141 research outputs found

    A Survey of hardware protection of design data for integrated circuits and intellectual properties

    No full text
    International audienceThis paper reviews the current situation regarding design protection in the microelectronics industry. Over the past ten years, the designers of integrated circuits and intellectual properties have faced increasing threats including counterfeiting, reverse-engineering and theft. This is now a critical issue for the microelectronics industry, mainly for fabless designers and intellectual properties designers. Coupled with increasing pressure to decrease the cost and increase the performance of integrated circuits, the design of a secure, efficient, lightweight protection scheme for design data is a serious challenge for the hardware security community. However, several published works propose different ways to protect design data including functional locking, hardware obfuscation, and IC/IP identification. This paper presents a survey of academic research on the protection of design data. It concludes with the need to design an efficient protection scheme based on several properties

    Optimizing the Use of Behavioral Locking for High-Level Synthesis

    Get PDF
    The globalization of the electronics supply chain requires effective methods to thwart reverse engineering and IP theft. Logic locking is a promising solution, but there are many open concerns. First, even when applied at a higher level of abstraction, locking may result in significant overhead without improving the security metric. Second, optimizing a security metric is application-dependent and designers must evaluate and compare alternative solutions. We propose a meta-framework to optimize the use of behavioral locking during the high-level synthesis (HLS) of IP cores. Our method operates on chip’s specification (before HLS) and it is compatible with all HLS tools, complementing industrial EDA flows. Our meta-framework supports different strategies to explore the design space and to select points to be locked automatically. We evaluated our method on the optimization of differential entropy, achieving better results than random or topological locking: 1) we always identify a valid solution that optimizes the security metric, while topological and random locking can generate unfeasible solutions; 2) we minimize the number of bits used for locking up to more than 90% (requiring smaller tamper-proof memories); 3) we make better use of hardware resources since we obtain similar overheads but with higher security metric

    Hardware Obfuscation for Finite Field Algorithms

    Get PDF
    With the rise of computing devices, the security robustness of the devices has become of utmost importance. Companies invest huge sums of money, time and effort in security analysis and vulnerability testing of their software products. Bug bounty programs are held which incentivize security researchers for finding security holes in software. Once holes are found, software firms release security patches for their products. The semiconductor industry has flourished with accelerated innovation. Fabless manufacturing has reduced the time-to-market and lowered the cost of production of devices. Fabless paradigm has introduced trust issues among the hardware designers and manufacturers. Increasing dependence on computing devices in personal applications as well as in critical infrastructure has given a rise to hardware attacks on the devices in the last decade. Reverse engineering and IP theft are major challenges that have emerged for the electronics industry. Integrated circuit design companies experience a loss of billions of dollars because of malicious acts by untrustworthy parties involved in the design and fabrication process, and because of attacks by adversaries on the electronic devices in which the chips are embedded. To counter these attacks, researchers have been working extensively towards finding strong countermeasures. Hardware obfuscation techniques make the reverse engineering of device design and functionality difficult for the adversary. The goal is to conceal or lock the underlying intellectual property of the integrated circuit. Obfuscation in hardware circuits can be implemented to hide the gate-level design, layout and the IP cores. Our work presents a novel hardware obfuscation design through reconfigurable finite field arithmetic units, which can be employed in various error correction and cryptographic algorithms. The effectiveness and efficiency of the proposed methods are verified by an obfuscated Reformulated Inversion-less Berlekamp-Massey (RiBM) architecture based Reed-Solomon decoder. Our experimental results show the hardware implementation of RiBM based Reed-Solomon decoder built using reconfigurable field multiplier designs. The proposed design provides only very low overhead with improved security by obfuscating the functionality and the outputs. The design proposed in our work can also be implemented in hardware designs of other algorithms that are based on finite field arithmetic. However, our main motivation was to target encryption and decryption circuits which store and process sensitive data and are used in critical applications

    ASSURE: RTL Locking Against an Untrusted Foundry

    Get PDF
    Semiconductor design companies are integrating proprietary intellectual property (IP) blocks to build custom integrated circuits (IC) and fabricate them in a third-party foundry. Unauthorized IC copies cost these companies billions of dollars annually. While several methods have been proposed for hardware IP obfuscation, they operate on the gate-level netlist, i.e., after the synthesis tools embed the semantic information into the netlist. We propose ASSURE to protect hardware IP modules operating on the register-transfer level (RTL) description. The RTL approach has three advantages: (i) it allows designers to obfuscate IP cores generated with many different methods (e.g., hardware generators, high-level synthesis tools, and pre-existing IPs). (ii) it obfuscates the semantics of an IC before logic synthesis; (iii) it does not require modifications to EDA flows. We perform a cost and security assessment of ASSURE.Comment: Submitted to IEEE Transactions on VLSI Systems on 11-Oct-2020, 28-Jan-202

    Not All Fabrics Are Created Equal: Exploring eFPGA Parameters for IP Redaction

    Get PDF
    Semiconductor design houses rely on third-party foundries to manufacture their integrated circuits (ICs). While this trend allows them to tackle fabrication costs, it introduces security concerns as external (and potentially malicious) parties can access critical parts of the designs and steal or modify the intellectual property (IP). Embedded field-programmable gate array (eFPGA) redaction is a promising technique to protect critical IPs of an ASIC by redacting (i.e., removing) critical parts and mapping them onto a custom reconfigurable fabric. Only trusted parties will receive the correct bitstream to restore the redacted functionality. While previous studies imply that using an eFPGA is a sufficient condition to provide security against IP threats like reverse-engineering, whether this truly holds for all eFPGA architectures is unclear, thus motivating the study in this article. We examine the security of eFPGA fabrics generated by varying different FPGA design parameters. We characterize the power, performance, and area (PPA) characteristics and evaluate each fabric’s resistance to Boolean satisfiability (SAT)-based bitstream recovery. Our results encourage designers to work with custom eFPGA fabrics rather than off-the-shelf commercial FPGAs and reveals that only considering a redaction fabric’s bitstream size is inadequate for gauging security

    Anti-Tamper Method for Field Programmable Gate Arrays Through Dynamic Reconfiguration and Decoy Circuits

    Get PDF
    As Field Programmable Gate Arrays (FPGAs) become more widely used, security concerns have been raised regarding FPGA use for cryptographic, sensitive, or proprietary data. Storing or implementing proprietary code and designs on FPGAs could result in the compromise of sensitive information if the FPGA device was physically relinquished or remotely accessible to adversaries seeking to obtain the information. Although multiple defensive measures have been implemented (and overcome), the possibility exists to create a secure design through the implementation of polymorphic Dynamically Reconfigurable FPGA (DRFPGA) circuits. Using polymorphic DRFPGAs removes the static attributes from their design; thus, substantially increasing the difficulty of successful adversarial reverse-engineering attacks. A variety of dynamically reconfigurable methodologies exist for implementation that challenge designers in the reconfigurable technology field. A Hardware Description Language (HDL) DRFPGA model is presented for use in security applications. The Very High Speed Integrated Circuit HDL (VHSIC) language was chosen to take advantage of its capabilities, which are well suited to the current research. Additionally, algorithms that explicitly support granular autonomous reconfiguration have been developed and implemented on the DRFPGA as a means of protecting its designs. Documented testing validates the reconfiguration results and compares power usage, timing, and area estimates from a conventional and DRFPGA model
    • …
    corecore