2,161 research outputs found

    Safe, Remote-Access Swarm Robotics Research on the Robotarium

    Get PDF
    This paper describes the development of the Robotarium -- a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-agent research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium as well as connects these to the particular considerations one must take when making complex hardware remotely accessible. In particular, safety must be built in already at the design phase without overly constraining which coordinated control programs the users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees.Comment: 13 pages, 7 figures, 3 code samples, 72 reference

    Modèles algorithmes et méthodologie pour la conception de systèmes de sécurité physique basés sur des microcontrôleurs protégés des attaques cyber-physiques

    Get PDF
    Un moyen d'assurer la sécurité de systèmes basés sur des micro-contrôleurs (mCS) est de considérer une approche de génération à partir de spécifications. Malheureusement, les approches existantes souffrent d'inconvénients, et le but de la méthodologie présentée dans cette thèse est de les éviter dans le cas particulier des mCS pour la sécurité physique (mCS-Sec). Les principaux résultats de ce travail sont le développement de modèles, d'algorithmes, et d'une méthodologie originale de création de mCS-Sec, et leur implémentation. L'applicabilité de la méthode a été évaluée sur un système de robot de surveillance d'une zone. Dans ce cas, notre évaluation a montré que l'approche développée satisfaisait toutes les contraintes imposées, tout en offrant certains avantages par rapport aux solutions existantes. Nous pensons que cette approche permettra de réduire le nombre de faiblesses et les problèmes d'architecture dans les mCS, ce qui en réduira la surface d'attaque.One of the possible ways to ensure the security of microcontroller-based systems is the implementation of security by design approach. Unfortunately, existing approaches are not without drawbacks, that is why this thesis is aimed at developing the new one. Moreover, among all possible systems, in this work, only physical security systems were chosen as an area of the application. The main findings of the work are containing original models, algorithms, methodology and software implementation. Their correctness was checked on a system of mobile robots for perimeter monitoring. The evaluation of the developed solution showed that it satisfies all requirements while having advantages over commercial and scientific analogues, which means that the goal of this work was reached. It is assumed that the use of the developed solution will help to reduce the number of weak places and architectural defects in microcontroller-based systems, thereby significantly reducing their attack surface

    BotSitter

    Get PDF
    As society progresses into an era where both parents work, whether it is online or in person, children in the home may be put in dangerous situations if they are not given the attention they need. The BotSitter is an automated system that follows the child around and makes an audio alarm to alert both the child and the nearby guardian. Using RSSI trilateration, predetermined danger areas, and embedded controls, the BotSitter will be able to follow the child. The device can manage to keep track of the child for the guardian while being almost completely automated outside of setup

    Autonomous Charging of Electric Vehicles in Industrial Environment

    Get PDF
    Modern industrial manufacturing involves several manually and automated driven vehicles - not only for logistics and production purposes, but also for services, maintenance, resources supply and cleaning. These different types of vehicles are increasingly driven by electric powertrains that operate in the production halls, warehouses and other involved areas. Today, electric charging of these mobile devices is accomplished mainly manually and by use of a number of different not standardized charging interfaces, which leads to increased time and cost efforts. The paper evaluates different charging technologies for the use in industrial environments and introduces a new approach for automated, robot-controlled charging of electric vehicles, which is based on a standardized charging interface. The technology has been developed to fully automated charge different types of cars and other vehicles and consists of a vision system to identify the vehicle and the charging connector position in combination with a fully-controlled robotic system that plugs-in and -off the charging connector. In this way, the system is universally applicable for different types of autonomously and manually driven vehicles in a professional context, e.g. in production, logistics and warehouses

    A Mobile Self-Leveling Landing Platform for Small-Scale UAVs

    Get PDF
    This thesis presents a semi-autonomous mobile self-leveling landing platform designed to launch, recover and re-launch VTOL UAVs without the need for human intervention. The landing platform is rugged, lightweight and inexpensive, making it ideal for civilian applications that require a base station from which a rotorcraft UAV can be launched and recovered on terrain that is normally unsuitable for UAV operations. This landing platform is capable of self-leveling on rough terrain and inclined slopes, and can autonomously operate in remote locations for extended periods of time using large onboard lithium batteries and wireless communication. This thesis discusses the unique design aspects of this landing platform that set it apart from similar systems, describes the prototype vehicle, and shows experimental results to demonstrate the system is fully functional and meets all the primary design requirement

    Capacitive power transfer for maritime electrical charging applications

    Get PDF
    Wireless power transfer can provide the convenience of automatic charging while the ships or maritime vehicles are docking, mooring, or in a sailing maneuver. It can address the challenges facing conventional wired charging technologies, including long charging and queuing time, wear and tear of the physical contacts, handling cables and wires, and electric shock hazards. Capacitive power transfer (CPT) is one of the wireless charging technologies that has received attention in on-road electric vehicle charging applications. By the main of electric fields, CPT offers an inexpensive and light charging solution with good misalignment performance. Thus, this study investigates the CPT system in which air and water are the separation medium for the electrical wireless charging of small ships and unmanned maritime vehicles. Unlike on-road charging applications, air or water can be utilized as charging mediums to charge small ships and unmanned maritime vehicles. Because of the low permittivity of the air, the air-gapped capacitive coupling in the Pico Farad range requires a mega-hertz operating frequency to transfer power over a few hundred millimeters. This study examines an air-gapped CPT system to transfer about 135 W at a separation distance of 50 mm, a total efficiency of approximately 83.9%, and a 1 MHz operating efficiency. At 13.56 MHz, the study tested a shielded air-gapped CPT system that transfers about 100 W at a separation distance of 30 mm and a total efficiency of about 87%. The study also examines the underwater CPT system by submerging the couplers in water to increase the capacitive coupling. The system can transfer about 129 W at a separation distance of 300 mm, a total efficiency of aboutapproximately%, and a 1.1 MHz operating efficiency. These CPT systems can upscale to provide a few kW for small ships and unmanned maritime vehicles. But they are still facing several challenges that need further investigations

    Design of a man-wearable control station for a robotic rescue system

    Get PDF
    This report details the design, development, and testing of a man-wearable operator control station for the use of a low-cost robotic system in Urban Search and Rescue (USAR). The complete system, dubbed the "Scarab", is the 1st generation developed and built in the Robotics and Agents Research Laboratory (RARL) at the University of Cape Town (UCT), and was a joint effort between three MSc students. Robots have found a place in USAR as replaceable units which can be deployed into dangerous and confined voids in the place of humans. As such, they have been utilized in a large variety of disaster environments including ground, aerial, and underwater scenarios, and have been gathering research momentum since their first documented deployment in the rescue operations surrounding the 9/11 terrorist attacks. However one issue is their cost as they are not economical solutions, making them less viable for inclusion into a rescue mission as well as negatively affecting the operator‟s decisions in order to prioritise the safety of the unit. Another concern is their difficulty of transport, which becomes dependent on the size and portability of the robot. As such, the Scarab system was conceived to provide a deployable robotic platform which was lowcost, with a budget goal of US $ 500. To address the transportability concerns, it aimed to be portable and light-weight; being able to be thrown through a window by a single hand and withstanding a drop height of 3 m. It includes an internal sensor payload which incorporates an array of sensors and electronics, including temperature monitors and two cameras to provide both a normal and IR video feed. Two LED spotlights are used for navigation, and a microphone and buzzer is included for interaction with any discovered survivors. The operator station acts as the user interface between the operator and the robotic platform. It aimed to be as intuitive as possible, providing quick deployment and minimalizing the training time required for its operation. To further enhance the Scarab system‟s portability, it was designed to be a manwearable system, allowing the operator to carry the robotic platform on their back. It also acts as a charging station, supplying power to the robotic platform‟s on-board charging circuitry. The control station‟s mechanical chassis serves as the man-wearable component of the system, with the functionality being achieved by integration onto a tactical vest. This allows the operator to take the complete system on and off as a single unit without assistance, and uses two mounting brackets to dock the robotic platform. Key areas focussed upon during design were the weight and accessibility of the system, as well as providing a rugged housing for the internal electronics. All parts were manufactured in the UCT Mechanical Engineering workshop
    • …
    corecore