tation of the data. It is an open source project in the basic version and can be ex-

98 5. Analyzing Data: Tools for the Scientific Field of Application

tended with own nodes. It supports connections to databases. But, like the others,
this tool has the disadvantage that it cannot be used inside the main application
and has to be run as a separate instance.

In general, all of the mentioned tools are very good in what they do. They allow a
wide range of different analysis methods and also can be partially extended with new
functions. Additionally some of them allow a connection directly to the database wit-
hout having to extract the data first into an own file. Also, they all offer some kind of
classification of the different fields. Still, none of the tools allows an integration into an
existing application.

5.1.3 Realization

In Chapter 5.1.1 we discussed the requirements for a dynamic analysis. Now, we take up
these requirements and present our approach to meet them. Of course, especially for the
data structure, there can be more than one valid solution.

5.1.3.1 Data structure

To allow a dynamic and flexible restructuring and access to the data, a special data
structure is required. Therefore, the data structure for our framework consists of several
elements.

• Column Header:
The Column Header holds the important information about the specific field, such
as the type and the display name. Since a field is basically a column in the database,
we use the name of the field and the column as synonyms. The Column Header
itself does not store any information about the value of the field, but serves more
as information and meta data for the column. The additional information that is
stored in the Column Header is described later in more detail.

• Entry Value:
The smallest data type to hold the values is the Entry Value. It holds a list of strings
which represents the values for a specific entry. This is necessary if a field has
several options, e.g. different values for specific measurements. Therefore, every
distinct value is one string and all of them are saved inside the Entry Value.

• Entry Map:
The Entry Map maps the Column Header to the Entry Value inside a map. This map
now represents a complete entry. It can easily be accessed because of the nature
of the map. Therefore, writing and reading is no problem. Also editing values can
easily be done.

5.1 An Embeddable Analysis Tool 99

Figure 5.2: Schematic representation of a Property.

• Data List:
The Data List is a list of all Entry Maps which represents a complete data set. It
also contains the list of all Column Headers that are in any of the Entry Maps.
This serves as a utility method to allow components easy access to the list of all
fields without having to iterate over all entries. The list is generated by adding all
unknown Column Headers whenever a new Entry Map is added to the Data List.

5.1.3.2 Worker

Each component, or “Worker” as we call it, can have multiple inputs and outputs of data.
Some Workers do not necessarily have inputs, like Workers that retrieve data from the
database, since they generate data without manipulating it. At the same time, there can
be Workers without outputs, like a Worker that allows the users to display the data as a
diagram.

• Properties:
The Worker consists of inputs and outputs, settings, and the actual logic of the
Worker. The latter either uses the input(s) or creates a new Data List, runs its logic
considering the settings, and finally outputs the data or displays it.

The Worker can define a list of Properties which can represent a setting. So for
every setting type there has to be an own property. Typical properties are text
properties where the users can enter text (for example to describe a name) or
combo properties where the users can select one value from a list of values. The
schematic representation of the property can be seen in Figure 5.2.

Below, we describe the methods a Property has to implement:

– getLabel(): Returns the label to describe the property. This should make
clear for the users which setting they can manipulate.

100 5. Analyzing Data: Tools for the Scientific Field of Application

– setValue(): Called by the graphical representation with the specific value.
This is used to tell the Worker that the value has changed and therefore has to
update its data structure and possibly additional properties.

– addPropertyListener(): All elements that are dependent to this property can
register themselves as listeners which have to be notified if this property has
changed. It may be called when either new options are available that can be
selected or the value of the property itself was set.

– onNewOptionAvailable(): This is called if new options for this property are
available. This causes all property listeners to be notified, so that the graphical
user interface can now display the updated values.

– onSelectionChanged(): Almost identical to the method
onNewOptionsAvailable(), but instead it is called when the value of
the property is changed, for example after the setValue()method was called.

The Worker also defines the number of inputs and outputs. The users connect dif-
ferent Workers which basically is a directed graph or multigraph with the nodes
representing the single Workers and the edges representing the connections bet-
ween the Workers. The number of inputs can vary as some Workers require no
input some require an exact amount, and some can work with an arbitrary number
of inputs. If the Worker provides an output this can be used to pass the data on to
other Workers.

• Data handling:
Each Worker fulfills a predefined task like retrieving or merging data. But still,
the output of the Worker is only defined after the input(s) and settings for the
Worker are set. Therefore, it is not necessary to instantly generate the output since
the input(s) may change if a setting in a previous Worker was changed. But at the
same time it is important to know at least the Column Headers of the data to enable
updating the settings of the successive connected Workers. This is the reason why
the output is separated into two parts:

– Output Scheme:
The list of all Column Headers is returned by this Worker. This list is instan-
taneously generated as soon as an input or setting is changed. The successive
connected Workers are immediately notified with an event that the Output
Scheme of this Worker was changed and enables checking themselves if their
Output Scheme changed as well. This list has the same value that the list of
Column Headers inside the Data List should have in the real output. The-

5.1 An Embeddable Analysis Tool 101

refore, Workers only need this list to define which settings they provide and
what Output Scheme they return.

– Output Data:
The Data List with the “real” output containing the data. This is only gene-
rated if necessary since the composition of the data could take some time. A
complete recalculation is not required if only the Output Scheme is important.
Of course, the real data has to be generated if a diagram representing the data
has to be displayed or the values should be listed. This is done recursively.
Each Worker, beginning at the end, requests the Output Data of the Workers
that are connected with its input. Of course, this means the starting Worker
has to be able to generate data without any input.

This separation into Output Scheme and Output Data allows a fast applying of
updated settings and rearranged inputs or outputs while still ensuring that the
correct type is used.

• Interaction with the Graphical User Interface:
The Worker itself is only responsible for the logic. But since the users need to
be able to easily arrange, connect, and configure the Workers, there has to be a
graphical representation. The graphical user interface is notified with events of
changes in the properties. At the same time it uses the properties to notify back
to the Worker if any value of the settings was changed, such as entering a text
or selecting a new value. This allows the graphical user interface to be created
independently of the logic and therefore is not limited to a specific format. The
exact design of the graphical user interface is not part of this thesis. Here we want
to describe the technical connection to the graphical user interface. A discussion
about the benefits of different GUI designs was done in [KLK17].

5.1.3.3 Level of Measurement

Since typically the database containing the data consists of multiple tables with a variety
of different types of entries, not all columns can be used to carry out every operation.
For example, a text cannot be used for a numeric ordering of entries or a numeric value
should not be alphabetically ordered. For every column it has to be defined which types
of operation are compatible with the column.

This is achieved by using the Level of Measurement, a classification that describes the
nature of information within the values [Ste46]. It defines four different basic scales of
measurement:

102 5. Analyzing Data: Tools for the Scientific Field of Application

• Nominal Scale:
The different values can just be differentiated by their names. Therefore, it can
only be used to get the quantity and to check if a value equals another or not.
Possible modules: Filter, counter.

• Ordinal Scale:
The values can be ordered, but do not allow to measure the degree of difference
between different values.
Possible modules: Sorter, median, mode, and all modules of Nominal Scale.

• Interval Scale:
The values can be measured by degree of difference, but not the ratio between
them.
Possible modules: Arithmetic mean, standard deviation, and all modules of Ordinal
Scale.

• Ratio Scale:
In addition to a degree of difference, values have a meaningful zero value.
Possible modules: Elementary Arithmetic and all modules of Interval Scale.

Since all columns now have a definition of which scale they have, modules can define
which scale they can work with. Therefore, they only work with columns that have
the required scale. For our intention, every column has to be assigned to one of the
scales. The corresponding Level of Measurement of the columns is saved inside the
Column Header. Additionally, we require information how to order the entries for every
column. The default ordering is alphabetically. Still, numeric values should be ordered
accordingly and also text values that have an ordinal scale should be ordered correctly.
This requires a Comparator to be set inside the Column Header for the corresponding
column.

5.1.4 Integration

To be able to reuse the ANALYSIS TOOL in different base applications, it is important that
the integration requires as few changes to the base application as possible. But since the
ANALYSIS TOOL cannot know how the data is stored or how the connection to the data is
realized, the base application has to implement some wrapper methods.

The ANALYSIS TOOL itself is composed in a JPanel or JFXScene. The base application
can either create a new AnalysisSwing or AnalysisFX instance which both require an
IController (cf. Figure 5.3). The IController is the interface that serves as the combi-
nation of the base application to the analysis. It provides the following methods that the
base application has to implement:

5.1 An Embeddable Analysis Tool 103

Figure 5.3: Schematic representation of the IController.

• getTableNames(): Returns the list of different names of tables that can be selected
for the analysis. This should only return tables in which the users have entered
data.

• getColumnsForTable(): Returns the columns for the given table that can be in-
cluded in the analysis. This should return only columns that are important for the
users, but no columns that contain additional information that provide no informa-
tion for the users. The expected return value is a list of Column Headers. Therefore,
all columns have to be transformed into this format. This is important because all
future analysis options are based upon the information stored inside the Column
Headers.

• getKeysForTable(): Returns the key columns for the given table. This can be
used for example in the Combiner to provide default mappings. Also this method
requires the returned values to be a list of Column Headers.

• getProjects(): The database can possibly be structured in different “projects”
which is a logical separation of different data sets. To also allow this separation
inside the analysis framework, a list of unique identifiers can be returned. This
could be just a name or an integer, but can also be a more complex data structure
in which the toString() method returns the name of the project, so that his can be
later displayed for the users. If the separation into different projects is not desired
or supported, this method can return null.

• getDataForColumns(): Returns the Data List for the given columns in the given
table for the optional project. Since the ANALYSIS TOOL has no knowledge about the
structure of the database, the base application has to generate the Data List. The list

104 5. Analyzing Data: Tools for the Scientific Field of Application

Figure 5.4: Schematic representation of the Worker.

of projects is only required if getProjects() returns a value and can therefore be
ignored if it is not applicable. The values that are returned should not be the values
as they are stored in the database, but already translated into human readable form,
e.g. by translating IDs into the appropriate values.

If necessary, all Workers can use the IController to retrieve the data they require.
This is the only connection data-wise needed for the analysis, as all further analyses
is built onto the retrieved data. Therefore, the base application has not to know any
internals of the analysis or other way around. Since the analysis is done inside one
panel, it can be easily be included into the base application which can decide where and
when the analysis shall be displayed.

5.1.5 Definition of Custom Workers

While creating an ANALYSIS TOOL not all use cases can be known beforehand since the
area in which the analysis is used is not always known in advance. Therefore, it is
very important to be able to add new Workers accordingly to the requirements of the
individual analysis that shall be carried out.

For this, we defined a very simple API to allow new Workers to be easily implemented.
To add a new Worker, it has to implement the interface IWorker (cf. Figure 5.4). It

defines the basic functions that are required for the integration in the workflow.

• getTitle(): This method expects the name of the Worker to be returned as a
string value. This name is displayed for the users inside the graphical user inter-
face. It should be a short but meaningful name which allows the users to instantly
comprehend the function of the specific Worker.

• getProperties(): Returns a list of Properties which define the settings of this
Worker. With these settings, specific aspects for the Worker can be set (cf. Chap-

5.1 An Embeddable Analysis Tool 105

ter 5.1.3.2). This list of Properties also includes Properties for the input and output
which define the connection to other Workers. The Worker is notified over the Pro-
perties if the input or a setting has been changed. Since the Properties are abstract
classes, all methods of these classes have to be implemented when creating a new
Worker (cf. Figure 5.2). This includes the displayed name, the logic for setting and
retrieving data, and additionally which values the representation in the graphical
user interface of the Property shall display, depending on the Property.

• getOutputData(): Returns the Output Data of the Worker after it has completed
its job. If neither the input nor the settings of the Worker have changed this can
return the generated values from the previous call. Otherwise the process has
to be run again. Therefore, in this case the method has to call in this case the
startWorking() method and return the generated values after it has completed.

• getOutputScheme(): Returns the Output Scheme of the Worker that would be re-
turned in the Output Data if the Worker would return its generated data set. The
Output Scheme should be calculated with regards to the Output Scheme of the
connected previous Workers (if there are any) and the settings of this Worker. If
the input and settings of the Worker did not change, this method does not have
to recreate the Output Scheme again, but can just return the previously generated
data. Also, this method should not run the complete calculation method, but only
calculate the Output Scheme.

• onInputChanged(): This method is called by the Properties to notify the Worker
that something has changed and the Output Scheme and Output Data have to
be recalculated, if requested. However, this method should not start the update
process itself.

• startWorking(): In this method the actual logic is carried out. The input is col-
lected by iterating over all input Properties and getting the Output Data of the
connected Workers. This triggers them to generate their results themselves if nee-
ded by carrying out the same logic recursively. Then the result of the Worker is
calculated with regards to the settings defined in the Properties. This method is
usually only called inside the getOutputData() method.

• setController(): This method is used to set the IControllerwhich is used for
interaction with the base application. This is required to be an own method and not
part of the constructor since all Workers are created with reflection. Therefore, the
constructor needs to be the empty constructor. With the IController, the Worker
is able to query the base application for information that is possibly required for
the Worker to carry out specific operations.

106 5. Analyzing Data: Tools for the Scientific Field of Application

After the Worker has been created, there are two options to register it to the applica-
tion.

• Direct registration:
The API provides a registry class which allows Workers to be registered for inclusion
in the ANALYSIS TOOL.

In addition to the Workers available by default, the registered Workers can then
be selected by the users. This method requires of course access at runtime and
therefore can usually only be done from the base application.

• Indirect registration:
The indirect registration allows externally created Workers to be included in the
ANALYSIS TOOL. For this, all .jar files inside a specified folder (default “./analyses/-
workers”) are analyzed if they contain classes that implement IWorker and if so,
they are added to the list of available Workers for analyses.

Since the Workers use Properties to tell the graphical user interface what to display,
it is important to also add new Properties if the available Properties are not sufficient.
This consists of two parts: The definition of the property itself and also of the definition
of the graphical representation of the Property.

All new Properties have to extend the Property class (cf. Figure 5.2). They can
define additional methods that are used by the representation of the graphical user in-
terface. Then the newly created Property can be registered together with the graphical
representation in the registry.

5.1.6 Example of Provided Basic Workers

We have already mentioned that there are types of Workers that fulfill different tasks.
Here we want to give an example of the most common Workers that are sufficient for a
basic analysis. A screenshot of these Workers from the ANALYSIS TOOL can be viewed in
Figure 5.5. Of course, there are far more different Worker types possible, but we only
want to give an overview over the possibilities the Workers provide.

5.1.6.1 Retriever

The Retriever is the most basic Worker that is used in every analysis. The Retriever, as
the name suggests, retrieves data from the database. The users can define the fields
and projects they want to include in their analyses. The available fields and projects are
retrieved from the local database. They are a representation of the data structure of the
application the ANALYSIS TOOL is embedded in. This would normally be the fields the

5.1 An Embeddable Analysis Tool 107

Figure 5.5: From left to right, the screenshots of the Retriever, Combiner, Filter, and Sorter, as they
are represented in the graphical user interface of the tool.

users either want to filter, display, or further analyze. The Retriever is the only Worker
that needs a connection to the database to get any data. It uses the IController to get
the required data. The retrieval from the database is most likely a simple SQL query for
all fields selected by the user.

5.1.6.2 Combiner

The Combiner allows different data sets to be combined. The users can define the fields
which should be considered when combining the data sets. The list of available fields is
defined by the Output Scheme of the previous Workers as described in Chapter 5.1.3.2.

For example, the Combiner can be used if a user has already created two different
analyses with different data sets and now wants to combine the data for a third analysis.
The Combiner searches for entries in the given list of data sets that are equal on the fields
the user entered. The result of the combination can be compared to the SQL join. There
are two possibilities that either only entries having a match or also entries that have no
match are combined. In this case, the other columns are filled with empty values. Then
these entries are combined into a new entry.

5.1.6.3 Filter

To filter out entries that are not required in the analyses, the Filter can be used. For
example, an analysis about specific animals may only require the entries containing data

108 5. Analyzing Data: Tools for the Scientific Field of Application

of these animals. So the users can filter out all other animals by using the Filter.
The users have several options: They can specify the fields for which the data shall

be filtered. The list of available fields is defined by the Output Scheme of the previous
Worker, as described in Chapter 5.1.3.2. Depending on the column header, they can
specify whether the value of the field contains or equals a specific text. For dates or
numbers it is possible to check if the value is smaller, greater, or equal than a specific
user input. It is also supported to define a combination of different fields that can be
filtered at the same time.

5.1.6.4 Sorter

The Sorter sorts entries according to the comparator set in the Column Header (cf. Chap-
ter 5.1.3.3). It only has one input, but allows more than one column to be set as sorting
column. This allows applying different priorities if the values of the column with a hig-
her priority are equal. This can for example be useful if in a diagram a specific order of
entries is required.

5.1.6.5 Diagram

The Diagram is the umbrella term for Workers that display the result in a graphical
representation. It can be used in different and complex ways.

As an example, we describe a two-dimensional, axis-oriented bar chart. The users
can select the field which values shall be used for the x-axis. The list of available fields
is defined by the Output Scheme of the previous Worker as described in Chapter 5.1.3.2.
The different values of this field are then listed as values of the x-axis. The number of
entries for the given value are displayed on the y-axis. An example of a Diagram can be
viewed in Figure 5.6.

Figure 5.6: Examples for different Diagrams

5.1 An Embeddable Analysis Tool 109

Figure 5.7: Composition of the analysis for animal distribution in Munich, described in the first ex-
ample of Chapter 5.1.7. The analysis framework is embedded to the zooarchaeological
database OSSOBOOK [KLK+18a].

5.1.7 Workflow

We discussed the structure required for the ANALYSIS TOOL and also gave examples of the
most basic Workers. In the next step, we want to put the pieces together and describe
how a typical analysis is built. We will show two examples: The first one is a very
simple, but still frequently used analysis to get the distribution of animals. The second
one is a bit more complex and deliberately abstract and requires a custom Worker to be
implemented.

For the examples below we take a sample table with the columns “ID”, “Animal”,
“Location”, and “Size” as shown in Table 5.1. Of course, in real scientific databases a
table like that would contain several more columns and data sets. Because of reasons of
clearness we reduce the example data to a minimum.

5.1.7.1 Basic analysis

In the first example, we want to calculate a distribution of animals in Munich, and create
a graphical representation of the data as a bar chart. The composition of the data in the
ANALYSIS TOOL is shown in Figure 5.7.

The analyzing process can be divided into three different steps:

• Planning and collection of data:
Gathering all required data from different sources and combining it so it is able to be

110 5. Analyzing Data: Tools for the Scientific Field of Application

ID Animal Location Length ...

1 Dog Munich 85 ...

2 Mouse Los Angeles 74 ...

3 Dog Guarujá 14 ...

4 Cat Baltimore 21 ...

5 Dog Munich 42 ...

6 Cat Baltimore 32 ...

7 Mouse Los Angeles 98 ...

8 Penguin Baltimore 569 ...

9 Dog Munich 65 ...

10 Penguin Guarujá 851 ...

...

Table 5.1: Animals

used for further processing.
We first identify the fields we need in our analysis. These are: “Animal” and “Loca-
tion”. The fields “ID” and “Size” are not important for our goal and can be disregar-
ded.

The first Worker we use is a Retriever to get the necessary data. We configure it to
get the fields “Animal” and “Location” only.

• Processing data:
The collected data is processed to remove unimportant data or structure the data, e.g.
by filtering or sorting it.
Next, we only want to filter all animals from Munich. Therefore, we add a Filter.
The input of the Filter is connected to the output of the Retriever, which makes the
fields “Animal” and “Location” available as options for the Filter. There we select
“Location” and define only to allow data sets in which the “Location” value equals
the term “Munich”.

• Generating result:
The processed data is used to display a result like a diagram or any other visualization.
The last Worker is a Diagram. It takes the filtered data from the Filter and displays
a graphical representation of it. In our case, we choose the bar chart. We can now
select the column its values we want to use as the x-axis. We select the “Animal”
column and the Worker generates the chart as seen in Figure 5.8.

5.1 An Embeddable Analysis Tool 111

Figure 5.8: Possible result of the first analysis.

5.1.7.2 More complex analysis

We now want to calculate the most common animal related to the average temperature
in our sample data. For this, we take data from Table 5.1 of the previous example
and introduce a new table with the average temperatures of the locations, as shown in
Table 5.2. The composition of the analysis can be seen in the screenshot of Figure 5.9.

ID Location Avg. Temperature

1 Guarujá 21.8

2 Munich 13.0

3 Baltimore 18.4

4 Los Angeles 21.3

Table 5.2: Average Temperatures

• Planning and collection of data:
Like in the example before, we start with a Retriever that returns the fields “Animal”
and “Location” of the table “Animals”. Additionally, we need a Retriever that returns
the fields “Location” and “Avg. Temperature” from the table “Average Temperatures”.

• Processing data:
Now we only want to get the most common animal per location. Therefore, we
have to create a custom Worker. This Worker accepts only one input and provides

112 5. Analyzing Data: Tools for the Scientific Field of Application

Figure 5.9: Composition of the analysis for the most common animal, dependent on the average
temperature, described in the second example of Chapter 5.1.7.

one output. The Worker consists of two ComboProperty elements. The first one
defines the column for which the values are aggregated. The second one defines the
column for which the most frequently occurring element is searched for, depending
on the value selected in the first Property. In our example, we select “Location” as
the column to be aggregated and “Animal” as the column for which we want to
calculate the most common element. Then it returns a DataList containing only
the two selected columns with the aggregated values to the output.

To merge the two DataLists with the grouped values and the temperatures, we
use the Combiner. In it, we define the two “Location” columns as the key, so that
the Combiner joins the two lists into one DataList with the columns “Animal”,
“Location”, and “Avg. Temperature”.

As a demonstration, we want the result to be ordered by temperature, so we need
the Sorter as another Worker. The Sorter uses the comparator of the selected co-
lumn which would be a numeric comparison in this case.

5.1 An Embeddable Analysis Tool 113

Figure 5.10: Result of the second analysis.

• Generating result:
To display the results, we again use a Diagram. This time we us a scatter chart,
that can be seen in Figure 5.10. We select the “Animal” column as the x-axis, and
the “Temperature” column as the y-axis. Since the y-axis can only display numeric
values, only columns are valid for the y-axis that are at least in interval scale.

5.1.8 Discussion

In this chapter, we described an ANALYSIS TOOL for generating analyses that can be em-
bedded into a base application. The framework aims to be intuitively used by scientists
without any IT background, inside their accustomed working environment. The ANALY-
SIS TOOL can easily be extended and integrated into a base application. We identified
the requirements for the framework which have to be fulfilled to allow working with it.
Then, we discussed the applicability of the requirements with some existing analysis ap-
plications. We described the realization of our tool to be able to meet the requirements
and discussed how the framework can be integrated into a base application and exten-
ded to the demands of the user. Finally, we presented some of the basic Workers and
used them in two examples to show the analysis workflow.

While the ANALYSIS TOOL can already be used for generating interesting analyses,
there are still some issues that could be addressed in the future to make working with
the framework go more smoothly.

114 5. Analyzing Data: Tools for the Scientific Field of Application

Due to the nature of the implementation, it can only be used in a Java environment
which is the main limitation of this analysis framework. While the concepts themselves
work in any environment, the implementation would have to be specific for the language
of the base application. An application that is not written or compatible with Java cannot
currently use the ANALYSIS TOOL. So either there would have to be an instance of this
tool for every programming language or a wrapper has to be developed to be able to use
the framework in other programming languages as well.

While the integration into the base application is straight forward and can easily
be done, it still requires both access to the source code and knowledge how to pro-
gram. Therefore, the typical users cannot do the integration themselves. This means
that the developer of the base application has to integrate the ANALYSIS TOOL to pro-
vide the functionality to the users. For these cases, the framework could be extended to
run as a standalone application which can be connected to the database directly. This
would require additional settings which handle the connection to the database itself. A
stand-alone tool could benefit from the same level of flexibility and extendibility that the
framework offers while being integrated into a base application.

Additionally, the issue still remains that for creating a new Worker some programming
skills are required. As opposed to the integration into the application. However, in this
case no access to the source code is required, as shown above. Still, the Worker itself has
to be written by a software developer.

There are already a wide range of analyses possible, but still many additional Workers
have to be created. These Workers should be part of the framework itself since they can
be used for analyses in different areas. Possible Workers include clustering algorithms,
different diagram types, etc.

The logic handling the data sets is currently focused on processing speed. For this
the DataLists are often just copied and remain in the primary memory. For small data
sets this is a fast and efficient way, but for complex databases with thousands or millions
of entries this method can quickly reach the computer’s capacity limit. Several solutions
would be possible to meet this problem. The generated result could only be kept in
memory during one operation until succeeding Workers have used the Output Data. This
would slow down the analysis process since, even for a small adjustment, all Output Data
would have to be recalculated. Additionally, the generated Output Data could be saved
in a temporary file, so that main memory is freed because the Output Data is not used for
calculation. Again, this would slow down the calculation process since disk operations
are relatively slow.

5.2 A Visual Analytics Application for Temporal and Spatial Data 115

5.2 A Visual Analytics Application for Temporal and
Spatial Data

The creation of graphical analyses for a specific use case sometimes requires special
methods or algorithms which are not possible or reasonable in a generic environment.
In this case, a special analysis application created exactly for that particular use case is
more reasonable than to try to integrate the features into a generic environment. One
example for this is the tool which is explained in this following chapter.

The archaeo-related sciences deal with the analysis of rests of buildings, artifacts, hu-
man burial remains, or faunal and botanical remains. Excavated are settlements, such as
houses, workshops, wells, waste heaps, latrines as well as sanctuaries and burial grounds
with related artifacts and bones. Those are all remnants of human activities. They des-
cribe daily life, about nutrition, city planning, crafting techniques, interactions of diffe-
rent cultures, fashions, preferences and taboos, trade, forms of economy, migration, and
animal kingdom.

In the process of archaeological excavations, ancient monuments are gradually exca-
vated and thus destroyed. The task of archaeologists consists of documenting each step
lege artis to reconstruct and describe each situation as exact as possible.

For their analyses, not only the data of the findings is important, but also the spatial
position and temporal information since it can easily happen that during an excavation
findings from completely different epochs are revealed. The position of findings in cham-
bers, graves, etc. gives an insight into the temporal circumstances of the excavation site
(typically, findings from older times are found below findings from more recent times).
The relationship of the spatial and temporal information of the archaeological data al-
lows the reconstruction of history.

It is common practice that archaeologists and bioarchaeologists analyze their findings
by using statistical analysis applications. However, in archaeology and bioarchaeology
it is not possible to combine the analysis results with the related spatial and temporal
data of the findings automatically because this kind of data is usually not explicitly avai-
lable in digitalized form (even though most excavation databases contain the necessary
data to reconstruct this information). The model is usually prepared by hand in a time-
consuming process resulting in drawings that represent the stratigraphy of the excavation
site. These hand painted drawing sheets of the stratigraphy do not include any enriched
information about the available findings in the layers. For each question the position of
each layer has to be set in relation manually. This is time-consuming and error-prone.

Archaeologists and bioarchaeologists would greatly benefit from an automatic pro-
cess to generate explicit stratigraphical models that can be visualized and analyzed by
dedicated tools. This would not only save processing time, but would also allow further

116 5. Analyzing Data: Tools for the Scientific Field of Application

analyses to be carried out for which the manual process is too complex.
In this chapter, we describe TARDIS (“Temporal and Relative Diagram Interaction

System”), a tool that provides the possibility to present the extremely complex and mul-
tidimensional connections between place and dating as well as present development in
time henceforth immensely simplifying the understanding of the connection of the data.
It conveys an enormous amount of information in only a few descriptive and highly infor-
mative visualizations. TARDIS also features algorithms to make the implicit information
hidden in common excavation databases explicit without a manual, time consuming, and
error-prone generation (e.g. drawing).

In summary, the main contributions are as follows: First of all, we explain some
basic archaeological terms that are related to this work (cf. Chapter 5.2.1). We discuss
the background and the availability of data and the related work for this context (cf.
Chapter 5.2.2). Then, we describe the structure of TARDIS and focus on the creation
of the Harris Matrix as a key aspect (cf. Chapter 5.2.3). Afterwards, we use TARDIS
in a case study to analyze real data from an archaeological excavation to determine the
distribution of faunal remains (cf. Chapter 5.2.4). Finally, Chapter 5.2.5 concludes and
presents some directions for future work.

5.2.1 Terminology

For understandability and relevance reasons, we introduce definitions from the archaeo-
logical context concerning the work below.

Archaeological notions

Excavation and spatial documentation of archaeological findings are – amongst others
– usually managed in terms of areas, sections, and layers. According to internationally
agreed guidelines for the documentation of archaeological excavations, see exemplarily
[blf16]. These terms are defined as follows:

• Layer:
Layers describe all structures that differ in color, consistence, and material of the
directly neighbored structure, e.g. a monophased wall, a layer of earth, a discolo-
ration of soil, but also a disruption. A layer is the smallest managed unit.

• Area:
An area is a horizontal sector of the excavation that is defined by the archaeologist.

• Section:
If required, single parts of an area can be split into sections.

5.2 A Visual Analytics Application for Temporal and Spatial Data 117

Harris Matrix

The Harris Matrix [Har75, HIB91] is used to depict the temporal succession of archaeo-
logical contexts and thus the sequence of depositions and surfaces on an archaeological
site. Two layers, i.e. their strata, can be set in temporal relationship dependent on their
position.

All archaeological sites are subject to the laws of archaeological stratigraphy. The-
refore, Harris formulated a set of four basic laws for stratigraphy for the archaeological
context: [Har89]

1. Law of Superposition “assumes that the strata and layers are found in position
similar to that of their original deposition”.

2. Law of Original Horizontality “assumes that strata, when forming, will tend to-
wards the horizontal”.

3. Law of Original Continuity bases “on the limited topographical extent of a deposit
or an interfacial feature”.

4. Law of Stratigraphical Succession: “A unit of archaeological stratification takes
its place in the stratigraphic sequence of a site from its position between the under-
most (or earliest) of the units which lie above it and the uppermost (or latest) of
all the units which lie below it and with which the unit has a physical contact, all
other superpositional relationships being redundant.”

By applying these laws, it is not necessary to sketch the relationships of each single
layer to all the others. Instead, it is sufficient to consider three basic relationships bet-
ween them: (A) Two layers are positioned on the same layer, but have no stratigraphic
connection, (B) two layers are positioned one above the other, and (C) a layer is cut by
another layer. A sketch of these relationships is shown in Figure 5.11. The representation
of the Harris Matrix could also be called a diagram or graph, but we will continue to use
it in this chapter since “Harris Matrix” was the chosen term by Harris.

5.2.2 Background and Related Work

In principle, our application TARDIS works on top of any excavation database provi-
ding implicit information on the spatial-temporal context of an excavation as described
above. In this chapter, we will illustrate the capabilities of TARDIS on top of a real ex-
cavation database running at the Bavarian State Department of Monuments and Sites34:
The database EXCABOOK [KLK+18e] is used to gather and store data of archaeological

34http://www.blfd.bayern.de

http://www.blfd.bayern.de

118 5. Analyzing Data: Tools for the Scientific Field of Application

Figure 5.11: “The Harris Matrix system recognizes only three relationships between units of
archaeological stratification: (A) The units have no direct stratigraphic connection.
(B) they are in superposition; and (C) the units are correlated as parts of an once-
whole deposit or [layer] interface.” [Har89]

excavations. EXCABOOK includes detailed information about the layers and the single
findings from an excavation.

Each layer is saved as an own data set that is assigned to a specific position correlation
information which includes – amongst others – the information for area and section.
Within each layer, this information can be set in spatial relationship by defining the
position of the layer in relation to other layers, by defining which layer is positioned
below/above another layer, which layer cuts/is cut by another layer, and which layers
are disconnected, but identical. This information is sufficient to calculate the Harris
Matrix [Har89] as described in Chapter 5.2.1.

In summary, temporal data is available in the archaeological data sets due to the
definition of the stratigraphy, respectively to the temporal relation of single layers to
each other. There is also available geodata for the data sets that can be taken from
the spatial expansion and coordinates of areas and sections in excavations. This data
is documented as precisely as possible. However, not all measurements have the same
precision due to different measurement methods or level of accuracies. The data still can
– at least – be used for a rough generation of a sketch of the excavation place.

The problems encountered from this context are the following:

• No considering of spatial and temporal relationship:
This spatial and temporal information is not set in relation to the archaeological
field of work. The archaeologists do either consider the temporal or the spatial
point of view. However, combining both of the aspects would result in the explora-
tion of new scientific questions in the archaeological context.

5.2 A Visual Analytics Application for Temporal and Spatial Data 119

• No interactive Harris Matrix:
The visualization of the data with a Harris Matrix does not offer any dynamic in-
teraction for the user. It is a static result that is achieved mostly by the manual
composition of data.

• Finding information is not considered:
The information about the single findings are not considered at all in the Harris
Matrix. If a user wants only to display a filtered data set – e.g. only a specific
species, bone element, sex, etc. – the input of the data has to be filtered manually
before loading them to a potential application.

Since the first proposal of the Harris Matrix in 1975 [Har75], some tools were develo-
ped to support the creation of the matrix. These tools allow the users to enter each layer
and define the stratigraphy between them. Tools like the Harris Matrix Composer [Ser]
or ArchEd [HMP+] allow the setting of these relationships directly in the applications.
Other tools like Stratify [Her, Her11], alternatively support the import of a CSV file or
dBASE database to define these information. The entered layers are checked for errors.
If no errors exist, the resulting Harris Matrix is created. Still, these tools do not visualize
the spatial position of the single layers. The actual findings inside these layers are also
not considered in any way. In addition, none of these tools contain interactive elements.

Most often not all objects of an archaeological excavation site can be found. Natural
circumstances (like trees) and man-made constructions (like buildings or walls), but also
financial or time reasons, lead to selective or random excavations within one site. There-
fore, statistical interpolation methods are used to get a representation of the distribution
of objects on the excavation site. The one we focus in this chapter is the Kernel Density
Estimation that is commonly used in the archaeological field of work. There exist many
tools for Kernel Density Estimation that allow the generation of a distribution either di-
rectly online [Wes] or inside an application like MATLAB [Mat]. All existing tools offer
various options to load data including CSV and database files. While it would be possible
to filter the data by selected criteria, a 3D representation of the layers and the Harris
Matrix cannot be displayed at the same time.

5.2.3 Illustration of the Spatial and Temporal Distribution
of Findings

In this chapter, we introduce TARDIS, an application that supports the archaeologists in
their data analyses concerning the challenges mentioned in Chapter 5.2.2. Its graphical
user interface allows access to three major parts of the spatial-temporal context of the
data from a given excavation.

120 5. Analyzing Data: Tools for the Scientific Field of Application

Figure 5.12: Screenshot of the TARDIS application. The 2D representation (top center) shows the
areas and sections and displays heat map colors for the absolute number of findings
and the result of a Kernel Density Estimation in the background. The 3D representa-
tion (bottom center) shows the distribution of findings in the layers. The generated
Harris Matrix is displayed on the right. Settings and filter options can be entered on
the left.

These includes:

• a 2D representation of the site,

• a 3D representation of the layers, and

• a (graph-based) visualization of the Harris Matrix.

Furthermore, an area for the selection of the data and filter possibilities are added to the
interface so that each of the three views mentioned above can be customized according
to which data should be displayed. A screenshot of this tool is shown in Figure 5.12
which also shows the elements described in this chapter. Below, we present the single
areas of TARDIS in detail and describe the use of the elements.

5.2 A Visual Analytics Application for Temporal and Spatial Data 121

5.2.3.1 2D Representation

In TARDIS, the 2D representation sketches the rough layout of an excavation site as
archaeologists are used to. Therefore, the single sections are plotted by considering the
corresponding coordinates that are saved in the database. Currently EXCABOOK only al-
lows the definition of rectangle and circular shapes to describe the dimension of sections.
Thus, TARDIS currently only supports the representation of these shapes, too. In future,
other shapes – like the definition and use of custom polygons – will be considered as well
to leverage the flexible definition of the shape of single sections.

This rough layout of the excavation site is complemented by a visual representation
of the distribution of findings which is indicated by different colors. Therefore, there
are three possibilities for the representation of the available findings that are described
below.

• Mode 1: Heat Map Colors
This possibility allows the visualization of the actual findings in the database by
means of a heat map. The drawn rectangles and circles in the 2D representation
are colored dependent on the actual available data in the corresponding area or
section. The stronger the color, the more data of findings exist in the area or
section. Therefore, the colorization represents the absolute number of findings.

• Mode 2: Kernel Density Estimation
The actual position of the findings is taken to calculate an estimation of the distri-
bution of findings on the excavation place. We use a Kernel Density Estimation as a
well-established statistical method. The graphical representation of the estimation
is drawn to the 2D representation as an own layer behind the rectangles and boxes.
The border of the sections, respectively the forms, are still displayed.

• Mode 3: Combination
A combination of the previous modes allows the visualization of the absolute num-
ber of findings and the estimation. The background of the visualization shows the
result of the Kernel Density Estimation, but the absolute number of findings is still
indicated by a colorization of the drawn rectangles and circles. This combination
can be seen in the screenshot of Figure 5.12.

The user can decide which data representation is displayed. The 2D representation of
the excavation site also serves as a selection of the areas and sections which information
shall be displayed as an Harris Matrix.

The 2D representation simulates the traditional way how archaeologists represent
the spatial context of an excavation. However, the archaeologists usually did this by
manually drawing (simply because no tool was available to support a digitalized data

122 5. Analyzing Data: Tools for the Scientific Field of Application

generation) so far. With TARDIS working on top of an excavation database like EXCA-
BOOK, the generation of that representation is fully automated (data is gathered from the
underlying database). In addition, TARDIS also allows the visual analysis of the spatial
distribution of findings, implementing several filters, etc.

Thus, using TARDIS, archaeologists are now able to visually analyze the spatial re-
lationships of findings in a large scale, e.g. considering different categories of findings,
etc.

5.2.3.2 3D Representation

Similar to the 2D representation, the 3D representation does also sketch the layout of the
excavation site, but it adds the depth information to the display. This is a completely new
feature to many archaeologists since the sketch of the 3D spatial context of an excavation
is recorded not too often because it has to be done again manually so far which is very
complex and time consuming.

The x- and y-axis of the 3D representation is identical with the information of the
2D representation, but the z-axis was added to consider the height/depth information
as well. These are taken from the data of layers automatically. However, for a realistic
display of the stratigraphy the stored data of layers is not sufficient. Actually, only the
rough dimension of a layer can be used. This can only be an approximation for the
vertical value because a layer can have different thicknesses at each spot. According
to this, the 3D representation is not to be seen as a detailed drawing, but as a sketch
instead. However, the sketch provides a rough spatial impression of the distribution of
findings for the archaeologists which is – for many projects/excavations – much more
than previously available.

The distribution of findings can also be displayed in the 3D representation, but – in
contrast to the 2D representation – for each single layer. Here, the stronger colorization
of a layer also indicates a higher frequency/density of findings. Therefore, the user gets
an overview of the distribution of findings through the physical position of the strati-
graphy. This is supported by the possibility to arbitrarily move through the 3D scene
with mouse and keyboard.

Like the 2D representation, the 3D representation is a huge step ahead for the
archaeologist when analyzing the spatial distribution of findings. While so far most
archaeologists are limited to 2D manual drawings that are not really flexible in terms of
changing views through filters, etc., TARDIS now leverages visual analytics of the spatial
context of an excavation at full scale.

5.2 A Visual Analytics Application for Temporal and Spatial Data 123

5.2.3.3 Harris Matrix

In the context of an archaeological excavation, not only the spatial distribution of fin-
dings, but also the temporal distributions and relationships of items are very important.
As described in Chapter 5.2.1, the Harris Matrix displays the temporal relationships of
different layers. Each single box of the Harris Matrix represents a layer from a specific
area or section. The higher a box is displayed in the diagram, the more recent is the
layer. At the same time, an earlier layer can be recognized by a lower position in the
diagram.

The Harris Matrix itself is an important representation of the temporal context of an
excavation. However, since this representation is typically drawn manually, it is limited
in the way it can be analyzed.

Thus, in TARDIS, the visualization of the Harris Matrix can be extended by displaying
the distribution of findings over the elements of the diagram. By selecting a specific area
in the 2D representation, the corresponding Harris Matrix is generated and displayed in
the application. Each box in the Harris Matrix is highlighted with a color that represents
the frequency/density of findings in this layer. In comparison to the 2D and 3D represen-
tation, the colorization in the Harris Matrix illustrates the temporal distribution of these
findings. Again, appropriate filters allow the visualization of different categories, etc.

The Harris Matrix in TARDIS also features interactive elements. By selecting one
box in the Harris Matrix, the 3D representation will highlight the corresponding layer.
Therefore, the archaeologist can identify the spatial position of the layer and compare it
with the temporal position of the Harris Matrix.

Below, we describe the set of algorithms necessary to generate the Harris Matrix. The
processing of the algorithms is illustrated in Figure 5.13.

To generate a valid Harris Matrix, we need suitable data. Each layer has to be con-
nected to the network, either by being earlier, later, or in the same time as another Layer
from that data. Layers that are in the same time as other layers can be identified by
having the same layers above and below. We start off by checking the available data
(containing connections and names of layers) in the database by looking for loops and
reporting them back so that they can be removed. This is done by checking if any layer
is, via connections, later or earlier than itself. If so, this is a contradiction and indicates
a loop that needs to be eliminated. Also in this step, we can already assign depths to
the nodes of the diagram. Algorithm 5 implements the identification of loops and the
assignment of depths to nodes.

After we eliminated the loops, we eliminate redundant links. This is important to get
a Harris Matrix that explains the excavations temporal relations with as little connections
as possible. Otherwise, redundant nodes and connections produce a possibly huge over-
head and an excessive visualization that is hard to comprehend. To ensure, we do not

124 5. Analyzing Data: Tools for the Scientific Field of Application

A
B

C

D

E
F

G

H

I

J

Step 1: Removal of loops from data.

A
B

C

D

E
F

G

H

I

J

Step 2: Removal of redundant links.
.

A

B

C D EF

G

H

I

J

Step 3: Sorting for height of nodes

A

B

DC EF

G

H

I

J

Step 4: Minimizing crossings

Figure 5.13: Illustration of the algorithms described in Chapter 5.2.3.3 to create a Harris Matrix.

have any links that are not necessary, we check each direct link if we can reach the same
layer transitivity. If this is possible, we remove the direct link. Algorithm 6 implements
this step.

Then we need to determine the height and the width that the Harris Matrix will need.
In this process we have also to take into consideration whether there will be a connection
going through to a lower height but does not have a layer at that specific height. This is
necessary so that our Harris Matrix is clear and all connections are visible. This process
is implemented in Algorithm 7.

Once we have the height and width of the Harris Matrix, we can start sorting the
layers in a manner that requires as little path crossing as possible. For this purpose, we
sort the layers below in a way that they lie underneath the layer above and, if needed, in
the right position if they are below multiple layers. In the sorting process we also need
to consider empty spaces which are required if a connection stretches above multiple

5.2 A Visual Analytics Application for Temporal and Spatial Data 125

1 topnode← all nodes without incoming connection(s);
2 foreach topnode do
3 assign height to node;
4 foreach node below do
5 goDown(height++, nodeID);
6 end
7 if not all nodes have a height then
8 throw error found nodes without connection;
9 end

10 end

11 def goDown(height: int, node: Node) : void:
12 if height > nodes.length then
13 throw error loop in data;
14 end
15 if height(nodeID) < height then
16 assign height to node;
17 end
18 foreach node below do
19 goDown(height++, nodeID);
20 end
21 end

Algorithm 5: Checking connectedness and loops

layers of depth without an actual layer in them. The final preparation of the data is
implemented in Algorithm 8.

After we have the data well prepared, we can then finish the generation of the Harris
Matrix by drawing the layers and their connections.

5.2.3.4 Filter

In general, the displayed distribution of findings is not filtered. The colorization of the
elements in the 2D and 3D representation and in the Harris Matrix is reflecting the
distribution of all available findings, independent on their diversity.

Still, TARDIS provides some basic filter settings that can be applied to the loaded
data, e.g. – in the case of zooarchaeological studies – filter for specific species, skele-
ton elements, or age determinations. Once a filter option is set, the colorization in the
visualizations only considers the findings matching the filter settings.

This allows multiple views on the spatial-temporal distribution of findings within an
excavation and leverages visual analyses at large scale that enables archaeologists to find
insights on a completely new level.

126 5. Analyzing Data: Tools for the Scientific Field of Application

1 foreach node do
2 if there are multiple connections downwards then
3 remove one and save ID;
4 follow the other path(s) downward;
5 if ID is not encountered then
6 reinsert ID;
7 end
8 end
9 end

Algorithm 6: Check for redundant links

1 maxheight← max(height);
2 sort nodes according to height;
3 start from top do
4 columnwidth← 0;
5 check nodes one layer above for links to nodes below that are not in this

height;
6 foreach of those do
7 increase columnwidth by 1;
8 end
9 foreach in this height do

10 increase columnwidth by 1;
11 end
12 maxcolumn← max(columnwidth, maxcolumn);
13 end

Algorithm 7: Sort for height of nodes

1 insert first layer into Harris Diagram in random order;
2 foreach layer below do
3 add nodes in the order that they are referenced above;
4 if nodes are not in this layer then
5 add a filler;
6 end
7 if nodes are referenced in multiple nodes above then
8 put these nodes in the middle;
9 end

10 end

Algorithm 8: Sort nodes to minimize crossings

5.2 A Visual Analytics Application for Temporal and Spatial Data 127

5.2.4 Case Study: Distribution of Faunal Remains

To prove and demonstrate the usefulness of the tool as well as the quick and efficient way
to show the distribution of animal species in the different features of an archaeological
excavation, we run a case study on real archaeological data. Our goal is to compare the
spatial and temporal distribution of animal bones excavated in several shafts, not only
within the features, but between them as well.

We took data of the excavation Marienhof-Haltepunkt in Munich, Germany, excavated
by the archaeological excavation company ReVe during the years 2011 and 2012. The
major part of the 110 × 95 m excavated area lies within the oldest city core from the
12th century whereas the northern peripheral zone is a part of city’s expansion from the
late 13th and early 14th century. Marienhof-Haltepunkt is a promising study object, due
to the good condition of the animal remains as well as of the shafts themselves. The fact
that flotation of material was practiced during the excavation is a great benefit for the
zooarchaeologists. Thereby, smaller and more fragile bones were able to be recovered.
This results not only in a higher amount of different species (e.g. rodents and small
birds), but also of age groups which are usually underrepresented, especially the age
groups “fetal”, “neonat”, and “infantile”.

We chose shaft 5 of the excavation that is illustrated in the drawing sheet of Fi-
gure 5.14 and visualized the data of the shaft in the TARDIS application – the distribu-
tion of all (unfiltered) species is shown in Figure 5.15-A. Shaft 5 was constructed as an
elaborate well in 1261 [Wes14], but it was abandoned short after and functioned as a
latrine. Such an elaborately built well has to have belonged to a wealthy owner.

The bones of frog species depict a good example of a result due to a carefully done ex-
cavation. Two distinct species of frogs, Rana temporaria (the common frog) and Pelophy-
lax lessonae/ridibunda (the pool/marsh frog), could be identified, although the majority
of the frog bones could be identified only to the family level (Ranidae). In the TARDIS
visualization we filtered the available data for frogs (as seen in Figure 5.15-B) and recog-
nize a high amount of frog bones within the shaft. The high amount of frog bones from
these layers is not such an unusual phenomenon in medieval archaeology. Frogs tend
to fall in shafts and are not able to get out. Another possible explanation would be the
consume of frogs even if its evidence in medieval complexes is not yet rendered. In the
well of the excavation “Altstadt” in Villingen, Germany, from the 13th/14th century 315
bones of Rana temporaria as well as 3 bones of Bufo bufo (the common toad) were found
[vdDK14]. As the authors state, all of them seem to have been fallen in the well. This
death assemblage which is not caused by predators or, as would be in our case, humans
called thanatocoenosis.

Frog bones were found for the first time in layer 801 of shaft 5 although in small
numbers (n = 4). The highest Number of Identified Specimens (=NISP) however can be

128 5. Analyzing Data: Tools for the Scientific Field of Application

Figure 5.14: Planum (left) and profile (right) drawing of shaft 5 of the excavation Marienhof-
Haltepunkt in Munich, Germany. Drawing: ReVe, Büro für Archäologie, Bamberg,
Germany. The layers 360, 745, 746, 778, 801, and 997, that are mentioned in
Chapter 5.2.4, are highlighted. The mentioned layer 393 is not visible in the drawing.

found in layer 746. Here the density of frog bones is at highest (n = 464). However, if
we take a look on the faunal material of layer 360, which superimposes layer 746, we
can see that there are only 37 frog bones. In the other layers, frogs are found as well, but
also in lesser numbers. The high density of frog remains in layer 746 makes clear that
many frogs or rest of frogs were fallen respectively thrown in the shaft in a specific time
period. Since the shaft has a dual story (at the beginning as a well and afterwards as a
latrine) we could hypothesize that the distribution of the frog remains reflect the special
story of this shaft.

This dual story is best reflected in the composition of the layers 997 and 745. As can
be clearly seen in Figure 5.15-C, the bones of cattle are most abundant in layer 997 while
the bones of other species are underrepresented. In the superimposed layer 745 there
is only a small number of bones (n = 73) with small ruminants being most abundant.

5.2 A Visual Analytics Application for Temporal and Spatial Data 129

Figure 5.15: The 3D representation and Harris Matrix of data from shaft 5 of the excavation
Marienhof-Haltepunkt in Munich, Germany. The shown Harris Matrix (A) is the
temporal structure of the drawing sheet in Figure 5.14 with the unfiltered distribution
of findings. The other illustrations show the 3D representation of the shaft and the
distribution of filtered findings of (B) frogs, (C) cattle, and (D) dogs/cats.

Interestingly enough, the NISP is remarkably small even though layer 745 is the biggest
of all. If we add the fact that there are virtually no other finds in the layer besides the
bones one could wonder about the purpose of such a layer. The answer lies in layer 997.
The cattle bones of layer 997 belong solely to one skeleton. This skeleton of a cow (as
can be clearly seen on the pelvis) was fallen respectively thrown into the shaft when
it was still a well. Because of water contamination, people decided to backfill the well,
hence the superimposed thick layer 745 where almost no findings were made. The visual
generation through TARDIS makes it easy to spot such deviations and allows the user to
quickly uncover interesting findings.

In TARDIS, we also filtered the available data for remains of cats and dogs, as visu-
alized in Figure 5.15-D. In the subsequent layers, such as layer 778 and especially layer
746, we identified many bones of cats and dogs. Again, this is a typical phenomenon in

130 5. Analyzing Data: Tools for the Scientific Field of Application

medieval archaeology as many small animals were disposed in wells and latrines. This
was for instance the case in the aforementioned well of “Altstadt” in Villingen, Germany,
where six dog skeletons were uncovered [vdDK14]. In shaft 5 at least two partially pre-
served dog skeletons were identified. More abundant are the remains of cats. Many of
them were juveniles and were disposed in the shaft, because they were “superfluous”.
Again, thanks to the quick visualization through TARDIS such findings can be quickly
detected.

Another interesting aspect is the economic importance of livestock in the middle ages.
The most important ones were cattle, pig, small ruminants (sheep or goats35) as well as,
on a smaller scale, chicken. Trends, which can be quickly generated in TARDIS, are
based on the distribution of the bones of each animal. The higher the number, the more
(economically) important the animal.

In shaft 5 the raising importance of small ruminants is recognizable. While the NISP
of cattle and small ruminants is balanced in layer 746, the relative share of small rumi-
nants increases in the higher positioned layers 393 and 360. In layer 360 the domination
of small ruminants becomes apparent.

As we have seen in this case study, statements on the development of the economic
importance of the different livestock animals within subsequent time periods can quickly
be done with TARDIS, a new application to visually analyze archaeological data.

5.2.5 Conclusion and Discussion

In this chapter, we described the application TARDIS, a visual analytic system for spatial
and temporal data in the archaeological field, motivated by the challenge to set spatial
and temporal data from excavations in relation. Therefore, we generated 2D and 3D
representations of the excavation site that are enriched with data of findings to indicate
their location. Furthermore, we generated a Harris Matrix that is used to illustrate the
temporal positions of the findings. We also explained the implementation of the gene-
ration of the Harris Matrix. These components are interactive, so archaeologists and
bioarchaeologists can set the illustrated results in relation. Finally, we applied data from
a real excavation site to TARDIS to point out the usefulness of the application.

While this application has already many benefits for the domain experts, there are
also some improvements and extensions that can be addressed in the future:

The 2D representation of the excavation site shall consider the definition of other
shapes than rectangular and circular ones. Therefore, the plotting of new shapes has to
be supported, like polygon shapes. That is important to describe more complex structures

35The morphological distinction of the bones of sheep and goat is not always possible in the zooarchaeo-
logical context, zooarchaeologists often use the term ‘small ruminants’ instead of ‘sheep or goats’

5.2 A Visual Analytics Application for Temporal and Spatial Data 131

of linear excavation sites, e.g. for motorway routes or pipelines, but also misshaped areas
or sections on a smaller excavation site.

The Kernel Density Estimation is integrated to the application as one example for a
statistical analysis. In future, other statistical methods shall be added to the 2D represen-
tation as well to offer a wide selection of distribution information. The 3D representation
could also be extended with statistical analysis methods that also consider the third di-
mension.

The filter options that are currently realized are the most important options in the
archaeo-related work. However, the filter options can be extended to also consider other
information from the excavations, possibly also supporting a custom filtering with user-
defined attributes.

The application should be extended by a feature to display two or more illustrations
that show data of different filter settings. This would help the archaeologists to visually
compare two data compositions side by side.

Finally, the real position of the layers in the areas shall be plotted more detailed in the
3D representation. Currently the layers are displayed as a rough estimation. The level of
detail could be increased especially if layers are cut or are arranged side by side.

Acknowledgement

We thank Grabungsfirma ReVe, Büro für Archäologie36, Bamberg, Germany, in particu-
lar Barbara Wührer, and Dr. Christian Behrer of Büro für Denkmalpflege37, Regensburg,
Germany, for providing the stratigraphic data and archaeological information of the ex-
cavation Marienhof-Haltepunkt, Munich, Germany, used for the use case in this chapter.

36http://www.reve-archaeologie.de
37http://www.denkmalpflege.biz

http://www.reve-archaeologie.de
http://www.denkmalpflege.biz

132 5. Analyzing Data: Tools for the Scientific Field of Application

133

Chapter 6

Conclusion and Discussion

Attribution
This chapter does not use any material from previous publications.

In this thesis, we proposed an e-Science architecture to collect, share, retrieve, and
analyze scientific data as can be seen in Figure 6.1.

First, in Chapter 2, we introduced the framework XBOOK which enables the creation
of graphical database applications to collect and share scientific data. We summarized
the historical development of the zooarchaeological database OSSOBOOK to the frame-
work XBOOK and gave an overview of the features of XBOOK. Then, in Chapter 3, we
described the synchronization, a vital part of XBOOK, in more detail. The synchroniza-
tion enables scientists to enter data everywhere, even if no Internet connection is availa-
ble. The data can be synchronized later, to collaborate, share, and back-up the entered
information.

While working on a database for zooarchaeological data, it became clear that the
demand for such an infrastructure is not only required in archaeo-related disciplines and
sub-disciplines, but also in other scientific areas. Of course, several databases (mostly
spreadsheet) were already used, but they were mostly designed for the personal usage
or for a very limited group. Therefore, this recorded data could only be shared with
difficulty since each data scheme is individual and often is not compatible with other
data schemes. A possibility to aggregate data from different data sources did not exist
or at least not in a way that it was usable. After we created several databases for the
archaeo-related contexts, the scientists demanded to be able to combine these different
data sources in a search query.

A approach for the demand is presented in Chapter 4, a new architecture for the
retrieval of heterogeneous data from anonymous, distributed data sources. This archi-
tecture enables data owners to share their data while remaining full control over their
data. In Chapter 4.7, we describe REMIS CLOUD that extends the REMIS architecture to

134 6. Conclusion and Discussion

Figure 6.1: A visualization of the workflow of scientific work as described in this thesis.

allow the retrieval of data from different data sources of diverse areas without complex
queries.

While the origin of the REMIS architecture was for the archaeo-related domains,
it became clear that other sciences could also benefit from the overall concept of the
infrastructure while special utility functions can be added if having a specific domain in
mind.

We hope to have contributed to a solution for the problems mentioned in this thesis
by creating XBOOK and REMIS, so that data owners are now able to keep storing their
data in their own databases and can share the data with other scientists. They can use
the data for analyses with a larger data record. This helps in creating analyses which are
more comparable and can be statistically more meaningful.

Finally, in Chapter 5, we first presented an embeddable ANALYSIS TOOL which enables
the execution and creation of analyses inside a base application. This allows scientists
to work inside a familiar working environment and therefore encourage them to try
new types of analyses which might lead to new knowledge. In the second part of the
chapter, we introduced TARDIS, a standalone analysis application for the analysis of
archaeological and zooarchaeological data with their spatial and temporal information
with the help of a Harris Matrix.

With the development of the ANALYSIS TOOL, we also want to satisfy the demand
for the possibility to run statistical analyses directly inside the application. The first
approach for these statistical analyses with plug-ins [Loh11] encountered the problem
that the plug-ins had to be updated as soon as the database scheme was changed. This
was required because the plug-ins were designed to use individual implementations for
the necessary SQL queries for their analyses. These queries had to be updated as well as
soon as the database scheme was changed.

For every statistical analysis, a new plug-in had to be created as well. Thereby, the
more analysis methods were implemented, the more maintenance had to be done when
a new database version was published. Today, the creation of individual plug-ins is still
possible with the ANALYSIS TOOL, but since the database scheme is abstracted from the
plug-ins and the plug-ins are connected with an API, they do not have to be updated

135

anymore once they have been implemented.
With the help of the ANALYSIS TOOL, scientists can now analyze their data, without

first having to export the data and then to re-import it inside the application in which
the analyses would be carried out otherwise.

This allows quick analyses, for example of the distribution of animals of an excavation
in a zooarchaeological context or the average weight of patients in a clinical study.

Nevertheless, this all is only the first step. Each area is a useful addition on its own,
but they have to be linked to use the full potential of the combined infrastructure. For ex-
ample, the server of XBOOK could directly be a Connector Application for the configured
REMIS architecture to provide the data which is entered to the system. This would gre-
atly help offering a simpler distribution and wide availability for the REMIS. However,
the databases of XBOOK would require some changes to allow project owners to configure
whether they want to make their data available and to which degree. Since the user base
in XBOOK databases might be too extensive and diverse, the server administrator cannot
decide which data shall be made available for the REMIS. The users should then be able
to define in the project settings if they want to make the project available. Additionally,
individual data sets could also be handled individually. Then, these right settings would
be regarded by the REMIS to decide if a data set is available for data requests inside the
system.

Another important connection is the linkage of the ANALYSIS TOOL to the REMIS. It
should be possible to use data from other sources in the ANALYSIS TOOL without first
having to download it or importing it into the base application. The simplest solution
would be to create a new type of Retriever which is able to read spreadsheet or CSV
files. This would also allow to use old data that was not saved inside a database, or
exports of databases from other database application solution which are not connected
to the REMIS to be used for analyses. The REMIS would then be searched for suitable
data sets in a dedicated screen. The results could then be saved as a spreadsheet file and
with the new Retriever be used in an analysis. Alternatively, the ANALYSIS TOOL could
be extended with a new Worker that allows to search for the desired data in REMIS.
The Minimal Search Parameter would be entered with the help of a property inside the
Worker. If the same analysis is re-executed later, the same data is retrieved from the
REMIS again, provided that the data in the connected data sources has not changed.

Especially for data retrieved over the REMIS CLOUD, the import of external data
or direct integration of the system in the ANALYSIS TOOL would be a necessary addition
before the infrastructure could be used in practice. Since the data scheme of the retrieved
data certainly is not compatible, the possibility to first import the data into the base
application is not possible at all. Therefore, the dynamic retrieval of domain-extrinsic
data enables considering interdisciplinary data in analyses without having to store and
handle the retrieved data. This is time-saving and enables complex data analyses.

136 6. Conclusion and Discussion

With the integration of the REMIS in the ANALYSIS TOOL, it is possible to create new
and improved analyses which were not – or at least only with great effort – possible. For
example, scientists might be interested in considering data from different sub-domains.
These could have an attribute in common (like location information or identifiers) which
also would be part of the Minimal Search Parameter. Previously, the scientists had to
get in contact with the scientists responsible for the individual sub-domain to receive the
data manually. This is time-consuming and cumbersome. With the help of the REMIS,
the same analyses – subject to the condition that the data sources of the sub-domains are
connected to the REMIS– can be carried out in minutes, instead of days or weeks. Also,
only one scientist is required which saves a great amount time.

TARDIS could also benefit from a connection to other systems. So, TARDIS could be
converted into a specialized Worker in the ANALYSIS TOOL which expects a predetermi-
ned scheme of data. But in addition to the graphical display provided by TARDIS, the
calculated results could be prepared as a data output in the Worker which then could be
used in further analyses. This way TARDIS could also serve as a graphical filter possibi-
lity (e.g. by selecting layers in the interactive Harris Matrix or the site plan) which result
can be considered in analyses of the ANALYSIS TOOL.

The data that is used in TARDIS could be prepared with help of the ANALYSIS TOOL.
This would allow a more detailed filtering of values which is not possible in TARDIS
directly. The attributes of the objects that are correlated to the different layers in TARDIS
could also be changed, e.g. instead of using the name of the object, the material or other
attributes could be selected.

Most of the concepts covered in this thesis are currently only a basic implementation
that already provide a great benefit for the scientific work on their own.

1. Data Collection: A dynamic framework for database applications for the collection
of scientific data.

2. Data Sharing: A synchronization method for collaborating, sharing, and backing
up data.

3. Data Retrieval: An information system to retrieve heterogeneous, but related data
from distributed data sources.

4. Data Analysis: An embeddable tool for analyses to offer different analysis options.

But especially the joint reflection and the interaction of all components discussed
in this thesis holds a large research potential for both, the scientific end users and the
computer sciences. If the single components work as one, built upon each other, and are
perfectly matched, then not only the single scientist can profit in the end, but the whole
scientific community.

REFERENCES 137

References

[ABF08] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Interval tree clocks.
A Logical Clock for Dynamic Systems. In International Conference On Princi-
ples Of Distributed Systems, pages 259–274. Springer, 2008.

[ASB+08] Steve Androulakis, Jason Schmidberger, Mark A. Bate, Ross DeGori, Anthony
Beitz, Cyrus Keong, Bob Cameron, Sheena McGowan, Corrine J. Porter, An-
drew Harrison, Jane Hunter, Jennifer L. Martin, Bostjan Kobe, Renwick C. J.
Dobson, Michael W. Parker, James C. Whisstock, Joan Gray, Andrew Treloar,
David Groenewegen, Neil Dickson, and Ashley M. Buckle. Federated reposi-
tories of x-ray diffraction images. Acta Crystallographica Section D: Biological
Crystallography, 64(7):810–814, 2008.

[BC12] Reed S. Beaman and Nico Cellinese. Mass digitization of scientific collecti-
ons: New opportunities to transform the use of biological specimens and
underwrite biodiversity science. ZooKeys, (209):7, 2012.

[blf16] Vorgaben zur Dokumentation archäologischer Ausgrabungen in Bayern. Au-
gust 2016. Bayerisches Landesamt für Denkmalpflege, Munich, Ger-
many, 2016. Available from: http://www.blfd.bayern.de/medien/

dokuvorgaben_august_2016.pdf.

[BSO] BSON. http://bsonspec.org/. [Online; accessed 23-January-2018].

[Dan10] Svetlana Danti. Cluster Analysis of Features of Animal Bones and Similarity
Search on Multi Instance Objects of the Archaeozoological Data Pool. Di-
ploma thesis, Ludwig-Maximilians-Universität München, Munich, Germany,
2010.

[Fid88] Colin J. Fidge. Timestamps in Message-Passing Systems that Preserve Partial
Ordering. In Proceedings of the 11th Australian Computer Science Conference,
volume 10, pages 56–66, 1988.

http://www.blfd.bayern.de/medien/dokuvorgaben_august_2016.pdf
http://www.blfd.bayern.de/medien/dokuvorgaben_august_2016.pdf
http://bsonspec.org/

138 REFERENCES

[Fou] The Apache Software Foundation. HDFS Architecture. http://

hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/

HdfsDesign.html. Online, retrieved 18 May 2018.

[Gö18] Reiner Göldner. Resümee zum Workshop ‘Digitale Grabungsdokumentation
– objektiv und nachhaltig’, 2018. Available from: http://bit.ly/2Cjk07N.

[GAA+08] Daniel Gardner, Huda Akil, Giorgio A. Ascoli, Douglas M. Bowden, William
Bug, Duncan E. Donohue, David H. Goldberg, Bernice Grafstein, Jeffrey S.
Grethe, Amarnath Gupta, Maryam Halavi, David N. Kennedy, Luis Marenco,
Maryann E. Martone, Perry L. Miller, Hans-Michael Müller, Adrian Robert,
Gordon M. Shepherd, Paul W. Sternberg, David C. Van Essen, and Robert W.
Williams. The neuroscience information framework: A data and knowledge
environment for neuroscience. Neuroinformatics, 6:149–160, 2008.

[GHK+15] Raymond Gallardo, Scott Hommel, Sowmya Kannan, Joni Gordon, and Sha-
ron Biocca Zakhour. The Java R© Tutorial. A Short Course on the Basis. 6th
Edition, pages 124–125. Addison-Wesley, 2015.

[Goe] Brian Goetz. Java theory and practice: Thread pools and work queues.
https://www.ibm.com/developerworks/java/library/j-jtp0730/index.

html. [Online; accessed 06-December-2017].

[Gol14] Joachim Goll. Architektur- und Entwurfsmuster der Softwaretechnik. Springer,
2014.

[Gooa] Google Developers. FlatBuffers. https://google.github.io/

flatbuffers/. [Online; accessed 23-January-2018].

[Goob] Google Developers. Protocol Buffers. https://developers.google.com/

protocol-buffers/. [Online; accessed 23-January-2018].

[GS02] Rajat P. Garg and Ilya Sharapov. Techniques for Optimizing Applications:
High Performance Computing. Prentice Hall Professional Technical Reference,
2002.

[Har75] Edward C. Harris. Stratigraphic Analyses and the Computer. Computer Ap-
plications in Archaeology, 3:33–40, 1975.

[Har89] Edward C. Harris. Principles of Archaeological Stratigraphy. Academic Press,
London and San Diego, 1989.

[Her] Irmela Herzog. Stratify. http://www.stratify.org/. Computer Software.

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://bit.ly/2Cjk07N
https://www.ibm.com/developerworks/java/library/j-jtp0730/index.html
https://www.ibm.com/developerworks/java/library/j-jtp0730/index.html
https://google.github.io/flatbuffers/
https://google.github.io/flatbuffers/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.stratify.org/

REFERENCES 139

[Her11] Irmela Herzog. Possibilities for Analysing Stratigraphic Data. In CD of the
Workshop “Archäologie und Computer” held in Vienna, Austria, 2011, 2011.

[Her14] Friederike Herzog. Zweiter Jahreszyklus gestartet: Kuckucke mit Satelliten-
sendern. Der Falke. Journal für Vogelbeobachter, 61:23–24, 2014.

[HHO+16] Rick Herrick, William Horton, Timothy Olsen, Michael McKay, Kevin A. Ar-
chie, and Daniel S. Marcus. Xnat central: Open sourcing imaging research
data. NeuroImage, 124:1093–1096, 2016.

[HIB91] Edward C. Harris, Marley R. Brown III, and Gregory J. Brown. Practices of
Archaeological Stratigraphy. Academic Press, London and San Diego, 1991.

[HM85] Dennis Heimbigner and Dennis McLeod. A federated architecture for infor-
mation management. ACM Transactions on Information Systems, 3(3):253–
278, 1985.

[HMP+] Christoph Hundack, Petra Mutzel, Igor Pouchkarev, Barbara Reitgruber, Bar-
bara Schuhmacher, and Stefan Thome. ArchEd. A program for drawing Har-
ris Matrices. https://www.ac.tuwien.ac.at/files/archive/ArchEd/.

[Inm05] William H. Inmon. Building the Data Warehouse, 4th. John Wiley & Sons,
2005.

[Jon16] Alex Jones. Top 10 Data Analysis Tools for Business. http://www.

kdnuggets.com/2014/06/top-10-data-analysis-tools-business.html,
2016. Online, retrieved 3 May 2016.

[JSOa] RFC 8259: The JavaScript Object Notation (JSON) Data Interchange Format.
https://tools.ietf.org/html/rfc8259. [Online; accessed 23-January-
2018].

[JSOb] The JSON Data Interchange Syntax: Standard ECMA-404, 2nd Edition
/ December 2017. http://www.ecma-international.org/publications/

standards/Ecma-404.htm. [Online; accessed 23-January-2018].

[Kal11] Daniel Kaltenthaler. Design and Implementation of a Graphical User Inter-
face for the Archaeozoological Database OssoBook. Project thesis, Ludwig-
Maximilians-Universität München, Munich, Germany, 2011.

[Kal12] Daniel Kaltenthaler. Visual Cluster Analysis of the Archaeological Database
OssoBook with special focus on Data Integrity and Consistency. Diploma
thesis, Ludwig-Maximilians-Universität München, Munich, Germany, 2012.

https://www.ac.tuwien.ac.at/files/archive/ArchEd/
http://www.kdnuggets.com/2014/06/top-10-data-analysis-tools-business.html
http://www.kdnuggets.com/2014/06/top-10-data-analysis-tools-business.html
https://tools.ietf.org/html/rfc8259
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm

140 REFERENCES

[KH14] Steven Krauwer and Erhard Hinrichs. The CLARIN research infrastructure:
resources and tools for e-humanities scholars. In Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC-2014),
pages 1525–1531. European Language Resources Association (ELRA), 2014.

[KKO+09] Hans-Peter Kriegel, Peer Kröger, Henriette Obermaier, Joris Peters, Mat-
thias Renz, and Christiaan van der Meijden. OSSOBOOK: database and
knowledgemanagement techniques for archaeozoology. In Proceedings of
the 18th ACM Conference on Information and Knowledge Management, CIKM
2009, Hong Kong, China, November 2-6, 2009, pages 2091–2092, 2009.

[KL18] Daniel Kaltenthaler and Johannes-Y. Lohrer. The Historic Development of
the Zooarchaeological Database OssoBook and the xBook Framework for
Scientific Databases. ArXiv e-prints: 1801.08052, January 2018.

[KLK+15] Daniel Kaltenthaler, Johannes-Y. Lohrer, Peer Kröger, Christiaan van der
Meijden, and Henriette Obermaier. Synchronized Data Management and Its
Integration into a Graphical User Interface for Archaeological Related Disci-
plines. In Design, User Experience, and Usability: Users and Interactions - 4th
International Conference, DUXU 2015, Held as Part of HCI International 2015,
Los Angeles, CA, USA, August 2-7, 2015, Proceedings, Part II, pages 317–329,
2015.

[KLK17] Daniel Kaltenthaler, Johannes-Y. Lohrer, and Peer Kröger. Supporting Dom-
ain Experts Understanding Their Data: A Visual Framework for Assembling
High-Level Analysis Processes. In 11th International Conference on Interfaces
and Human Computer Interaction 2017, Lisbon, Portugal, 2017, pages 217–
221, 2017.

[KLK+18a] Daniel Kaltenthaler, Johannes-Y. Lohrer, Peer Kröger, Christiaan van der
Meijden, Eduardo Granado, Jana Lamprecht, Florian Nücke, Henriette Ober-
maier, Barbara Stopp, Isabelle Baly, Cécile Callou, Lionel Gourichon, Joris
Peters, Nadja Pöllath, and Jörg Schiebler. OssoBook v5.6.2. Software, Mu-
nich, Germany; Basel, Switzerland, 2018.

[KLK+18b] Daniel Kaltenthaler, Johannes-Y. Lohrer, Peer Kröger, Christiaan van der
Meijden, Michaela Harbeck, and Andrea Grigat. AnthroDepot (Dev version).
Software, Munich, Germany, 2018.

[KLK+18c] Daniel Kaltenthaler, Johannes-Y. Lohrer, Peer Kröger, Christiaan van der
Meijden, and Ciarán Harrington. InBook (Dev version). Software, Munich,
Germany, 2018.

REFERENCES 141

[KLK+18d] Daniel Kaltenthaler, Johannes-Y. Lohrer, Peer Kröger, Christiaan van der
Meijden, Ciarán Harrington, Erich Claßen, Rupert Gebhard, Sonja Marzin-
zik, and Heiner Schwarzberg. ArchaeoBook v5.6.2. Software, Munich, Ger-
many, 2018.

[KLK+18e] Daniel Kaltenthaler, Johannes-Y. Lohrer, Peer Kröger, Christiaan van der
Meijden, Silke Jantos, Agnes Rahm, Ina Sassen, Tilman Wanke, Roland Wan-
ninger, Jochen Haberstroh, and Sebastian Sommer. ExcaBook v5.6.2. Soft-
ware, Munich, Germany, 2018.

[KLK+18f] Daniel Kaltenthaler, Johannes-Y. Lohrer, Peer Kröger, Christiaan van der
Meijden, and Henriette Obermaier. AnthroDepot v5.6.2. Software, Munich,
Germany, 2018.

[KLK+18g] Daniel Kaltenthaler, Johannes-Y. Lohrer, Peer Kröger, Christiaan van der
Meijden, Tatiana Sizova, Anja Mösch, Michaela Harbeck, Andrea Grigat, and
Anita Toncala. AnthroBook. Software, Munich, Germany, 2018.

[KLKO17] Daniel Kaltenthaler, Johannes-Y. Lohrer, Peer Kröger, and Henriette Ober-
maier. A Framework for Supporting the Workflow for Archaeo-related
Sciences: Managing, Synchronizing and Analyzing Data. In Datenbanksys-
teme für Business, Technologie und Web (BTW 2017), 17. Fachtagung des
GI-Fachbereichs ,,Datenbanken und Informationssysteme” (DBIS), 6.-10. März
2017, Stuttgart, Germany, Workshopband, pages 89–98, 2017.

[KLP+17] Daniel Kaltenthaler, Johannes-Y. Lohrer, Ptolemaios Paxinos, Daniel
Hämmerle, Henriette Obermaier, and Peer Kröger. TaRDIS, a Visual Ana-
lytics System for Spatial and Temporal Data in Archaeo-related Disciplines.
In 13th IEEE International Conference on e-Science, eScience 2017, Auckland,
New Zealand, October 24-27, 2017, pages 345–353, 2017.

[KLRK17] Daniel Kaltenthaler, Johannes-Y. Lohrer, Florian Richter, and Peer Kröger.
ReMIS Cloud: A Distributed Information Management System for Interdis-
ciplinary Knowledge Linkage. In 8th International Conference on Internet
Technologies & Society 2017, Sydney, NSW, Australia, 2017, pages 107–114,
2017.

[KLRK18] Daniel Kaltenthaler, Johannes-Y. Lohrer, Florian Richter, and Peer Kröger.
Interdisciplinary Knowledge Cohesion through Distributed Information Ma-
nagement Systems. Journal of Information, Communication and Ethics in
Society, (to appear) 2018.

142 REFERENCES

[KNI06] KNIME.com. KNIME Analytics Platform. http://www.knime.org/knime,
2006. Online, retrieved 6 May 2016.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[Lam08] Jana Lamprecht. Conception and Implementation of a Intermittently Syn-
chronized Database System for Palaeoanatomic applications. Diploma thesis,
Ludwig-Maximilians-Universität München, Munich, Germany, 2008.

[Lev00] Alon Y. Levy. Logic-based techniques in data integration. In Logic-Based
Artificial Intelligence, pages 575–595. Springer, 2000.

[Lib] The GNU C Library. Sockets. http://www.gnu.org/savannah-checkouts/

gnu/libc/manual/html_node/Sockets.html. [Online; accessed 23-
January-2018].

[LKK+14] Johannes-Y. Lohrer, Daniel Kaltenthaler, Peer Kröger, Christiaan van der
Meijden, and Henriette Obermaier. A Generic Framework for Synchronized
Distributed Data Management in Archaeological Related Disciplines. In 10th
IEEE International Conference on e-Science, eScience 2014, São Paulo, Brazil,
October 20-24, 2014, pages 5–12, 2014.

[LKK16a] Johannes-Y. Lohrer, Daniel Kaltenthaler, and Peer Kröger. Leveraging Data
Analysis for Domain Experts: An Embeddable Framework for Basic Data
Science Tasks. In 7th International Conference on Internet Technologies &
Society 2016, Melbourne, VIC, Australia, 2016, pages 51–58, 2016.

[LKK+16b] Johannes-Y. Lohrer, Daniel Kaltenthaler, Peer Kröger, Christiaan van der
Meijden, and Henriette Obermaier. A generic framework for synchronized
distributed data management in archaeological related disciplines. Future
Generation Computer Systems, 56:558–570, 2016.

[LKK+17] Johannes-Y. Lohrer, Daniel Kaltenthaler, Peer Kröger, Henriette Obermaier,
and Christiaan van der Meijden. Reverse Mediated Information System:
Web-based Retrieval of Distributed, Anonymous Information. In 16th In-
ternational Conference on WWW/Internet 2017, Vilamoura, Portugal, 2017,
pages 63–70, 2017.

[LKR+18] Johannes-Y. Lohrer, Daniel Kaltenthaler, Florian Richter, Tatiana Sizova, Peer
Kröger, and Christiaan van der Meijden. Retrieval of Heterogeneous Data
from Dynamic and Anonymous Sources. In 8th IEEE International Conference

http://www.knime.org/knime
http://www.gnu.org/savannah-checkouts/gnu/libc/manual/html_node/Sockets.html
http://www.gnu.org/savannah-checkouts/gnu/libc/manual/html_node/Sockets.html

REFERENCES 143

Confluence 2018 on Cloud Computing, Data Science and Engineering, Noida,
Uttar Pradesh, India, pages 592–597, 2018.

[Loh11] Johannes-Y. Lohrer. Design and Implementation of a Dynamic Database
for Archaeozoological Applications. Project thesis, Ludwig-Maximilians-
Universität München, Munich, Germany, 2011.

[Loh12] Johannes-Y. Lohrer. Density Based Cluster Analysis of the Archaeological
Database OssoBook in Condideration of Aspects of Data Quality. Diploma
thesis, Ludwig-Maximilians-Universität München, Munich, Germany, 2012.

[Mat] MathWorks. MATLAB. https://www.mathworks.com. Computer Software.

[Mat89] Friedemann Mattern. Virtual Time and Global States of Distributed Systems.
Parallel and Distributed Algorithms, 1(23):215–226, 1989.

[McA] Colt McAnlis. JSON Compression: Transpose & Binary. http://mainroach.
blogspot.de/2013/08/json-compression-transpose-binary.html. [On-
line; accessed 23-January-2018].

[Mic08] Microsoft. Microsoft SQL Server: Replication Features and Tasks. http:

//technet.microsoft.com/en-us/library/bb677158.aspx, 2008. Online,
retrieved 21 January 2015.

[MWSM10] Luis Marenco, Rixin Wang, Gordon M. Shepherd, and Perry L. Miller. The nif
disco framework: Facilitating automated integration of neuroscience content
on the web. Neuroinformatics, 8(2):101–112, 2010.

[MyS13] MySQL. MySQL 5.7 Reference Manual: Replication. http://dev.mysql.

com/doc/refman/5.7/en/replication.html, 2013. Online, retrieved 21
June 2015.

[Neu12] Tanja Neumayer. Design and Implementation of Analysis Methods for
Archaeozoological Data. Bachelor thesis, Ludwig-Maximilians-Universität
München, Munich, Germany, 2012.

[Nov] Novalys. SQL Anywhere. http://www.sqlanywhere.info. Online, retrieved
14 February 2018.

[Ora13a] Oracle. Oracle Documentation Library: Replication Manual. http://docs.

oracle.com/cd/F49540_01/DOC/server.815/a67791/pref.htm, 2013. On-
line, retrieved 21 January 2015.

https://www.mathworks.com
http://mainroach.blogspot.de/2013/08/json-compression-transpose-binary.html
http://mainroach.blogspot.de/2013/08/json-compression-transpose-binary.html
http://technet.microsoft.com/en-us/library/bb677158.aspx
http://technet.microsoft.com/en-us/library/bb677158.aspx
http://dev.mysql.com/doc/refman/5.7/en/replication.html
http://dev.mysql.com/doc/refman/5.7/en/replication.html
http://www.sqlanywhere.info
http://docs.oracle.com/cd/F49540_01/DOC/server.815/a67791/pref.htm
http://docs.oracle.com/cd/F49540_01/DOC/server.815/a67791/pref.htm

144 REFERENCES

[Ora13b] Oracle. Oracle Streams: Part 1 Oracle Streams Concepts. http:

//docs.oracle.com/cd/B28359_01/server.111/b28321/pt_concepts.

htm#i996787, 2013. Online, retrieved 21 January 2015.

[Ora13c] Oracle. Oracle Streams Recplication Administator’s Guide: Understan-
ding oracle Streams Replication. http://docs.oracle.com/cd/B28359_01/
server.111/b28322/gen_rep.htm#STREP011, 2013. Online, retrieved 21 Ja-
nuary 2015.

[Per] PervaSync. PervaSync. http://www.pervasync.com. Online, retrieved 14
February 2018.

[Rap06] RapidMiner. RapidMiner. http://www.rapidminer.com, 2006.

[Sch98] Jörg Schibler. OSSOBOOK, a database system for archaeozoology. In Man
and the Animal World: Studies in Archaeozoology, Archaeology, Anthropology
and Palaeolinguistics in Memoriam Sándor Bökönyi, pages 491–510, 1998.

[Ser] Imagination Computer Services. Harris Matrix Composer. http://www.

harrismatrixcomposer.com. Computer Software.

[SL90] Amit P. Sheth and James A. Larsen. Federated Database Systems for Mana-
ging Distributed, Heterogeneous, and Autonomous Databases. ACM Compu-
ting Surverys, 22(3):183–236, 1990.

[Sof03] Tableau Software. Tableau Public. http://public.tableau.com, 2003.

[Sta14] Bayerische Staatskanzlei. BAYERN DIGITAL II, Investitionsprogramm für die
digitale Zukunft Bayerns, 2014. Available from: http://www.bayern.de/

wp-content//uploads/2014/09/17-05-30-masterplan-bayern-digital_

massnahmen_anlage-mrv_final.pdf.

[Ste46] S. S. Stevens. On the Theory of Scales of Measurement. Science,
103(2684):677–680, 1946.

[Swe02] Latanya Sweeney. Achieving k-Anonymity Privacy Protection Using Genera-
lization and Suppression. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(5):571–588, 2002.

[Tsu10] Yuliya Tsukanava. Development and Appliance of Data Mining Methods on
the Palaeoanatomic Data Collection. Diploma thesis, Ludwig-Maximilians-
Universität München, Munich, Germany, 2010.

http://docs.oracle.com/cd/B28359_01/server.111/b28321/pt_concepts.htm#i996787
http://docs.oracle.com/cd/B28359_01/server.111/b28321/pt_concepts.htm#i996787
http://docs.oracle.com/cd/B28359_01/server.111/b28321/pt_concepts.htm#i996787
http://docs.oracle.com/cd/B28359_01/server.111/b28322/gen_rep.htm#STREP011
http://docs.oracle.com/cd/B28359_01/server.111/b28322/gen_rep.htm#STREP011
http://www.pervasync.com
http://www.rapidminer.com
http://www.harrismatrixcomposer.com
http://www.harrismatrixcomposer.com
http://public.tableau.com
http://www.bayern.de/wp-content//uploads/2014/09/17-05-30-masterplan-bayern-digital_massnahmen_anlage-mrv_final.pdf
http://www.bayern.de/wp-content//uploads/2014/09/17-05-30-masterplan-bayern-digital_massnahmen_anlage-mrv_final.pdf
http://www.bayern.de/wp-content//uploads/2014/09/17-05-30-masterplan-bayern-digital_massnahmen_anlage-mrv_final.pdf

REFERENCES 145

[vdDK14] Angela von den Driesch and Mostefa Kokabi. Densdrochronological report.
Bayerisches Landesamt für Denkmalpflege, Munich, Germany, 2014.

[WAC+16] Lei Wang, Kathryn I. Alpert, Vince D. Calhoun, Derin J. Cobia, David B. Ke-
ator, Margaret D. King, Alexandr Kogan, Drew Landis, Marcelo Tallis, Mat-
thew D. Turner, Steven G. Potkin, Jessica A. Turner, and Jose Luis Ambite.
SchizConnect: Mediating Neuroimaging Databases on Schizophrenia and
Related Disorders for Large-Scale Integration. NeuroImage, 124:1155–1167,
2016.

[Wes] Patrick Wessa. Kernel Density Estimation (v1.0.12). In Free Statistics Soft-
ware (v1.1.23-r7), http://www.wessa.net/rwasp_density.wasp. Office for
Research Development and Education.

[Wes14] Timm Weski. Densdrochronological report. Bayerisches Landesamt für Denk-
malpflege, Munich, Germany, 2014.

[Wie92] Gio Wiederhold. Mediators in the Architecture of Future Information Sys-
tems. IEEE Computer, 25(3):38–49, 1992.

[Wie94] Gio Wiederhold. Interoperation, Mediation, and Ontologies. In Proc. Int.
Symposium on 5th Generation Computer Systems (FGCS’94), Workshop on
Heterogeneous Cooperative Knowledge-Bases. Tokyo, Japan, 1994, pages 33–
48, 1994.

[Wie13] Gio Wiederhold. Mediators, Concepts and Practice. In Tansel Özyer, Kei-
van Kianmehr, Mehmet Tan, and Jia Zeng, editors, Information Reuse and
Integration In Academia And Industry, pages 1–27. Springer, Vienna, 2013.

[XFJ] JFJSON. https://github.com/mainroach/compression/tree/master/

xfjson. [Online; accessed 23-January-2018].

http://www.wessa.net/rwasp_density.wasp
https://github.com/mainroach/compression/tree/master/xfjson
https://github.com/mainroach/compression/tree/master/xfjson

146 REFERENCES

REFERENCES 147

Own Publications

Main Publications

[LKK+14] Johannes-Y. Lohrer, Daniel Kaltenthaler, Peer Kröger, Christiaan van der
Meijden, and Henriette Obermaier. A Generic Framework for Synchronized
Distributed Data Management in Archaeological Related Disciplines. In
10th IEEE International Conference on e-Science, eScience 2014, São Paulo,
Brazil, October 20-24, 2014, pages 5–12, 2014.

[LKK+16b]Johannes-Y. Lohrer, Daniel Kaltenthaler, Peer Kröger, Christiaan van der
Meijden, and Henriette Obermaier. A generic framework for synchronized
distributed data management in archaeological related disciplines. Future
Generation Computer Systems, 56:558–570, 2016.

[LKK16a] Johannes-Y. Lohrer, Daniel Kaltenthaler, and Peer Kröger. Leveraging Data
Analysis for Domain Experts: An Embeddable Framework for Basic Data
Science Tasks. In 7th International Conference on Internet Technologies &
Society 2016, Melbourne, VIC, Australia, 2016, pages 51–58, 2016.

[KLP+17] Daniel Kaltenthaler, Johannes-Y. Lohrer, Ptolemaios Paxinos, Daniel
Hämmerle, Henriette Obermaier, and Peer Kröger. TaRDIS, a Visual Analy-
tics System for Spatial and Temporal Data in Archaeo-related Disciplines.
In 13th IEEE International Conference on e-Science, eScience 2017, Auckland,
New Zealand, October 24-27, 2017, pages 345–353, 2017.

[LKK+17] Johannes-Y. Lohrer, Daniel Kaltenthaler, Peer Kröger, Henriette Obermaier,
and Christiaan van der Meijden. Reverse Mediated Information System:
Web-based Retrieval of Distributed, Anonymous Information. In 16th In-
ternational Conference on WWW/Internet 2017, Vilamoura, Portugal, 2017,
pages 63–70, 2017.

148 REFERENCES

[LKR+18] Johannes-Y. Lohrer, Daniel Kaltenthaler, Florian Richter, Tatiana Sizova,
Peer Kröger, and Christiaan van der Meijden. Retrieval of Heterogeneous
Data from Dynamic and Anonymous Sources. In 8th IEEE International Con-
ference Confluence 2018 on Cloud Computing, Data Science and Engineering,
Noida, Uttar Pradesh, India, pages 592–597, 2018.

[KL18] Daniel Kaltenthaler and Johannes-Y. Lohrer. The Historic Development of
the Zooarchaeological Database OssoBook and the xBook Framework for
Scientific Databases. ArXiv e-prints: 1801.08052, January 2018.

Further Publications

[Loh11] Johannes-Y. Lohrer. Design and Implementation of a Dynamic Database
for Archaeozoological Applications. Project thesis, Ludwig-Maximilians-
Universität München, Munich, Germany, 2011.

[Loh12] Johannes-Y. Lohrer. Density Based Cluster Analysis of the Archaeological
Database OssoBook in Condideration of Aspects of Data Quality. Diploma
thesis, Ludwig-Maximilians-Universität München, Munich, Germany, 2012.

[KLK+15] Daniel Kaltenthaler, Johannes-Y. Lohrer, Peer Kröger, Christiaan van der
Meijden, and Henriette Obermaier. Synchronized Data Management and
Its Integration into a Graphical User Interface for Archaeological Related
Disciplines. In Design, User Experience, and Usability: Users and Interactions
- 4th International Conference, DUXU 2015, Held as Part of HCI International
2015, Los Angeles, CA, USA, August 2-7, 2015, Proceedings, Part II, pages
317–329, 2015.

[KLKO17] Daniel Kaltenthaler, Johannes-Y. Lohrer, Peer Kröger, and Henriette Ober-
maier. A Framework for Supporting the Workflow for Archaeo-related
Sciences: Managing, Synchronizing and Analyzing Data. In Datenbanksys-
teme für Business, Technologie und Web (BTW 2017), 17. Fachtagung des GI-
Fachbereichs ,,Datenbanken und Informationssysteme” (DBIS), 6.-10. März
2017, Stuttgart, Germany, Workshopband, pages 89–98, 2017.

[KLK17] Daniel Kaltenthaler, Johannes-Y. Lohrer, and Peer Kröger. Supporting Dom-
ain Experts Understanding Their Data: A Visual Framework for Assembling
High-Level Analysis Processes. In 11th International Conference on Interfa-
ces and Human Computer Interaction 2017, Lisbon, Portugal, 2017, pages
217–221, 2017.

OWN PUBLICATIONS 149

[KLRK17] Daniel Kaltenthaler, Johannes-Y. Lohrer, Florian Richter, and Peer Kröger.
ReMIS Cloud: A Distributed Information Management System for Interdis-
ciplinary Knowledge Linkage. In 8th International Conference on Internet
Technologies & Society 2017, Sydney, NSW, Australia, 2017, pages 107–114,
2017.

[KLRK18] Daniel Kaltenthaler, Johannes-Y. Lohrer, Florian Richter, and Peer Kröger.
Interdisciplinary Knowledge Cohesion through Distributed Information
Management Systems. Journal of Information, Communication and Ethics
in Society, (to appear) 2018.

150 OWN PUBLICATIONS

List of Figures 151

List of Figures

1.1 A visualization of the workflow of scientific work. 2

2.1 Data collection is usually the first step in any scientific workflow. 8
2.2 The input mask in OSSOBOOK 1.0. [Loh12, Kal12] 10
2.3 The analysis of the age of long bones in OSSOBOOK 1.0. [Loh12, Kal12] . 11
2.4 The input mask in OSSOBOOK 3.4. [Loh12, Kal12] 12
2.5 The input mask in OSSOBOOK 4.1. [Loh12, Kal12] 14
2.6 The input mask in OSSOBOOK 4.1.14. [Loh12, Kal12] 16
2.7 The OSSOBOOK UPDATER allowed the user to update the OSSOBOOK ap-

plication. [Loh12, Kal12] . 23
2.8 The first XBOOK LAUNCHER 1.0 with the selection of four different BOOKs

based on the XBOOK framework. 24
2.9 The further developed version XBOOK LAUNCHER 4.3. 26
2.10 The origin draft for the architecture for the OSSOBOOK synchronization.

[KKO+09] . 28
2.11 The synchronization panel in OSSOBOOK 5.2.4. [LKK+16b] 29
2.12 The input mask of OSSOBOOK (top) and ARCHAEOBOOK (bottom). Both

applications are based on the XBOOK framework that provides a basic
graphical user interface and functions, but allows customization like e.g.
individual input fields. [LKK+16b] . 31

3.1 Sharing is usually the second step in any scientific workflow. 36
3.2 The local clients are connected to the global server. The synchronization

allows data exchange, so data can be recorded on the local machines, but
can be backed-up and shared via the server. 38

3.3 The table “inputunit” of the database of OSSOBOOK [KLK+18a] as an ex-
ample for the primary keys ID, DatabaseID, ProjectID and ProjectDataba-
seID. These primary keys are necessary in every data table of XBOOK. . . . 45

3.4 Three important system columns in the input tables: “Status”, “Mes-
sageID” and “Deleted”. The entries with the message ID “–1” are con-
flicted. 46

152 LIST OF FIGURES

3.5 The Code Table “animal” in OSSOBOOK that defines the available values
for species. Adding the column “language” allows using terms in different
languages: 0 for general terms, 1 for German, 2 for English, etc. 48

3.6 UML visualization of the data types handling the data in XBOOK. 50

3.7 Simplified visualization of the synchronization, displaying the commit of
changed entries to the server and new data from the server. 51

3.8 The synchronization panel in OSSOBOOK 5.2.4. [LKK+16b] 53

3.9 Top: The Conflict Management Screen that displays all conflicted entries
of the loaded project. Bottom: The Solve Conflict Screen allows the user
to use the local or server values for a specific conflicted entry. 55

4.1 Retrieving data is usually the third step in any scientific workflow. 60

4.2 The basic flow of archaeological data: The data from the excavation is
partly passed from the offices to the specialized collections and specialists,
who perform individual analyses on the findings and save the results in
their databases. The results of these analyses are not accessible from the
offices. In sum, neither the offices nor the specialized collections have all
information about their findings. 61

4.3 Sketch of the well-known Mediator-based architecture. A central adminis-
trator is required to connect the data sources and to mediate the requests
from the user. The administrator has to know each data source to be able
to connect them. 63

4.4 Sketch of the Reverse-Mediated Information System. The data owners
can register their databases to the system on their own. The necessary
mediation setup is executed by a wizard dialog. The architecture forwards
the user request to the data sources where the request is mediated. 63

4.5 The digital data exchange is hindered. Institutes and specialized collecti-
ons and specialists each have no digital access to the detailed or individual
data of other databases. 65

4.6 The three layers of the architecture: Data Layer, Server Layer, and User
Layer. 68

4.7 Sequence diagram of the initialization process. 69

4.8 Sequence diagram of the registration process. 70

4.9 Sequence diagram of the process to fetch data from the single data sources. 72

4.10 Screenshot of the wizard dialog where administrators can map the spe-
cified parameters of the Minimal Search Parameter to the actual data of
their database. 76

LIST OF FIGURES 153

4.11 Screenshot of the wizard dialog where administrators can determine the
columns from the connected data source which should be communicated
and transferred to the user. 77

4.12 Screenshot of the wizard dialog where administrators can define foreign
keys to define related columns in separated tables, e.g. for the use of IDs
and value tables. 78

4.13 Screenshot of the search mask of REMIS. 82

4.14 Screenshot of the (shortened) retrieved result of REMIS. 83

4.15 An abstract sketch of the REMIS CLOUD architecture. 85

4.16 A simplified sketch of the REMIS CLOUD architecture for archeo-related
sciences. 88

4.17 A simplified sketch of the REMIS CLOUD architecture for the eLearning
example. 89

4.18 Screenshot of the REMIS CLOUD Prototype displaying the result described
in Chapter 4.7.4 . 89

5.1 Analyzing data is usually the final step in any scientific workflow. 94

5.2 Schematic representation of a Property. 99

5.3 Schematic representation of the IController. 103

5.4 Schematic representation of the Worker. 104

5.5 From left to right, the screenshots of the Retriever, Combiner, Filter, and
Sorter, as they are represented in the graphical user interface of the tool. . 107

5.6 Examples for different Diagrams . 108

5.7 Composition of the analysis for animal distribution in Munich, described
in the first example of Chapter 5.1.7. The analysis framework is embedded
to the zooarchaeological database OSSOBOOK [KLK+18a]. 109

5.8 Possible result of the first analysis. 111

5.9 Composition of the analysis for the most common animal, dependent on
the average temperature, described in the second example of Chapter
5.1.7. 112

5.10 Result of the second analysis. 113

5.11 “The Harris Matrix system recognizes only three relationships between
units of archaeological stratification: (A) The units have no direct strati-
graphic connection. (B) they are in superposition; and (C) the units are
correlated as parts of an once-whole deposit or [layer] interface.” [Har89] 118

154 LIST OF FIGURES

5.12 Screenshot of the TARDIS application. The 2D representation (top center)
shows the areas and sections and displays heat map colors for the abso-
lute number of findings and the result of a Kernel Density Estimation in
the background. The 3D representation (bottom center) shows the distri-
bution of findings in the layers. The generated Harris Matrix is displayed
on the right. Settings and filter options can be entered on the left. 120

5.13 Illustration of the algorithms described in Chapter 5.2.3.3 to create a Har-
ris Matrix. 124

5.14 Planum (left) and profile (right) drawing of shaft 5 of the excavation
Marienhof-Haltepunkt in Munich, Germany. Drawing: ReVe, Büro für
Archäologie, Bamberg, Germany. The layers 360, 745, 746, 778, 801, and
997, that are mentioned in Chapter 5.2.4, are highlighted. The mentioned
layer 393 is not visible in the drawing. 128

5.15 The 3D representation and Harris Matrix of data from shaft 5 of the ex-
cavation Marienhof-Haltepunkt in Munich, Germany. The shown Harris
Matrix (A) is the temporal structure of the drawing sheet in Figure 5.14
with the unfiltered distribution of findings. The other illustrations show
the 3D representation of the shaft and the distribution of filtered findings
of (B) frogs, (C) cattle, and (D) dogs/cats. 129

6.1 A visualization of the workflow of scientific work as described in this the-
sis. 134

LIST OF TABLES 155

List of Tables

4.1 Extract of the result for the example query “Luther” in the Category “His-
toric Events” . 88

5.1 Animals . 110
5.2 Average Temperatures . 111

156 LIST OF TABLES

LIST OF ALGORITHMS 157

List of Algorithms

1 The (shortened) example structure of the book.xml file. 25

2 Trigger to update the status column to the current time in entry tables. . . . 45
3 Trigger that updates the status column to the current time for Code Tables. 47
4 Trigger that also updates the status column in the version table. 47

5 Checking connectedness and loops . 125
6 Check for redundant links . 126
7 Sort for height of nodes . 126
8 Sort nodes to minimize crossings . 126

	Abstract
	Zusammenfassung
	Introduction
	Overview
	Attribution

	Data Collection: Development of the xBook Framework
	Introduction
	Origin of OssoBook
	First OssoBook Version in dBASE
	Conversion to Java
	First Implementation of a Synchronization
	Redevelopment of the Application

	From the Application OssoBook to the xBook Framework
	Input Fields and Input Mask
	Update Procedure
	Plug-in Interface
	Database Identification
	Registration
	Server-Client Architecture
	Launcher

	Features of the xBook Framework
	Synchronization
	Graphical User Interface
	Multiple and Crossed-Linked Input Masks
	Listing and Export

	Applications Using the xBook Framework

	Sharing Data: A Timestamp-Based Synchronization Process
	Introduction
	Problem Formulation
	Evaluation of Existing Synchronization Methods
	Synchronization
	Realization in the Database
	Realization in the Application

	Synchronization in the Graphical User Interface
	Manual Data Synchronization
	Automatic Data Synchronization
	Code Table Update
	Conflict Management

	Discussion

	Retrieving Data: Introducing the Reverse-Mediated Information System
	Introduction
	Problem Formulation
	Requirements
	Reverse-Mediated Information System
	Initialization
	Registration
	Search
	Rights
	Configuration of the Connector Application

	Related Work and Comparison
	Case Study: Retrieving Archaeo-Related Information
	ReMIS Cloud
	Structure
	Data Retrieval
	Use Case: Scientific Example (Archaeology)
	Use Case: eLearning Example

	Conclusion and Discussion

	Analyzing Data: Tools for the Scientific Field of Application
	An Embeddable Analysis Tool
	Requirements
	Existing methods
	Realization
	Integration
	Definition of Custom Workers
	Example of Provided Basic Workers
	Workflow
	Discussion

	A Visual Analytics Application for Temporal and Spatial Data
	Terminology
	Background and Related Work
	Illustration of the Spatial and Temporal Distribution of Findings
	Case Study: Distribution of Faunal Remains
	Conclusion and Discussion

	Conclusion and Discussion
	References
	Own Publications
	List of Figures
	List of Tables
	List of Algorithms

